1 /*
2 * Copyright 2008-2015 Freescale Semiconductor Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 * * Redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer.
8 * * Redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution.
11 * * Neither the name of Freescale Semiconductor nor the
12 * names of its contributors may be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 *
16 * ALTERNATIVELY, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL") as published by the Free Software
18 * Foundation, either version 2 of that License or (at your option) any
19 * later version.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
22 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include "fman_dtsec.h"
36 #include "fman.h"
37
38 #include <linux/slab.h>
39 #include <linux/bitrev.h>
40 #include <linux/io.h>
41 #include <linux/delay.h>
42 #include <linux/phy.h>
43 #include <linux/crc32.h>
44 #include <linux/of_mdio.h>
45 #include <linux/mii.h>
46
47 /* TBI register addresses */
48 #define MII_TBICON 0x11
49
50 /* TBICON register bit fields */
51 #define TBICON_SOFT_RESET 0x8000 /* Soft reset */
52 #define TBICON_DISABLE_RX_DIS 0x2000 /* Disable receive disparity */
53 #define TBICON_DISABLE_TX_DIS 0x1000 /* Disable transmit disparity */
54 #define TBICON_AN_SENSE 0x0100 /* Auto-negotiation sense enable */
55 #define TBICON_CLK_SELECT 0x0020 /* Clock select */
56 #define TBICON_MI_MODE 0x0010 /* GMII mode (TBI if not set) */
57
58 #define TBIANA_SGMII 0x4001
59 #define TBIANA_1000X 0x01a0
60
61 /* Interrupt Mask Register (IMASK) */
62 #define DTSEC_IMASK_BREN 0x80000000
63 #define DTSEC_IMASK_RXCEN 0x40000000
64 #define DTSEC_IMASK_MSROEN 0x04000000
65 #define DTSEC_IMASK_GTSCEN 0x02000000
66 #define DTSEC_IMASK_BTEN 0x01000000
67 #define DTSEC_IMASK_TXCEN 0x00800000
68 #define DTSEC_IMASK_TXEEN 0x00400000
69 #define DTSEC_IMASK_LCEN 0x00040000
70 #define DTSEC_IMASK_CRLEN 0x00020000
71 #define DTSEC_IMASK_XFUNEN 0x00010000
72 #define DTSEC_IMASK_ABRTEN 0x00008000
73 #define DTSEC_IMASK_IFERREN 0x00004000
74 #define DTSEC_IMASK_MAGEN 0x00000800
75 #define DTSEC_IMASK_MMRDEN 0x00000400
76 #define DTSEC_IMASK_MMWREN 0x00000200
77 #define DTSEC_IMASK_GRSCEN 0x00000100
78 #define DTSEC_IMASK_TDPEEN 0x00000002
79 #define DTSEC_IMASK_RDPEEN 0x00000001
80
81 #define DTSEC_EVENTS_MASK \
82 ((u32)(DTSEC_IMASK_BREN | \
83 DTSEC_IMASK_RXCEN | \
84 DTSEC_IMASK_BTEN | \
85 DTSEC_IMASK_TXCEN | \
86 DTSEC_IMASK_TXEEN | \
87 DTSEC_IMASK_ABRTEN | \
88 DTSEC_IMASK_LCEN | \
89 DTSEC_IMASK_CRLEN | \
90 DTSEC_IMASK_XFUNEN | \
91 DTSEC_IMASK_IFERREN | \
92 DTSEC_IMASK_MAGEN | \
93 DTSEC_IMASK_TDPEEN | \
94 DTSEC_IMASK_RDPEEN))
95
96 /* dtsec timestamp event bits */
97 #define TMR_PEMASK_TSREEN 0x00010000
98 #define TMR_PEVENT_TSRE 0x00010000
99
100 /* Group address bit indication */
101 #define MAC_GROUP_ADDRESS 0x0000010000000000ULL
102
103 /* Defaults */
104 #define DEFAULT_HALFDUP_RETRANSMIT 0xf
105 #define DEFAULT_HALFDUP_COLL_WINDOW 0x37
106 #define DEFAULT_TX_PAUSE_TIME 0xf000
107 #define DEFAULT_RX_PREPEND 0
108 #define DEFAULT_PREAMBLE_LEN 7
109 #define DEFAULT_TX_PAUSE_TIME_EXTD 0
110 #define DEFAULT_NON_BACK_TO_BACK_IPG1 0x40
111 #define DEFAULT_NON_BACK_TO_BACK_IPG2 0x60
112 #define DEFAULT_MIN_IFG_ENFORCEMENT 0x50
113 #define DEFAULT_BACK_TO_BACK_IPG 0x60
114 #define DEFAULT_MAXIMUM_FRAME 0x600
115
116 /* register related defines (bits, field offsets..) */
117 #define DTSEC_ID2_INT_REDUCED_OFF 0x00010000
118
119 #define DTSEC_ECNTRL_GMIIM 0x00000040
120 #define DTSEC_ECNTRL_TBIM 0x00000020
121 #define DTSEC_ECNTRL_SGMIIM 0x00000002
122 #define DTSEC_ECNTRL_RPM 0x00000010
123 #define DTSEC_ECNTRL_R100M 0x00000008
124 #define DTSEC_ECNTRL_QSGMIIM 0x00000001
125
126 #define DTSEC_TCTRL_GTS 0x00000020
127
128 #define RCTRL_PAL_MASK 0x001f0000
129 #define RCTRL_PAL_SHIFT 16
130 #define RCTRL_GHTX 0x00000400
131 #define RCTRL_GRS 0x00000020
132 #define RCTRL_MPROM 0x00000008
133 #define RCTRL_RSF 0x00000004
134 #define RCTRL_UPROM 0x00000001
135
136 #define MACCFG1_SOFT_RESET 0x80000000
137 #define MACCFG1_RX_FLOW 0x00000020
138 #define MACCFG1_TX_FLOW 0x00000010
139 #define MACCFG1_TX_EN 0x00000001
140 #define MACCFG1_RX_EN 0x00000004
141
142 #define MACCFG2_NIBBLE_MODE 0x00000100
143 #define MACCFG2_BYTE_MODE 0x00000200
144 #define MACCFG2_PAD_CRC_EN 0x00000004
145 #define MACCFG2_FULL_DUPLEX 0x00000001
146 #define MACCFG2_PREAMBLE_LENGTH_MASK 0x0000f000
147 #define MACCFG2_PREAMBLE_LENGTH_SHIFT 12
148
149 #define IPGIFG_NON_BACK_TO_BACK_IPG_1_SHIFT 24
150 #define IPGIFG_NON_BACK_TO_BACK_IPG_2_SHIFT 16
151 #define IPGIFG_MIN_IFG_ENFORCEMENT_SHIFT 8
152
153 #define IPGIFG_NON_BACK_TO_BACK_IPG_1 0x7F000000
154 #define IPGIFG_NON_BACK_TO_BACK_IPG_2 0x007F0000
155 #define IPGIFG_MIN_IFG_ENFORCEMENT 0x0000FF00
156 #define IPGIFG_BACK_TO_BACK_IPG 0x0000007F
157
158 #define HAFDUP_EXCESS_DEFER 0x00010000
159 #define HAFDUP_COLLISION_WINDOW 0x000003ff
160 #define HAFDUP_RETRANSMISSION_MAX_SHIFT 12
161 #define HAFDUP_RETRANSMISSION_MAX 0x0000f000
162
163 #define NUM_OF_HASH_REGS 8 /* Number of hash table registers */
164
165 #define PTV_PTE_MASK 0xffff0000
166 #define PTV_PT_MASK 0x0000ffff
167 #define PTV_PTE_SHIFT 16
168
169 #define MAX_PACKET_ALIGNMENT 31
170 #define MAX_INTER_PACKET_GAP 0x7f
171 #define MAX_RETRANSMISSION 0x0f
172 #define MAX_COLLISION_WINDOW 0x03ff
173
174 /* Hash table size (32 bits*8 regs) */
175 #define DTSEC_HASH_TABLE_SIZE 256
176 /* Extended Hash table size (32 bits*16 regs) */
177 #define EXTENDED_HASH_TABLE_SIZE 512
178
179 /* dTSEC Memory Map registers */
180 struct dtsec_regs {
181 /* dTSEC General Control and Status Registers */
182 u32 tsec_id; /* 0x000 ETSEC_ID register */
183 u32 tsec_id2; /* 0x004 ETSEC_ID2 register */
184 u32 ievent; /* 0x008 Interrupt event register */
185 u32 imask; /* 0x00C Interrupt mask register */
186 u32 reserved0010[1];
187 u32 ecntrl; /* 0x014 E control register */
188 u32 ptv; /* 0x018 Pause time value register */
189 u32 tbipa; /* 0x01C TBI PHY address register */
190 u32 tmr_ctrl; /* 0x020 Time-stamp Control register */
191 u32 tmr_pevent; /* 0x024 Time-stamp event register */
192 u32 tmr_pemask; /* 0x028 Timer event mask register */
193 u32 reserved002c[5];
194 u32 tctrl; /* 0x040 Transmit control register */
195 u32 reserved0044[3];
196 u32 rctrl; /* 0x050 Receive control register */
197 u32 reserved0054[11];
198 u32 igaddr[8]; /* 0x080-0x09C Individual/group address */
199 u32 gaddr[8]; /* 0x0A0-0x0BC Group address registers 0-7 */
200 u32 reserved00c0[16];
201 u32 maccfg1; /* 0x100 MAC configuration #1 */
202 u32 maccfg2; /* 0x104 MAC configuration #2 */
203 u32 ipgifg; /* 0x108 IPG/IFG */
204 u32 hafdup; /* 0x10C Half-duplex */
205 u32 maxfrm; /* 0x110 Maximum frame */
206 u32 reserved0114[10];
207 u32 ifstat; /* 0x13C Interface status */
208 u32 macstnaddr1; /* 0x140 Station Address,part 1 */
209 u32 macstnaddr2; /* 0x144 Station Address,part 2 */
210 struct {
211 u32 exact_match1; /* octets 1-4 */
212 u32 exact_match2; /* octets 5-6 */
213 } macaddr[15]; /* 0x148-0x1BC mac exact match addresses 1-15 */
214 u32 reserved01c0[16];
215 u32 tr64; /* 0x200 Tx and Rx 64 byte frame counter */
216 u32 tr127; /* 0x204 Tx and Rx 65 to 127 byte frame counter */
217 u32 tr255; /* 0x208 Tx and Rx 128 to 255 byte frame counter */
218 u32 tr511; /* 0x20C Tx and Rx 256 to 511 byte frame counter */
219 u32 tr1k; /* 0x210 Tx and Rx 512 to 1023 byte frame counter */
220 u32 trmax; /* 0x214 Tx and Rx 1024 to 1518 byte frame counter */
221 u32 trmgv;
222 /* 0x218 Tx and Rx 1519 to 1522 byte good VLAN frame count */
223 u32 rbyt; /* 0x21C receive byte counter */
224 u32 rpkt; /* 0x220 receive packet counter */
225 u32 rfcs; /* 0x224 receive FCS error counter */
226 u32 rmca; /* 0x228 RMCA Rx multicast packet counter */
227 u32 rbca; /* 0x22C Rx broadcast packet counter */
228 u32 rxcf; /* 0x230 Rx control frame packet counter */
229 u32 rxpf; /* 0x234 Rx pause frame packet counter */
230 u32 rxuo; /* 0x238 Rx unknown OP code counter */
231 u32 raln; /* 0x23C Rx alignment error counter */
232 u32 rflr; /* 0x240 Rx frame length error counter */
233 u32 rcde; /* 0x244 Rx code error counter */
234 u32 rcse; /* 0x248 Rx carrier sense error counter */
235 u32 rund; /* 0x24C Rx undersize packet counter */
236 u32 rovr; /* 0x250 Rx oversize packet counter */
237 u32 rfrg; /* 0x254 Rx fragments counter */
238 u32 rjbr; /* 0x258 Rx jabber counter */
239 u32 rdrp; /* 0x25C Rx drop */
240 u32 tbyt; /* 0x260 Tx byte counter */
241 u32 tpkt; /* 0x264 Tx packet counter */
242 u32 tmca; /* 0x268 Tx multicast packet counter */
243 u32 tbca; /* 0x26C Tx broadcast packet counter */
244 u32 txpf; /* 0x270 Tx pause control frame counter */
245 u32 tdfr; /* 0x274 Tx deferral packet counter */
246 u32 tedf; /* 0x278 Tx excessive deferral packet counter */
247 u32 tscl; /* 0x27C Tx single collision packet counter */
248 u32 tmcl; /* 0x280 Tx multiple collision packet counter */
249 u32 tlcl; /* 0x284 Tx late collision packet counter */
250 u32 txcl; /* 0x288 Tx excessive collision packet counter */
251 u32 tncl; /* 0x28C Tx total collision counter */
252 u32 reserved0290[1];
253 u32 tdrp; /* 0x294 Tx drop frame counter */
254 u32 tjbr; /* 0x298 Tx jabber frame counter */
255 u32 tfcs; /* 0x29C Tx FCS error counter */
256 u32 txcf; /* 0x2A0 Tx control frame counter */
257 u32 tovr; /* 0x2A4 Tx oversize frame counter */
258 u32 tund; /* 0x2A8 Tx undersize frame counter */
259 u32 tfrg; /* 0x2AC Tx fragments frame counter */
260 u32 car1; /* 0x2B0 carry register one register* */
261 u32 car2; /* 0x2B4 carry register two register* */
262 u32 cam1; /* 0x2B8 carry register one mask register */
263 u32 cam2; /* 0x2BC carry register two mask register */
264 u32 reserved02c0[848];
265 };
266
267 /* struct dtsec_cfg - dTSEC configuration
268 * Transmit half-duplex flow control, under software control for 10/100-Mbps
269 * half-duplex media. If set, back pressure is applied to media by raising
270 * carrier.
271 * halfdup_retransmit:
272 * Number of retransmission attempts following a collision.
273 * If this is exceeded dTSEC aborts transmission due to excessive collisions.
274 * The standard specifies the attempt limit to be 15.
275 * halfdup_coll_window:
276 * The number of bytes of the frame during which collisions may occur.
277 * The default value of 55 corresponds to the frame byte at the end of the
278 * standard 512-bit slot time window. If collisions are detected after this
279 * byte, the late collision event is asserted and transmission of current
280 * frame is aborted.
281 * tx_pad_crc:
282 * Pad and append CRC. If set, the MAC pads all ransmitted short frames and
283 * appends a CRC to every frame regardless of padding requirement.
284 * tx_pause_time:
285 * Transmit pause time value. This pause value is used as part of the pause
286 * frame to be sent when a transmit pause frame is initiated.
287 * If set to 0 this disables transmission of pause frames.
288 * preamble_len:
289 * Length, in bytes, of the preamble field preceding each Ethernet
290 * start-of-frame delimiter byte. The default value of 0x7 should be used in
291 * order to guarantee reliable operation with IEEE 802.3 compliant hardware.
292 * rx_prepend:
293 * Packet alignment padding length. The specified number of bytes (1-31)
294 * of zero padding are inserted before the start of each received frame.
295 * For Ethernet, where optional preamble extraction is enabled, the padding
296 * appears before the preamble, otherwise the padding precedes the
297 * layer 2 header.
298 *
299 * This structure contains basic dTSEC configuration and must be passed to
300 * init() function. A default set of configuration values can be
301 * obtained by calling set_dflts().
302 */
303 struct dtsec_cfg {
304 u16 halfdup_retransmit;
305 u16 halfdup_coll_window;
306 bool tx_pad_crc;
307 u16 tx_pause_time;
308 bool ptp_tsu_en;
309 bool ptp_exception_en;
310 u32 preamble_len;
311 u32 rx_prepend;
312 u16 tx_pause_time_extd;
313 u16 maximum_frame;
314 u32 non_back_to_back_ipg1;
315 u32 non_back_to_back_ipg2;
316 u32 min_ifg_enforcement;
317 u32 back_to_back_ipg;
318 };
319
320 struct fman_mac {
321 /* pointer to dTSEC memory mapped registers */
322 struct dtsec_regs __iomem *regs;
323 /* MAC address of device */
324 u64 addr;
325 /* Ethernet physical interface */
326 phy_interface_t phy_if;
327 u16 max_speed;
328 void *dev_id; /* device cookie used by the exception cbs */
329 fman_mac_exception_cb *exception_cb;
330 fman_mac_exception_cb *event_cb;
331 /* Number of individual addresses in registers for this station */
332 u8 num_of_ind_addr_in_regs;
333 /* pointer to driver's global address hash table */
334 struct eth_hash_t *multicast_addr_hash;
335 /* pointer to driver's individual address hash table */
336 struct eth_hash_t *unicast_addr_hash;
337 u8 mac_id;
338 u32 exceptions;
339 bool ptp_tsu_enabled;
340 bool en_tsu_err_exeption;
341 struct dtsec_cfg *dtsec_drv_param;
342 void *fm;
343 struct fman_rev_info fm_rev_info;
344 bool basex_if;
345 struct phy_device *tbiphy;
346 };
347
set_dflts(struct dtsec_cfg * cfg)348 static void set_dflts(struct dtsec_cfg *cfg)
349 {
350 cfg->halfdup_retransmit = DEFAULT_HALFDUP_RETRANSMIT;
351 cfg->halfdup_coll_window = DEFAULT_HALFDUP_COLL_WINDOW;
352 cfg->tx_pad_crc = true;
353 cfg->tx_pause_time = DEFAULT_TX_PAUSE_TIME;
354 /* PHY address 0 is reserved (DPAA RM) */
355 cfg->rx_prepend = DEFAULT_RX_PREPEND;
356 cfg->ptp_tsu_en = true;
357 cfg->ptp_exception_en = true;
358 cfg->preamble_len = DEFAULT_PREAMBLE_LEN;
359 cfg->tx_pause_time_extd = DEFAULT_TX_PAUSE_TIME_EXTD;
360 cfg->non_back_to_back_ipg1 = DEFAULT_NON_BACK_TO_BACK_IPG1;
361 cfg->non_back_to_back_ipg2 = DEFAULT_NON_BACK_TO_BACK_IPG2;
362 cfg->min_ifg_enforcement = DEFAULT_MIN_IFG_ENFORCEMENT;
363 cfg->back_to_back_ipg = DEFAULT_BACK_TO_BACK_IPG;
364 cfg->maximum_frame = DEFAULT_MAXIMUM_FRAME;
365 }
366
init(struct dtsec_regs __iomem * regs,struct dtsec_cfg * cfg,phy_interface_t iface,u16 iface_speed,u8 * macaddr,u32 exception_mask,u8 tbi_addr)367 static int init(struct dtsec_regs __iomem *regs, struct dtsec_cfg *cfg,
368 phy_interface_t iface, u16 iface_speed, u8 *macaddr,
369 u32 exception_mask, u8 tbi_addr)
370 {
371 bool is_rgmii, is_sgmii, is_qsgmii;
372 int i;
373 u32 tmp;
374
375 /* Soft reset */
376 iowrite32be(MACCFG1_SOFT_RESET, ®s->maccfg1);
377 iowrite32be(0, ®s->maccfg1);
378
379 /* dtsec_id2 */
380 tmp = ioread32be(®s->tsec_id2);
381
382 /* check RGMII support */
383 if (iface == PHY_INTERFACE_MODE_RGMII ||
384 iface == PHY_INTERFACE_MODE_RMII)
385 if (tmp & DTSEC_ID2_INT_REDUCED_OFF)
386 return -EINVAL;
387
388 if (iface == PHY_INTERFACE_MODE_SGMII ||
389 iface == PHY_INTERFACE_MODE_MII)
390 if (tmp & DTSEC_ID2_INT_REDUCED_OFF)
391 return -EINVAL;
392
393 is_rgmii = iface == PHY_INTERFACE_MODE_RGMII;
394 is_sgmii = iface == PHY_INTERFACE_MODE_SGMII;
395 is_qsgmii = iface == PHY_INTERFACE_MODE_QSGMII;
396
397 tmp = 0;
398 if (is_rgmii || iface == PHY_INTERFACE_MODE_GMII)
399 tmp |= DTSEC_ECNTRL_GMIIM;
400 if (is_sgmii)
401 tmp |= (DTSEC_ECNTRL_SGMIIM | DTSEC_ECNTRL_TBIM);
402 if (is_qsgmii)
403 tmp |= (DTSEC_ECNTRL_SGMIIM | DTSEC_ECNTRL_TBIM |
404 DTSEC_ECNTRL_QSGMIIM);
405 if (is_rgmii)
406 tmp |= DTSEC_ECNTRL_RPM;
407 if (iface_speed == SPEED_100)
408 tmp |= DTSEC_ECNTRL_R100M;
409
410 iowrite32be(tmp, ®s->ecntrl);
411
412 tmp = 0;
413
414 if (cfg->tx_pause_time)
415 tmp |= cfg->tx_pause_time;
416 if (cfg->tx_pause_time_extd)
417 tmp |= cfg->tx_pause_time_extd << PTV_PTE_SHIFT;
418 iowrite32be(tmp, ®s->ptv);
419
420 tmp = 0;
421 tmp |= (cfg->rx_prepend << RCTRL_PAL_SHIFT) & RCTRL_PAL_MASK;
422 /* Accept short frames */
423 tmp |= RCTRL_RSF;
424
425 iowrite32be(tmp, ®s->rctrl);
426
427 /* Assign a Phy Address to the TBI (TBIPA).
428 * Done also in cases where TBI is not selected to avoid conflict with
429 * the external PHY's Physical address
430 */
431 iowrite32be(tbi_addr, ®s->tbipa);
432
433 iowrite32be(0, ®s->tmr_ctrl);
434
435 if (cfg->ptp_tsu_en) {
436 tmp = 0;
437 tmp |= TMR_PEVENT_TSRE;
438 iowrite32be(tmp, ®s->tmr_pevent);
439
440 if (cfg->ptp_exception_en) {
441 tmp = 0;
442 tmp |= TMR_PEMASK_TSREEN;
443 iowrite32be(tmp, ®s->tmr_pemask);
444 }
445 }
446
447 tmp = 0;
448 tmp |= MACCFG1_RX_FLOW;
449 tmp |= MACCFG1_TX_FLOW;
450 iowrite32be(tmp, ®s->maccfg1);
451
452 tmp = 0;
453
454 if (iface_speed < SPEED_1000)
455 tmp |= MACCFG2_NIBBLE_MODE;
456 else if (iface_speed == SPEED_1000)
457 tmp |= MACCFG2_BYTE_MODE;
458
459 tmp |= (cfg->preamble_len << MACCFG2_PREAMBLE_LENGTH_SHIFT) &
460 MACCFG2_PREAMBLE_LENGTH_MASK;
461 if (cfg->tx_pad_crc)
462 tmp |= MACCFG2_PAD_CRC_EN;
463 /* Full Duplex */
464 tmp |= MACCFG2_FULL_DUPLEX;
465 iowrite32be(tmp, ®s->maccfg2);
466
467 tmp = (((cfg->non_back_to_back_ipg1 <<
468 IPGIFG_NON_BACK_TO_BACK_IPG_1_SHIFT)
469 & IPGIFG_NON_BACK_TO_BACK_IPG_1)
470 | ((cfg->non_back_to_back_ipg2 <<
471 IPGIFG_NON_BACK_TO_BACK_IPG_2_SHIFT)
472 & IPGIFG_NON_BACK_TO_BACK_IPG_2)
473 | ((cfg->min_ifg_enforcement << IPGIFG_MIN_IFG_ENFORCEMENT_SHIFT)
474 & IPGIFG_MIN_IFG_ENFORCEMENT)
475 | (cfg->back_to_back_ipg & IPGIFG_BACK_TO_BACK_IPG));
476 iowrite32be(tmp, ®s->ipgifg);
477
478 tmp = 0;
479 tmp |= HAFDUP_EXCESS_DEFER;
480 tmp |= ((cfg->halfdup_retransmit << HAFDUP_RETRANSMISSION_MAX_SHIFT)
481 & HAFDUP_RETRANSMISSION_MAX);
482 tmp |= (cfg->halfdup_coll_window & HAFDUP_COLLISION_WINDOW);
483
484 iowrite32be(tmp, ®s->hafdup);
485
486 /* Initialize Maximum frame length */
487 iowrite32be(cfg->maximum_frame, ®s->maxfrm);
488
489 iowrite32be(0xffffffff, ®s->cam1);
490 iowrite32be(0xffffffff, ®s->cam2);
491
492 iowrite32be(exception_mask, ®s->imask);
493
494 iowrite32be(0xffffffff, ®s->ievent);
495
496 tmp = (u32)((macaddr[5] << 24) |
497 (macaddr[4] << 16) | (macaddr[3] << 8) | macaddr[2]);
498 iowrite32be(tmp, ®s->macstnaddr1);
499
500 tmp = (u32)((macaddr[1] << 24) | (macaddr[0] << 16));
501 iowrite32be(tmp, ®s->macstnaddr2);
502
503 /* HASH */
504 for (i = 0; i < NUM_OF_HASH_REGS; i++) {
505 /* Initialize IADDRx */
506 iowrite32be(0, ®s->igaddr[i]);
507 /* Initialize GADDRx */
508 iowrite32be(0, ®s->gaddr[i]);
509 }
510
511 return 0;
512 }
513
set_mac_address(struct dtsec_regs __iomem * regs,u8 * adr)514 static void set_mac_address(struct dtsec_regs __iomem *regs, u8 *adr)
515 {
516 u32 tmp;
517
518 tmp = (u32)((adr[5] << 24) |
519 (adr[4] << 16) | (adr[3] << 8) | adr[2]);
520 iowrite32be(tmp, ®s->macstnaddr1);
521
522 tmp = (u32)((adr[1] << 24) | (adr[0] << 16));
523 iowrite32be(tmp, ®s->macstnaddr2);
524 }
525
set_bucket(struct dtsec_regs __iomem * regs,int bucket,bool enable)526 static void set_bucket(struct dtsec_regs __iomem *regs, int bucket,
527 bool enable)
528 {
529 int reg_idx = (bucket >> 5) & 0xf;
530 int bit_idx = bucket & 0x1f;
531 u32 bit_mask = 0x80000000 >> bit_idx;
532 u32 __iomem *reg;
533
534 if (reg_idx > 7)
535 reg = ®s->gaddr[reg_idx - 8];
536 else
537 reg = ®s->igaddr[reg_idx];
538
539 if (enable)
540 iowrite32be(ioread32be(reg) | bit_mask, reg);
541 else
542 iowrite32be(ioread32be(reg) & (~bit_mask), reg);
543 }
544
check_init_parameters(struct fman_mac * dtsec)545 static int check_init_parameters(struct fman_mac *dtsec)
546 {
547 if (dtsec->max_speed >= SPEED_10000) {
548 pr_err("1G MAC driver supports 1G or lower speeds\n");
549 return -EINVAL;
550 }
551 if (dtsec->addr == 0) {
552 pr_err("Ethernet MAC Must have a valid MAC Address\n");
553 return -EINVAL;
554 }
555 if ((dtsec->dtsec_drv_param)->rx_prepend >
556 MAX_PACKET_ALIGNMENT) {
557 pr_err("packetAlignmentPadding can't be > than %d\n",
558 MAX_PACKET_ALIGNMENT);
559 return -EINVAL;
560 }
561 if (((dtsec->dtsec_drv_param)->non_back_to_back_ipg1 >
562 MAX_INTER_PACKET_GAP) ||
563 ((dtsec->dtsec_drv_param)->non_back_to_back_ipg2 >
564 MAX_INTER_PACKET_GAP) ||
565 ((dtsec->dtsec_drv_param)->back_to_back_ipg >
566 MAX_INTER_PACKET_GAP)) {
567 pr_err("Inter packet gap can't be greater than %d\n",
568 MAX_INTER_PACKET_GAP);
569 return -EINVAL;
570 }
571 if ((dtsec->dtsec_drv_param)->halfdup_retransmit >
572 MAX_RETRANSMISSION) {
573 pr_err("maxRetransmission can't be greater than %d\n",
574 MAX_RETRANSMISSION);
575 return -EINVAL;
576 }
577 if ((dtsec->dtsec_drv_param)->halfdup_coll_window >
578 MAX_COLLISION_WINDOW) {
579 pr_err("collisionWindow can't be greater than %d\n",
580 MAX_COLLISION_WINDOW);
581 return -EINVAL;
582 /* If Auto negotiation process is disabled, need to set up the PHY
583 * using the MII Management Interface
584 */
585 }
586 if (!dtsec->exception_cb) {
587 pr_err("uninitialized exception_cb\n");
588 return -EINVAL;
589 }
590 if (!dtsec->event_cb) {
591 pr_err("uninitialized event_cb\n");
592 return -EINVAL;
593 }
594
595 return 0;
596 }
597
get_exception_flag(enum fman_mac_exceptions exception)598 static int get_exception_flag(enum fman_mac_exceptions exception)
599 {
600 u32 bit_mask;
601
602 switch (exception) {
603 case FM_MAC_EX_1G_BAB_RX:
604 bit_mask = DTSEC_IMASK_BREN;
605 break;
606 case FM_MAC_EX_1G_RX_CTL:
607 bit_mask = DTSEC_IMASK_RXCEN;
608 break;
609 case FM_MAC_EX_1G_GRATEFUL_TX_STP_COMPLET:
610 bit_mask = DTSEC_IMASK_GTSCEN;
611 break;
612 case FM_MAC_EX_1G_BAB_TX:
613 bit_mask = DTSEC_IMASK_BTEN;
614 break;
615 case FM_MAC_EX_1G_TX_CTL:
616 bit_mask = DTSEC_IMASK_TXCEN;
617 break;
618 case FM_MAC_EX_1G_TX_ERR:
619 bit_mask = DTSEC_IMASK_TXEEN;
620 break;
621 case FM_MAC_EX_1G_LATE_COL:
622 bit_mask = DTSEC_IMASK_LCEN;
623 break;
624 case FM_MAC_EX_1G_COL_RET_LMT:
625 bit_mask = DTSEC_IMASK_CRLEN;
626 break;
627 case FM_MAC_EX_1G_TX_FIFO_UNDRN:
628 bit_mask = DTSEC_IMASK_XFUNEN;
629 break;
630 case FM_MAC_EX_1G_MAG_PCKT:
631 bit_mask = DTSEC_IMASK_MAGEN;
632 break;
633 case FM_MAC_EX_1G_MII_MNG_RD_COMPLET:
634 bit_mask = DTSEC_IMASK_MMRDEN;
635 break;
636 case FM_MAC_EX_1G_MII_MNG_WR_COMPLET:
637 bit_mask = DTSEC_IMASK_MMWREN;
638 break;
639 case FM_MAC_EX_1G_GRATEFUL_RX_STP_COMPLET:
640 bit_mask = DTSEC_IMASK_GRSCEN;
641 break;
642 case FM_MAC_EX_1G_DATA_ERR:
643 bit_mask = DTSEC_IMASK_TDPEEN;
644 break;
645 case FM_MAC_EX_1G_RX_MIB_CNT_OVFL:
646 bit_mask = DTSEC_IMASK_MSROEN;
647 break;
648 default:
649 bit_mask = 0;
650 break;
651 }
652
653 return bit_mask;
654 }
655
is_init_done(struct dtsec_cfg * dtsec_drv_params)656 static bool is_init_done(struct dtsec_cfg *dtsec_drv_params)
657 {
658 /* Checks if dTSEC driver parameters were initialized */
659 if (!dtsec_drv_params)
660 return true;
661
662 return false;
663 }
664
dtsec_get_max_frame_length(struct fman_mac * dtsec)665 static u16 dtsec_get_max_frame_length(struct fman_mac *dtsec)
666 {
667 struct dtsec_regs __iomem *regs = dtsec->regs;
668
669 if (is_init_done(dtsec->dtsec_drv_param))
670 return 0;
671
672 return (u16)ioread32be(®s->maxfrm);
673 }
674
dtsec_isr(void * handle)675 static void dtsec_isr(void *handle)
676 {
677 struct fman_mac *dtsec = (struct fman_mac *)handle;
678 struct dtsec_regs __iomem *regs = dtsec->regs;
679 u32 event;
680
681 /* do not handle MDIO events */
682 event = ioread32be(®s->ievent) &
683 (u32)(~(DTSEC_IMASK_MMRDEN | DTSEC_IMASK_MMWREN));
684
685 event &= ioread32be(®s->imask);
686
687 iowrite32be(event, ®s->ievent);
688
689 if (event & DTSEC_IMASK_BREN)
690 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_BAB_RX);
691 if (event & DTSEC_IMASK_RXCEN)
692 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_RX_CTL);
693 if (event & DTSEC_IMASK_GTSCEN)
694 dtsec->exception_cb(dtsec->dev_id,
695 FM_MAC_EX_1G_GRATEFUL_TX_STP_COMPLET);
696 if (event & DTSEC_IMASK_BTEN)
697 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_BAB_TX);
698 if (event & DTSEC_IMASK_TXCEN)
699 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_CTL);
700 if (event & DTSEC_IMASK_TXEEN)
701 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_ERR);
702 if (event & DTSEC_IMASK_LCEN)
703 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_LATE_COL);
704 if (event & DTSEC_IMASK_CRLEN)
705 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_COL_RET_LMT);
706 if (event & DTSEC_IMASK_XFUNEN) {
707 /* FM_TX_LOCKUP_ERRATA_DTSEC6 Errata workaround */
708 if (dtsec->fm_rev_info.major == 2) {
709 u32 tpkt1, tmp_reg1, tpkt2, tmp_reg2, i;
710 /* a. Write 0x00E0_0C00 to DTSEC_ID
711 * This is a read only register
712 * b. Read and save the value of TPKT
713 */
714 tpkt1 = ioread32be(®s->tpkt);
715
716 /* c. Read the register at dTSEC address offset 0x32C */
717 tmp_reg1 = ioread32be(®s->reserved02c0[27]);
718
719 /* d. Compare bits [9:15] to bits [25:31] of the
720 * register at address offset 0x32C.
721 */
722 if ((tmp_reg1 & 0x007F0000) !=
723 (tmp_reg1 & 0x0000007F)) {
724 /* If they are not equal, save the value of
725 * this register and wait for at least
726 * MAXFRM*16 ns
727 */
728 usleep_range((u32)(min
729 (dtsec_get_max_frame_length(dtsec) *
730 16 / 1000, 1)), (u32)
731 (min(dtsec_get_max_frame_length
732 (dtsec) * 16 / 1000, 1) + 1));
733 }
734
735 /* e. Read and save TPKT again and read the register
736 * at dTSEC address offset 0x32C again
737 */
738 tpkt2 = ioread32be(®s->tpkt);
739 tmp_reg2 = ioread32be(®s->reserved02c0[27]);
740
741 /* f. Compare the value of TPKT saved in step b to
742 * value read in step e. Also compare bits [9:15] of
743 * the register at offset 0x32C saved in step d to the
744 * value of bits [9:15] saved in step e. If the two
745 * registers values are unchanged, then the transmit
746 * portion of the dTSEC controller is locked up and
747 * the user should proceed to the recover sequence.
748 */
749 if ((tpkt1 == tpkt2) && ((tmp_reg1 & 0x007F0000) ==
750 (tmp_reg2 & 0x007F0000))) {
751 /* recover sequence */
752
753 /* a.Write a 1 to RCTRL[GRS] */
754
755 iowrite32be(ioread32be(®s->rctrl) |
756 RCTRL_GRS, ®s->rctrl);
757
758 /* b.Wait until IEVENT[GRSC]=1, or at least
759 * 100 us has elapsed.
760 */
761 for (i = 0; i < 100; i++) {
762 if (ioread32be(®s->ievent) &
763 DTSEC_IMASK_GRSCEN)
764 break;
765 udelay(1);
766 }
767 if (ioread32be(®s->ievent) &
768 DTSEC_IMASK_GRSCEN)
769 iowrite32be(DTSEC_IMASK_GRSCEN,
770 ®s->ievent);
771 else
772 pr_debug("Rx lockup due to Tx lockup\n");
773
774 /* c.Write a 1 to bit n of FM_RSTC
775 * (offset 0x0CC of FPM)
776 */
777 fman_reset_mac(dtsec->fm, dtsec->mac_id);
778
779 /* d.Wait 4 Tx clocks (32 ns) */
780 udelay(1);
781
782 /* e.Write a 0 to bit n of FM_RSTC. */
783 /* cleared by FMAN
784 */
785 }
786 }
787
788 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_TX_FIFO_UNDRN);
789 }
790 if (event & DTSEC_IMASK_MAGEN)
791 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_MAG_PCKT);
792 if (event & DTSEC_IMASK_GRSCEN)
793 dtsec->exception_cb(dtsec->dev_id,
794 FM_MAC_EX_1G_GRATEFUL_RX_STP_COMPLET);
795 if (event & DTSEC_IMASK_TDPEEN)
796 dtsec->exception_cb(dtsec->dev_id, FM_MAC_EX_1G_DATA_ERR);
797 if (event & DTSEC_IMASK_RDPEEN)
798 dtsec->exception_cb(dtsec->dev_id, FM_MAC_1G_RX_DATA_ERR);
799
800 /* masked interrupts */
801 WARN_ON(event & DTSEC_IMASK_ABRTEN);
802 WARN_ON(event & DTSEC_IMASK_IFERREN);
803 }
804
dtsec_1588_isr(void * handle)805 static void dtsec_1588_isr(void *handle)
806 {
807 struct fman_mac *dtsec = (struct fman_mac *)handle;
808 struct dtsec_regs __iomem *regs = dtsec->regs;
809 u32 event;
810
811 if (dtsec->ptp_tsu_enabled) {
812 event = ioread32be(®s->tmr_pevent);
813 event &= ioread32be(®s->tmr_pemask);
814
815 if (event) {
816 iowrite32be(event, ®s->tmr_pevent);
817 WARN_ON(event & TMR_PEVENT_TSRE);
818 dtsec->exception_cb(dtsec->dev_id,
819 FM_MAC_EX_1G_1588_TS_RX_ERR);
820 }
821 }
822 }
823
free_init_resources(struct fman_mac * dtsec)824 static void free_init_resources(struct fman_mac *dtsec)
825 {
826 fman_unregister_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
827 FMAN_INTR_TYPE_ERR);
828 fman_unregister_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
829 FMAN_INTR_TYPE_NORMAL);
830
831 /* release the driver's group hash table */
832 free_hash_table(dtsec->multicast_addr_hash);
833 dtsec->multicast_addr_hash = NULL;
834
835 /* release the driver's individual hash table */
836 free_hash_table(dtsec->unicast_addr_hash);
837 dtsec->unicast_addr_hash = NULL;
838 }
839
dtsec_cfg_max_frame_len(struct fman_mac * dtsec,u16 new_val)840 int dtsec_cfg_max_frame_len(struct fman_mac *dtsec, u16 new_val)
841 {
842 if (is_init_done(dtsec->dtsec_drv_param))
843 return -EINVAL;
844
845 dtsec->dtsec_drv_param->maximum_frame = new_val;
846
847 return 0;
848 }
849
dtsec_cfg_pad_and_crc(struct fman_mac * dtsec,bool new_val)850 int dtsec_cfg_pad_and_crc(struct fman_mac *dtsec, bool new_val)
851 {
852 if (is_init_done(dtsec->dtsec_drv_param))
853 return -EINVAL;
854
855 dtsec->dtsec_drv_param->tx_pad_crc = new_val;
856
857 return 0;
858 }
859
dtsec_enable(struct fman_mac * dtsec,enum comm_mode mode)860 int dtsec_enable(struct fman_mac *dtsec, enum comm_mode mode)
861 {
862 struct dtsec_regs __iomem *regs = dtsec->regs;
863 u32 tmp;
864
865 if (!is_init_done(dtsec->dtsec_drv_param))
866 return -EINVAL;
867
868 /* Enable */
869 tmp = ioread32be(®s->maccfg1);
870 if (mode & COMM_MODE_RX)
871 tmp |= MACCFG1_RX_EN;
872 if (mode & COMM_MODE_TX)
873 tmp |= MACCFG1_TX_EN;
874
875 iowrite32be(tmp, ®s->maccfg1);
876
877 /* Graceful start - clear the graceful receive stop bit */
878 if (mode & COMM_MODE_TX)
879 iowrite32be(ioread32be(®s->tctrl) & ~DTSEC_TCTRL_GTS,
880 ®s->tctrl);
881 if (mode & COMM_MODE_RX)
882 iowrite32be(ioread32be(®s->rctrl) & ~RCTRL_GRS,
883 ®s->rctrl);
884
885 return 0;
886 }
887
dtsec_disable(struct fman_mac * dtsec,enum comm_mode mode)888 int dtsec_disable(struct fman_mac *dtsec, enum comm_mode mode)
889 {
890 struct dtsec_regs __iomem *regs = dtsec->regs;
891 u32 tmp;
892
893 if (!is_init_done(dtsec->dtsec_drv_param))
894 return -EINVAL;
895
896 /* Gracefull stop - Assert the graceful transmit stop bit */
897 if (mode & COMM_MODE_RX) {
898 tmp = ioread32be(®s->rctrl) | RCTRL_GRS;
899 iowrite32be(tmp, ®s->rctrl);
900
901 if (dtsec->fm_rev_info.major == 2)
902 usleep_range(100, 200);
903 else
904 udelay(10);
905 }
906
907 if (mode & COMM_MODE_TX) {
908 if (dtsec->fm_rev_info.major == 2)
909 pr_debug("GTS not supported due to DTSEC_A004 errata.\n");
910 else
911 pr_debug("GTS not supported due to DTSEC_A0014 errata.\n");
912 }
913
914 tmp = ioread32be(®s->maccfg1);
915 if (mode & COMM_MODE_RX)
916 tmp &= ~MACCFG1_RX_EN;
917 if (mode & COMM_MODE_TX)
918 tmp &= ~MACCFG1_TX_EN;
919
920 iowrite32be(tmp, ®s->maccfg1);
921
922 return 0;
923 }
924
dtsec_set_tx_pause_frames(struct fman_mac * dtsec,u8 __maybe_unused priority,u16 pause_time,u16 __maybe_unused thresh_time)925 int dtsec_set_tx_pause_frames(struct fman_mac *dtsec,
926 u8 __maybe_unused priority,
927 u16 pause_time, u16 __maybe_unused thresh_time)
928 {
929 struct dtsec_regs __iomem *regs = dtsec->regs;
930 u32 ptv = 0;
931
932 if (!is_init_done(dtsec->dtsec_drv_param))
933 return -EINVAL;
934
935 if (pause_time) {
936 /* FM_BAD_TX_TS_IN_B_2_B_ERRATA_DTSEC_A003 Errata workaround */
937 if (dtsec->fm_rev_info.major == 2 && pause_time <= 320) {
938 pr_warn("pause-time: %d illegal.Should be > 320\n",
939 pause_time);
940 return -EINVAL;
941 }
942
943 ptv = ioread32be(®s->ptv);
944 ptv &= PTV_PTE_MASK;
945 ptv |= pause_time & PTV_PT_MASK;
946 iowrite32be(ptv, ®s->ptv);
947
948 /* trigger the transmission of a flow-control pause frame */
949 iowrite32be(ioread32be(®s->maccfg1) | MACCFG1_TX_FLOW,
950 ®s->maccfg1);
951 } else
952 iowrite32be(ioread32be(®s->maccfg1) & ~MACCFG1_TX_FLOW,
953 ®s->maccfg1);
954
955 return 0;
956 }
957
dtsec_accept_rx_pause_frames(struct fman_mac * dtsec,bool en)958 int dtsec_accept_rx_pause_frames(struct fman_mac *dtsec, bool en)
959 {
960 struct dtsec_regs __iomem *regs = dtsec->regs;
961 u32 tmp;
962
963 if (!is_init_done(dtsec->dtsec_drv_param))
964 return -EINVAL;
965
966 tmp = ioread32be(®s->maccfg1);
967 if (en)
968 tmp |= MACCFG1_RX_FLOW;
969 else
970 tmp &= ~MACCFG1_RX_FLOW;
971 iowrite32be(tmp, ®s->maccfg1);
972
973 return 0;
974 }
975
dtsec_modify_mac_address(struct fman_mac * dtsec,enet_addr_t * enet_addr)976 int dtsec_modify_mac_address(struct fman_mac *dtsec, enet_addr_t *enet_addr)
977 {
978 if (!is_init_done(dtsec->dtsec_drv_param))
979 return -EINVAL;
980
981 /* Initialize MAC Station Address registers (1 & 2)
982 * Station address have to be swapped (big endian to little endian
983 */
984 dtsec->addr = ENET_ADDR_TO_UINT64(*enet_addr);
985 set_mac_address(dtsec->regs, (u8 *)(*enet_addr));
986
987 return 0;
988 }
989
dtsec_add_hash_mac_address(struct fman_mac * dtsec,enet_addr_t * eth_addr)990 int dtsec_add_hash_mac_address(struct fman_mac *dtsec, enet_addr_t *eth_addr)
991 {
992 struct dtsec_regs __iomem *regs = dtsec->regs;
993 struct eth_hash_entry *hash_entry;
994 u64 addr;
995 s32 bucket;
996 u32 crc = 0xFFFFFFFF;
997 bool mcast, ghtx;
998
999 if (!is_init_done(dtsec->dtsec_drv_param))
1000 return -EINVAL;
1001
1002 addr = ENET_ADDR_TO_UINT64(*eth_addr);
1003
1004 ghtx = (bool)((ioread32be(®s->rctrl) & RCTRL_GHTX) ? true : false);
1005 mcast = (bool)((addr & MAC_GROUP_ADDRESS) ? true : false);
1006
1007 /* Cannot handle unicast mac addr when GHTX is on */
1008 if (ghtx && !mcast) {
1009 pr_err("Could not compute hash bucket\n");
1010 return -EINVAL;
1011 }
1012 crc = crc32_le(crc, (u8 *)eth_addr, ETH_ALEN);
1013 crc = bitrev32(crc);
1014
1015 /* considering the 9 highest order bits in crc H[8:0]:
1016 *if ghtx = 0 H[8:6] (highest order 3 bits) identify the hash register
1017 *and H[5:1] (next 5 bits) identify the hash bit
1018 *if ghts = 1 H[8:5] (highest order 4 bits) identify the hash register
1019 *and H[4:0] (next 5 bits) identify the hash bit.
1020 *
1021 *In bucket index output the low 5 bits identify the hash register
1022 *bit, while the higher 4 bits identify the hash register
1023 */
1024
1025 if (ghtx) {
1026 bucket = (s32)((crc >> 23) & 0x1ff);
1027 } else {
1028 bucket = (s32)((crc >> 24) & 0xff);
1029 /* if !ghtx and mcast the bit must be set in gaddr instead of
1030 *igaddr.
1031 */
1032 if (mcast)
1033 bucket += 0x100;
1034 }
1035
1036 set_bucket(dtsec->regs, bucket, true);
1037
1038 /* Create element to be added to the driver hash table */
1039 hash_entry = kmalloc(sizeof(*hash_entry), GFP_KERNEL);
1040 if (!hash_entry)
1041 return -ENOMEM;
1042 hash_entry->addr = addr;
1043 INIT_LIST_HEAD(&hash_entry->node);
1044
1045 if (addr & MAC_GROUP_ADDRESS)
1046 /* Group Address */
1047 list_add_tail(&hash_entry->node,
1048 &dtsec->multicast_addr_hash->lsts[bucket]);
1049 else
1050 list_add_tail(&hash_entry->node,
1051 &dtsec->unicast_addr_hash->lsts[bucket]);
1052
1053 return 0;
1054 }
1055
dtsec_del_hash_mac_address(struct fman_mac * dtsec,enet_addr_t * eth_addr)1056 int dtsec_del_hash_mac_address(struct fman_mac *dtsec, enet_addr_t *eth_addr)
1057 {
1058 struct dtsec_regs __iomem *regs = dtsec->regs;
1059 struct list_head *pos;
1060 struct eth_hash_entry *hash_entry = NULL;
1061 u64 addr;
1062 s32 bucket;
1063 u32 crc = 0xFFFFFFFF;
1064 bool mcast, ghtx;
1065
1066 if (!is_init_done(dtsec->dtsec_drv_param))
1067 return -EINVAL;
1068
1069 addr = ENET_ADDR_TO_UINT64(*eth_addr);
1070
1071 ghtx = (bool)((ioread32be(®s->rctrl) & RCTRL_GHTX) ? true : false);
1072 mcast = (bool)((addr & MAC_GROUP_ADDRESS) ? true : false);
1073
1074 /* Cannot handle unicast mac addr when GHTX is on */
1075 if (ghtx && !mcast) {
1076 pr_err("Could not compute hash bucket\n");
1077 return -EINVAL;
1078 }
1079 crc = crc32_le(crc, (u8 *)eth_addr, ETH_ALEN);
1080 crc = bitrev32(crc);
1081
1082 if (ghtx) {
1083 bucket = (s32)((crc >> 23) & 0x1ff);
1084 } else {
1085 bucket = (s32)((crc >> 24) & 0xff);
1086 /* if !ghtx and mcast the bit must be set
1087 * in gaddr instead of igaddr.
1088 */
1089 if (mcast)
1090 bucket += 0x100;
1091 }
1092
1093 if (addr & MAC_GROUP_ADDRESS) {
1094 /* Group Address */
1095 list_for_each(pos,
1096 &dtsec->multicast_addr_hash->lsts[bucket]) {
1097 hash_entry = ETH_HASH_ENTRY_OBJ(pos);
1098 if (hash_entry->addr == addr) {
1099 list_del_init(&hash_entry->node);
1100 kfree(hash_entry);
1101 break;
1102 }
1103 }
1104 if (list_empty(&dtsec->multicast_addr_hash->lsts[bucket]))
1105 set_bucket(dtsec->regs, bucket, false);
1106 } else {
1107 /* Individual Address */
1108 list_for_each(pos,
1109 &dtsec->unicast_addr_hash->lsts[bucket]) {
1110 hash_entry = ETH_HASH_ENTRY_OBJ(pos);
1111 if (hash_entry->addr == addr) {
1112 list_del_init(&hash_entry->node);
1113 kfree(hash_entry);
1114 break;
1115 }
1116 }
1117 if (list_empty(&dtsec->unicast_addr_hash->lsts[bucket]))
1118 set_bucket(dtsec->regs, bucket, false);
1119 }
1120
1121 /* address does not exist */
1122 WARN_ON(!hash_entry);
1123
1124 return 0;
1125 }
1126
dtsec_set_promiscuous(struct fman_mac * dtsec,bool new_val)1127 int dtsec_set_promiscuous(struct fman_mac *dtsec, bool new_val)
1128 {
1129 struct dtsec_regs __iomem *regs = dtsec->regs;
1130 u32 tmp;
1131
1132 if (!is_init_done(dtsec->dtsec_drv_param))
1133 return -EINVAL;
1134
1135 /* Set unicast promiscuous */
1136 tmp = ioread32be(®s->rctrl);
1137 if (new_val)
1138 tmp |= RCTRL_UPROM;
1139 else
1140 tmp &= ~RCTRL_UPROM;
1141
1142 iowrite32be(tmp, ®s->rctrl);
1143
1144 /* Set multicast promiscuous */
1145 tmp = ioread32be(®s->rctrl);
1146 if (new_val)
1147 tmp |= RCTRL_MPROM;
1148 else
1149 tmp &= ~RCTRL_MPROM;
1150
1151 iowrite32be(tmp, ®s->rctrl);
1152
1153 return 0;
1154 }
1155
dtsec_adjust_link(struct fman_mac * dtsec,u16 speed)1156 int dtsec_adjust_link(struct fman_mac *dtsec, u16 speed)
1157 {
1158 struct dtsec_regs __iomem *regs = dtsec->regs;
1159 u32 tmp;
1160
1161 if (!is_init_done(dtsec->dtsec_drv_param))
1162 return -EINVAL;
1163
1164 tmp = ioread32be(®s->maccfg2);
1165
1166 /* Full Duplex */
1167 tmp |= MACCFG2_FULL_DUPLEX;
1168
1169 tmp &= ~(MACCFG2_NIBBLE_MODE | MACCFG2_BYTE_MODE);
1170 if (speed < SPEED_1000)
1171 tmp |= MACCFG2_NIBBLE_MODE;
1172 else if (speed == SPEED_1000)
1173 tmp |= MACCFG2_BYTE_MODE;
1174 iowrite32be(tmp, ®s->maccfg2);
1175
1176 tmp = ioread32be(®s->ecntrl);
1177 if (speed == SPEED_100)
1178 tmp |= DTSEC_ECNTRL_R100M;
1179 else
1180 tmp &= ~DTSEC_ECNTRL_R100M;
1181 iowrite32be(tmp, ®s->ecntrl);
1182
1183 return 0;
1184 }
1185
dtsec_restart_autoneg(struct fman_mac * dtsec)1186 int dtsec_restart_autoneg(struct fman_mac *dtsec)
1187 {
1188 u16 tmp_reg16;
1189
1190 if (!is_init_done(dtsec->dtsec_drv_param))
1191 return -EINVAL;
1192
1193 tmp_reg16 = phy_read(dtsec->tbiphy, MII_BMCR);
1194
1195 tmp_reg16 &= ~(BMCR_SPEED100 | BMCR_SPEED1000);
1196 tmp_reg16 |= (BMCR_ANENABLE | BMCR_ANRESTART |
1197 BMCR_FULLDPLX | BMCR_SPEED1000);
1198
1199 phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16);
1200
1201 return 0;
1202 }
1203
dtsec_get_version(struct fman_mac * dtsec,u32 * mac_version)1204 int dtsec_get_version(struct fman_mac *dtsec, u32 *mac_version)
1205 {
1206 struct dtsec_regs __iomem *regs = dtsec->regs;
1207
1208 if (!is_init_done(dtsec->dtsec_drv_param))
1209 return -EINVAL;
1210
1211 *mac_version = ioread32be(®s->tsec_id);
1212
1213 return 0;
1214 }
1215
dtsec_set_exception(struct fman_mac * dtsec,enum fman_mac_exceptions exception,bool enable)1216 int dtsec_set_exception(struct fman_mac *dtsec,
1217 enum fman_mac_exceptions exception, bool enable)
1218 {
1219 struct dtsec_regs __iomem *regs = dtsec->regs;
1220 u32 bit_mask = 0;
1221
1222 if (!is_init_done(dtsec->dtsec_drv_param))
1223 return -EINVAL;
1224
1225 if (exception != FM_MAC_EX_1G_1588_TS_RX_ERR) {
1226 bit_mask = get_exception_flag(exception);
1227 if (bit_mask) {
1228 if (enable)
1229 dtsec->exceptions |= bit_mask;
1230 else
1231 dtsec->exceptions &= ~bit_mask;
1232 } else {
1233 pr_err("Undefined exception\n");
1234 return -EINVAL;
1235 }
1236 if (enable)
1237 iowrite32be(ioread32be(®s->imask) | bit_mask,
1238 ®s->imask);
1239 else
1240 iowrite32be(ioread32be(®s->imask) & ~bit_mask,
1241 ®s->imask);
1242 } else {
1243 if (!dtsec->ptp_tsu_enabled) {
1244 pr_err("Exception valid for 1588 only\n");
1245 return -EINVAL;
1246 }
1247 switch (exception) {
1248 case FM_MAC_EX_1G_1588_TS_RX_ERR:
1249 if (enable) {
1250 dtsec->en_tsu_err_exeption = true;
1251 iowrite32be(ioread32be(®s->tmr_pemask) |
1252 TMR_PEMASK_TSREEN,
1253 ®s->tmr_pemask);
1254 } else {
1255 dtsec->en_tsu_err_exeption = false;
1256 iowrite32be(ioread32be(®s->tmr_pemask) &
1257 ~TMR_PEMASK_TSREEN,
1258 ®s->tmr_pemask);
1259 }
1260 break;
1261 default:
1262 pr_err("Undefined exception\n");
1263 return -EINVAL;
1264 }
1265 }
1266
1267 return 0;
1268 }
1269
dtsec_init(struct fman_mac * dtsec)1270 int dtsec_init(struct fman_mac *dtsec)
1271 {
1272 struct dtsec_regs __iomem *regs = dtsec->regs;
1273 struct dtsec_cfg *dtsec_drv_param;
1274 int err;
1275 u16 max_frm_ln;
1276 enet_addr_t eth_addr;
1277
1278 if (is_init_done(dtsec->dtsec_drv_param))
1279 return -EINVAL;
1280
1281 if (DEFAULT_RESET_ON_INIT &&
1282 (fman_reset_mac(dtsec->fm, dtsec->mac_id) != 0)) {
1283 pr_err("Can't reset MAC!\n");
1284 return -EINVAL;
1285 }
1286
1287 err = check_init_parameters(dtsec);
1288 if (err)
1289 return err;
1290
1291 dtsec_drv_param = dtsec->dtsec_drv_param;
1292
1293 MAKE_ENET_ADDR_FROM_UINT64(dtsec->addr, eth_addr);
1294
1295 err = init(dtsec->regs, dtsec_drv_param, dtsec->phy_if,
1296 dtsec->max_speed, (u8 *)eth_addr, dtsec->exceptions,
1297 dtsec->tbiphy->mdio.addr);
1298 if (err) {
1299 free_init_resources(dtsec);
1300 pr_err("DTSEC version doesn't support this i/f mode\n");
1301 return err;
1302 }
1303
1304 if (dtsec->phy_if == PHY_INTERFACE_MODE_SGMII) {
1305 u16 tmp_reg16;
1306
1307 /* Configure the TBI PHY Control Register */
1308 tmp_reg16 = TBICON_CLK_SELECT | TBICON_SOFT_RESET;
1309 phy_write(dtsec->tbiphy, MII_TBICON, tmp_reg16);
1310
1311 tmp_reg16 = TBICON_CLK_SELECT;
1312 phy_write(dtsec->tbiphy, MII_TBICON, tmp_reg16);
1313
1314 tmp_reg16 = (BMCR_RESET | BMCR_ANENABLE |
1315 BMCR_FULLDPLX | BMCR_SPEED1000);
1316 phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16);
1317
1318 if (dtsec->basex_if)
1319 tmp_reg16 = TBIANA_1000X;
1320 else
1321 tmp_reg16 = TBIANA_SGMII;
1322 phy_write(dtsec->tbiphy, MII_ADVERTISE, tmp_reg16);
1323
1324 tmp_reg16 = (BMCR_ANENABLE | BMCR_ANRESTART |
1325 BMCR_FULLDPLX | BMCR_SPEED1000);
1326
1327 phy_write(dtsec->tbiphy, MII_BMCR, tmp_reg16);
1328 }
1329
1330 /* Max Frame Length */
1331 max_frm_ln = (u16)ioread32be(®s->maxfrm);
1332 err = fman_set_mac_max_frame(dtsec->fm, dtsec->mac_id, max_frm_ln);
1333 if (err) {
1334 pr_err("Setting max frame length failed\n");
1335 free_init_resources(dtsec);
1336 return -EINVAL;
1337 }
1338
1339 dtsec->multicast_addr_hash =
1340 alloc_hash_table(EXTENDED_HASH_TABLE_SIZE);
1341 if (!dtsec->multicast_addr_hash) {
1342 free_init_resources(dtsec);
1343 pr_err("MC hash table is failed\n");
1344 return -ENOMEM;
1345 }
1346
1347 dtsec->unicast_addr_hash = alloc_hash_table(DTSEC_HASH_TABLE_SIZE);
1348 if (!dtsec->unicast_addr_hash) {
1349 free_init_resources(dtsec);
1350 pr_err("UC hash table is failed\n");
1351 return -ENOMEM;
1352 }
1353
1354 /* register err intr handler for dtsec to FPM (err) */
1355 fman_register_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
1356 FMAN_INTR_TYPE_ERR, dtsec_isr, dtsec);
1357 /* register 1588 intr handler for TMR to FPM (normal) */
1358 fman_register_intr(dtsec->fm, FMAN_MOD_MAC, dtsec->mac_id,
1359 FMAN_INTR_TYPE_NORMAL, dtsec_1588_isr, dtsec);
1360
1361 kfree(dtsec_drv_param);
1362 dtsec->dtsec_drv_param = NULL;
1363
1364 return 0;
1365 }
1366
dtsec_free(struct fman_mac * dtsec)1367 int dtsec_free(struct fman_mac *dtsec)
1368 {
1369 free_init_resources(dtsec);
1370
1371 kfree(dtsec->dtsec_drv_param);
1372 dtsec->dtsec_drv_param = NULL;
1373 kfree(dtsec);
1374
1375 return 0;
1376 }
1377
dtsec_config(struct fman_mac_params * params)1378 struct fman_mac *dtsec_config(struct fman_mac_params *params)
1379 {
1380 struct fman_mac *dtsec;
1381 struct dtsec_cfg *dtsec_drv_param;
1382 void __iomem *base_addr;
1383
1384 base_addr = params->base_addr;
1385
1386 /* allocate memory for the UCC GETH data structure. */
1387 dtsec = kzalloc(sizeof(*dtsec), GFP_KERNEL);
1388 if (!dtsec)
1389 return NULL;
1390
1391 /* allocate memory for the d_tsec driver parameters data structure. */
1392 dtsec_drv_param = kzalloc(sizeof(*dtsec_drv_param), GFP_KERNEL);
1393 if (!dtsec_drv_param)
1394 goto err_dtsec;
1395
1396 /* Plant parameter structure pointer */
1397 dtsec->dtsec_drv_param = dtsec_drv_param;
1398
1399 set_dflts(dtsec_drv_param);
1400
1401 dtsec->regs = base_addr;
1402 dtsec->addr = ENET_ADDR_TO_UINT64(params->addr);
1403 dtsec->max_speed = params->max_speed;
1404 dtsec->phy_if = params->phy_if;
1405 dtsec->mac_id = params->mac_id;
1406 dtsec->exceptions = (DTSEC_IMASK_BREN |
1407 DTSEC_IMASK_RXCEN |
1408 DTSEC_IMASK_BTEN |
1409 DTSEC_IMASK_TXCEN |
1410 DTSEC_IMASK_TXEEN |
1411 DTSEC_IMASK_ABRTEN |
1412 DTSEC_IMASK_LCEN |
1413 DTSEC_IMASK_CRLEN |
1414 DTSEC_IMASK_XFUNEN |
1415 DTSEC_IMASK_IFERREN |
1416 DTSEC_IMASK_MAGEN |
1417 DTSEC_IMASK_TDPEEN |
1418 DTSEC_IMASK_RDPEEN);
1419 dtsec->exception_cb = params->exception_cb;
1420 dtsec->event_cb = params->event_cb;
1421 dtsec->dev_id = params->dev_id;
1422 dtsec->ptp_tsu_enabled = dtsec->dtsec_drv_param->ptp_tsu_en;
1423 dtsec->en_tsu_err_exeption = dtsec->dtsec_drv_param->ptp_exception_en;
1424
1425 dtsec->fm = params->fm;
1426 dtsec->basex_if = params->basex_if;
1427
1428 if (!params->internal_phy_node) {
1429 pr_err("TBI PHY node is not available\n");
1430 goto err_dtsec_drv_param;
1431 }
1432
1433 dtsec->tbiphy = of_phy_find_device(params->internal_phy_node);
1434 if (!dtsec->tbiphy) {
1435 pr_err("of_phy_find_device (TBI PHY) failed\n");
1436 goto err_dtsec_drv_param;
1437 }
1438
1439 put_device(&dtsec->tbiphy->mdio.dev);
1440
1441 /* Save FMan revision */
1442 fman_get_revision(dtsec->fm, &dtsec->fm_rev_info);
1443
1444 return dtsec;
1445
1446 err_dtsec_drv_param:
1447 kfree(dtsec_drv_param);
1448 err_dtsec:
1449 kfree(dtsec);
1450 return NULL;
1451 }
1452