• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 *
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27  */
28 
29 /* e1000_hw.c
30  * Shared functions for accessing and configuring the MAC
31  */
32 
33 #include "e1000.h"
34 
35 static s32 e1000_check_downshift(struct e1000_hw *hw);
36 static s32 e1000_check_polarity(struct e1000_hw *hw,
37 				e1000_rev_polarity *polarity);
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39 static void e1000_clear_vfta(struct e1000_hw *hw);
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41 					      bool link_up);
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 				  u16 *max_length);
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48 static s32 e1000_id_led_init(struct e1000_hw *hw);
49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 				  struct e1000_phy_info *phy_info);
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 				  struct e1000_phy_info *phy_info);
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
58 static void e1000_phy_init_script(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 				  u16 words, u16 *data);
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 					u16 words, u16 *data);
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78 				  u16 phy_data);
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80 				 u16 *phy_data);
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83 static void e1000_release_eeprom(struct e1000_hw *hw);
84 static void e1000_standby_eeprom(struct e1000_hw *hw);
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 				u16 *data);
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 				 u16 *data);
92 
93 /* IGP cable length table */
94 static const
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 	    100,
103 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 	    110, 110,
105 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 	    120, 120
107 };
108 
109 static DEFINE_MUTEX(e1000_eeprom_lock);
110 static DEFINE_SPINLOCK(e1000_phy_lock);
111 
112 /**
113  * e1000_set_phy_type - Set the phy type member in the hw struct.
114  * @hw: Struct containing variables accessed by shared code
115  */
e1000_set_phy_type(struct e1000_hw * hw)116 static s32 e1000_set_phy_type(struct e1000_hw *hw)
117 {
118 	if (hw->mac_type == e1000_undefined)
119 		return -E1000_ERR_PHY_TYPE;
120 
121 	switch (hw->phy_id) {
122 	case M88E1000_E_PHY_ID:
123 	case M88E1000_I_PHY_ID:
124 	case M88E1011_I_PHY_ID:
125 	case M88E1111_I_PHY_ID:
126 	case M88E1118_E_PHY_ID:
127 		hw->phy_type = e1000_phy_m88;
128 		break;
129 	case IGP01E1000_I_PHY_ID:
130 		if (hw->mac_type == e1000_82541 ||
131 		    hw->mac_type == e1000_82541_rev_2 ||
132 		    hw->mac_type == e1000_82547 ||
133 		    hw->mac_type == e1000_82547_rev_2)
134 			hw->phy_type = e1000_phy_igp;
135 		break;
136 	case RTL8211B_PHY_ID:
137 		hw->phy_type = e1000_phy_8211;
138 		break;
139 	case RTL8201N_PHY_ID:
140 		hw->phy_type = e1000_phy_8201;
141 		break;
142 	default:
143 		/* Should never have loaded on this device */
144 		hw->phy_type = e1000_phy_undefined;
145 		return -E1000_ERR_PHY_TYPE;
146 	}
147 
148 	return E1000_SUCCESS;
149 }
150 
151 /**
152  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153  * @hw: Struct containing variables accessed by shared code
154  */
e1000_phy_init_script(struct e1000_hw * hw)155 static void e1000_phy_init_script(struct e1000_hw *hw)
156 {
157 	u32 ret_val;
158 	u16 phy_saved_data;
159 
160 	if (hw->phy_init_script) {
161 		msleep(20);
162 
163 		/* Save off the current value of register 0x2F5B to be restored
164 		 * at the end of this routine.
165 		 */
166 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
167 
168 		/* Disabled the PHY transmitter */
169 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170 		msleep(20);
171 
172 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
173 		msleep(5);
174 
175 		switch (hw->mac_type) {
176 		case e1000_82541:
177 		case e1000_82547:
178 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
187 			break;
188 
189 		case e1000_82541_rev_2:
190 		case e1000_82547_rev_2:
191 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192 			break;
193 		default:
194 			break;
195 		}
196 
197 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
198 		msleep(20);
199 
200 		/* Now enable the transmitter */
201 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
202 
203 		if (hw->mac_type == e1000_82547) {
204 			u16 fused, fine, coarse;
205 
206 			/* Move to analog registers page */
207 			e1000_read_phy_reg(hw,
208 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209 					   &fused);
210 
211 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212 				e1000_read_phy_reg(hw,
213 						   IGP01E1000_ANALOG_FUSE_STATUS,
214 						   &fused);
215 
216 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217 				coarse =
218 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
219 
220 				if (coarse >
221 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222 					coarse -=
223 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
224 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225 				} else if (coarse ==
226 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
228 
229 				fused =
230 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232 				    (coarse &
233 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
234 
235 				e1000_write_phy_reg(hw,
236 						    IGP01E1000_ANALOG_FUSE_CONTROL,
237 						    fused);
238 				e1000_write_phy_reg(hw,
239 						    IGP01E1000_ANALOG_FUSE_BYPASS,
240 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241 			}
242 		}
243 	}
244 }
245 
246 /**
247  * e1000_set_mac_type - Set the mac type member in the hw struct.
248  * @hw: Struct containing variables accessed by shared code
249  */
e1000_set_mac_type(struct e1000_hw * hw)250 s32 e1000_set_mac_type(struct e1000_hw *hw)
251 {
252 	switch (hw->device_id) {
253 	case E1000_DEV_ID_82542:
254 		switch (hw->revision_id) {
255 		case E1000_82542_2_0_REV_ID:
256 			hw->mac_type = e1000_82542_rev2_0;
257 			break;
258 		case E1000_82542_2_1_REV_ID:
259 			hw->mac_type = e1000_82542_rev2_1;
260 			break;
261 		default:
262 			/* Invalid 82542 revision ID */
263 			return -E1000_ERR_MAC_TYPE;
264 		}
265 		break;
266 	case E1000_DEV_ID_82543GC_FIBER:
267 	case E1000_DEV_ID_82543GC_COPPER:
268 		hw->mac_type = e1000_82543;
269 		break;
270 	case E1000_DEV_ID_82544EI_COPPER:
271 	case E1000_DEV_ID_82544EI_FIBER:
272 	case E1000_DEV_ID_82544GC_COPPER:
273 	case E1000_DEV_ID_82544GC_LOM:
274 		hw->mac_type = e1000_82544;
275 		break;
276 	case E1000_DEV_ID_82540EM:
277 	case E1000_DEV_ID_82540EM_LOM:
278 	case E1000_DEV_ID_82540EP:
279 	case E1000_DEV_ID_82540EP_LOM:
280 	case E1000_DEV_ID_82540EP_LP:
281 		hw->mac_type = e1000_82540;
282 		break;
283 	case E1000_DEV_ID_82545EM_COPPER:
284 	case E1000_DEV_ID_82545EM_FIBER:
285 		hw->mac_type = e1000_82545;
286 		break;
287 	case E1000_DEV_ID_82545GM_COPPER:
288 	case E1000_DEV_ID_82545GM_FIBER:
289 	case E1000_DEV_ID_82545GM_SERDES:
290 		hw->mac_type = e1000_82545_rev_3;
291 		break;
292 	case E1000_DEV_ID_82546EB_COPPER:
293 	case E1000_DEV_ID_82546EB_FIBER:
294 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
295 		hw->mac_type = e1000_82546;
296 		break;
297 	case E1000_DEV_ID_82546GB_COPPER:
298 	case E1000_DEV_ID_82546GB_FIBER:
299 	case E1000_DEV_ID_82546GB_SERDES:
300 	case E1000_DEV_ID_82546GB_PCIE:
301 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
302 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303 		hw->mac_type = e1000_82546_rev_3;
304 		break;
305 	case E1000_DEV_ID_82541EI:
306 	case E1000_DEV_ID_82541EI_MOBILE:
307 	case E1000_DEV_ID_82541ER_LOM:
308 		hw->mac_type = e1000_82541;
309 		break;
310 	case E1000_DEV_ID_82541ER:
311 	case E1000_DEV_ID_82541GI:
312 	case E1000_DEV_ID_82541GI_LF:
313 	case E1000_DEV_ID_82541GI_MOBILE:
314 		hw->mac_type = e1000_82541_rev_2;
315 		break;
316 	case E1000_DEV_ID_82547EI:
317 	case E1000_DEV_ID_82547EI_MOBILE:
318 		hw->mac_type = e1000_82547;
319 		break;
320 	case E1000_DEV_ID_82547GI:
321 		hw->mac_type = e1000_82547_rev_2;
322 		break;
323 	case E1000_DEV_ID_INTEL_CE4100_GBE:
324 		hw->mac_type = e1000_ce4100;
325 		break;
326 	default:
327 		/* Should never have loaded on this device */
328 		return -E1000_ERR_MAC_TYPE;
329 	}
330 
331 	switch (hw->mac_type) {
332 	case e1000_82541:
333 	case e1000_82547:
334 	case e1000_82541_rev_2:
335 	case e1000_82547_rev_2:
336 		hw->asf_firmware_present = true;
337 		break;
338 	default:
339 		break;
340 	}
341 
342 	/* The 82543 chip does not count tx_carrier_errors properly in
343 	 * FD mode
344 	 */
345 	if (hw->mac_type == e1000_82543)
346 		hw->bad_tx_carr_stats_fd = true;
347 
348 	if (hw->mac_type > e1000_82544)
349 		hw->has_smbus = true;
350 
351 	return E1000_SUCCESS;
352 }
353 
354 /**
355  * e1000_set_media_type - Set media type and TBI compatibility.
356  * @hw: Struct containing variables accessed by shared code
357  */
e1000_set_media_type(struct e1000_hw * hw)358 void e1000_set_media_type(struct e1000_hw *hw)
359 {
360 	u32 status;
361 
362 	if (hw->mac_type != e1000_82543) {
363 		/* tbi_compatibility is only valid on 82543 */
364 		hw->tbi_compatibility_en = false;
365 	}
366 
367 	switch (hw->device_id) {
368 	case E1000_DEV_ID_82545GM_SERDES:
369 	case E1000_DEV_ID_82546GB_SERDES:
370 		hw->media_type = e1000_media_type_internal_serdes;
371 		break;
372 	default:
373 		switch (hw->mac_type) {
374 		case e1000_82542_rev2_0:
375 		case e1000_82542_rev2_1:
376 			hw->media_type = e1000_media_type_fiber;
377 			break;
378 		case e1000_ce4100:
379 			hw->media_type = e1000_media_type_copper;
380 			break;
381 		default:
382 			status = er32(STATUS);
383 			if (status & E1000_STATUS_TBIMODE) {
384 				hw->media_type = e1000_media_type_fiber;
385 				/* tbi_compatibility not valid on fiber */
386 				hw->tbi_compatibility_en = false;
387 			} else {
388 				hw->media_type = e1000_media_type_copper;
389 			}
390 			break;
391 		}
392 	}
393 }
394 
395 /**
396  * e1000_reset_hw - reset the hardware completely
397  * @hw: Struct containing variables accessed by shared code
398  *
399  * Reset the transmit and receive units; mask and clear all interrupts.
400  */
e1000_reset_hw(struct e1000_hw * hw)401 s32 e1000_reset_hw(struct e1000_hw *hw)
402 {
403 	u32 ctrl;
404 	u32 ctrl_ext;
405 	u32 icr;
406 	u32 manc;
407 	u32 led_ctrl;
408 	s32 ret_val;
409 
410 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411 	if (hw->mac_type == e1000_82542_rev2_0) {
412 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
413 		e1000_pci_clear_mwi(hw);
414 	}
415 
416 	/* Clear interrupt mask to stop board from generating interrupts */
417 	e_dbg("Masking off all interrupts\n");
418 	ew32(IMC, 0xffffffff);
419 
420 	/* Disable the Transmit and Receive units.  Then delay to allow
421 	 * any pending transactions to complete before we hit the MAC with
422 	 * the global reset.
423 	 */
424 	ew32(RCTL, 0);
425 	ew32(TCTL, E1000_TCTL_PSP);
426 	E1000_WRITE_FLUSH();
427 
428 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 	hw->tbi_compatibility_on = false;
430 
431 	/* Delay to allow any outstanding PCI transactions to complete before
432 	 * resetting the device
433 	 */
434 	msleep(10);
435 
436 	ctrl = er32(CTRL);
437 
438 	/* Must reset the PHY before resetting the MAC */
439 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
441 		E1000_WRITE_FLUSH();
442 		msleep(5);
443 	}
444 
445 	/* Issue a global reset to the MAC.  This will reset the chip's
446 	 * transmit, receive, DMA, and link units.  It will not effect
447 	 * the current PCI configuration.  The global reset bit is self-
448 	 * clearing, and should clear within a microsecond.
449 	 */
450 	e_dbg("Issuing a global reset to MAC\n");
451 
452 	switch (hw->mac_type) {
453 	case e1000_82544:
454 	case e1000_82540:
455 	case e1000_82545:
456 	case e1000_82546:
457 	case e1000_82541:
458 	case e1000_82541_rev_2:
459 		/* These controllers can't ack the 64-bit write when issuing the
460 		 * reset, so use IO-mapping as a workaround to issue the reset
461 		 */
462 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463 		break;
464 	case e1000_82545_rev_3:
465 	case e1000_82546_rev_3:
466 		/* Reset is performed on a shadow of the control register */
467 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468 		break;
469 	case e1000_ce4100:
470 	default:
471 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
472 		break;
473 	}
474 
475 	/* After MAC reset, force reload of EEPROM to restore power-on settings
476 	 * to device.  Later controllers reload the EEPROM automatically, so
477 	 * just wait for reload to complete.
478 	 */
479 	switch (hw->mac_type) {
480 	case e1000_82542_rev2_0:
481 	case e1000_82542_rev2_1:
482 	case e1000_82543:
483 	case e1000_82544:
484 		/* Wait for reset to complete */
485 		udelay(10);
486 		ctrl_ext = er32(CTRL_EXT);
487 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488 		ew32(CTRL_EXT, ctrl_ext);
489 		E1000_WRITE_FLUSH();
490 		/* Wait for EEPROM reload */
491 		msleep(2);
492 		break;
493 	case e1000_82541:
494 	case e1000_82541_rev_2:
495 	case e1000_82547:
496 	case e1000_82547_rev_2:
497 		/* Wait for EEPROM reload */
498 		msleep(20);
499 		break;
500 	default:
501 		/* Auto read done will delay 5ms or poll based on mac type */
502 		ret_val = e1000_get_auto_rd_done(hw);
503 		if (ret_val)
504 			return ret_val;
505 		break;
506 	}
507 
508 	/* Disable HW ARPs on ASF enabled adapters */
509 	if (hw->mac_type >= e1000_82540) {
510 		manc = er32(MANC);
511 		manc &= ~(E1000_MANC_ARP_EN);
512 		ew32(MANC, manc);
513 	}
514 
515 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516 		e1000_phy_init_script(hw);
517 
518 		/* Configure activity LED after PHY reset */
519 		led_ctrl = er32(LEDCTL);
520 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
521 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522 		ew32(LEDCTL, led_ctrl);
523 	}
524 
525 	/* Clear interrupt mask to stop board from generating interrupts */
526 	e_dbg("Masking off all interrupts\n");
527 	ew32(IMC, 0xffffffff);
528 
529 	/* Clear any pending interrupt events. */
530 	icr = er32(ICR);
531 
532 	/* If MWI was previously enabled, reenable it. */
533 	if (hw->mac_type == e1000_82542_rev2_0) {
534 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535 			e1000_pci_set_mwi(hw);
536 	}
537 
538 	return E1000_SUCCESS;
539 }
540 
541 /**
542  * e1000_init_hw - Performs basic configuration of the adapter.
543  * @hw: Struct containing variables accessed by shared code
544  *
545  * Assumes that the controller has previously been reset and is in a
546  * post-reset uninitialized state. Initializes the receive address registers,
547  * multicast table, and VLAN filter table. Calls routines to setup link
548  * configuration and flow control settings. Clears all on-chip counters. Leaves
549  * the transmit and receive units disabled and uninitialized.
550  */
e1000_init_hw(struct e1000_hw * hw)551 s32 e1000_init_hw(struct e1000_hw *hw)
552 {
553 	u32 ctrl;
554 	u32 i;
555 	s32 ret_val;
556 	u32 mta_size;
557 	u32 ctrl_ext;
558 
559 	/* Initialize Identification LED */
560 	ret_val = e1000_id_led_init(hw);
561 	if (ret_val) {
562 		e_dbg("Error Initializing Identification LED\n");
563 		return ret_val;
564 	}
565 
566 	/* Set the media type and TBI compatibility */
567 	e1000_set_media_type(hw);
568 
569 	/* Disabling VLAN filtering. */
570 	e_dbg("Initializing the IEEE VLAN\n");
571 	if (hw->mac_type < e1000_82545_rev_3)
572 		ew32(VET, 0);
573 	e1000_clear_vfta(hw);
574 
575 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576 	if (hw->mac_type == e1000_82542_rev2_0) {
577 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
578 		e1000_pci_clear_mwi(hw);
579 		ew32(RCTL, E1000_RCTL_RST);
580 		E1000_WRITE_FLUSH();
581 		msleep(5);
582 	}
583 
584 	/* Setup the receive address. This involves initializing all of the
585 	 * Receive Address Registers (RARs 0 - 15).
586 	 */
587 	e1000_init_rx_addrs(hw);
588 
589 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590 	if (hw->mac_type == e1000_82542_rev2_0) {
591 		ew32(RCTL, 0);
592 		E1000_WRITE_FLUSH();
593 		msleep(1);
594 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595 			e1000_pci_set_mwi(hw);
596 	}
597 
598 	/* Zero out the Multicast HASH table */
599 	e_dbg("Zeroing the MTA\n");
600 	mta_size = E1000_MC_TBL_SIZE;
601 	for (i = 0; i < mta_size; i++) {
602 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603 		/* use write flush to prevent Memory Write Block (MWB) from
604 		 * occurring when accessing our register space
605 		 */
606 		E1000_WRITE_FLUSH();
607 	}
608 
609 	/* Set the PCI priority bit correctly in the CTRL register.  This
610 	 * determines if the adapter gives priority to receives, or if it
611 	 * gives equal priority to transmits and receives.  Valid only on
612 	 * 82542 and 82543 silicon.
613 	 */
614 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615 		ctrl = er32(CTRL);
616 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617 	}
618 
619 	switch (hw->mac_type) {
620 	case e1000_82545_rev_3:
621 	case e1000_82546_rev_3:
622 		break;
623 	default:
624 		/* Workaround for PCI-X problem when BIOS sets MMRBC
625 		 * incorrectly.
626 		 */
627 		if (hw->bus_type == e1000_bus_type_pcix &&
628 		    e1000_pcix_get_mmrbc(hw) > 2048)
629 			e1000_pcix_set_mmrbc(hw, 2048);
630 		break;
631 	}
632 
633 	/* Call a subroutine to configure the link and setup flow control. */
634 	ret_val = e1000_setup_link(hw);
635 
636 	/* Set the transmit descriptor write-back policy */
637 	if (hw->mac_type > e1000_82544) {
638 		ctrl = er32(TXDCTL);
639 		ctrl =
640 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
641 		    E1000_TXDCTL_FULL_TX_DESC_WB;
642 		ew32(TXDCTL, ctrl);
643 	}
644 
645 	/* Clear all of the statistics registers (clear on read).  It is
646 	 * important that we do this after we have tried to establish link
647 	 * because the symbol error count will increment wildly if there
648 	 * is no link.
649 	 */
650 	e1000_clear_hw_cntrs(hw);
651 
652 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654 		ctrl_ext = er32(CTRL_EXT);
655 		/* Relaxed ordering must be disabled to avoid a parity
656 		 * error crash in a PCI slot.
657 		 */
658 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659 		ew32(CTRL_EXT, ctrl_ext);
660 	}
661 
662 	return ret_val;
663 }
664 
665 /**
666  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667  * @hw: Struct containing variables accessed by shared code.
668  */
e1000_adjust_serdes_amplitude(struct e1000_hw * hw)669 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
670 {
671 	u16 eeprom_data;
672 	s32 ret_val;
673 
674 	if (hw->media_type != e1000_media_type_internal_serdes)
675 		return E1000_SUCCESS;
676 
677 	switch (hw->mac_type) {
678 	case e1000_82545_rev_3:
679 	case e1000_82546_rev_3:
680 		break;
681 	default:
682 		return E1000_SUCCESS;
683 	}
684 
685 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
686 				    &eeprom_data);
687 	if (ret_val)
688 		return ret_val;
689 
690 	if (eeprom_data != EEPROM_RESERVED_WORD) {
691 		/* Adjust SERDES output amplitude only. */
692 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
693 		ret_val =
694 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
695 		if (ret_val)
696 			return ret_val;
697 	}
698 
699 	return E1000_SUCCESS;
700 }
701 
702 /**
703  * e1000_setup_link - Configures flow control and link settings.
704  * @hw: Struct containing variables accessed by shared code
705  *
706  * Determines which flow control settings to use. Calls the appropriate media-
707  * specific link configuration function. Configures the flow control settings.
708  * Assuming the adapter has a valid link partner, a valid link should be
709  * established. Assumes the hardware has previously been reset and the
710  * transmitter and receiver are not enabled.
711  */
e1000_setup_link(struct e1000_hw * hw)712 s32 e1000_setup_link(struct e1000_hw *hw)
713 {
714 	u32 ctrl_ext;
715 	s32 ret_val;
716 	u16 eeprom_data;
717 
718 	/* Read and store word 0x0F of the EEPROM. This word contains bits
719 	 * that determine the hardware's default PAUSE (flow control) mode,
720 	 * a bit that determines whether the HW defaults to enabling or
721 	 * disabling auto-negotiation, and the direction of the
722 	 * SW defined pins. If there is no SW over-ride of the flow
723 	 * control setting, then the variable hw->fc will
724 	 * be initialized based on a value in the EEPROM.
725 	 */
726 	if (hw->fc == E1000_FC_DEFAULT) {
727 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
728 					    1, &eeprom_data);
729 		if (ret_val) {
730 			e_dbg("EEPROM Read Error\n");
731 			return -E1000_ERR_EEPROM;
732 		}
733 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
734 			hw->fc = E1000_FC_NONE;
735 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
736 			 EEPROM_WORD0F_ASM_DIR)
737 			hw->fc = E1000_FC_TX_PAUSE;
738 		else
739 			hw->fc = E1000_FC_FULL;
740 	}
741 
742 	/* We want to save off the original Flow Control configuration just
743 	 * in case we get disconnected and then reconnected into a different
744 	 * hub or switch with different Flow Control capabilities.
745 	 */
746 	if (hw->mac_type == e1000_82542_rev2_0)
747 		hw->fc &= (~E1000_FC_TX_PAUSE);
748 
749 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
750 		hw->fc &= (~E1000_FC_RX_PAUSE);
751 
752 	hw->original_fc = hw->fc;
753 
754 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
755 
756 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
757 	 * polarity value for the SW controlled pins, and setup the
758 	 * Extended Device Control reg with that info.
759 	 * This is needed because one of the SW controlled pins is used for
760 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
761 	 * or e1000_phy_setup() is called.
762 	 */
763 	if (hw->mac_type == e1000_82543) {
764 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
765 					    1, &eeprom_data);
766 		if (ret_val) {
767 			e_dbg("EEPROM Read Error\n");
768 			return -E1000_ERR_EEPROM;
769 		}
770 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
771 			    SWDPIO__EXT_SHIFT);
772 		ew32(CTRL_EXT, ctrl_ext);
773 	}
774 
775 	/* Call the necessary subroutine to configure the link. */
776 	ret_val = (hw->media_type == e1000_media_type_copper) ?
777 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
778 
779 	/* Initialize the flow control address, type, and PAUSE timer
780 	 * registers to their default values.  This is done even if flow
781 	 * control is disabled, because it does not hurt anything to
782 	 * initialize these registers.
783 	 */
784 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
785 
786 	ew32(FCT, FLOW_CONTROL_TYPE);
787 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
788 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
789 
790 	ew32(FCTTV, hw->fc_pause_time);
791 
792 	/* Set the flow control receive threshold registers.  Normally,
793 	 * these registers will be set to a default threshold that may be
794 	 * adjusted later by the driver's runtime code.  However, if the
795 	 * ability to transmit pause frames in not enabled, then these
796 	 * registers will be set to 0.
797 	 */
798 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
799 		ew32(FCRTL, 0);
800 		ew32(FCRTH, 0);
801 	} else {
802 		/* We need to set up the Receive Threshold high and low water
803 		 * marks as well as (optionally) enabling the transmission of
804 		 * XON frames.
805 		 */
806 		if (hw->fc_send_xon) {
807 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
808 			ew32(FCRTH, hw->fc_high_water);
809 		} else {
810 			ew32(FCRTL, hw->fc_low_water);
811 			ew32(FCRTH, hw->fc_high_water);
812 		}
813 	}
814 	return ret_val;
815 }
816 
817 /**
818  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
819  * @hw: Struct containing variables accessed by shared code
820  *
821  * Manipulates Physical Coding Sublayer functions in order to configure
822  * link. Assumes the hardware has been previously reset and the transmitter
823  * and receiver are not enabled.
824  */
e1000_setup_fiber_serdes_link(struct e1000_hw * hw)825 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
826 {
827 	u32 ctrl;
828 	u32 status;
829 	u32 txcw = 0;
830 	u32 i;
831 	u32 signal = 0;
832 	s32 ret_val;
833 
834 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
835 	 * set when the optics detect a signal. On older adapters, it will be
836 	 * cleared when there is a signal.  This applies to fiber media only.
837 	 * If we're on serdes media, adjust the output amplitude to value
838 	 * set in the EEPROM.
839 	 */
840 	ctrl = er32(CTRL);
841 	if (hw->media_type == e1000_media_type_fiber)
842 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
843 
844 	ret_val = e1000_adjust_serdes_amplitude(hw);
845 	if (ret_val)
846 		return ret_val;
847 
848 	/* Take the link out of reset */
849 	ctrl &= ~(E1000_CTRL_LRST);
850 
851 	/* Adjust VCO speed to improve BER performance */
852 	ret_val = e1000_set_vco_speed(hw);
853 	if (ret_val)
854 		return ret_val;
855 
856 	e1000_config_collision_dist(hw);
857 
858 	/* Check for a software override of the flow control settings, and setup
859 	 * the device accordingly.  If auto-negotiation is enabled, then
860 	 * software will have to set the "PAUSE" bits to the correct value in
861 	 * the Tranmsit Config Word Register (TXCW) and re-start
862 	 * auto-negotiation.  However, if auto-negotiation is disabled, then
863 	 * software will have to manually configure the two flow control enable
864 	 * bits in the CTRL register.
865 	 *
866 	 * The possible values of the "fc" parameter are:
867 	 *  0:  Flow control is completely disabled
868 	 *  1:  Rx flow control is enabled (we can receive pause frames, but
869 	 *      not send pause frames).
870 	 *  2:  Tx flow control is enabled (we can send pause frames but we do
871 	 *      not support receiving pause frames).
872 	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
873 	 */
874 	switch (hw->fc) {
875 	case E1000_FC_NONE:
876 		/* Flow ctrl is completely disabled by a software over-ride */
877 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
878 		break;
879 	case E1000_FC_RX_PAUSE:
880 		/* Rx Flow control is enabled and Tx Flow control is disabled by
881 		 * a software over-ride. Since there really isn't a way to
882 		 * advertise that we are capable of Rx Pause ONLY, we will
883 		 * advertise that we support both symmetric and asymmetric Rx
884 		 * PAUSE. Later, we will disable the adapter's ability to send
885 		 * PAUSE frames.
886 		 */
887 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
888 		break;
889 	case E1000_FC_TX_PAUSE:
890 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
891 		 * by a software over-ride.
892 		 */
893 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
894 		break;
895 	case E1000_FC_FULL:
896 		/* Flow control (both Rx and Tx) is enabled by a software
897 		 * over-ride.
898 		 */
899 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
900 		break;
901 	default:
902 		e_dbg("Flow control param set incorrectly\n");
903 		return -E1000_ERR_CONFIG;
904 	}
905 
906 	/* Since auto-negotiation is enabled, take the link out of reset (the
907 	 * link will be in reset, because we previously reset the chip). This
908 	 * will restart auto-negotiation.  If auto-negotiation is successful
909 	 * then the link-up status bit will be set and the flow control enable
910 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
911 	 */
912 	e_dbg("Auto-negotiation enabled\n");
913 
914 	ew32(TXCW, txcw);
915 	ew32(CTRL, ctrl);
916 	E1000_WRITE_FLUSH();
917 
918 	hw->txcw = txcw;
919 	msleep(1);
920 
921 	/* If we have a signal (the cable is plugged in) then poll for a
922 	 * "Link-Up" indication in the Device Status Register.  Time-out if a
923 	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
924 	 * complete in less than 500 milliseconds even if the other end is doing
925 	 * it in SW). For internal serdes, we just assume a signal is present,
926 	 * then poll.
927 	 */
928 	if (hw->media_type == e1000_media_type_internal_serdes ||
929 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
930 		e_dbg("Looking for Link\n");
931 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
932 			msleep(10);
933 			status = er32(STATUS);
934 			if (status & E1000_STATUS_LU)
935 				break;
936 		}
937 		if (i == (LINK_UP_TIMEOUT / 10)) {
938 			e_dbg("Never got a valid link from auto-neg!!!\n");
939 			hw->autoneg_failed = 1;
940 			/* AutoNeg failed to achieve a link, so we'll call
941 			 * e1000_check_for_link. This routine will force the
942 			 * link up if we detect a signal. This will allow us to
943 			 * communicate with non-autonegotiating link partners.
944 			 */
945 			ret_val = e1000_check_for_link(hw);
946 			if (ret_val) {
947 				e_dbg("Error while checking for link\n");
948 				return ret_val;
949 			}
950 			hw->autoneg_failed = 0;
951 		} else {
952 			hw->autoneg_failed = 0;
953 			e_dbg("Valid Link Found\n");
954 		}
955 	} else {
956 		e_dbg("No Signal Detected\n");
957 	}
958 	return E1000_SUCCESS;
959 }
960 
961 /**
962  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
963  * @hw: Struct containing variables accessed by shared code
964  *
965  * Commits changes to PHY configuration by calling e1000_phy_reset().
966  */
e1000_copper_link_rtl_setup(struct e1000_hw * hw)967 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
968 {
969 	s32 ret_val;
970 
971 	/* SW reset the PHY so all changes take effect */
972 	ret_val = e1000_phy_reset(hw);
973 	if (ret_val) {
974 		e_dbg("Error Resetting the PHY\n");
975 		return ret_val;
976 	}
977 
978 	return E1000_SUCCESS;
979 }
980 
gbe_dhg_phy_setup(struct e1000_hw * hw)981 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
982 {
983 	s32 ret_val;
984 	u32 ctrl_aux;
985 
986 	switch (hw->phy_type) {
987 	case e1000_phy_8211:
988 		ret_val = e1000_copper_link_rtl_setup(hw);
989 		if (ret_val) {
990 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
991 			return ret_val;
992 		}
993 		break;
994 	case e1000_phy_8201:
995 		/* Set RMII mode */
996 		ctrl_aux = er32(CTL_AUX);
997 		ctrl_aux |= E1000_CTL_AUX_RMII;
998 		ew32(CTL_AUX, ctrl_aux);
999 		E1000_WRITE_FLUSH();
1000 
1001 		/* Disable the J/K bits required for receive */
1002 		ctrl_aux = er32(CTL_AUX);
1003 		ctrl_aux |= 0x4;
1004 		ctrl_aux &= ~0x2;
1005 		ew32(CTL_AUX, ctrl_aux);
1006 		E1000_WRITE_FLUSH();
1007 		ret_val = e1000_copper_link_rtl_setup(hw);
1008 
1009 		if (ret_val) {
1010 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1011 			return ret_val;
1012 		}
1013 		break;
1014 	default:
1015 		e_dbg("Error Resetting the PHY\n");
1016 		return E1000_ERR_PHY_TYPE;
1017 	}
1018 
1019 	return E1000_SUCCESS;
1020 }
1021 
1022 /**
1023  * e1000_copper_link_preconfig - early configuration for copper
1024  * @hw: Struct containing variables accessed by shared code
1025  *
1026  * Make sure we have a valid PHY and change PHY mode before link setup.
1027  */
e1000_copper_link_preconfig(struct e1000_hw * hw)1028 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1029 {
1030 	u32 ctrl;
1031 	s32 ret_val;
1032 	u16 phy_data;
1033 
1034 	ctrl = er32(CTRL);
1035 	/* With 82543, we need to force speed and duplex on the MAC equal to
1036 	 * what the PHY speed and duplex configuration is. In addition, we need
1037 	 * to perform a hardware reset on the PHY to take it out of reset.
1038 	 */
1039 	if (hw->mac_type > e1000_82543) {
1040 		ctrl |= E1000_CTRL_SLU;
1041 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1042 		ew32(CTRL, ctrl);
1043 	} else {
1044 		ctrl |=
1045 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1046 		ew32(CTRL, ctrl);
1047 		ret_val = e1000_phy_hw_reset(hw);
1048 		if (ret_val)
1049 			return ret_val;
1050 	}
1051 
1052 	/* Make sure we have a valid PHY */
1053 	ret_val = e1000_detect_gig_phy(hw);
1054 	if (ret_val) {
1055 		e_dbg("Error, did not detect valid phy.\n");
1056 		return ret_val;
1057 	}
1058 	e_dbg("Phy ID = %x\n", hw->phy_id);
1059 
1060 	/* Set PHY to class A mode (if necessary) */
1061 	ret_val = e1000_set_phy_mode(hw);
1062 	if (ret_val)
1063 		return ret_val;
1064 
1065 	if ((hw->mac_type == e1000_82545_rev_3) ||
1066 	    (hw->mac_type == e1000_82546_rev_3)) {
1067 		ret_val =
1068 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1069 		phy_data |= 0x00000008;
1070 		ret_val =
1071 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1072 	}
1073 
1074 	if (hw->mac_type <= e1000_82543 ||
1075 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1076 	    hw->mac_type == e1000_82541_rev_2 ||
1077 	    hw->mac_type == e1000_82547_rev_2)
1078 		hw->phy_reset_disable = false;
1079 
1080 	return E1000_SUCCESS;
1081 }
1082 
1083 /**
1084  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1085  * @hw: Struct containing variables accessed by shared code
1086  */
e1000_copper_link_igp_setup(struct e1000_hw * hw)1087 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1088 {
1089 	u32 led_ctrl;
1090 	s32 ret_val;
1091 	u16 phy_data;
1092 
1093 	if (hw->phy_reset_disable)
1094 		return E1000_SUCCESS;
1095 
1096 	ret_val = e1000_phy_reset(hw);
1097 	if (ret_val) {
1098 		e_dbg("Error Resetting the PHY\n");
1099 		return ret_val;
1100 	}
1101 
1102 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1103 	msleep(15);
1104 	/* Configure activity LED after PHY reset */
1105 	led_ctrl = er32(LEDCTL);
1106 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1107 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1108 	ew32(LEDCTL, led_ctrl);
1109 
1110 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1111 	if (hw->phy_type == e1000_phy_igp) {
1112 		/* disable lplu d3 during driver init */
1113 		ret_val = e1000_set_d3_lplu_state(hw, false);
1114 		if (ret_val) {
1115 			e_dbg("Error Disabling LPLU D3\n");
1116 			return ret_val;
1117 		}
1118 	}
1119 
1120 	/* Configure mdi-mdix settings */
1121 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1122 	if (ret_val)
1123 		return ret_val;
1124 
1125 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1126 		hw->dsp_config_state = e1000_dsp_config_disabled;
1127 		/* Force MDI for earlier revs of the IGP PHY */
1128 		phy_data &=
1129 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1130 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1131 		hw->mdix = 1;
1132 
1133 	} else {
1134 		hw->dsp_config_state = e1000_dsp_config_enabled;
1135 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1136 
1137 		switch (hw->mdix) {
1138 		case 1:
1139 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1140 			break;
1141 		case 2:
1142 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1143 			break;
1144 		case 0:
1145 		default:
1146 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1147 			break;
1148 		}
1149 	}
1150 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1151 	if (ret_val)
1152 		return ret_val;
1153 
1154 	/* set auto-master slave resolution settings */
1155 	if (hw->autoneg) {
1156 		e1000_ms_type phy_ms_setting = hw->master_slave;
1157 
1158 		if (hw->ffe_config_state == e1000_ffe_config_active)
1159 			hw->ffe_config_state = e1000_ffe_config_enabled;
1160 
1161 		if (hw->dsp_config_state == e1000_dsp_config_activated)
1162 			hw->dsp_config_state = e1000_dsp_config_enabled;
1163 
1164 		/* when autonegotiation advertisement is only 1000Mbps then we
1165 		 * should disable SmartSpeed and enable Auto MasterSlave
1166 		 * resolution as hardware default.
1167 		 */
1168 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1169 			/* Disable SmartSpeed */
1170 			ret_val =
1171 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1172 					       &phy_data);
1173 			if (ret_val)
1174 				return ret_val;
1175 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1176 			ret_val =
1177 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1178 						phy_data);
1179 			if (ret_val)
1180 				return ret_val;
1181 			/* Set auto Master/Slave resolution process */
1182 			ret_val =
1183 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1184 			if (ret_val)
1185 				return ret_val;
1186 			phy_data &= ~CR_1000T_MS_ENABLE;
1187 			ret_val =
1188 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1189 			if (ret_val)
1190 				return ret_val;
1191 		}
1192 
1193 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194 		if (ret_val)
1195 			return ret_val;
1196 
1197 		/* load defaults for future use */
1198 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1199 		    ((phy_data & CR_1000T_MS_VALUE) ?
1200 		     e1000_ms_force_master :
1201 		     e1000_ms_force_slave) : e1000_ms_auto;
1202 
1203 		switch (phy_ms_setting) {
1204 		case e1000_ms_force_master:
1205 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1206 			break;
1207 		case e1000_ms_force_slave:
1208 			phy_data |= CR_1000T_MS_ENABLE;
1209 			phy_data &= ~(CR_1000T_MS_VALUE);
1210 			break;
1211 		case e1000_ms_auto:
1212 			phy_data &= ~CR_1000T_MS_ENABLE;
1213 		default:
1214 			break;
1215 		}
1216 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1217 		if (ret_val)
1218 			return ret_val;
1219 	}
1220 
1221 	return E1000_SUCCESS;
1222 }
1223 
1224 /**
1225  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1226  * @hw: Struct containing variables accessed by shared code
1227  */
e1000_copper_link_mgp_setup(struct e1000_hw * hw)1228 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1229 {
1230 	s32 ret_val;
1231 	u16 phy_data;
1232 
1233 	if (hw->phy_reset_disable)
1234 		return E1000_SUCCESS;
1235 
1236 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1237 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1238 	if (ret_val)
1239 		return ret_val;
1240 
1241 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1242 
1243 	/* Options:
1244 	 *   MDI/MDI-X = 0 (default)
1245 	 *   0 - Auto for all speeds
1246 	 *   1 - MDI mode
1247 	 *   2 - MDI-X mode
1248 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1249 	 */
1250 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1251 
1252 	switch (hw->mdix) {
1253 	case 1:
1254 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1255 		break;
1256 	case 2:
1257 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1258 		break;
1259 	case 3:
1260 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1261 		break;
1262 	case 0:
1263 	default:
1264 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1265 		break;
1266 	}
1267 
1268 	/* Options:
1269 	 *   disable_polarity_correction = 0 (default)
1270 	 *       Automatic Correction for Reversed Cable Polarity
1271 	 *   0 - Disabled
1272 	 *   1 - Enabled
1273 	 */
1274 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1275 	if (hw->disable_polarity_correction == 1)
1276 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1277 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1278 	if (ret_val)
1279 		return ret_val;
1280 
1281 	if (hw->phy_revision < M88E1011_I_REV_4) {
1282 		/* Force TX_CLK in the Extended PHY Specific Control Register
1283 		 * to 25MHz clock.
1284 		 */
1285 		ret_val =
1286 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1287 				       &phy_data);
1288 		if (ret_val)
1289 			return ret_val;
1290 
1291 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1292 
1293 		if ((hw->phy_revision == E1000_REVISION_2) &&
1294 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1295 			/* Vidalia Phy, set the downshift counter to 5x */
1296 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1297 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1298 			ret_val = e1000_write_phy_reg(hw,
1299 						      M88E1000_EXT_PHY_SPEC_CTRL,
1300 						      phy_data);
1301 			if (ret_val)
1302 				return ret_val;
1303 		} else {
1304 			/* Configure Master and Slave downshift values */
1305 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1306 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1307 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1308 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1309 			ret_val = e1000_write_phy_reg(hw,
1310 						      M88E1000_EXT_PHY_SPEC_CTRL,
1311 						      phy_data);
1312 			if (ret_val)
1313 				return ret_val;
1314 		}
1315 	}
1316 
1317 	/* SW Reset the PHY so all changes take effect */
1318 	ret_val = e1000_phy_reset(hw);
1319 	if (ret_val) {
1320 		e_dbg("Error Resetting the PHY\n");
1321 		return ret_val;
1322 	}
1323 
1324 	return E1000_SUCCESS;
1325 }
1326 
1327 /**
1328  * e1000_copper_link_autoneg - setup auto-neg
1329  * @hw: Struct containing variables accessed by shared code
1330  *
1331  * Setup auto-negotiation and flow control advertisements,
1332  * and then perform auto-negotiation.
1333  */
e1000_copper_link_autoneg(struct e1000_hw * hw)1334 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1335 {
1336 	s32 ret_val;
1337 	u16 phy_data;
1338 
1339 	/* Perform some bounds checking on the hw->autoneg_advertised
1340 	 * parameter.  If this variable is zero, then set it to the default.
1341 	 */
1342 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1343 
1344 	/* If autoneg_advertised is zero, we assume it was not defaulted
1345 	 * by the calling code so we set to advertise full capability.
1346 	 */
1347 	if (hw->autoneg_advertised == 0)
1348 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1349 
1350 	/* IFE/RTL8201N PHY only supports 10/100 */
1351 	if (hw->phy_type == e1000_phy_8201)
1352 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1353 
1354 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1355 	ret_val = e1000_phy_setup_autoneg(hw);
1356 	if (ret_val) {
1357 		e_dbg("Error Setting up Auto-Negotiation\n");
1358 		return ret_val;
1359 	}
1360 	e_dbg("Restarting Auto-Neg\n");
1361 
1362 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1363 	 * the Auto Neg Restart bit in the PHY control register.
1364 	 */
1365 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1366 	if (ret_val)
1367 		return ret_val;
1368 
1369 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1370 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1371 	if (ret_val)
1372 		return ret_val;
1373 
1374 	/* Does the user want to wait for Auto-Neg to complete here, or
1375 	 * check at a later time (for example, callback routine).
1376 	 */
1377 	if (hw->wait_autoneg_complete) {
1378 		ret_val = e1000_wait_autoneg(hw);
1379 		if (ret_val) {
1380 			e_dbg
1381 			    ("Error while waiting for autoneg to complete\n");
1382 			return ret_val;
1383 		}
1384 	}
1385 
1386 	hw->get_link_status = true;
1387 
1388 	return E1000_SUCCESS;
1389 }
1390 
1391 /**
1392  * e1000_copper_link_postconfig - post link setup
1393  * @hw: Struct containing variables accessed by shared code
1394  *
1395  * Config the MAC and the PHY after link is up.
1396  *   1) Set up the MAC to the current PHY speed/duplex
1397  *      if we are on 82543.  If we
1398  *      are on newer silicon, we only need to configure
1399  *      collision distance in the Transmit Control Register.
1400  *   2) Set up flow control on the MAC to that established with
1401  *      the link partner.
1402  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1403  */
e1000_copper_link_postconfig(struct e1000_hw * hw)1404 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1405 {
1406 	s32 ret_val;
1407 
1408 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1409 		e1000_config_collision_dist(hw);
1410 	} else {
1411 		ret_val = e1000_config_mac_to_phy(hw);
1412 		if (ret_val) {
1413 			e_dbg("Error configuring MAC to PHY settings\n");
1414 			return ret_val;
1415 		}
1416 	}
1417 	ret_val = e1000_config_fc_after_link_up(hw);
1418 	if (ret_val) {
1419 		e_dbg("Error Configuring Flow Control\n");
1420 		return ret_val;
1421 	}
1422 
1423 	/* Config DSP to improve Giga link quality */
1424 	if (hw->phy_type == e1000_phy_igp) {
1425 		ret_val = e1000_config_dsp_after_link_change(hw, true);
1426 		if (ret_val) {
1427 			e_dbg("Error Configuring DSP after link up\n");
1428 			return ret_val;
1429 		}
1430 	}
1431 
1432 	return E1000_SUCCESS;
1433 }
1434 
1435 /**
1436  * e1000_setup_copper_link - phy/speed/duplex setting
1437  * @hw: Struct containing variables accessed by shared code
1438  *
1439  * Detects which PHY is present and sets up the speed and duplex
1440  */
e1000_setup_copper_link(struct e1000_hw * hw)1441 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1442 {
1443 	s32 ret_val;
1444 	u16 i;
1445 	u16 phy_data;
1446 
1447 	/* Check if it is a valid PHY and set PHY mode if necessary. */
1448 	ret_val = e1000_copper_link_preconfig(hw);
1449 	if (ret_val)
1450 		return ret_val;
1451 
1452 	if (hw->phy_type == e1000_phy_igp) {
1453 		ret_val = e1000_copper_link_igp_setup(hw);
1454 		if (ret_val)
1455 			return ret_val;
1456 	} else if (hw->phy_type == e1000_phy_m88) {
1457 		ret_val = e1000_copper_link_mgp_setup(hw);
1458 		if (ret_val)
1459 			return ret_val;
1460 	} else {
1461 		ret_val = gbe_dhg_phy_setup(hw);
1462 		if (ret_val) {
1463 			e_dbg("gbe_dhg_phy_setup failed!\n");
1464 			return ret_val;
1465 		}
1466 	}
1467 
1468 	if (hw->autoneg) {
1469 		/* Setup autoneg and flow control advertisement
1470 		 * and perform autonegotiation
1471 		 */
1472 		ret_val = e1000_copper_link_autoneg(hw);
1473 		if (ret_val)
1474 			return ret_val;
1475 	} else {
1476 		/* PHY will be set to 10H, 10F, 100H,or 100F
1477 		 * depending on value from forced_speed_duplex.
1478 		 */
1479 		e_dbg("Forcing speed and duplex\n");
1480 		ret_val = e1000_phy_force_speed_duplex(hw);
1481 		if (ret_val) {
1482 			e_dbg("Error Forcing Speed and Duplex\n");
1483 			return ret_val;
1484 		}
1485 	}
1486 
1487 	/* Check link status. Wait up to 100 microseconds for link to become
1488 	 * valid.
1489 	 */
1490 	for (i = 0; i < 10; i++) {
1491 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1492 		if (ret_val)
1493 			return ret_val;
1494 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1495 		if (ret_val)
1496 			return ret_val;
1497 
1498 		if (phy_data & MII_SR_LINK_STATUS) {
1499 			/* Config the MAC and PHY after link is up */
1500 			ret_val = e1000_copper_link_postconfig(hw);
1501 			if (ret_val)
1502 				return ret_val;
1503 
1504 			e_dbg("Valid link established!!!\n");
1505 			return E1000_SUCCESS;
1506 		}
1507 		udelay(10);
1508 	}
1509 
1510 	e_dbg("Unable to establish link!!!\n");
1511 	return E1000_SUCCESS;
1512 }
1513 
1514 /**
1515  * e1000_phy_setup_autoneg - phy settings
1516  * @hw: Struct containing variables accessed by shared code
1517  *
1518  * Configures PHY autoneg and flow control advertisement settings
1519  */
e1000_phy_setup_autoneg(struct e1000_hw * hw)1520 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1521 {
1522 	s32 ret_val;
1523 	u16 mii_autoneg_adv_reg;
1524 	u16 mii_1000t_ctrl_reg;
1525 
1526 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1527 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1528 	if (ret_val)
1529 		return ret_val;
1530 
1531 	/* Read the MII 1000Base-T Control Register (Address 9). */
1532 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1533 	if (ret_val)
1534 		return ret_val;
1535 	else if (hw->phy_type == e1000_phy_8201)
1536 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1537 
1538 	/* Need to parse both autoneg_advertised and fc and set up
1539 	 * the appropriate PHY registers.  First we will parse for
1540 	 * autoneg_advertised software override.  Since we can advertise
1541 	 * a plethora of combinations, we need to check each bit
1542 	 * individually.
1543 	 */
1544 
1545 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1546 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1547 	 * the  1000Base-T Control Register (Address 9).
1548 	 */
1549 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1550 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1551 
1552 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1553 
1554 	/* Do we want to advertise 10 Mb Half Duplex? */
1555 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1556 		e_dbg("Advertise 10mb Half duplex\n");
1557 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1558 	}
1559 
1560 	/* Do we want to advertise 10 Mb Full Duplex? */
1561 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1562 		e_dbg("Advertise 10mb Full duplex\n");
1563 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1564 	}
1565 
1566 	/* Do we want to advertise 100 Mb Half Duplex? */
1567 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1568 		e_dbg("Advertise 100mb Half duplex\n");
1569 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1570 	}
1571 
1572 	/* Do we want to advertise 100 Mb Full Duplex? */
1573 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1574 		e_dbg("Advertise 100mb Full duplex\n");
1575 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1576 	}
1577 
1578 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1579 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1580 		e_dbg
1581 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1582 	}
1583 
1584 	/* Do we want to advertise 1000 Mb Full Duplex? */
1585 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1586 		e_dbg("Advertise 1000mb Full duplex\n");
1587 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1588 	}
1589 
1590 	/* Check for a software override of the flow control settings, and
1591 	 * setup the PHY advertisement registers accordingly.  If
1592 	 * auto-negotiation is enabled, then software will have to set the
1593 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1594 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1595 	 * auto-negotiation.
1596 	 *
1597 	 * The possible values of the "fc" parameter are:
1598 	 *      0:  Flow control is completely disabled
1599 	 *      1:  Rx flow control is enabled (we can receive pause frames
1600 	 *          but not send pause frames).
1601 	 *      2:  Tx flow control is enabled (we can send pause frames
1602 	 *          but we do not support receiving pause frames).
1603 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1604 	 *  other:  No software override.  The flow control configuration
1605 	 *          in the EEPROM is used.
1606 	 */
1607 	switch (hw->fc) {
1608 	case E1000_FC_NONE:	/* 0 */
1609 		/* Flow control (RX & TX) is completely disabled by a
1610 		 * software over-ride.
1611 		 */
1612 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613 		break;
1614 	case E1000_FC_RX_PAUSE:	/* 1 */
1615 		/* RX Flow control is enabled, and TX Flow control is
1616 		 * disabled, by a software over-ride.
1617 		 */
1618 		/* Since there really isn't a way to advertise that we are
1619 		 * capable of RX Pause ONLY, we will advertise that we
1620 		 * support both symmetric and asymmetric RX PAUSE.  Later
1621 		 * (in e1000_config_fc_after_link_up) we will disable the
1622 		 * hw's ability to send PAUSE frames.
1623 		 */
1624 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1625 		break;
1626 	case E1000_FC_TX_PAUSE:	/* 2 */
1627 		/* TX Flow control is enabled, and RX Flow control is
1628 		 * disabled, by a software over-ride.
1629 		 */
1630 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1631 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1632 		break;
1633 	case E1000_FC_FULL:	/* 3 */
1634 		/* Flow control (both RX and TX) is enabled by a software
1635 		 * over-ride.
1636 		 */
1637 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1638 		break;
1639 	default:
1640 		e_dbg("Flow control param set incorrectly\n");
1641 		return -E1000_ERR_CONFIG;
1642 	}
1643 
1644 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1645 	if (ret_val)
1646 		return ret_val;
1647 
1648 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1649 
1650 	if (hw->phy_type == e1000_phy_8201) {
1651 		mii_1000t_ctrl_reg = 0;
1652 	} else {
1653 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1654 					      mii_1000t_ctrl_reg);
1655 		if (ret_val)
1656 			return ret_val;
1657 	}
1658 
1659 	return E1000_SUCCESS;
1660 }
1661 
1662 /**
1663  * e1000_phy_force_speed_duplex - force link settings
1664  * @hw: Struct containing variables accessed by shared code
1665  *
1666  * Force PHY speed and duplex settings to hw->forced_speed_duplex
1667  */
e1000_phy_force_speed_duplex(struct e1000_hw * hw)1668 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1669 {
1670 	u32 ctrl;
1671 	s32 ret_val;
1672 	u16 mii_ctrl_reg;
1673 	u16 mii_status_reg;
1674 	u16 phy_data;
1675 	u16 i;
1676 
1677 	/* Turn off Flow control if we are forcing speed and duplex. */
1678 	hw->fc = E1000_FC_NONE;
1679 
1680 	e_dbg("hw->fc = %d\n", hw->fc);
1681 
1682 	/* Read the Device Control Register. */
1683 	ctrl = er32(CTRL);
1684 
1685 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1686 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1687 	ctrl &= ~(DEVICE_SPEED_MASK);
1688 
1689 	/* Clear the Auto Speed Detect Enable bit. */
1690 	ctrl &= ~E1000_CTRL_ASDE;
1691 
1692 	/* Read the MII Control Register. */
1693 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1694 	if (ret_val)
1695 		return ret_val;
1696 
1697 	/* We need to disable autoneg in order to force link and duplex. */
1698 
1699 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1700 
1701 	/* Are we forcing Full or Half Duplex? */
1702 	if (hw->forced_speed_duplex == e1000_100_full ||
1703 	    hw->forced_speed_duplex == e1000_10_full) {
1704 		/* We want to force full duplex so we SET the full duplex bits
1705 		 * in the Device and MII Control Registers.
1706 		 */
1707 		ctrl |= E1000_CTRL_FD;
1708 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1709 		e_dbg("Full Duplex\n");
1710 	} else {
1711 		/* We want to force half duplex so we CLEAR the full duplex bits
1712 		 * in the Device and MII Control Registers.
1713 		 */
1714 		ctrl &= ~E1000_CTRL_FD;
1715 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1716 		e_dbg("Half Duplex\n");
1717 	}
1718 
1719 	/* Are we forcing 100Mbps??? */
1720 	if (hw->forced_speed_duplex == e1000_100_full ||
1721 	    hw->forced_speed_duplex == e1000_100_half) {
1722 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1723 		ctrl |= E1000_CTRL_SPD_100;
1724 		mii_ctrl_reg |= MII_CR_SPEED_100;
1725 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1726 		e_dbg("Forcing 100mb ");
1727 	} else {
1728 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1729 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1730 		mii_ctrl_reg |= MII_CR_SPEED_10;
1731 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1732 		e_dbg("Forcing 10mb ");
1733 	}
1734 
1735 	e1000_config_collision_dist(hw);
1736 
1737 	/* Write the configured values back to the Device Control Reg. */
1738 	ew32(CTRL, ctrl);
1739 
1740 	if (hw->phy_type == e1000_phy_m88) {
1741 		ret_val =
1742 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1743 		if (ret_val)
1744 			return ret_val;
1745 
1746 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1747 		 * MDI forced whenever speed are duplex are forced.
1748 		 */
1749 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1750 		ret_val =
1751 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1752 		if (ret_val)
1753 			return ret_val;
1754 
1755 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1756 
1757 		/* Need to reset the PHY or these changes will be ignored */
1758 		mii_ctrl_reg |= MII_CR_RESET;
1759 
1760 		/* Disable MDI-X support for 10/100 */
1761 	} else {
1762 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1763 		 * forced whenever speed or duplex are forced.
1764 		 */
1765 		ret_val =
1766 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1767 		if (ret_val)
1768 			return ret_val;
1769 
1770 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1771 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1772 
1773 		ret_val =
1774 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1775 		if (ret_val)
1776 			return ret_val;
1777 	}
1778 
1779 	/* Write back the modified PHY MII control register. */
1780 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1781 	if (ret_val)
1782 		return ret_val;
1783 
1784 	udelay(1);
1785 
1786 	/* The wait_autoneg_complete flag may be a little misleading here.
1787 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1788 	 * But we do want to delay for a period while forcing only so we
1789 	 * don't generate false No Link messages.  So we will wait here
1790 	 * only if the user has set wait_autoneg_complete to 1, which is
1791 	 * the default.
1792 	 */
1793 	if (hw->wait_autoneg_complete) {
1794 		/* We will wait for autoneg to complete. */
1795 		e_dbg("Waiting for forced speed/duplex link.\n");
1796 		mii_status_reg = 0;
1797 
1798 		/* Wait for autoneg to complete or 4.5 seconds to expire */
1799 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1800 			/* Read the MII Status Register and wait for Auto-Neg
1801 			 * Complete bit to be set.
1802 			 */
1803 			ret_val =
1804 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1805 			if (ret_val)
1806 				return ret_val;
1807 
1808 			ret_val =
1809 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1810 			if (ret_val)
1811 				return ret_val;
1812 
1813 			if (mii_status_reg & MII_SR_LINK_STATUS)
1814 				break;
1815 			msleep(100);
1816 		}
1817 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1818 			/* We didn't get link.  Reset the DSP and wait again
1819 			 * for link.
1820 			 */
1821 			ret_val = e1000_phy_reset_dsp(hw);
1822 			if (ret_val) {
1823 				e_dbg("Error Resetting PHY DSP\n");
1824 				return ret_val;
1825 			}
1826 		}
1827 		/* This loop will early-out if the link condition has been
1828 		 * met
1829 		 */
1830 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1831 			if (mii_status_reg & MII_SR_LINK_STATUS)
1832 				break;
1833 			msleep(100);
1834 			/* Read the MII Status Register and wait for Auto-Neg
1835 			 * Complete bit to be set.
1836 			 */
1837 			ret_val =
1838 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1839 			if (ret_val)
1840 				return ret_val;
1841 
1842 			ret_val =
1843 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1844 			if (ret_val)
1845 				return ret_val;
1846 		}
1847 	}
1848 
1849 	if (hw->phy_type == e1000_phy_m88) {
1850 		/* Because we reset the PHY above, we need to re-force TX_CLK in
1851 		 * the Extended PHY Specific Control Register to 25MHz clock.
1852 		 * This value defaults back to a 2.5MHz clock when the PHY is
1853 		 * reset.
1854 		 */
1855 		ret_val =
1856 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1857 				       &phy_data);
1858 		if (ret_val)
1859 			return ret_val;
1860 
1861 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1862 		ret_val =
1863 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1864 					phy_data);
1865 		if (ret_val)
1866 			return ret_val;
1867 
1868 		/* In addition, because of the s/w reset above, we need to
1869 		 * enable CRS on Tx.  This must be set for both full and half
1870 		 * duplex operation.
1871 		 */
1872 		ret_val =
1873 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874 		if (ret_val)
1875 			return ret_val;
1876 
1877 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1878 		ret_val =
1879 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1880 		if (ret_val)
1881 			return ret_val;
1882 
1883 		if ((hw->mac_type == e1000_82544 ||
1884 		     hw->mac_type == e1000_82543) &&
1885 		    (!hw->autoneg) &&
1886 		    (hw->forced_speed_duplex == e1000_10_full ||
1887 		     hw->forced_speed_duplex == e1000_10_half)) {
1888 			ret_val = e1000_polarity_reversal_workaround(hw);
1889 			if (ret_val)
1890 				return ret_val;
1891 		}
1892 	}
1893 	return E1000_SUCCESS;
1894 }
1895 
1896 /**
1897  * e1000_config_collision_dist - set collision distance register
1898  * @hw: Struct containing variables accessed by shared code
1899  *
1900  * Sets the collision distance in the Transmit Control register.
1901  * Link should have been established previously. Reads the speed and duplex
1902  * information from the Device Status register.
1903  */
e1000_config_collision_dist(struct e1000_hw * hw)1904 void e1000_config_collision_dist(struct e1000_hw *hw)
1905 {
1906 	u32 tctl, coll_dist;
1907 
1908 	if (hw->mac_type < e1000_82543)
1909 		coll_dist = E1000_COLLISION_DISTANCE_82542;
1910 	else
1911 		coll_dist = E1000_COLLISION_DISTANCE;
1912 
1913 	tctl = er32(TCTL);
1914 
1915 	tctl &= ~E1000_TCTL_COLD;
1916 	tctl |= coll_dist << E1000_COLD_SHIFT;
1917 
1918 	ew32(TCTL, tctl);
1919 	E1000_WRITE_FLUSH();
1920 }
1921 
1922 /**
1923  * e1000_config_mac_to_phy - sync phy and mac settings
1924  * @hw: Struct containing variables accessed by shared code
1925  * @mii_reg: data to write to the MII control register
1926  *
1927  * Sets MAC speed and duplex settings to reflect the those in the PHY
1928  * The contents of the PHY register containing the needed information need to
1929  * be passed in.
1930  */
e1000_config_mac_to_phy(struct e1000_hw * hw)1931 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932 {
1933 	u32 ctrl;
1934 	s32 ret_val;
1935 	u16 phy_data;
1936 
1937 	/* 82544 or newer MAC, Auto Speed Detection takes care of
1938 	 * MAC speed/duplex configuration.
1939 	 */
1940 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941 		return E1000_SUCCESS;
1942 
1943 	/* Read the Device Control Register and set the bits to Force Speed
1944 	 * and Duplex.
1945 	 */
1946 	ctrl = er32(CTRL);
1947 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949 
1950 	switch (hw->phy_type) {
1951 	case e1000_phy_8201:
1952 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953 		if (ret_val)
1954 			return ret_val;
1955 
1956 		if (phy_data & RTL_PHY_CTRL_FD)
1957 			ctrl |= E1000_CTRL_FD;
1958 		else
1959 			ctrl &= ~E1000_CTRL_FD;
1960 
1961 		if (phy_data & RTL_PHY_CTRL_SPD_100)
1962 			ctrl |= E1000_CTRL_SPD_100;
1963 		else
1964 			ctrl |= E1000_CTRL_SPD_10;
1965 
1966 		e1000_config_collision_dist(hw);
1967 		break;
1968 	default:
1969 		/* Set up duplex in the Device Control and Transmit Control
1970 		 * registers depending on negotiated values.
1971 		 */
1972 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973 					     &phy_data);
1974 		if (ret_val)
1975 			return ret_val;
1976 
1977 		if (phy_data & M88E1000_PSSR_DPLX)
1978 			ctrl |= E1000_CTRL_FD;
1979 		else
1980 			ctrl &= ~E1000_CTRL_FD;
1981 
1982 		e1000_config_collision_dist(hw);
1983 
1984 		/* Set up speed in the Device Control register depending on
1985 		 * negotiated values.
1986 		 */
1987 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988 			ctrl |= E1000_CTRL_SPD_1000;
1989 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990 			 M88E1000_PSSR_100MBS)
1991 			ctrl |= E1000_CTRL_SPD_100;
1992 	}
1993 
1994 	/* Write the configured values back to the Device Control Reg. */
1995 	ew32(CTRL, ctrl);
1996 	return E1000_SUCCESS;
1997 }
1998 
1999 /**
2000  * e1000_force_mac_fc - force flow control settings
2001  * @hw: Struct containing variables accessed by shared code
2002  *
2003  * Forces the MAC's flow control settings.
2004  * Sets the TFCE and RFCE bits in the device control register to reflect
2005  * the adapter settings. TFCE and RFCE need to be explicitly set by
2006  * software when a Copper PHY is used because autonegotiation is managed
2007  * by the PHY rather than the MAC. Software must also configure these
2008  * bits when link is forced on a fiber connection.
2009  */
e1000_force_mac_fc(struct e1000_hw * hw)2010 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011 {
2012 	u32 ctrl;
2013 
2014 	/* Get the current configuration of the Device Control Register */
2015 	ctrl = er32(CTRL);
2016 
2017 	/* Because we didn't get link via the internal auto-negotiation
2018 	 * mechanism (we either forced link or we got link via PHY
2019 	 * auto-neg), we have to manually enable/disable transmit an
2020 	 * receive flow control.
2021 	 *
2022 	 * The "Case" statement below enables/disable flow control
2023 	 * according to the "hw->fc" parameter.
2024 	 *
2025 	 * The possible values of the "fc" parameter are:
2026 	 *      0:  Flow control is completely disabled
2027 	 *      1:  Rx flow control is enabled (we can receive pause
2028 	 *          frames but not send pause frames).
2029 	 *      2:  Tx flow control is enabled (we can send pause frames
2030 	 *          frames but we do not receive pause frames).
2031 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2032 	 *  other:  No other values should be possible at this point.
2033 	 */
2034 
2035 	switch (hw->fc) {
2036 	case E1000_FC_NONE:
2037 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038 		break;
2039 	case E1000_FC_RX_PAUSE:
2040 		ctrl &= (~E1000_CTRL_TFCE);
2041 		ctrl |= E1000_CTRL_RFCE;
2042 		break;
2043 	case E1000_FC_TX_PAUSE:
2044 		ctrl &= (~E1000_CTRL_RFCE);
2045 		ctrl |= E1000_CTRL_TFCE;
2046 		break;
2047 	case E1000_FC_FULL:
2048 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049 		break;
2050 	default:
2051 		e_dbg("Flow control param set incorrectly\n");
2052 		return -E1000_ERR_CONFIG;
2053 	}
2054 
2055 	/* Disable TX Flow Control for 82542 (rev 2.0) */
2056 	if (hw->mac_type == e1000_82542_rev2_0)
2057 		ctrl &= (~E1000_CTRL_TFCE);
2058 
2059 	ew32(CTRL, ctrl);
2060 	return E1000_SUCCESS;
2061 }
2062 
2063 /**
2064  * e1000_config_fc_after_link_up - configure flow control after autoneg
2065  * @hw: Struct containing variables accessed by shared code
2066  *
2067  * Configures flow control settings after link is established
2068  * Should be called immediately after a valid link has been established.
2069  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070  * and autonegotiation is enabled, the MAC flow control settings will be set
2071  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072  * and RFCE bits will be automatically set to the negotiated flow control mode.
2073  */
e1000_config_fc_after_link_up(struct e1000_hw * hw)2074 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075 {
2076 	s32 ret_val;
2077 	u16 mii_status_reg;
2078 	u16 mii_nway_adv_reg;
2079 	u16 mii_nway_lp_ability_reg;
2080 	u16 speed;
2081 	u16 duplex;
2082 
2083 	/* Check for the case where we have fiber media and auto-neg failed
2084 	 * so we had to force link.  In this case, we need to force the
2085 	 * configuration of the MAC to match the "fc" parameter.
2086 	 */
2087 	if (((hw->media_type == e1000_media_type_fiber) &&
2088 	     (hw->autoneg_failed)) ||
2089 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2090 	     (hw->autoneg_failed)) ||
2091 	    ((hw->media_type == e1000_media_type_copper) &&
2092 	     (!hw->autoneg))) {
2093 		ret_val = e1000_force_mac_fc(hw);
2094 		if (ret_val) {
2095 			e_dbg("Error forcing flow control settings\n");
2096 			return ret_val;
2097 		}
2098 	}
2099 
2100 	/* Check for the case where we have copper media and auto-neg is
2101 	 * enabled.  In this case, we need to check and see if Auto-Neg
2102 	 * has completed, and if so, how the PHY and link partner has
2103 	 * flow control configured.
2104 	 */
2105 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2106 		/* Read the MII Status Register and check to see if AutoNeg
2107 		 * has completed.  We read this twice because this reg has
2108 		 * some "sticky" (latched) bits.
2109 		 */
2110 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2111 		if (ret_val)
2112 			return ret_val;
2113 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2114 		if (ret_val)
2115 			return ret_val;
2116 
2117 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2118 			/* The AutoNeg process has completed, so we now need to
2119 			 * read both the Auto Negotiation Advertisement Register
2120 			 * (Address 4) and the Auto_Negotiation Base Page
2121 			 * Ability Register (Address 5) to determine how flow
2122 			 * control was negotiated.
2123 			 */
2124 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2125 						     &mii_nway_adv_reg);
2126 			if (ret_val)
2127 				return ret_val;
2128 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2129 						     &mii_nway_lp_ability_reg);
2130 			if (ret_val)
2131 				return ret_val;
2132 
2133 			/* Two bits in the Auto Negotiation Advertisement
2134 			 * Register (Address 4) and two bits in the Auto
2135 			 * Negotiation Base Page Ability Register (Address 5)
2136 			 * determine flow control for both the PHY and the link
2137 			 * partner.  The following table, taken out of the IEEE
2138 			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2139 			 * PAUSE resolution bits and how flow control is
2140 			 * determined based upon these settings.
2141 			 * NOTE:  DC = Don't Care
2142 			 *
2143 			 *   LOCAL DEVICE  |   LINK PARTNER
2144 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2145 			 *-------|---------|-------|---------|------------------
2146 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2147 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2148 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2149 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2150 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2151 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2152 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2153 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2154 			 *
2155 			 */
2156 			/* Are both PAUSE bits set to 1?  If so, this implies
2157 			 * Symmetric Flow Control is enabled at both ends.  The
2158 			 * ASM_DIR bits are irrelevant per the spec.
2159 			 *
2160 			 * For Symmetric Flow Control:
2161 			 *
2162 			 *   LOCAL DEVICE  |   LINK PARTNER
2163 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164 			 *-------|---------|-------|---------|------------------
2165 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2166 			 *
2167 			 */
2168 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2170 				/* Now we need to check if the user selected Rx
2171 				 * ONLY of pause frames.  In this case, we had
2172 				 * to advertise FULL flow control because we
2173 				 * could not advertise Rx ONLY. Hence, we must
2174 				 * now check to see if we need to turn OFF the
2175 				 * TRANSMISSION of PAUSE frames.
2176 				 */
2177 				if (hw->original_fc == E1000_FC_FULL) {
2178 					hw->fc = E1000_FC_FULL;
2179 					e_dbg("Flow Control = FULL.\n");
2180 				} else {
2181 					hw->fc = E1000_FC_RX_PAUSE;
2182 					e_dbg
2183 					    ("Flow Control = RX PAUSE frames only.\n");
2184 				}
2185 			}
2186 			/* For receiving PAUSE frames ONLY.
2187 			 *
2188 			 *   LOCAL DEVICE  |   LINK PARTNER
2189 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2190 			 *-------|---------|-------|---------|------------------
2191 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2192 			 *
2193 			 */
2194 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2195 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2196 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2197 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2198 				hw->fc = E1000_FC_TX_PAUSE;
2199 				e_dbg
2200 				    ("Flow Control = TX PAUSE frames only.\n");
2201 			}
2202 			/* For transmitting PAUSE frames ONLY.
2203 			 *
2204 			 *   LOCAL DEVICE  |   LINK PARTNER
2205 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206 			 *-------|---------|-------|---------|------------------
2207 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2208 			 *
2209 			 */
2210 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2214 				hw->fc = E1000_FC_RX_PAUSE;
2215 				e_dbg
2216 				    ("Flow Control = RX PAUSE frames only.\n");
2217 			}
2218 			/* Per the IEEE spec, at this point flow control should
2219 			 * be disabled.  However, we want to consider that we
2220 			 * could be connected to a legacy switch that doesn't
2221 			 * advertise desired flow control, but can be forced on
2222 			 * the link partner.  So if we advertised no flow
2223 			 * control, that is what we will resolve to.  If we
2224 			 * advertised some kind of receive capability (Rx Pause
2225 			 * Only or Full Flow Control) and the link partner
2226 			 * advertised none, we will configure ourselves to
2227 			 * enable Rx Flow Control only.  We can do this safely
2228 			 * for two reasons:  If the link partner really
2229 			 * didn't want flow control enabled, and we enable Rx,
2230 			 * no harm done since we won't be receiving any PAUSE
2231 			 * frames anyway.  If the intent on the link partner was
2232 			 * to have flow control enabled, then by us enabling Rx
2233 			 * only, we can at least receive pause frames and
2234 			 * process them. This is a good idea because in most
2235 			 * cases, since we are predominantly a server NIC, more
2236 			 * times than not we will be asked to delay transmission
2237 			 * of packets than asking our link partner to pause
2238 			 * transmission of frames.
2239 			 */
2240 			else if ((hw->original_fc == E1000_FC_NONE ||
2241 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2242 				 hw->fc_strict_ieee) {
2243 				hw->fc = E1000_FC_NONE;
2244 				e_dbg("Flow Control = NONE.\n");
2245 			} else {
2246 				hw->fc = E1000_FC_RX_PAUSE;
2247 				e_dbg
2248 				    ("Flow Control = RX PAUSE frames only.\n");
2249 			}
2250 
2251 			/* Now we need to do one last check...  If we auto-
2252 			 * negotiated to HALF DUPLEX, flow control should not be
2253 			 * enabled per IEEE 802.3 spec.
2254 			 */
2255 			ret_val =
2256 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2257 			if (ret_val) {
2258 				e_dbg
2259 				    ("Error getting link speed and duplex\n");
2260 				return ret_val;
2261 			}
2262 
2263 			if (duplex == HALF_DUPLEX)
2264 				hw->fc = E1000_FC_NONE;
2265 
2266 			/* Now we call a subroutine to actually force the MAC
2267 			 * controller to use the correct flow control settings.
2268 			 */
2269 			ret_val = e1000_force_mac_fc(hw);
2270 			if (ret_val) {
2271 				e_dbg
2272 				    ("Error forcing flow control settings\n");
2273 				return ret_val;
2274 			}
2275 		} else {
2276 			e_dbg
2277 			    ("Copper PHY and Auto Neg has not completed.\n");
2278 		}
2279 	}
2280 	return E1000_SUCCESS;
2281 }
2282 
2283 /**
2284  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2285  * @hw: pointer to the HW structure
2286  *
2287  * Checks for link up on the hardware.  If link is not up and we have
2288  * a signal, then we need to force link up.
2289  */
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)2290 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2291 {
2292 	u32 rxcw;
2293 	u32 ctrl;
2294 	u32 status;
2295 	s32 ret_val = E1000_SUCCESS;
2296 
2297 	ctrl = er32(CTRL);
2298 	status = er32(STATUS);
2299 	rxcw = er32(RXCW);
2300 
2301 	/* If we don't have link (auto-negotiation failed or link partner
2302 	 * cannot auto-negotiate), and our link partner is not trying to
2303 	 * auto-negotiate with us (we are receiving idles or data),
2304 	 * we need to force link up. We also need to give auto-negotiation
2305 	 * time to complete.
2306 	 */
2307 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2308 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2309 		if (hw->autoneg_failed == 0) {
2310 			hw->autoneg_failed = 1;
2311 			goto out;
2312 		}
2313 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2314 
2315 		/* Disable auto-negotiation in the TXCW register */
2316 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2317 
2318 		/* Force link-up and also force full-duplex. */
2319 		ctrl = er32(CTRL);
2320 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2321 		ew32(CTRL, ctrl);
2322 
2323 		/* Configure Flow Control after forcing link up. */
2324 		ret_val = e1000_config_fc_after_link_up(hw);
2325 		if (ret_val) {
2326 			e_dbg("Error configuring flow control\n");
2327 			goto out;
2328 		}
2329 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2330 		/* If we are forcing link and we are receiving /C/ ordered
2331 		 * sets, re-enable auto-negotiation in the TXCW register
2332 		 * and disable forced link in the Device Control register
2333 		 * in an attempt to auto-negotiate with our link partner.
2334 		 */
2335 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2336 		ew32(TXCW, hw->txcw);
2337 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2338 
2339 		hw->serdes_has_link = true;
2340 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2341 		/* If we force link for non-auto-negotiation switch, check
2342 		 * link status based on MAC synchronization for internal
2343 		 * serdes media type.
2344 		 */
2345 		/* SYNCH bit and IV bit are sticky. */
2346 		udelay(10);
2347 		rxcw = er32(RXCW);
2348 		if (rxcw & E1000_RXCW_SYNCH) {
2349 			if (!(rxcw & E1000_RXCW_IV)) {
2350 				hw->serdes_has_link = true;
2351 				e_dbg("SERDES: Link up - forced.\n");
2352 			}
2353 		} else {
2354 			hw->serdes_has_link = false;
2355 			e_dbg("SERDES: Link down - force failed.\n");
2356 		}
2357 	}
2358 
2359 	if (E1000_TXCW_ANE & er32(TXCW)) {
2360 		status = er32(STATUS);
2361 		if (status & E1000_STATUS_LU) {
2362 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2363 			udelay(10);
2364 			rxcw = er32(RXCW);
2365 			if (rxcw & E1000_RXCW_SYNCH) {
2366 				if (!(rxcw & E1000_RXCW_IV)) {
2367 					hw->serdes_has_link = true;
2368 					e_dbg("SERDES: Link up - autoneg "
2369 						 "completed successfully.\n");
2370 				} else {
2371 					hw->serdes_has_link = false;
2372 					e_dbg("SERDES: Link down - invalid"
2373 						 "codewords detected in autoneg.\n");
2374 				}
2375 			} else {
2376 				hw->serdes_has_link = false;
2377 				e_dbg("SERDES: Link down - no sync.\n");
2378 			}
2379 		} else {
2380 			hw->serdes_has_link = false;
2381 			e_dbg("SERDES: Link down - autoneg failed\n");
2382 		}
2383 	}
2384 
2385       out:
2386 	return ret_val;
2387 }
2388 
2389 /**
2390  * e1000_check_for_link
2391  * @hw: Struct containing variables accessed by shared code
2392  *
2393  * Checks to see if the link status of the hardware has changed.
2394  * Called by any function that needs to check the link status of the adapter.
2395  */
e1000_check_for_link(struct e1000_hw * hw)2396 s32 e1000_check_for_link(struct e1000_hw *hw)
2397 {
2398 	u32 rxcw = 0;
2399 	u32 ctrl;
2400 	u32 status;
2401 	u32 rctl;
2402 	u32 icr;
2403 	u32 signal = 0;
2404 	s32 ret_val;
2405 	u16 phy_data;
2406 
2407 	ctrl = er32(CTRL);
2408 	status = er32(STATUS);
2409 
2410 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2411 	 * set when the optics detect a signal. On older adapters, it will be
2412 	 * cleared when there is a signal.  This applies to fiber media only.
2413 	 */
2414 	if ((hw->media_type == e1000_media_type_fiber) ||
2415 	    (hw->media_type == e1000_media_type_internal_serdes)) {
2416 		rxcw = er32(RXCW);
2417 
2418 		if (hw->media_type == e1000_media_type_fiber) {
2419 			signal =
2420 			    (hw->mac_type >
2421 			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2422 			if (status & E1000_STATUS_LU)
2423 				hw->get_link_status = false;
2424 		}
2425 	}
2426 
2427 	/* If we have a copper PHY then we only want to go out to the PHY
2428 	 * registers to see if Auto-Neg has completed and/or if our link
2429 	 * status has changed.  The get_link_status flag will be set if we
2430 	 * receive a Link Status Change interrupt or we have Rx Sequence
2431 	 * Errors.
2432 	 */
2433 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2434 		/* First we want to see if the MII Status Register reports
2435 		 * link.  If so, then we want to get the current speed/duplex
2436 		 * of the PHY.
2437 		 * Read the register twice since the link bit is sticky.
2438 		 */
2439 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2440 		if (ret_val)
2441 			return ret_val;
2442 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2443 		if (ret_val)
2444 			return ret_val;
2445 
2446 		if (phy_data & MII_SR_LINK_STATUS) {
2447 			hw->get_link_status = false;
2448 			/* Check if there was DownShift, must be checked
2449 			 * immediately after link-up
2450 			 */
2451 			e1000_check_downshift(hw);
2452 
2453 			/* If we are on 82544 or 82543 silicon and speed/duplex
2454 			 * are forced to 10H or 10F, then we will implement the
2455 			 * polarity reversal workaround.  We disable interrupts
2456 			 * first, and upon returning, place the devices
2457 			 * interrupt state to its previous value except for the
2458 			 * link status change interrupt which will
2459 			 * happen due to the execution of this workaround.
2460 			 */
2461 
2462 			if ((hw->mac_type == e1000_82544 ||
2463 			     hw->mac_type == e1000_82543) &&
2464 			    (!hw->autoneg) &&
2465 			    (hw->forced_speed_duplex == e1000_10_full ||
2466 			     hw->forced_speed_duplex == e1000_10_half)) {
2467 				ew32(IMC, 0xffffffff);
2468 				ret_val =
2469 				    e1000_polarity_reversal_workaround(hw);
2470 				icr = er32(ICR);
2471 				ew32(ICS, (icr & ~E1000_ICS_LSC));
2472 				ew32(IMS, IMS_ENABLE_MASK);
2473 			}
2474 
2475 		} else {
2476 			/* No link detected */
2477 			e1000_config_dsp_after_link_change(hw, false);
2478 			return 0;
2479 		}
2480 
2481 		/* If we are forcing speed/duplex, then we simply return since
2482 		 * we have already determined whether we have link or not.
2483 		 */
2484 		if (!hw->autoneg)
2485 			return -E1000_ERR_CONFIG;
2486 
2487 		/* optimize the dsp settings for the igp phy */
2488 		e1000_config_dsp_after_link_change(hw, true);
2489 
2490 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2491 		 * have Si on board that is 82544 or newer, Auto
2492 		 * Speed Detection takes care of MAC speed/duplex
2493 		 * configuration.  So we only need to configure Collision
2494 		 * Distance in the MAC.  Otherwise, we need to force
2495 		 * speed/duplex on the MAC to the current PHY speed/duplex
2496 		 * settings.
2497 		 */
2498 		if ((hw->mac_type >= e1000_82544) &&
2499 		    (hw->mac_type != e1000_ce4100))
2500 			e1000_config_collision_dist(hw);
2501 		else {
2502 			ret_val = e1000_config_mac_to_phy(hw);
2503 			if (ret_val) {
2504 				e_dbg
2505 				    ("Error configuring MAC to PHY settings\n");
2506 				return ret_val;
2507 			}
2508 		}
2509 
2510 		/* Configure Flow Control now that Auto-Neg has completed.
2511 		 * First, we need to restore the desired flow control settings
2512 		 * because we may have had to re-autoneg with a different link
2513 		 * partner.
2514 		 */
2515 		ret_val = e1000_config_fc_after_link_up(hw);
2516 		if (ret_val) {
2517 			e_dbg("Error configuring flow control\n");
2518 			return ret_val;
2519 		}
2520 
2521 		/* At this point we know that we are on copper and we have
2522 		 * auto-negotiated link.  These are conditions for checking the
2523 		 * link partner capability register.  We use the link speed to
2524 		 * determine if TBI compatibility needs to be turned on or off.
2525 		 * If the link is not at gigabit speed, then TBI compatibility
2526 		 * is not needed.  If we are at gigabit speed, we turn on TBI
2527 		 * compatibility.
2528 		 */
2529 		if (hw->tbi_compatibility_en) {
2530 			u16 speed, duplex;
2531 
2532 			ret_val =
2533 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2534 
2535 			if (ret_val) {
2536 				e_dbg
2537 				    ("Error getting link speed and duplex\n");
2538 				return ret_val;
2539 			}
2540 			if (speed != SPEED_1000) {
2541 				/* If link speed is not set to gigabit speed, we
2542 				 * do not need to enable TBI compatibility.
2543 				 */
2544 				if (hw->tbi_compatibility_on) {
2545 					/* If we previously were in the mode,
2546 					 * turn it off.
2547 					 */
2548 					rctl = er32(RCTL);
2549 					rctl &= ~E1000_RCTL_SBP;
2550 					ew32(RCTL, rctl);
2551 					hw->tbi_compatibility_on = false;
2552 				}
2553 			} else {
2554 				/* If TBI compatibility is was previously off,
2555 				 * turn it on. For compatibility with a TBI link
2556 				 * partner, we will store bad packets. Some
2557 				 * frames have an additional byte on the end and
2558 				 * will look like CRC errors to to the hardware.
2559 				 */
2560 				if (!hw->tbi_compatibility_on) {
2561 					hw->tbi_compatibility_on = true;
2562 					rctl = er32(RCTL);
2563 					rctl |= E1000_RCTL_SBP;
2564 					ew32(RCTL, rctl);
2565 				}
2566 			}
2567 		}
2568 	}
2569 
2570 	if ((hw->media_type == e1000_media_type_fiber) ||
2571 	    (hw->media_type == e1000_media_type_internal_serdes))
2572 		e1000_check_for_serdes_link_generic(hw);
2573 
2574 	return E1000_SUCCESS;
2575 }
2576 
2577 /**
2578  * e1000_get_speed_and_duplex
2579  * @hw: Struct containing variables accessed by shared code
2580  * @speed: Speed of the connection
2581  * @duplex: Duplex setting of the connection
2582  *
2583  * Detects the current speed and duplex settings of the hardware.
2584  */
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)2585 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2586 {
2587 	u32 status;
2588 	s32 ret_val;
2589 	u16 phy_data;
2590 
2591 	if (hw->mac_type >= e1000_82543) {
2592 		status = er32(STATUS);
2593 		if (status & E1000_STATUS_SPEED_1000) {
2594 			*speed = SPEED_1000;
2595 			e_dbg("1000 Mbs, ");
2596 		} else if (status & E1000_STATUS_SPEED_100) {
2597 			*speed = SPEED_100;
2598 			e_dbg("100 Mbs, ");
2599 		} else {
2600 			*speed = SPEED_10;
2601 			e_dbg("10 Mbs, ");
2602 		}
2603 
2604 		if (status & E1000_STATUS_FD) {
2605 			*duplex = FULL_DUPLEX;
2606 			e_dbg("Full Duplex\n");
2607 		} else {
2608 			*duplex = HALF_DUPLEX;
2609 			e_dbg(" Half Duplex\n");
2610 		}
2611 	} else {
2612 		e_dbg("1000 Mbs, Full Duplex\n");
2613 		*speed = SPEED_1000;
2614 		*duplex = FULL_DUPLEX;
2615 	}
2616 
2617 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2618 	 * even if it is operating at half duplex.  Here we set the duplex
2619 	 * settings to match the duplex in the link partner's capabilities.
2620 	 */
2621 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2622 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2623 		if (ret_val)
2624 			return ret_val;
2625 
2626 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2627 			*duplex = HALF_DUPLEX;
2628 		else {
2629 			ret_val =
2630 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2631 			if (ret_val)
2632 				return ret_val;
2633 			if ((*speed == SPEED_100 &&
2634 			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2635 			    (*speed == SPEED_10 &&
2636 			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2637 				*duplex = HALF_DUPLEX;
2638 		}
2639 	}
2640 
2641 	return E1000_SUCCESS;
2642 }
2643 
2644 /**
2645  * e1000_wait_autoneg
2646  * @hw: Struct containing variables accessed by shared code
2647  *
2648  * Blocks until autoneg completes or times out (~4.5 seconds)
2649  */
e1000_wait_autoneg(struct e1000_hw * hw)2650 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2651 {
2652 	s32 ret_val;
2653 	u16 i;
2654 	u16 phy_data;
2655 
2656 	e_dbg("Waiting for Auto-Neg to complete.\n");
2657 
2658 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2659 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2660 		/* Read the MII Status Register and wait for Auto-Neg
2661 		 * Complete bit to be set.
2662 		 */
2663 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2664 		if (ret_val)
2665 			return ret_val;
2666 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2667 		if (ret_val)
2668 			return ret_val;
2669 		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2670 			return E1000_SUCCESS;
2671 
2672 		msleep(100);
2673 	}
2674 	return E1000_SUCCESS;
2675 }
2676 
2677 /**
2678  * e1000_raise_mdi_clk - Raises the Management Data Clock
2679  * @hw: Struct containing variables accessed by shared code
2680  * @ctrl: Device control register's current value
2681  */
e1000_raise_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2682 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2683 {
2684 	/* Raise the clock input to the Management Data Clock (by setting the
2685 	 * MDC bit), and then delay 10 microseconds.
2686 	 */
2687 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2688 	E1000_WRITE_FLUSH();
2689 	udelay(10);
2690 }
2691 
2692 /**
2693  * e1000_lower_mdi_clk - Lowers the Management Data Clock
2694  * @hw: Struct containing variables accessed by shared code
2695  * @ctrl: Device control register's current value
2696  */
e1000_lower_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2697 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698 {
2699 	/* Lower the clock input to the Management Data Clock (by clearing the
2700 	 * MDC bit), and then delay 10 microseconds.
2701 	 */
2702 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2703 	E1000_WRITE_FLUSH();
2704 	udelay(10);
2705 }
2706 
2707 /**
2708  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2709  * @hw: Struct containing variables accessed by shared code
2710  * @data: Data to send out to the PHY
2711  * @count: Number of bits to shift out
2712  *
2713  * Bits are shifted out in MSB to LSB order.
2714  */
e1000_shift_out_mdi_bits(struct e1000_hw * hw,u32 data,u16 count)2715 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2716 {
2717 	u32 ctrl;
2718 	u32 mask;
2719 
2720 	/* We need to shift "count" number of bits out to the PHY. So, the value
2721 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2722 	 * time. In order to do this, "data" must be broken down into bits.
2723 	 */
2724 	mask = 0x01;
2725 	mask <<= (count - 1);
2726 
2727 	ctrl = er32(CTRL);
2728 
2729 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2730 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2731 
2732 	while (mask) {
2733 		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2734 		 * "1" and then raising and lowering the Management Data Clock.
2735 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2736 		 * "0" and then raising and lowering the clock.
2737 		 */
2738 		if (data & mask)
2739 			ctrl |= E1000_CTRL_MDIO;
2740 		else
2741 			ctrl &= ~E1000_CTRL_MDIO;
2742 
2743 		ew32(CTRL, ctrl);
2744 		E1000_WRITE_FLUSH();
2745 
2746 		udelay(10);
2747 
2748 		e1000_raise_mdi_clk(hw, &ctrl);
2749 		e1000_lower_mdi_clk(hw, &ctrl);
2750 
2751 		mask = mask >> 1;
2752 	}
2753 }
2754 
2755 /**
2756  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2757  * @hw: Struct containing variables accessed by shared code
2758  *
2759  * Bits are shifted in in MSB to LSB order.
2760  */
e1000_shift_in_mdi_bits(struct e1000_hw * hw)2761 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2762 {
2763 	u32 ctrl;
2764 	u16 data = 0;
2765 	u8 i;
2766 
2767 	/* In order to read a register from the PHY, we need to shift in a total
2768 	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2769 	 * used to avoid contention on the MDIO pin when a read operation is
2770 	 * performed. These two bits are ignored by us and thrown away. Bits are
2771 	 * "shifted in" by raising the input to the Management Data Clock
2772 	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2773 	 */
2774 	ctrl = er32(CTRL);
2775 
2776 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2777 	 * input.
2778 	 */
2779 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2780 	ctrl &= ~E1000_CTRL_MDIO;
2781 
2782 	ew32(CTRL, ctrl);
2783 	E1000_WRITE_FLUSH();
2784 
2785 	/* Raise and Lower the clock before reading in the data. This accounts
2786 	 * for the turnaround bits. The first clock occurred when we clocked out
2787 	 * the last bit of the Register Address.
2788 	 */
2789 	e1000_raise_mdi_clk(hw, &ctrl);
2790 	e1000_lower_mdi_clk(hw, &ctrl);
2791 
2792 	for (data = 0, i = 0; i < 16; i++) {
2793 		data = data << 1;
2794 		e1000_raise_mdi_clk(hw, &ctrl);
2795 		ctrl = er32(CTRL);
2796 		/* Check to see if we shifted in a "1". */
2797 		if (ctrl & E1000_CTRL_MDIO)
2798 			data |= 1;
2799 		e1000_lower_mdi_clk(hw, &ctrl);
2800 	}
2801 
2802 	e1000_raise_mdi_clk(hw, &ctrl);
2803 	e1000_lower_mdi_clk(hw, &ctrl);
2804 
2805 	return data;
2806 }
2807 
2808 /**
2809  * e1000_read_phy_reg - read a phy register
2810  * @hw: Struct containing variables accessed by shared code
2811  * @reg_addr: address of the PHY register to read
2812  * @phy_data: pointer to the value on the PHY register
2813  *
2814  * Reads the value from a PHY register, if the value is on a specific non zero
2815  * page, sets the page first.
2816  */
e1000_read_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2817 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2818 {
2819 	u32 ret_val;
2820 	unsigned long flags;
2821 
2822 	spin_lock_irqsave(&e1000_phy_lock, flags);
2823 
2824 	if ((hw->phy_type == e1000_phy_igp) &&
2825 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2826 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2827 						 (u16) reg_addr);
2828 		if (ret_val)
2829 			goto out;
2830 	}
2831 
2832 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833 					phy_data);
2834 out:
2835 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2836 
2837 	return ret_val;
2838 }
2839 
e1000_read_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2840 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2841 				 u16 *phy_data)
2842 {
2843 	u32 i;
2844 	u32 mdic = 0;
2845 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2846 
2847 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2848 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2849 		return -E1000_ERR_PARAM;
2850 	}
2851 
2852 	if (hw->mac_type > e1000_82543) {
2853 		/* Set up Op-code, Phy Address, and register address in the MDI
2854 		 * Control register.  The MAC will take care of interfacing with
2855 		 * the PHY to retrieve the desired data.
2856 		 */
2857 		if (hw->mac_type == e1000_ce4100) {
2858 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2859 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2860 				(INTEL_CE_GBE_MDIC_OP_READ) |
2861 				(INTEL_CE_GBE_MDIC_GO));
2862 
2863 			writel(mdic, E1000_MDIO_CMD);
2864 
2865 			/* Poll the ready bit to see if the MDI read
2866 			 * completed
2867 			 */
2868 			for (i = 0; i < 64; i++) {
2869 				udelay(50);
2870 				mdic = readl(E1000_MDIO_CMD);
2871 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2872 					break;
2873 			}
2874 
2875 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2876 				e_dbg("MDI Read did not complete\n");
2877 				return -E1000_ERR_PHY;
2878 			}
2879 
2880 			mdic = readl(E1000_MDIO_STS);
2881 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2882 				e_dbg("MDI Read Error\n");
2883 				return -E1000_ERR_PHY;
2884 			}
2885 			*phy_data = (u16)mdic;
2886 		} else {
2887 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2888 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2889 				(E1000_MDIC_OP_READ));
2890 
2891 			ew32(MDIC, mdic);
2892 
2893 			/* Poll the ready bit to see if the MDI read
2894 			 * completed
2895 			 */
2896 			for (i = 0; i < 64; i++) {
2897 				udelay(50);
2898 				mdic = er32(MDIC);
2899 				if (mdic & E1000_MDIC_READY)
2900 					break;
2901 			}
2902 			if (!(mdic & E1000_MDIC_READY)) {
2903 				e_dbg("MDI Read did not complete\n");
2904 				return -E1000_ERR_PHY;
2905 			}
2906 			if (mdic & E1000_MDIC_ERROR) {
2907 				e_dbg("MDI Error\n");
2908 				return -E1000_ERR_PHY;
2909 			}
2910 			*phy_data = (u16)mdic;
2911 		}
2912 	} else {
2913 		/* We must first send a preamble through the MDIO pin to signal
2914 		 * the beginning of an MII instruction.  This is done by sending
2915 		 * 32 consecutive "1" bits.
2916 		 */
2917 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2918 
2919 		/* Now combine the next few fields that are required for a read
2920 		 * operation.  We use this method instead of calling the
2921 		 * e1000_shift_out_mdi_bits routine five different times. The
2922 		 * format of a MII read instruction consists of a shift out of
2923 		 * 14 bits and is defined as follows:
2924 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2925 		 * followed by a shift in of 18 bits.  This first two bits
2926 		 * shifted in are TurnAround bits used to avoid contention on
2927 		 * the MDIO pin when a READ operation is performed.  These two
2928 		 * bits are thrown away followed by a shift in of 16 bits which
2929 		 * contains the desired data.
2930 		 */
2931 		mdic = ((reg_addr) | (phy_addr << 5) |
2932 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2933 
2934 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2935 
2936 		/* Now that we've shifted out the read command to the MII, we
2937 		 * need to "shift in" the 16-bit value (18 total bits) of the
2938 		 * requested PHY register address.
2939 		 */
2940 		*phy_data = e1000_shift_in_mdi_bits(hw);
2941 	}
2942 	return E1000_SUCCESS;
2943 }
2944 
2945 /**
2946  * e1000_write_phy_reg - write a phy register
2947  *
2948  * @hw: Struct containing variables accessed by shared code
2949  * @reg_addr: address of the PHY register to write
2950  * @data: data to write to the PHY
2951  *
2952  * Writes a value to a PHY register
2953  */
e1000_write_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2954 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2955 {
2956 	u32 ret_val;
2957 	unsigned long flags;
2958 
2959 	spin_lock_irqsave(&e1000_phy_lock, flags);
2960 
2961 	if ((hw->phy_type == e1000_phy_igp) &&
2962 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2963 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2964 						 (u16)reg_addr);
2965 		if (ret_val) {
2966 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2967 			return ret_val;
2968 		}
2969 	}
2970 
2971 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2972 					 phy_data);
2973 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2974 
2975 	return ret_val;
2976 }
2977 
e1000_write_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2978 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2979 				  u16 phy_data)
2980 {
2981 	u32 i;
2982 	u32 mdic = 0;
2983 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2984 
2985 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2986 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2987 		return -E1000_ERR_PARAM;
2988 	}
2989 
2990 	if (hw->mac_type > e1000_82543) {
2991 		/* Set up Op-code, Phy Address, register address, and data
2992 		 * intended for the PHY register in the MDI Control register.
2993 		 * The MAC will take care of interfacing with the PHY to send
2994 		 * the desired data.
2995 		 */
2996 		if (hw->mac_type == e1000_ce4100) {
2997 			mdic = (((u32)phy_data) |
2998 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2999 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3000 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3001 				(INTEL_CE_GBE_MDIC_GO));
3002 
3003 			writel(mdic, E1000_MDIO_CMD);
3004 
3005 			/* Poll the ready bit to see if the MDI read
3006 			 * completed
3007 			 */
3008 			for (i = 0; i < 640; i++) {
3009 				udelay(5);
3010 				mdic = readl(E1000_MDIO_CMD);
3011 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3012 					break;
3013 			}
3014 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3015 				e_dbg("MDI Write did not complete\n");
3016 				return -E1000_ERR_PHY;
3017 			}
3018 		} else {
3019 			mdic = (((u32)phy_data) |
3020 				(reg_addr << E1000_MDIC_REG_SHIFT) |
3021 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3022 				(E1000_MDIC_OP_WRITE));
3023 
3024 			ew32(MDIC, mdic);
3025 
3026 			/* Poll the ready bit to see if the MDI read
3027 			 * completed
3028 			 */
3029 			for (i = 0; i < 641; i++) {
3030 				udelay(5);
3031 				mdic = er32(MDIC);
3032 				if (mdic & E1000_MDIC_READY)
3033 					break;
3034 			}
3035 			if (!(mdic & E1000_MDIC_READY)) {
3036 				e_dbg("MDI Write did not complete\n");
3037 				return -E1000_ERR_PHY;
3038 			}
3039 		}
3040 	} else {
3041 		/* We'll need to use the SW defined pins to shift the write
3042 		 * command out to the PHY. We first send a preamble to the PHY
3043 		 * to signal the beginning of the MII instruction.  This is done
3044 		 * by sending 32 consecutive "1" bits.
3045 		 */
3046 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3047 
3048 		/* Now combine the remaining required fields that will indicate
3049 		 * a write operation. We use this method instead of calling the
3050 		 * e1000_shift_out_mdi_bits routine for each field in the
3051 		 * command. The format of a MII write instruction is as follows:
3052 		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3053 		 */
3054 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3055 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3056 		mdic <<= 16;
3057 		mdic |= (u32)phy_data;
3058 
3059 		e1000_shift_out_mdi_bits(hw, mdic, 32);
3060 	}
3061 
3062 	return E1000_SUCCESS;
3063 }
3064 
3065 /**
3066  * e1000_phy_hw_reset - reset the phy, hardware style
3067  * @hw: Struct containing variables accessed by shared code
3068  *
3069  * Returns the PHY to the power-on reset state
3070  */
e1000_phy_hw_reset(struct e1000_hw * hw)3071 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3072 {
3073 	u32 ctrl, ctrl_ext;
3074 	u32 led_ctrl;
3075 
3076 	e_dbg("Resetting Phy...\n");
3077 
3078 	if (hw->mac_type > e1000_82543) {
3079 		/* Read the device control register and assert the
3080 		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3081 		 * For e1000 hardware, we delay for 10ms between the assert
3082 		 * and de-assert.
3083 		 */
3084 		ctrl = er32(CTRL);
3085 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3086 		E1000_WRITE_FLUSH();
3087 
3088 		msleep(10);
3089 
3090 		ew32(CTRL, ctrl);
3091 		E1000_WRITE_FLUSH();
3092 
3093 	} else {
3094 		/* Read the Extended Device Control Register, assert the
3095 		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3096 		 * out of reset.
3097 		 */
3098 		ctrl_ext = er32(CTRL_EXT);
3099 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3100 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3101 		ew32(CTRL_EXT, ctrl_ext);
3102 		E1000_WRITE_FLUSH();
3103 		msleep(10);
3104 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3105 		ew32(CTRL_EXT, ctrl_ext);
3106 		E1000_WRITE_FLUSH();
3107 	}
3108 	udelay(150);
3109 
3110 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3111 		/* Configure activity LED after PHY reset */
3112 		led_ctrl = er32(LEDCTL);
3113 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3114 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3115 		ew32(LEDCTL, led_ctrl);
3116 	}
3117 
3118 	/* Wait for FW to finish PHY configuration. */
3119 	return e1000_get_phy_cfg_done(hw);
3120 }
3121 
3122 /**
3123  * e1000_phy_reset - reset the phy to commit settings
3124  * @hw: Struct containing variables accessed by shared code
3125  *
3126  * Resets the PHY
3127  * Sets bit 15 of the MII Control register
3128  */
e1000_phy_reset(struct e1000_hw * hw)3129 s32 e1000_phy_reset(struct e1000_hw *hw)
3130 {
3131 	s32 ret_val;
3132 	u16 phy_data;
3133 
3134 	switch (hw->phy_type) {
3135 	case e1000_phy_igp:
3136 		ret_val = e1000_phy_hw_reset(hw);
3137 		if (ret_val)
3138 			return ret_val;
3139 		break;
3140 	default:
3141 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3142 		if (ret_val)
3143 			return ret_val;
3144 
3145 		phy_data |= MII_CR_RESET;
3146 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3147 		if (ret_val)
3148 			return ret_val;
3149 
3150 		udelay(1);
3151 		break;
3152 	}
3153 
3154 	if (hw->phy_type == e1000_phy_igp)
3155 		e1000_phy_init_script(hw);
3156 
3157 	return E1000_SUCCESS;
3158 }
3159 
3160 /**
3161  * e1000_detect_gig_phy - check the phy type
3162  * @hw: Struct containing variables accessed by shared code
3163  *
3164  * Probes the expected PHY address for known PHY IDs
3165  */
e1000_detect_gig_phy(struct e1000_hw * hw)3166 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3167 {
3168 	s32 phy_init_status, ret_val;
3169 	u16 phy_id_high, phy_id_low;
3170 	bool match = false;
3171 
3172 	if (hw->phy_id != 0)
3173 		return E1000_SUCCESS;
3174 
3175 	/* Read the PHY ID Registers to identify which PHY is onboard. */
3176 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3177 	if (ret_val)
3178 		return ret_val;
3179 
3180 	hw->phy_id = (u32)(phy_id_high << 16);
3181 	udelay(20);
3182 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3183 	if (ret_val)
3184 		return ret_val;
3185 
3186 	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3187 	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3188 
3189 	switch (hw->mac_type) {
3190 	case e1000_82543:
3191 		if (hw->phy_id == M88E1000_E_PHY_ID)
3192 			match = true;
3193 		break;
3194 	case e1000_82544:
3195 		if (hw->phy_id == M88E1000_I_PHY_ID)
3196 			match = true;
3197 		break;
3198 	case e1000_82540:
3199 	case e1000_82545:
3200 	case e1000_82545_rev_3:
3201 	case e1000_82546:
3202 	case e1000_82546_rev_3:
3203 		if (hw->phy_id == M88E1011_I_PHY_ID)
3204 			match = true;
3205 		break;
3206 	case e1000_ce4100:
3207 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3208 		    (hw->phy_id == RTL8201N_PHY_ID) ||
3209 		    (hw->phy_id == M88E1118_E_PHY_ID))
3210 			match = true;
3211 		break;
3212 	case e1000_82541:
3213 	case e1000_82541_rev_2:
3214 	case e1000_82547:
3215 	case e1000_82547_rev_2:
3216 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3217 			match = true;
3218 		break;
3219 	default:
3220 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3221 		return -E1000_ERR_CONFIG;
3222 	}
3223 	phy_init_status = e1000_set_phy_type(hw);
3224 
3225 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3226 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3227 		return E1000_SUCCESS;
3228 	}
3229 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3230 	return -E1000_ERR_PHY;
3231 }
3232 
3233 /**
3234  * e1000_phy_reset_dsp - reset DSP
3235  * @hw: Struct containing variables accessed by shared code
3236  *
3237  * Resets the PHY's DSP
3238  */
e1000_phy_reset_dsp(struct e1000_hw * hw)3239 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3240 {
3241 	s32 ret_val;
3242 
3243 	do {
3244 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3245 		if (ret_val)
3246 			break;
3247 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3248 		if (ret_val)
3249 			break;
3250 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3251 		if (ret_val)
3252 			break;
3253 		ret_val = E1000_SUCCESS;
3254 	} while (0);
3255 
3256 	return ret_val;
3257 }
3258 
3259 /**
3260  * e1000_phy_igp_get_info - get igp specific registers
3261  * @hw: Struct containing variables accessed by shared code
3262  * @phy_info: PHY information structure
3263  *
3264  * Get PHY information from various PHY registers for igp PHY only.
3265  */
e1000_phy_igp_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3266 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3267 				  struct e1000_phy_info *phy_info)
3268 {
3269 	s32 ret_val;
3270 	u16 phy_data, min_length, max_length, average;
3271 	e1000_rev_polarity polarity;
3272 
3273 	/* The downshift status is checked only once, after link is established,
3274 	 * and it stored in the hw->speed_downgraded parameter.
3275 	 */
3276 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3277 
3278 	/* IGP01E1000 does not need to support it. */
3279 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3280 
3281 	/* IGP01E1000 always correct polarity reversal */
3282 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3283 
3284 	/* Check polarity status */
3285 	ret_val = e1000_check_polarity(hw, &polarity);
3286 	if (ret_val)
3287 		return ret_val;
3288 
3289 	phy_info->cable_polarity = polarity;
3290 
3291 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3292 	if (ret_val)
3293 		return ret_val;
3294 
3295 	phy_info->mdix_mode =
3296 	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3297 				 IGP01E1000_PSSR_MDIX_SHIFT);
3298 
3299 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3300 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3301 		/* Local/Remote Receiver Information are only valid @ 1000
3302 		 * Mbps
3303 		 */
3304 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3305 		if (ret_val)
3306 			return ret_val;
3307 
3308 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3309 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3310 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3311 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3312 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3313 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3314 
3315 		/* Get cable length */
3316 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3317 		if (ret_val)
3318 			return ret_val;
3319 
3320 		/* Translate to old method */
3321 		average = (max_length + min_length) / 2;
3322 
3323 		if (average <= e1000_igp_cable_length_50)
3324 			phy_info->cable_length = e1000_cable_length_50;
3325 		else if (average <= e1000_igp_cable_length_80)
3326 			phy_info->cable_length = e1000_cable_length_50_80;
3327 		else if (average <= e1000_igp_cable_length_110)
3328 			phy_info->cable_length = e1000_cable_length_80_110;
3329 		else if (average <= e1000_igp_cable_length_140)
3330 			phy_info->cable_length = e1000_cable_length_110_140;
3331 		else
3332 			phy_info->cable_length = e1000_cable_length_140;
3333 	}
3334 
3335 	return E1000_SUCCESS;
3336 }
3337 
3338 /**
3339  * e1000_phy_m88_get_info - get m88 specific registers
3340  * @hw: Struct containing variables accessed by shared code
3341  * @phy_info: PHY information structure
3342  *
3343  * Get PHY information from various PHY registers for m88 PHY only.
3344  */
e1000_phy_m88_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3345 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3346 				  struct e1000_phy_info *phy_info)
3347 {
3348 	s32 ret_val;
3349 	u16 phy_data;
3350 	e1000_rev_polarity polarity;
3351 
3352 	/* The downshift status is checked only once, after link is established,
3353 	 * and it stored in the hw->speed_downgraded parameter.
3354 	 */
3355 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3356 
3357 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3358 	if (ret_val)
3359 		return ret_val;
3360 
3361 	phy_info->extended_10bt_distance =
3362 	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3363 	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3364 	    e1000_10bt_ext_dist_enable_lower :
3365 	    e1000_10bt_ext_dist_enable_normal;
3366 
3367 	phy_info->polarity_correction =
3368 	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3369 	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3370 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3371 
3372 	/* Check polarity status */
3373 	ret_val = e1000_check_polarity(hw, &polarity);
3374 	if (ret_val)
3375 		return ret_val;
3376 	phy_info->cable_polarity = polarity;
3377 
3378 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3379 	if (ret_val)
3380 		return ret_val;
3381 
3382 	phy_info->mdix_mode =
3383 	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3384 				 M88E1000_PSSR_MDIX_SHIFT);
3385 
3386 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3387 		/* Cable Length Estimation and Local/Remote Receiver Information
3388 		 * are only valid at 1000 Mbps.
3389 		 */
3390 		phy_info->cable_length =
3391 		    (e1000_cable_length) ((phy_data &
3392 					   M88E1000_PSSR_CABLE_LENGTH) >>
3393 					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3394 
3395 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3396 		if (ret_val)
3397 			return ret_val;
3398 
3399 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3400 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3401 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3402 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3403 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3404 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3405 	}
3406 
3407 	return E1000_SUCCESS;
3408 }
3409 
3410 /**
3411  * e1000_phy_get_info - request phy info
3412  * @hw: Struct containing variables accessed by shared code
3413  * @phy_info: PHY information structure
3414  *
3415  * Get PHY information from various PHY registers
3416  */
e1000_phy_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3417 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418 {
3419 	s32 ret_val;
3420 	u16 phy_data;
3421 
3422 	phy_info->cable_length = e1000_cable_length_undefined;
3423 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425 	phy_info->downshift = e1000_downshift_undefined;
3426 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430 
3431 	if (hw->media_type != e1000_media_type_copper) {
3432 		e_dbg("PHY info is only valid for copper media\n");
3433 		return -E1000_ERR_CONFIG;
3434 	}
3435 
3436 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437 	if (ret_val)
3438 		return ret_val;
3439 
3440 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441 	if (ret_val)
3442 		return ret_val;
3443 
3444 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445 		e_dbg("PHY info is only valid if link is up\n");
3446 		return -E1000_ERR_CONFIG;
3447 	}
3448 
3449 	if (hw->phy_type == e1000_phy_igp)
3450 		return e1000_phy_igp_get_info(hw, phy_info);
3451 	else if ((hw->phy_type == e1000_phy_8211) ||
3452 		 (hw->phy_type == e1000_phy_8201))
3453 		return E1000_SUCCESS;
3454 	else
3455 		return e1000_phy_m88_get_info(hw, phy_info);
3456 }
3457 
e1000_validate_mdi_setting(struct e1000_hw * hw)3458 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459 {
3460 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461 		e_dbg("Invalid MDI setting detected\n");
3462 		hw->mdix = 1;
3463 		return -E1000_ERR_CONFIG;
3464 	}
3465 	return E1000_SUCCESS;
3466 }
3467 
3468 /**
3469  * e1000_init_eeprom_params - initialize sw eeprom vars
3470  * @hw: Struct containing variables accessed by shared code
3471  *
3472  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3473  * is configured.
3474  */
e1000_init_eeprom_params(struct e1000_hw * hw)3475 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476 {
3477 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478 	u32 eecd = er32(EECD);
3479 	s32 ret_val = E1000_SUCCESS;
3480 	u16 eeprom_size;
3481 
3482 	switch (hw->mac_type) {
3483 	case e1000_82542_rev2_0:
3484 	case e1000_82542_rev2_1:
3485 	case e1000_82543:
3486 	case e1000_82544:
3487 		eeprom->type = e1000_eeprom_microwire;
3488 		eeprom->word_size = 64;
3489 		eeprom->opcode_bits = 3;
3490 		eeprom->address_bits = 6;
3491 		eeprom->delay_usec = 50;
3492 		break;
3493 	case e1000_82540:
3494 	case e1000_82545:
3495 	case e1000_82545_rev_3:
3496 	case e1000_82546:
3497 	case e1000_82546_rev_3:
3498 		eeprom->type = e1000_eeprom_microwire;
3499 		eeprom->opcode_bits = 3;
3500 		eeprom->delay_usec = 50;
3501 		if (eecd & E1000_EECD_SIZE) {
3502 			eeprom->word_size = 256;
3503 			eeprom->address_bits = 8;
3504 		} else {
3505 			eeprom->word_size = 64;
3506 			eeprom->address_bits = 6;
3507 		}
3508 		break;
3509 	case e1000_82541:
3510 	case e1000_82541_rev_2:
3511 	case e1000_82547:
3512 	case e1000_82547_rev_2:
3513 		if (eecd & E1000_EECD_TYPE) {
3514 			eeprom->type = e1000_eeprom_spi;
3515 			eeprom->opcode_bits = 8;
3516 			eeprom->delay_usec = 1;
3517 			if (eecd & E1000_EECD_ADDR_BITS) {
3518 				eeprom->page_size = 32;
3519 				eeprom->address_bits = 16;
3520 			} else {
3521 				eeprom->page_size = 8;
3522 				eeprom->address_bits = 8;
3523 			}
3524 		} else {
3525 			eeprom->type = e1000_eeprom_microwire;
3526 			eeprom->opcode_bits = 3;
3527 			eeprom->delay_usec = 50;
3528 			if (eecd & E1000_EECD_ADDR_BITS) {
3529 				eeprom->word_size = 256;
3530 				eeprom->address_bits = 8;
3531 			} else {
3532 				eeprom->word_size = 64;
3533 				eeprom->address_bits = 6;
3534 			}
3535 		}
3536 		break;
3537 	default:
3538 		break;
3539 	}
3540 
3541 	if (eeprom->type == e1000_eeprom_spi) {
3542 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543 		 * 128B to 32KB (incremented by powers of 2).
3544 		 */
3545 		/* Set to default value for initial eeprom read. */
3546 		eeprom->word_size = 64;
3547 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548 		if (ret_val)
3549 			return ret_val;
3550 		eeprom_size =
3551 		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552 		/* 256B eeprom size was not supported in earlier hardware, so we
3553 		 * bump eeprom_size up one to ensure that "1" (which maps to
3554 		 * 256B) is never the result used in the shifting logic below.
3555 		 */
3556 		if (eeprom_size)
3557 			eeprom_size++;
3558 
3559 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560 	}
3561 	return ret_val;
3562 }
3563 
3564 /**
3565  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566  * @hw: Struct containing variables accessed by shared code
3567  * @eecd: EECD's current value
3568  */
e1000_raise_ee_clk(struct e1000_hw * hw,u32 * eecd)3569 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570 {
3571 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572 	 * wait <delay> microseconds.
3573 	 */
3574 	*eecd = *eecd | E1000_EECD_SK;
3575 	ew32(EECD, *eecd);
3576 	E1000_WRITE_FLUSH();
3577 	udelay(hw->eeprom.delay_usec);
3578 }
3579 
3580 /**
3581  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582  * @hw: Struct containing variables accessed by shared code
3583  * @eecd: EECD's current value
3584  */
e1000_lower_ee_clk(struct e1000_hw * hw,u32 * eecd)3585 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586 {
3587 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588 	 * then wait 50 microseconds.
3589 	 */
3590 	*eecd = *eecd & ~E1000_EECD_SK;
3591 	ew32(EECD, *eecd);
3592 	E1000_WRITE_FLUSH();
3593 	udelay(hw->eeprom.delay_usec);
3594 }
3595 
3596 /**
3597  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598  * @hw: Struct containing variables accessed by shared code
3599  * @data: data to send to the EEPROM
3600  * @count: number of bits to shift out
3601  */
e1000_shift_out_ee_bits(struct e1000_hw * hw,u16 data,u16 count)3602 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603 {
3604 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605 	u32 eecd;
3606 	u32 mask;
3607 
3608 	/* We need to shift "count" bits out to the EEPROM. So, value in the
3609 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610 	 * In order to do this, "data" must be broken down into bits.
3611 	 */
3612 	mask = 0x01 << (count - 1);
3613 	eecd = er32(EECD);
3614 	if (eeprom->type == e1000_eeprom_microwire)
3615 		eecd &= ~E1000_EECD_DO;
3616 	else if (eeprom->type == e1000_eeprom_spi)
3617 		eecd |= E1000_EECD_DO;
3618 
3619 	do {
3620 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621 		 * "1", and then raising and then lowering the clock (the SK bit
3622 		 * controls the clock input to the EEPROM).  A "0" is shifted
3623 		 * out to the EEPROM by setting "DI" to "0" and then raising and
3624 		 * then lowering the clock.
3625 		 */
3626 		eecd &= ~E1000_EECD_DI;
3627 
3628 		if (data & mask)
3629 			eecd |= E1000_EECD_DI;
3630 
3631 		ew32(EECD, eecd);
3632 		E1000_WRITE_FLUSH();
3633 
3634 		udelay(eeprom->delay_usec);
3635 
3636 		e1000_raise_ee_clk(hw, &eecd);
3637 		e1000_lower_ee_clk(hw, &eecd);
3638 
3639 		mask = mask >> 1;
3640 
3641 	} while (mask);
3642 
3643 	/* We leave the "DI" bit set to "0" when we leave this routine. */
3644 	eecd &= ~E1000_EECD_DI;
3645 	ew32(EECD, eecd);
3646 }
3647 
3648 /**
3649  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650  * @hw: Struct containing variables accessed by shared code
3651  * @count: number of bits to shift in
3652  */
e1000_shift_in_ee_bits(struct e1000_hw * hw,u16 count)3653 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654 {
3655 	u32 eecd;
3656 	u32 i;
3657 	u16 data;
3658 
3659 	/* In order to read a register from the EEPROM, we need to shift 'count'
3660 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661 	 * input to the EEPROM (setting the SK bit), and then reading the value
3662 	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3663 	 * should always be clear.
3664 	 */
3665 
3666 	eecd = er32(EECD);
3667 
3668 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669 	data = 0;
3670 
3671 	for (i = 0; i < count; i++) {
3672 		data = data << 1;
3673 		e1000_raise_ee_clk(hw, &eecd);
3674 
3675 		eecd = er32(EECD);
3676 
3677 		eecd &= ~(E1000_EECD_DI);
3678 		if (eecd & E1000_EECD_DO)
3679 			data |= 1;
3680 
3681 		e1000_lower_ee_clk(hw, &eecd);
3682 	}
3683 
3684 	return data;
3685 }
3686 
3687 /**
3688  * e1000_acquire_eeprom - Prepares EEPROM for access
3689  * @hw: Struct containing variables accessed by shared code
3690  *
3691  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692  * function should be called before issuing a command to the EEPROM.
3693  */
e1000_acquire_eeprom(struct e1000_hw * hw)3694 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695 {
3696 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697 	u32 eecd, i = 0;
3698 
3699 	eecd = er32(EECD);
3700 
3701 	/* Request EEPROM Access */
3702 	if (hw->mac_type > e1000_82544) {
3703 		eecd |= E1000_EECD_REQ;
3704 		ew32(EECD, eecd);
3705 		eecd = er32(EECD);
3706 		while ((!(eecd & E1000_EECD_GNT)) &&
3707 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708 			i++;
3709 			udelay(5);
3710 			eecd = er32(EECD);
3711 		}
3712 		if (!(eecd & E1000_EECD_GNT)) {
3713 			eecd &= ~E1000_EECD_REQ;
3714 			ew32(EECD, eecd);
3715 			e_dbg("Could not acquire EEPROM grant\n");
3716 			return -E1000_ERR_EEPROM;
3717 		}
3718 	}
3719 
3720 	/* Setup EEPROM for Read/Write */
3721 
3722 	if (eeprom->type == e1000_eeprom_microwire) {
3723 		/* Clear SK and DI */
3724 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725 		ew32(EECD, eecd);
3726 
3727 		/* Set CS */
3728 		eecd |= E1000_EECD_CS;
3729 		ew32(EECD, eecd);
3730 	} else if (eeprom->type == e1000_eeprom_spi) {
3731 		/* Clear SK and CS */
3732 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733 		ew32(EECD, eecd);
3734 		E1000_WRITE_FLUSH();
3735 		udelay(1);
3736 	}
3737 
3738 	return E1000_SUCCESS;
3739 }
3740 
3741 /**
3742  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743  * @hw: Struct containing variables accessed by shared code
3744  */
e1000_standby_eeprom(struct e1000_hw * hw)3745 static void e1000_standby_eeprom(struct e1000_hw *hw)
3746 {
3747 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748 	u32 eecd;
3749 
3750 	eecd = er32(EECD);
3751 
3752 	if (eeprom->type == e1000_eeprom_microwire) {
3753 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754 		ew32(EECD, eecd);
3755 		E1000_WRITE_FLUSH();
3756 		udelay(eeprom->delay_usec);
3757 
3758 		/* Clock high */
3759 		eecd |= E1000_EECD_SK;
3760 		ew32(EECD, eecd);
3761 		E1000_WRITE_FLUSH();
3762 		udelay(eeprom->delay_usec);
3763 
3764 		/* Select EEPROM */
3765 		eecd |= E1000_EECD_CS;
3766 		ew32(EECD, eecd);
3767 		E1000_WRITE_FLUSH();
3768 		udelay(eeprom->delay_usec);
3769 
3770 		/* Clock low */
3771 		eecd &= ~E1000_EECD_SK;
3772 		ew32(EECD, eecd);
3773 		E1000_WRITE_FLUSH();
3774 		udelay(eeprom->delay_usec);
3775 	} else if (eeprom->type == e1000_eeprom_spi) {
3776 		/* Toggle CS to flush commands */
3777 		eecd |= E1000_EECD_CS;
3778 		ew32(EECD, eecd);
3779 		E1000_WRITE_FLUSH();
3780 		udelay(eeprom->delay_usec);
3781 		eecd &= ~E1000_EECD_CS;
3782 		ew32(EECD, eecd);
3783 		E1000_WRITE_FLUSH();
3784 		udelay(eeprom->delay_usec);
3785 	}
3786 }
3787 
3788 /**
3789  * e1000_release_eeprom - drop chip select
3790  * @hw: Struct containing variables accessed by shared code
3791  *
3792  * Terminates a command by inverting the EEPROM's chip select pin
3793  */
e1000_release_eeprom(struct e1000_hw * hw)3794 static void e1000_release_eeprom(struct e1000_hw *hw)
3795 {
3796 	u32 eecd;
3797 
3798 	eecd = er32(EECD);
3799 
3800 	if (hw->eeprom.type == e1000_eeprom_spi) {
3801 		eecd |= E1000_EECD_CS;	/* Pull CS high */
3802 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3803 
3804 		ew32(EECD, eecd);
3805 		E1000_WRITE_FLUSH();
3806 
3807 		udelay(hw->eeprom.delay_usec);
3808 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809 		/* cleanup eeprom */
3810 
3811 		/* CS on Microwire is active-high */
3812 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813 
3814 		ew32(EECD, eecd);
3815 
3816 		/* Rising edge of clock */
3817 		eecd |= E1000_EECD_SK;
3818 		ew32(EECD, eecd);
3819 		E1000_WRITE_FLUSH();
3820 		udelay(hw->eeprom.delay_usec);
3821 
3822 		/* Falling edge of clock */
3823 		eecd &= ~E1000_EECD_SK;
3824 		ew32(EECD, eecd);
3825 		E1000_WRITE_FLUSH();
3826 		udelay(hw->eeprom.delay_usec);
3827 	}
3828 
3829 	/* Stop requesting EEPROM access */
3830 	if (hw->mac_type > e1000_82544) {
3831 		eecd &= ~E1000_EECD_REQ;
3832 		ew32(EECD, eecd);
3833 	}
3834 }
3835 
3836 /**
3837  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838  * @hw: Struct containing variables accessed by shared code
3839  */
e1000_spi_eeprom_ready(struct e1000_hw * hw)3840 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841 {
3842 	u16 retry_count = 0;
3843 	u8 spi_stat_reg;
3844 
3845 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3846 	 * EEPROM will signal that the command has been completed by clearing
3847 	 * bit 0 of the internal status register.  If it's not cleared within
3848 	 * 5 milliseconds, then error out.
3849 	 */
3850 	retry_count = 0;
3851 	do {
3852 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853 					hw->eeprom.opcode_bits);
3854 		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3855 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856 			break;
3857 
3858 		udelay(5);
3859 		retry_count += 5;
3860 
3861 		e1000_standby_eeprom(hw);
3862 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3863 
3864 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865 	 * only 0-5mSec on 5V devices)
3866 	 */
3867 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868 		e_dbg("SPI EEPROM Status error\n");
3869 		return -E1000_ERR_EEPROM;
3870 	}
3871 
3872 	return E1000_SUCCESS;
3873 }
3874 
3875 /**
3876  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877  * @hw: Struct containing variables accessed by shared code
3878  * @offset: offset of  word in the EEPROM to read
3879  * @data: word read from the EEPROM
3880  * @words: number of words to read
3881  */
e1000_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3882 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883 {
3884 	s32 ret;
3885 
3886 	mutex_lock(&e1000_eeprom_lock);
3887 	ret = e1000_do_read_eeprom(hw, offset, words, data);
3888 	mutex_unlock(&e1000_eeprom_lock);
3889 	return ret;
3890 }
3891 
e1000_do_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3892 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3893 				u16 *data)
3894 {
3895 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3896 	u32 i = 0;
3897 
3898 	if (hw->mac_type == e1000_ce4100) {
3899 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3900 				      data);
3901 		return E1000_SUCCESS;
3902 	}
3903 
3904 	/* A check for invalid values:  offset too large, too many words, and
3905 	 * not enough words.
3906 	 */
3907 	if ((offset >= eeprom->word_size) ||
3908 	    (words > eeprom->word_size - offset) ||
3909 	    (words == 0)) {
3910 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3911 		      "size = %d\n", offset, eeprom->word_size);
3912 		return -E1000_ERR_EEPROM;
3913 	}
3914 
3915 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3916 	 * directly. In this case, we need to acquire the EEPROM so that
3917 	 * FW or other port software does not interrupt.
3918 	 */
3919 	/* Prepare the EEPROM for bit-bang reading */
3920 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3921 		return -E1000_ERR_EEPROM;
3922 
3923 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3924 	 * acquired the EEPROM at this point, so any returns should release it
3925 	 */
3926 	if (eeprom->type == e1000_eeprom_spi) {
3927 		u16 word_in;
3928 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3929 
3930 		if (e1000_spi_eeprom_ready(hw)) {
3931 			e1000_release_eeprom(hw);
3932 			return -E1000_ERR_EEPROM;
3933 		}
3934 
3935 		e1000_standby_eeprom(hw);
3936 
3937 		/* Some SPI eeproms use the 8th address bit embedded in the
3938 		 * opcode
3939 		 */
3940 		if ((eeprom->address_bits == 8) && (offset >= 128))
3941 			read_opcode |= EEPROM_A8_OPCODE_SPI;
3942 
3943 		/* Send the READ command (opcode + addr)  */
3944 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3945 		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3946 					eeprom->address_bits);
3947 
3948 		/* Read the data.  The address of the eeprom internally
3949 		 * increments with each byte (spi) being read, saving on the
3950 		 * overhead of eeprom setup and tear-down.  The address counter
3951 		 * will roll over if reading beyond the size of the eeprom, thus
3952 		 * allowing the entire memory to be read starting from any
3953 		 * offset.
3954 		 */
3955 		for (i = 0; i < words; i++) {
3956 			word_in = e1000_shift_in_ee_bits(hw, 16);
3957 			data[i] = (word_in >> 8) | (word_in << 8);
3958 		}
3959 	} else if (eeprom->type == e1000_eeprom_microwire) {
3960 		for (i = 0; i < words; i++) {
3961 			/* Send the READ command (opcode + addr)  */
3962 			e1000_shift_out_ee_bits(hw,
3963 						EEPROM_READ_OPCODE_MICROWIRE,
3964 						eeprom->opcode_bits);
3965 			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3966 						eeprom->address_bits);
3967 
3968 			/* Read the data.  For microwire, each word requires the
3969 			 * overhead of eeprom setup and tear-down.
3970 			 */
3971 			data[i] = e1000_shift_in_ee_bits(hw, 16);
3972 			e1000_standby_eeprom(hw);
3973 			cond_resched();
3974 		}
3975 	}
3976 
3977 	/* End this read operation */
3978 	e1000_release_eeprom(hw);
3979 
3980 	return E1000_SUCCESS;
3981 }
3982 
3983 /**
3984  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3985  * @hw: Struct containing variables accessed by shared code
3986  *
3987  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3988  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3989  * valid.
3990  */
e1000_validate_eeprom_checksum(struct e1000_hw * hw)3991 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3992 {
3993 	u16 checksum = 0;
3994 	u16 i, eeprom_data;
3995 
3996 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3997 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3998 			e_dbg("EEPROM Read Error\n");
3999 			return -E1000_ERR_EEPROM;
4000 		}
4001 		checksum += eeprom_data;
4002 	}
4003 
4004 #ifdef CONFIG_PARISC
4005 	/* This is a signature and not a checksum on HP c8000 */
4006 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4007 		return E1000_SUCCESS;
4008 
4009 #endif
4010 	if (checksum == (u16)EEPROM_SUM)
4011 		return E1000_SUCCESS;
4012 	else {
4013 		e_dbg("EEPROM Checksum Invalid\n");
4014 		return -E1000_ERR_EEPROM;
4015 	}
4016 }
4017 
4018 /**
4019  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4020  * @hw: Struct containing variables accessed by shared code
4021  *
4022  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4023  * Writes the difference to word offset 63 of the EEPROM.
4024  */
e1000_update_eeprom_checksum(struct e1000_hw * hw)4025 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4026 {
4027 	u16 checksum = 0;
4028 	u16 i, eeprom_data;
4029 
4030 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4031 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4032 			e_dbg("EEPROM Read Error\n");
4033 			return -E1000_ERR_EEPROM;
4034 		}
4035 		checksum += eeprom_data;
4036 	}
4037 	checksum = (u16)EEPROM_SUM - checksum;
4038 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4039 		e_dbg("EEPROM Write Error\n");
4040 		return -E1000_ERR_EEPROM;
4041 	}
4042 	return E1000_SUCCESS;
4043 }
4044 
4045 /**
4046  * e1000_write_eeprom - write words to the different EEPROM types.
4047  * @hw: Struct containing variables accessed by shared code
4048  * @offset: offset within the EEPROM to be written to
4049  * @words: number of words to write
4050  * @data: 16 bit word to be written to the EEPROM
4051  *
4052  * If e1000_update_eeprom_checksum is not called after this function, the
4053  * EEPROM will most likely contain an invalid checksum.
4054  */
e1000_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4055 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4056 {
4057 	s32 ret;
4058 
4059 	mutex_lock(&e1000_eeprom_lock);
4060 	ret = e1000_do_write_eeprom(hw, offset, words, data);
4061 	mutex_unlock(&e1000_eeprom_lock);
4062 	return ret;
4063 }
4064 
e1000_do_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4065 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066 				 u16 *data)
4067 {
4068 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069 	s32 status = 0;
4070 
4071 	if (hw->mac_type == e1000_ce4100) {
4072 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073 				       data);
4074 		return E1000_SUCCESS;
4075 	}
4076 
4077 	/* A check for invalid values:  offset too large, too many words, and
4078 	 * not enough words.
4079 	 */
4080 	if ((offset >= eeprom->word_size) ||
4081 	    (words > eeprom->word_size - offset) ||
4082 	    (words == 0)) {
4083 		e_dbg("\"words\" parameter out of bounds\n");
4084 		return -E1000_ERR_EEPROM;
4085 	}
4086 
4087 	/* Prepare the EEPROM for writing  */
4088 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4089 		return -E1000_ERR_EEPROM;
4090 
4091 	if (eeprom->type == e1000_eeprom_microwire) {
4092 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4093 	} else {
4094 		status = e1000_write_eeprom_spi(hw, offset, words, data);
4095 		msleep(10);
4096 	}
4097 
4098 	/* Done with writing */
4099 	e1000_release_eeprom(hw);
4100 
4101 	return status;
4102 }
4103 
4104 /**
4105  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4106  * @hw: Struct containing variables accessed by shared code
4107  * @offset: offset within the EEPROM to be written to
4108  * @words: number of words to write
4109  * @data: pointer to array of 8 bit words to be written to the EEPROM
4110  */
e1000_write_eeprom_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4111 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4112 				  u16 *data)
4113 {
4114 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4115 	u16 widx = 0;
4116 
4117 	while (widx < words) {
4118 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4119 
4120 		if (e1000_spi_eeprom_ready(hw))
4121 			return -E1000_ERR_EEPROM;
4122 
4123 		e1000_standby_eeprom(hw);
4124 		cond_resched();
4125 
4126 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4127 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4128 					eeprom->opcode_bits);
4129 
4130 		e1000_standby_eeprom(hw);
4131 
4132 		/* Some SPI eeproms use the 8th address bit embedded in the
4133 		 * opcode
4134 		 */
4135 		if ((eeprom->address_bits == 8) && (offset >= 128))
4136 			write_opcode |= EEPROM_A8_OPCODE_SPI;
4137 
4138 		/* Send the Write command (8-bit opcode + addr) */
4139 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4140 
4141 		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4142 					eeprom->address_bits);
4143 
4144 		/* Send the data */
4145 
4146 		/* Loop to allow for up to whole page write (32 bytes) of
4147 		 * eeprom
4148 		 */
4149 		while (widx < words) {
4150 			u16 word_out = data[widx];
4151 
4152 			word_out = (word_out >> 8) | (word_out << 8);
4153 			e1000_shift_out_ee_bits(hw, word_out, 16);
4154 			widx++;
4155 
4156 			/* Some larger eeprom sizes are capable of a 32-byte
4157 			 * PAGE WRITE operation, while the smaller eeproms are
4158 			 * capable of an 8-byte PAGE WRITE operation.  Break the
4159 			 * inner loop to pass new address
4160 			 */
4161 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4162 				e1000_standby_eeprom(hw);
4163 				break;
4164 			}
4165 		}
4166 	}
4167 
4168 	return E1000_SUCCESS;
4169 }
4170 
4171 /**
4172  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4173  * @hw: Struct containing variables accessed by shared code
4174  * @offset: offset within the EEPROM to be written to
4175  * @words: number of words to write
4176  * @data: pointer to array of 8 bit words to be written to the EEPROM
4177  */
e1000_write_eeprom_microwire(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4178 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4179 					u16 words, u16 *data)
4180 {
4181 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4182 	u32 eecd;
4183 	u16 words_written = 0;
4184 	u16 i = 0;
4185 
4186 	/* Send the write enable command to the EEPROM (3-bit opcode plus
4187 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4188 	 * the 11 of the dummy address as part of the opcode than it is to shift
4189 	 * it over the correct number of bits for the address.  This puts the
4190 	 * EEPROM into write/erase mode.
4191 	 */
4192 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4193 				(u16)(eeprom->opcode_bits + 2));
4194 
4195 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4196 
4197 	/* Prepare the EEPROM */
4198 	e1000_standby_eeprom(hw);
4199 
4200 	while (words_written < words) {
4201 		/* Send the Write command (3-bit opcode + addr) */
4202 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4203 					eeprom->opcode_bits);
4204 
4205 		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4206 					eeprom->address_bits);
4207 
4208 		/* Send the data */
4209 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4210 
4211 		/* Toggle the CS line.  This in effect tells the EEPROM to
4212 		 * execute the previous command.
4213 		 */
4214 		e1000_standby_eeprom(hw);
4215 
4216 		/* Read DO repeatedly until it is high (equal to '1').  The
4217 		 * EEPROM will signal that the command has been completed by
4218 		 * raising the DO signal. If DO does not go high in 10
4219 		 * milliseconds, then error out.
4220 		 */
4221 		for (i = 0; i < 200; i++) {
4222 			eecd = er32(EECD);
4223 			if (eecd & E1000_EECD_DO)
4224 				break;
4225 			udelay(50);
4226 		}
4227 		if (i == 200) {
4228 			e_dbg("EEPROM Write did not complete\n");
4229 			return -E1000_ERR_EEPROM;
4230 		}
4231 
4232 		/* Recover from write */
4233 		e1000_standby_eeprom(hw);
4234 		cond_resched();
4235 
4236 		words_written++;
4237 	}
4238 
4239 	/* Send the write disable command to the EEPROM (3-bit opcode plus
4240 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4241 	 * the 10 of the dummy address as part of the opcode than it is to shift
4242 	 * it over the correct number of bits for the address.  This takes the
4243 	 * EEPROM out of write/erase mode.
4244 	 */
4245 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246 				(u16)(eeprom->opcode_bits + 2));
4247 
4248 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4249 
4250 	return E1000_SUCCESS;
4251 }
4252 
4253 /**
4254  * e1000_read_mac_addr - read the adapters MAC from eeprom
4255  * @hw: Struct containing variables accessed by shared code
4256  *
4257  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258  * second function of dual function devices
4259  */
e1000_read_mac_addr(struct e1000_hw * hw)4260 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4261 {
4262 	u16 offset;
4263 	u16 eeprom_data, i;
4264 
4265 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266 		offset = i >> 1;
4267 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4268 			e_dbg("EEPROM Read Error\n");
4269 			return -E1000_ERR_EEPROM;
4270 		}
4271 		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4272 		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4273 	}
4274 
4275 	switch (hw->mac_type) {
4276 	default:
4277 		break;
4278 	case e1000_82546:
4279 	case e1000_82546_rev_3:
4280 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281 			hw->perm_mac_addr[5] ^= 0x01;
4282 		break;
4283 	}
4284 
4285 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286 		hw->mac_addr[i] = hw->perm_mac_addr[i];
4287 	return E1000_SUCCESS;
4288 }
4289 
4290 /**
4291  * e1000_init_rx_addrs - Initializes receive address filters.
4292  * @hw: Struct containing variables accessed by shared code
4293  *
4294  * Places the MAC address in receive address register 0 and clears the rest
4295  * of the receive address registers. Clears the multicast table. Assumes
4296  * the receiver is in reset when the routine is called.
4297  */
e1000_init_rx_addrs(struct e1000_hw * hw)4298 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4299 {
4300 	u32 i;
4301 	u32 rar_num;
4302 
4303 	/* Setup the receive address. */
4304 	e_dbg("Programming MAC Address into RAR[0]\n");
4305 
4306 	e1000_rar_set(hw, hw->mac_addr, 0);
4307 
4308 	rar_num = E1000_RAR_ENTRIES;
4309 
4310 	/* Zero out the other 15 receive addresses. */
4311 	e_dbg("Clearing RAR[1-15]\n");
4312 	for (i = 1; i < rar_num; i++) {
4313 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314 		E1000_WRITE_FLUSH();
4315 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316 		E1000_WRITE_FLUSH();
4317 	}
4318 }
4319 
4320 /**
4321  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322  * @hw: Struct containing variables accessed by shared code
4323  * @mc_addr: the multicast address to hash
4324  */
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)4325 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4326 {
4327 	u32 hash_value = 0;
4328 
4329 	/* The portion of the address that is used for the hash table is
4330 	 * determined by the mc_filter_type setting.
4331 	 */
4332 	switch (hw->mc_filter_type) {
4333 		/* [0] [1] [2] [3] [4] [5]
4334 		 * 01  AA  00  12  34  56
4335 		 * LSB                 MSB
4336 		 */
4337 	case 0:
4338 		/* [47:36] i.e. 0x563 for above example address */
4339 		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4340 		break;
4341 	case 1:
4342 		/* [46:35] i.e. 0xAC6 for above example address */
4343 		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4344 		break;
4345 	case 2:
4346 		/* [45:34] i.e. 0x5D8 for above example address */
4347 		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4348 		break;
4349 	case 3:
4350 		/* [43:32] i.e. 0x634 for above example address */
4351 		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4352 		break;
4353 	}
4354 
4355 	hash_value &= 0xFFF;
4356 	return hash_value;
4357 }
4358 
4359 /**
4360  * e1000_rar_set - Puts an ethernet address into a receive address register.
4361  * @hw: Struct containing variables accessed by shared code
4362  * @addr: Address to put into receive address register
4363  * @index: Receive address register to write
4364  */
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)4365 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4366 {
4367 	u32 rar_low, rar_high;
4368 
4369 	/* HW expects these in little endian so we reverse the byte order
4370 	 * from network order (big endian) to little endian
4371 	 */
4372 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4373 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4374 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4375 
4376 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377 	 * unit hang.
4378 	 *
4379 	 * Description:
4380 	 * If there are any Rx frames queued up or otherwise present in the HW
4381 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382 	 * hang.  To work around this issue, we have to disable receives and
4383 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4384 	 * redirect all Rx traffic to manageability and then reset the HW.
4385 	 * This flushes away Rx frames, and (since the redirections to
4386 	 * manageability persists across resets) keeps new ones from coming in
4387 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4388 	 * addresses and undo the re-direction to manageability.
4389 	 * Now, frames are coming in again, but the MAC won't accept them, so
4390 	 * far so good.  We now proceed to initialize RSS (if necessary) and
4391 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4392 	 * on our merry way.
4393 	 */
4394 	switch (hw->mac_type) {
4395 	default:
4396 		/* Indicate to hardware the Address is Valid. */
4397 		rar_high |= E1000_RAH_AV;
4398 		break;
4399 	}
4400 
4401 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402 	E1000_WRITE_FLUSH();
4403 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404 	E1000_WRITE_FLUSH();
4405 }
4406 
4407 /**
4408  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409  * @hw: Struct containing variables accessed by shared code
4410  * @offset: Offset in VLAN filer table to write
4411  * @value: Value to write into VLAN filter table
4412  */
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)4413 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4414 {
4415 	u32 temp;
4416 
4417 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420 		E1000_WRITE_FLUSH();
4421 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422 		E1000_WRITE_FLUSH();
4423 	} else {
4424 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425 		E1000_WRITE_FLUSH();
4426 	}
4427 }
4428 
4429 /**
4430  * e1000_clear_vfta - Clears the VLAN filer table
4431  * @hw: Struct containing variables accessed by shared code
4432  */
e1000_clear_vfta(struct e1000_hw * hw)4433 static void e1000_clear_vfta(struct e1000_hw *hw)
4434 {
4435 	u32 offset;
4436 	u32 vfta_value = 0;
4437 	u32 vfta_offset = 0;
4438 	u32 vfta_bit_in_reg = 0;
4439 
4440 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441 		/* If the offset we want to clear is the same offset of the
4442 		 * manageability VLAN ID, then clear all bits except that of the
4443 		 * manageability unit
4444 		 */
4445 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447 		E1000_WRITE_FLUSH();
4448 	}
4449 }
4450 
e1000_id_led_init(struct e1000_hw * hw)4451 static s32 e1000_id_led_init(struct e1000_hw *hw)
4452 {
4453 	u32 ledctl;
4454 	const u32 ledctl_mask = 0x000000FF;
4455 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457 	u16 eeprom_data, i, temp;
4458 	const u16 led_mask = 0x0F;
4459 
4460 	if (hw->mac_type < e1000_82540) {
4461 		/* Nothing to do */
4462 		return E1000_SUCCESS;
4463 	}
4464 
4465 	ledctl = er32(LEDCTL);
4466 	hw->ledctl_default = ledctl;
4467 	hw->ledctl_mode1 = hw->ledctl_default;
4468 	hw->ledctl_mode2 = hw->ledctl_default;
4469 
4470 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4471 		e_dbg("EEPROM Read Error\n");
4472 		return -E1000_ERR_EEPROM;
4473 	}
4474 
4475 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477 		eeprom_data = ID_LED_DEFAULT;
4478 	}
4479 
4480 	for (i = 0; i < 4; i++) {
4481 		temp = (eeprom_data >> (i << 2)) & led_mask;
4482 		switch (temp) {
4483 		case ID_LED_ON1_DEF2:
4484 		case ID_LED_ON1_ON2:
4485 		case ID_LED_ON1_OFF2:
4486 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488 			break;
4489 		case ID_LED_OFF1_DEF2:
4490 		case ID_LED_OFF1_ON2:
4491 		case ID_LED_OFF1_OFF2:
4492 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494 			break;
4495 		default:
4496 			/* Do nothing */
4497 			break;
4498 		}
4499 		switch (temp) {
4500 		case ID_LED_DEF1_ON2:
4501 		case ID_LED_ON1_ON2:
4502 		case ID_LED_OFF1_ON2:
4503 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505 			break;
4506 		case ID_LED_DEF1_OFF2:
4507 		case ID_LED_ON1_OFF2:
4508 		case ID_LED_OFF1_OFF2:
4509 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511 			break;
4512 		default:
4513 			/* Do nothing */
4514 			break;
4515 		}
4516 	}
4517 	return E1000_SUCCESS;
4518 }
4519 
4520 /**
4521  * e1000_setup_led
4522  * @hw: Struct containing variables accessed by shared code
4523  *
4524  * Prepares SW controlable LED for use and saves the current state of the LED.
4525  */
e1000_setup_led(struct e1000_hw * hw)4526 s32 e1000_setup_led(struct e1000_hw *hw)
4527 {
4528 	u32 ledctl;
4529 	s32 ret_val = E1000_SUCCESS;
4530 
4531 	switch (hw->mac_type) {
4532 	case e1000_82542_rev2_0:
4533 	case e1000_82542_rev2_1:
4534 	case e1000_82543:
4535 	case e1000_82544:
4536 		/* No setup necessary */
4537 		break;
4538 	case e1000_82541:
4539 	case e1000_82547:
4540 	case e1000_82541_rev_2:
4541 	case e1000_82547_rev_2:
4542 		/* Turn off PHY Smart Power Down (if enabled) */
4543 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544 					     &hw->phy_spd_default);
4545 		if (ret_val)
4546 			return ret_val;
4547 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548 					      (u16)(hw->phy_spd_default &
4549 						     ~IGP01E1000_GMII_SPD));
4550 		if (ret_val)
4551 			return ret_val;
4552 		/* Fall Through */
4553 	default:
4554 		if (hw->media_type == e1000_media_type_fiber) {
4555 			ledctl = er32(LEDCTL);
4556 			/* Save current LEDCTL settings */
4557 			hw->ledctl_default = ledctl;
4558 			/* Turn off LED0 */
4559 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560 				    E1000_LEDCTL_LED0_BLINK |
4561 				    E1000_LEDCTL_LED0_MODE_MASK);
4562 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563 				   E1000_LEDCTL_LED0_MODE_SHIFT);
4564 			ew32(LEDCTL, ledctl);
4565 		} else if (hw->media_type == e1000_media_type_copper)
4566 			ew32(LEDCTL, hw->ledctl_mode1);
4567 		break;
4568 	}
4569 
4570 	return E1000_SUCCESS;
4571 }
4572 
4573 /**
4574  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575  * @hw: Struct containing variables accessed by shared code
4576  */
e1000_cleanup_led(struct e1000_hw * hw)4577 s32 e1000_cleanup_led(struct e1000_hw *hw)
4578 {
4579 	s32 ret_val = E1000_SUCCESS;
4580 
4581 	switch (hw->mac_type) {
4582 	case e1000_82542_rev2_0:
4583 	case e1000_82542_rev2_1:
4584 	case e1000_82543:
4585 	case e1000_82544:
4586 		/* No cleanup necessary */
4587 		break;
4588 	case e1000_82541:
4589 	case e1000_82547:
4590 	case e1000_82541_rev_2:
4591 	case e1000_82547_rev_2:
4592 		/* Turn on PHY Smart Power Down (if previously enabled) */
4593 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594 					      hw->phy_spd_default);
4595 		if (ret_val)
4596 			return ret_val;
4597 		/* Fall Through */
4598 	default:
4599 		/* Restore LEDCTL settings */
4600 		ew32(LEDCTL, hw->ledctl_default);
4601 		break;
4602 	}
4603 
4604 	return E1000_SUCCESS;
4605 }
4606 
4607 /**
4608  * e1000_led_on - Turns on the software controllable LED
4609  * @hw: Struct containing variables accessed by shared code
4610  */
e1000_led_on(struct e1000_hw * hw)4611 s32 e1000_led_on(struct e1000_hw *hw)
4612 {
4613 	u32 ctrl = er32(CTRL);
4614 
4615 	switch (hw->mac_type) {
4616 	case e1000_82542_rev2_0:
4617 	case e1000_82542_rev2_1:
4618 	case e1000_82543:
4619 		/* Set SW Defineable Pin 0 to turn on the LED */
4620 		ctrl |= E1000_CTRL_SWDPIN0;
4621 		ctrl |= E1000_CTRL_SWDPIO0;
4622 		break;
4623 	case e1000_82544:
4624 		if (hw->media_type == e1000_media_type_fiber) {
4625 			/* Set SW Defineable Pin 0 to turn on the LED */
4626 			ctrl |= E1000_CTRL_SWDPIN0;
4627 			ctrl |= E1000_CTRL_SWDPIO0;
4628 		} else {
4629 			/* Clear SW Defineable Pin 0 to turn on the LED */
4630 			ctrl &= ~E1000_CTRL_SWDPIN0;
4631 			ctrl |= E1000_CTRL_SWDPIO0;
4632 		}
4633 		break;
4634 	default:
4635 		if (hw->media_type == e1000_media_type_fiber) {
4636 			/* Clear SW Defineable Pin 0 to turn on the LED */
4637 			ctrl &= ~E1000_CTRL_SWDPIN0;
4638 			ctrl |= E1000_CTRL_SWDPIO0;
4639 		} else if (hw->media_type == e1000_media_type_copper) {
4640 			ew32(LEDCTL, hw->ledctl_mode2);
4641 			return E1000_SUCCESS;
4642 		}
4643 		break;
4644 	}
4645 
4646 	ew32(CTRL, ctrl);
4647 
4648 	return E1000_SUCCESS;
4649 }
4650 
4651 /**
4652  * e1000_led_off - Turns off the software controllable LED
4653  * @hw: Struct containing variables accessed by shared code
4654  */
e1000_led_off(struct e1000_hw * hw)4655 s32 e1000_led_off(struct e1000_hw *hw)
4656 {
4657 	u32 ctrl = er32(CTRL);
4658 
4659 	switch (hw->mac_type) {
4660 	case e1000_82542_rev2_0:
4661 	case e1000_82542_rev2_1:
4662 	case e1000_82543:
4663 		/* Clear SW Defineable Pin 0 to turn off the LED */
4664 		ctrl &= ~E1000_CTRL_SWDPIN0;
4665 		ctrl |= E1000_CTRL_SWDPIO0;
4666 		break;
4667 	case e1000_82544:
4668 		if (hw->media_type == e1000_media_type_fiber) {
4669 			/* Clear SW Defineable Pin 0 to turn off the LED */
4670 			ctrl &= ~E1000_CTRL_SWDPIN0;
4671 			ctrl |= E1000_CTRL_SWDPIO0;
4672 		} else {
4673 			/* Set SW Defineable Pin 0 to turn off the LED */
4674 			ctrl |= E1000_CTRL_SWDPIN0;
4675 			ctrl |= E1000_CTRL_SWDPIO0;
4676 		}
4677 		break;
4678 	default:
4679 		if (hw->media_type == e1000_media_type_fiber) {
4680 			/* Set SW Defineable Pin 0 to turn off the LED */
4681 			ctrl |= E1000_CTRL_SWDPIN0;
4682 			ctrl |= E1000_CTRL_SWDPIO0;
4683 		} else if (hw->media_type == e1000_media_type_copper) {
4684 			ew32(LEDCTL, hw->ledctl_mode1);
4685 			return E1000_SUCCESS;
4686 		}
4687 		break;
4688 	}
4689 
4690 	ew32(CTRL, ctrl);
4691 
4692 	return E1000_SUCCESS;
4693 }
4694 
4695 /**
4696  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697  * @hw: Struct containing variables accessed by shared code
4698  */
e1000_clear_hw_cntrs(struct e1000_hw * hw)4699 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4700 {
4701 	volatile u32 temp;
4702 
4703 	temp = er32(CRCERRS);
4704 	temp = er32(SYMERRS);
4705 	temp = er32(MPC);
4706 	temp = er32(SCC);
4707 	temp = er32(ECOL);
4708 	temp = er32(MCC);
4709 	temp = er32(LATECOL);
4710 	temp = er32(COLC);
4711 	temp = er32(DC);
4712 	temp = er32(SEC);
4713 	temp = er32(RLEC);
4714 	temp = er32(XONRXC);
4715 	temp = er32(XONTXC);
4716 	temp = er32(XOFFRXC);
4717 	temp = er32(XOFFTXC);
4718 	temp = er32(FCRUC);
4719 
4720 	temp = er32(PRC64);
4721 	temp = er32(PRC127);
4722 	temp = er32(PRC255);
4723 	temp = er32(PRC511);
4724 	temp = er32(PRC1023);
4725 	temp = er32(PRC1522);
4726 
4727 	temp = er32(GPRC);
4728 	temp = er32(BPRC);
4729 	temp = er32(MPRC);
4730 	temp = er32(GPTC);
4731 	temp = er32(GORCL);
4732 	temp = er32(GORCH);
4733 	temp = er32(GOTCL);
4734 	temp = er32(GOTCH);
4735 	temp = er32(RNBC);
4736 	temp = er32(RUC);
4737 	temp = er32(RFC);
4738 	temp = er32(ROC);
4739 	temp = er32(RJC);
4740 	temp = er32(TORL);
4741 	temp = er32(TORH);
4742 	temp = er32(TOTL);
4743 	temp = er32(TOTH);
4744 	temp = er32(TPR);
4745 	temp = er32(TPT);
4746 
4747 	temp = er32(PTC64);
4748 	temp = er32(PTC127);
4749 	temp = er32(PTC255);
4750 	temp = er32(PTC511);
4751 	temp = er32(PTC1023);
4752 	temp = er32(PTC1522);
4753 
4754 	temp = er32(MPTC);
4755 	temp = er32(BPTC);
4756 
4757 	if (hw->mac_type < e1000_82543)
4758 		return;
4759 
4760 	temp = er32(ALGNERRC);
4761 	temp = er32(RXERRC);
4762 	temp = er32(TNCRS);
4763 	temp = er32(CEXTERR);
4764 	temp = er32(TSCTC);
4765 	temp = er32(TSCTFC);
4766 
4767 	if (hw->mac_type <= e1000_82544)
4768 		return;
4769 
4770 	temp = er32(MGTPRC);
4771 	temp = er32(MGTPDC);
4772 	temp = er32(MGTPTC);
4773 }
4774 
4775 /**
4776  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777  * @hw: Struct containing variables accessed by shared code
4778  *
4779  * Call this after e1000_init_hw. You may override the IFS defaults by setting
4780  * hw->ifs_params_forced to true. However, you must initialize hw->
4781  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782  * before calling this function.
4783  */
e1000_reset_adaptive(struct e1000_hw * hw)4784 void e1000_reset_adaptive(struct e1000_hw *hw)
4785 {
4786 	if (hw->adaptive_ifs) {
4787 		if (!hw->ifs_params_forced) {
4788 			hw->current_ifs_val = 0;
4789 			hw->ifs_min_val = IFS_MIN;
4790 			hw->ifs_max_val = IFS_MAX;
4791 			hw->ifs_step_size = IFS_STEP;
4792 			hw->ifs_ratio = IFS_RATIO;
4793 		}
4794 		hw->in_ifs_mode = false;
4795 		ew32(AIT, 0);
4796 	} else {
4797 		e_dbg("Not in Adaptive IFS mode!\n");
4798 	}
4799 }
4800 
4801 /**
4802  * e1000_update_adaptive - update adaptive IFS
4803  * @hw: Struct containing variables accessed by shared code
4804  * @tx_packets: Number of transmits since last callback
4805  * @total_collisions: Number of collisions since last callback
4806  *
4807  * Called during the callback/watchdog routine to update IFS value based on
4808  * the ratio of transmits to collisions.
4809  */
e1000_update_adaptive(struct e1000_hw * hw)4810 void e1000_update_adaptive(struct e1000_hw *hw)
4811 {
4812 	if (hw->adaptive_ifs) {
4813 		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4814 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815 				hw->in_ifs_mode = true;
4816 				if (hw->current_ifs_val < hw->ifs_max_val) {
4817 					if (hw->current_ifs_val == 0)
4818 						hw->current_ifs_val =
4819 						    hw->ifs_min_val;
4820 					else
4821 						hw->current_ifs_val +=
4822 						    hw->ifs_step_size;
4823 					ew32(AIT, hw->current_ifs_val);
4824 				}
4825 			}
4826 		} else {
4827 			if (hw->in_ifs_mode &&
4828 			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829 				hw->current_ifs_val = 0;
4830 				hw->in_ifs_mode = false;
4831 				ew32(AIT, 0);
4832 			}
4833 		}
4834 	} else {
4835 		e_dbg("Not in Adaptive IFS mode!\n");
4836 	}
4837 }
4838 
4839 /**
4840  * e1000_get_bus_info
4841  * @hw: Struct containing variables accessed by shared code
4842  *
4843  * Gets the current PCI bus type, speed, and width of the hardware
4844  */
e1000_get_bus_info(struct e1000_hw * hw)4845 void e1000_get_bus_info(struct e1000_hw *hw)
4846 {
4847 	u32 status;
4848 
4849 	switch (hw->mac_type) {
4850 	case e1000_82542_rev2_0:
4851 	case e1000_82542_rev2_1:
4852 		hw->bus_type = e1000_bus_type_pci;
4853 		hw->bus_speed = e1000_bus_speed_unknown;
4854 		hw->bus_width = e1000_bus_width_unknown;
4855 		break;
4856 	default:
4857 		status = er32(STATUS);
4858 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4859 		    e1000_bus_type_pcix : e1000_bus_type_pci;
4860 
4861 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4862 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4863 			    e1000_bus_speed_66 : e1000_bus_speed_120;
4864 		} else if (hw->bus_type == e1000_bus_type_pci) {
4865 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4866 			    e1000_bus_speed_66 : e1000_bus_speed_33;
4867 		} else {
4868 			switch (status & E1000_STATUS_PCIX_SPEED) {
4869 			case E1000_STATUS_PCIX_SPEED_66:
4870 				hw->bus_speed = e1000_bus_speed_66;
4871 				break;
4872 			case E1000_STATUS_PCIX_SPEED_100:
4873 				hw->bus_speed = e1000_bus_speed_100;
4874 				break;
4875 			case E1000_STATUS_PCIX_SPEED_133:
4876 				hw->bus_speed = e1000_bus_speed_133;
4877 				break;
4878 			default:
4879 				hw->bus_speed = e1000_bus_speed_reserved;
4880 				break;
4881 			}
4882 		}
4883 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4884 		    e1000_bus_width_64 : e1000_bus_width_32;
4885 		break;
4886 	}
4887 }
4888 
4889 /**
4890  * e1000_write_reg_io
4891  * @hw: Struct containing variables accessed by shared code
4892  * @offset: offset to write to
4893  * @value: value to write
4894  *
4895  * Writes a value to one of the devices registers using port I/O (as opposed to
4896  * memory mapped I/O). Only 82544 and newer devices support port I/O.
4897  */
e1000_write_reg_io(struct e1000_hw * hw,u32 offset,u32 value)4898 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4899 {
4900 	unsigned long io_addr = hw->io_base;
4901 	unsigned long io_data = hw->io_base + 4;
4902 
4903 	e1000_io_write(hw, io_addr, offset);
4904 	e1000_io_write(hw, io_data, value);
4905 }
4906 
4907 /**
4908  * e1000_get_cable_length - Estimates the cable length.
4909  * @hw: Struct containing variables accessed by shared code
4910  * @min_length: The estimated minimum length
4911  * @max_length: The estimated maximum length
4912  *
4913  * returns: - E1000_ERR_XXX
4914  *            E1000_SUCCESS
4915  *
4916  * This function always returns a ranged length (minimum & maximum).
4917  * So for M88 phy's, this function interprets the one value returned from the
4918  * register to the minimum and maximum range.
4919  * For IGP phy's, the function calculates the range by the AGC registers.
4920  */
e1000_get_cable_length(struct e1000_hw * hw,u16 * min_length,u16 * max_length)4921 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4922 				  u16 *max_length)
4923 {
4924 	s32 ret_val;
4925 	u16 agc_value = 0;
4926 	u16 i, phy_data;
4927 	u16 cable_length;
4928 
4929 	*min_length = *max_length = 0;
4930 
4931 	/* Use old method for Phy older than IGP */
4932 	if (hw->phy_type == e1000_phy_m88) {
4933 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4934 					     &phy_data);
4935 		if (ret_val)
4936 			return ret_val;
4937 		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4938 		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4939 
4940 		/* Convert the enum value to ranged values */
4941 		switch (cable_length) {
4942 		case e1000_cable_length_50:
4943 			*min_length = 0;
4944 			*max_length = e1000_igp_cable_length_50;
4945 			break;
4946 		case e1000_cable_length_50_80:
4947 			*min_length = e1000_igp_cable_length_50;
4948 			*max_length = e1000_igp_cable_length_80;
4949 			break;
4950 		case e1000_cable_length_80_110:
4951 			*min_length = e1000_igp_cable_length_80;
4952 			*max_length = e1000_igp_cable_length_110;
4953 			break;
4954 		case e1000_cable_length_110_140:
4955 			*min_length = e1000_igp_cable_length_110;
4956 			*max_length = e1000_igp_cable_length_140;
4957 			break;
4958 		case e1000_cable_length_140:
4959 			*min_length = e1000_igp_cable_length_140;
4960 			*max_length = e1000_igp_cable_length_170;
4961 			break;
4962 		default:
4963 			return -E1000_ERR_PHY;
4964 		}
4965 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4966 		u16 cur_agc_value;
4967 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4968 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4969 		       IGP01E1000_PHY_AGC_A,
4970 		       IGP01E1000_PHY_AGC_B,
4971 		       IGP01E1000_PHY_AGC_C,
4972 		       IGP01E1000_PHY_AGC_D
4973 		};
4974 		/* Read the AGC registers for all channels */
4975 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4976 			ret_val =
4977 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4978 			if (ret_val)
4979 				return ret_val;
4980 
4981 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4982 
4983 			/* Value bound check. */
4984 			if ((cur_agc_value >=
4985 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4986 			    (cur_agc_value == 0))
4987 				return -E1000_ERR_PHY;
4988 
4989 			agc_value += cur_agc_value;
4990 
4991 			/* Update minimal AGC value. */
4992 			if (min_agc_value > cur_agc_value)
4993 				min_agc_value = cur_agc_value;
4994 		}
4995 
4996 		/* Remove the minimal AGC result for length < 50m */
4997 		if (agc_value <
4998 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4999 			agc_value -= min_agc_value;
5000 
5001 			/* Get the average length of the remaining 3 channels */
5002 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5003 		} else {
5004 			/* Get the average length of all the 4 channels. */
5005 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5006 		}
5007 
5008 		/* Set the range of the calculated length. */
5009 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5010 				IGP01E1000_AGC_RANGE) > 0) ?
5011 		    (e1000_igp_cable_length_table[agc_value] -
5012 		     IGP01E1000_AGC_RANGE) : 0;
5013 		*max_length = e1000_igp_cable_length_table[agc_value] +
5014 		    IGP01E1000_AGC_RANGE;
5015 	}
5016 
5017 	return E1000_SUCCESS;
5018 }
5019 
5020 /**
5021  * e1000_check_polarity - Check the cable polarity
5022  * @hw: Struct containing variables accessed by shared code
5023  * @polarity: output parameter : 0 - Polarity is not reversed
5024  *                               1 - Polarity is reversed.
5025  *
5026  * returns: - E1000_ERR_XXX
5027  *            E1000_SUCCESS
5028  *
5029  * For phy's older than IGP, this function simply reads the polarity bit in the
5030  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5031  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5032  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5033  * IGP01E1000_PHY_PCS_INIT_REG.
5034  */
e1000_check_polarity(struct e1000_hw * hw,e1000_rev_polarity * polarity)5035 static s32 e1000_check_polarity(struct e1000_hw *hw,
5036 				e1000_rev_polarity *polarity)
5037 {
5038 	s32 ret_val;
5039 	u16 phy_data;
5040 
5041 	if (hw->phy_type == e1000_phy_m88) {
5042 		/* return the Polarity bit in the Status register. */
5043 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5044 					     &phy_data);
5045 		if (ret_val)
5046 			return ret_val;
5047 		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5048 			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5049 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5050 
5051 	} else if (hw->phy_type == e1000_phy_igp) {
5052 		/* Read the Status register to check the speed */
5053 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5054 					     &phy_data);
5055 		if (ret_val)
5056 			return ret_val;
5057 
5058 		/* If speed is 1000 Mbps, must read the
5059 		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5060 		 */
5061 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5062 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5063 			/* Read the GIG initialization PCS register (0x00B4) */
5064 			ret_val =
5065 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5066 					       &phy_data);
5067 			if (ret_val)
5068 				return ret_val;
5069 
5070 			/* Check the polarity bits */
5071 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5072 			    e1000_rev_polarity_reversed :
5073 			    e1000_rev_polarity_normal;
5074 		} else {
5075 			/* For 10 Mbps, read the polarity bit in the status
5076 			 * register. (for 100 Mbps this bit is always 0)
5077 			 */
5078 			*polarity =
5079 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5080 			    e1000_rev_polarity_reversed :
5081 			    e1000_rev_polarity_normal;
5082 		}
5083 	}
5084 	return E1000_SUCCESS;
5085 }
5086 
5087 /**
5088  * e1000_check_downshift - Check if Downshift occurred
5089  * @hw: Struct containing variables accessed by shared code
5090  * @downshift: output parameter : 0 - No Downshift occurred.
5091  *                                1 - Downshift occurred.
5092  *
5093  * returns: - E1000_ERR_XXX
5094  *            E1000_SUCCESS
5095  *
5096  * For phy's older than IGP, this function reads the Downshift bit in the Phy
5097  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5098  * Link Health register.  In IGP this bit is latched high, so the driver must
5099  * read it immediately after link is established.
5100  */
e1000_check_downshift(struct e1000_hw * hw)5101 static s32 e1000_check_downshift(struct e1000_hw *hw)
5102 {
5103 	s32 ret_val;
5104 	u16 phy_data;
5105 
5106 	if (hw->phy_type == e1000_phy_igp) {
5107 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5108 					     &phy_data);
5109 		if (ret_val)
5110 			return ret_val;
5111 
5112 		hw->speed_downgraded =
5113 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5114 	} else if (hw->phy_type == e1000_phy_m88) {
5115 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5116 					     &phy_data);
5117 		if (ret_val)
5118 			return ret_val;
5119 
5120 		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5121 		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5122 	}
5123 
5124 	return E1000_SUCCESS;
5125 }
5126 
5127 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5128 	IGP01E1000_PHY_AGC_PARAM_A,
5129 	IGP01E1000_PHY_AGC_PARAM_B,
5130 	IGP01E1000_PHY_AGC_PARAM_C,
5131 	IGP01E1000_PHY_AGC_PARAM_D
5132 };
5133 
e1000_1000Mb_check_cable_length(struct e1000_hw * hw)5134 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5135 {
5136 	u16 min_length, max_length;
5137 	u16 phy_data, i;
5138 	s32 ret_val;
5139 
5140 	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5141 	if (ret_val)
5142 		return ret_val;
5143 
5144 	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5145 		return 0;
5146 
5147 	if (min_length >= e1000_igp_cable_length_50) {
5148 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5149 			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5150 						     &phy_data);
5151 			if (ret_val)
5152 				return ret_val;
5153 
5154 			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5155 
5156 			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5157 						      phy_data);
5158 			if (ret_val)
5159 				return ret_val;
5160 		}
5161 		hw->dsp_config_state = e1000_dsp_config_activated;
5162 	} else {
5163 		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5164 		u32 idle_errs = 0;
5165 
5166 		/* clear previous idle error counts */
5167 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5168 		if (ret_val)
5169 			return ret_val;
5170 
5171 		for (i = 0; i < ffe_idle_err_timeout; i++) {
5172 			udelay(1000);
5173 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5174 						     &phy_data);
5175 			if (ret_val)
5176 				return ret_val;
5177 
5178 			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5179 			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5180 				hw->ffe_config_state = e1000_ffe_config_active;
5181 
5182 				ret_val = e1000_write_phy_reg(hw,
5183 							      IGP01E1000_PHY_DSP_FFE,
5184 							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5185 				if (ret_val)
5186 					return ret_val;
5187 				break;
5188 			}
5189 
5190 			if (idle_errs)
5191 				ffe_idle_err_timeout =
5192 					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5193 		}
5194 	}
5195 
5196 	return 0;
5197 }
5198 
5199 /**
5200  * e1000_config_dsp_after_link_change
5201  * @hw: Struct containing variables accessed by shared code
5202  * @link_up: was link up at the time this was called
5203  *
5204  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5205  *            E1000_SUCCESS at any other case.
5206  *
5207  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5208  * gigabit link is achieved to improve link quality.
5209  */
5210 
e1000_config_dsp_after_link_change(struct e1000_hw * hw,bool link_up)5211 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5212 {
5213 	s32 ret_val;
5214 	u16 phy_data, phy_saved_data, speed, duplex, i;
5215 
5216 	if (hw->phy_type != e1000_phy_igp)
5217 		return E1000_SUCCESS;
5218 
5219 	if (link_up) {
5220 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5221 		if (ret_val) {
5222 			e_dbg("Error getting link speed and duplex\n");
5223 			return ret_val;
5224 		}
5225 
5226 		if (speed == SPEED_1000) {
5227 			ret_val = e1000_1000Mb_check_cable_length(hw);
5228 			if (ret_val)
5229 				return ret_val;
5230 		}
5231 	} else {
5232 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5233 			/* Save off the current value of register 0x2F5B to be
5234 			 * restored at the end of the routines.
5235 			 */
5236 			ret_val =
5237 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5238 
5239 			if (ret_val)
5240 				return ret_val;
5241 
5242 			/* Disable the PHY transmitter */
5243 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5244 
5245 			if (ret_val)
5246 				return ret_val;
5247 
5248 			msleep(20);
5249 
5250 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5251 						      IGP01E1000_IEEE_FORCE_GIGA);
5252 			if (ret_val)
5253 				return ret_val;
5254 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5255 				ret_val =
5256 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5257 						       &phy_data);
5258 				if (ret_val)
5259 					return ret_val;
5260 
5261 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5262 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5263 
5264 				ret_val =
5265 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5266 							phy_data);
5267 				if (ret_val)
5268 					return ret_val;
5269 			}
5270 
5271 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5272 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5273 			if (ret_val)
5274 				return ret_val;
5275 
5276 			msleep(20);
5277 
5278 			/* Now enable the transmitter */
5279 			ret_val =
5280 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5281 
5282 			if (ret_val)
5283 				return ret_val;
5284 
5285 			hw->dsp_config_state = e1000_dsp_config_enabled;
5286 		}
5287 
5288 		if (hw->ffe_config_state == e1000_ffe_config_active) {
5289 			/* Save off the current value of register 0x2F5B to be
5290 			 * restored at the end of the routines.
5291 			 */
5292 			ret_val =
5293 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5294 
5295 			if (ret_val)
5296 				return ret_val;
5297 
5298 			/* Disable the PHY transmitter */
5299 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5300 
5301 			if (ret_val)
5302 				return ret_val;
5303 
5304 			msleep(20);
5305 
5306 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5307 						      IGP01E1000_IEEE_FORCE_GIGA);
5308 			if (ret_val)
5309 				return ret_val;
5310 			ret_val =
5311 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5312 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5313 			if (ret_val)
5314 				return ret_val;
5315 
5316 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5317 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5318 			if (ret_val)
5319 				return ret_val;
5320 
5321 			msleep(20);
5322 
5323 			/* Now enable the transmitter */
5324 			ret_val =
5325 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5326 
5327 			if (ret_val)
5328 				return ret_val;
5329 
5330 			hw->ffe_config_state = e1000_ffe_config_enabled;
5331 		}
5332 	}
5333 	return E1000_SUCCESS;
5334 }
5335 
5336 /**
5337  * e1000_set_phy_mode - Set PHY to class A mode
5338  * @hw: Struct containing variables accessed by shared code
5339  *
5340  * Assumes the following operations will follow to enable the new class mode.
5341  *  1. Do a PHY soft reset
5342  *  2. Restart auto-negotiation or force link.
5343  */
e1000_set_phy_mode(struct e1000_hw * hw)5344 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5345 {
5346 	s32 ret_val;
5347 	u16 eeprom_data;
5348 
5349 	if ((hw->mac_type == e1000_82545_rev_3) &&
5350 	    (hw->media_type == e1000_media_type_copper)) {
5351 		ret_val =
5352 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5353 				      &eeprom_data);
5354 		if (ret_val)
5355 			return ret_val;
5356 
5357 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5358 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5359 			ret_val =
5360 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5361 						0x000B);
5362 			if (ret_val)
5363 				return ret_val;
5364 			ret_val =
5365 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5366 						0x8104);
5367 			if (ret_val)
5368 				return ret_val;
5369 
5370 			hw->phy_reset_disable = false;
5371 		}
5372 	}
5373 
5374 	return E1000_SUCCESS;
5375 }
5376 
5377 /**
5378  * e1000_set_d3_lplu_state - set d3 link power state
5379  * @hw: Struct containing variables accessed by shared code
5380  * @active: true to enable lplu false to disable lplu.
5381  *
5382  * This function sets the lplu state according to the active flag.  When
5383  * activating lplu this function also disables smart speed and vise versa.
5384  * lplu will not be activated unless the device autonegotiation advertisement
5385  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5386  *
5387  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5388  *            E1000_SUCCESS at any other case.
5389  */
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)5390 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5391 {
5392 	s32 ret_val;
5393 	u16 phy_data;
5394 
5395 	if (hw->phy_type != e1000_phy_igp)
5396 		return E1000_SUCCESS;
5397 
5398 	/* During driver activity LPLU should not be used or it will attain link
5399 	 * from the lowest speeds starting from 10Mbps. The capability is used
5400 	 * for Dx transitions and states
5401 	 */
5402 	if (hw->mac_type == e1000_82541_rev_2 ||
5403 	    hw->mac_type == e1000_82547_rev_2) {
5404 		ret_val =
5405 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5406 		if (ret_val)
5407 			return ret_val;
5408 	}
5409 
5410 	if (!active) {
5411 		if (hw->mac_type == e1000_82541_rev_2 ||
5412 		    hw->mac_type == e1000_82547_rev_2) {
5413 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5414 			ret_val =
5415 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5416 						phy_data);
5417 			if (ret_val)
5418 				return ret_val;
5419 		}
5420 
5421 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5422 		 * during Dx states where the power conservation is most
5423 		 * important.  During driver activity we should enable
5424 		 * SmartSpeed, so performance is maintained.
5425 		 */
5426 		if (hw->smart_speed == e1000_smart_speed_on) {
5427 			ret_val =
5428 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5429 					       &phy_data);
5430 			if (ret_val)
5431 				return ret_val;
5432 
5433 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5434 			ret_val =
5435 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5436 						phy_data);
5437 			if (ret_val)
5438 				return ret_val;
5439 		} else if (hw->smart_speed == e1000_smart_speed_off) {
5440 			ret_val =
5441 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5442 					       &phy_data);
5443 			if (ret_val)
5444 				return ret_val;
5445 
5446 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5447 			ret_val =
5448 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5449 						phy_data);
5450 			if (ret_val)
5451 				return ret_val;
5452 		}
5453 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5454 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5455 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5456 		if (hw->mac_type == e1000_82541_rev_2 ||
5457 		    hw->mac_type == e1000_82547_rev_2) {
5458 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5459 			ret_val =
5460 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5461 						phy_data);
5462 			if (ret_val)
5463 				return ret_val;
5464 		}
5465 
5466 		/* When LPLU is enabled we should disable SmartSpeed */
5467 		ret_val =
5468 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5469 				       &phy_data);
5470 		if (ret_val)
5471 			return ret_val;
5472 
5473 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5474 		ret_val =
5475 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5476 					phy_data);
5477 		if (ret_val)
5478 			return ret_val;
5479 	}
5480 	return E1000_SUCCESS;
5481 }
5482 
5483 /**
5484  * e1000_set_vco_speed
5485  * @hw: Struct containing variables accessed by shared code
5486  *
5487  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5488  */
e1000_set_vco_speed(struct e1000_hw * hw)5489 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5490 {
5491 	s32 ret_val;
5492 	u16 default_page = 0;
5493 	u16 phy_data;
5494 
5495 	switch (hw->mac_type) {
5496 	case e1000_82545_rev_3:
5497 	case e1000_82546_rev_3:
5498 		break;
5499 	default:
5500 		return E1000_SUCCESS;
5501 	}
5502 
5503 	/* Set PHY register 30, page 5, bit 8 to 0 */
5504 
5505 	ret_val =
5506 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5507 	if (ret_val)
5508 		return ret_val;
5509 
5510 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5511 	if (ret_val)
5512 		return ret_val;
5513 
5514 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5515 	if (ret_val)
5516 		return ret_val;
5517 
5518 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5519 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5520 	if (ret_val)
5521 		return ret_val;
5522 
5523 	/* Set PHY register 30, page 4, bit 11 to 1 */
5524 
5525 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5526 	if (ret_val)
5527 		return ret_val;
5528 
5529 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5530 	if (ret_val)
5531 		return ret_val;
5532 
5533 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5534 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5535 	if (ret_val)
5536 		return ret_val;
5537 
5538 	ret_val =
5539 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5540 	if (ret_val)
5541 		return ret_val;
5542 
5543 	return E1000_SUCCESS;
5544 }
5545 
5546 /**
5547  * e1000_enable_mng_pass_thru - check for bmc pass through
5548  * @hw: Struct containing variables accessed by shared code
5549  *
5550  * Verifies the hardware needs to allow ARPs to be processed by the host
5551  * returns: - true/false
5552  */
e1000_enable_mng_pass_thru(struct e1000_hw * hw)5553 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5554 {
5555 	u32 manc;
5556 
5557 	if (hw->asf_firmware_present) {
5558 		manc = er32(MANC);
5559 
5560 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5561 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5562 			return false;
5563 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5564 			return true;
5565 	}
5566 	return false;
5567 }
5568 
e1000_polarity_reversal_workaround(struct e1000_hw * hw)5569 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5570 {
5571 	s32 ret_val;
5572 	u16 mii_status_reg;
5573 	u16 i;
5574 
5575 	/* Polarity reversal workaround for forced 10F/10H links. */
5576 
5577 	/* Disable the transmitter on the PHY */
5578 
5579 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5580 	if (ret_val)
5581 		return ret_val;
5582 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5583 	if (ret_val)
5584 		return ret_val;
5585 
5586 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5587 	if (ret_val)
5588 		return ret_val;
5589 
5590 	/* This loop will early-out if the NO link condition has been met. */
5591 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5592 		/* Read the MII Status Register and wait for Link Status bit
5593 		 * to be clear.
5594 		 */
5595 
5596 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5597 		if (ret_val)
5598 			return ret_val;
5599 
5600 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5601 		if (ret_val)
5602 			return ret_val;
5603 
5604 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5605 			break;
5606 		msleep(100);
5607 	}
5608 
5609 	/* Recommended delay time after link has been lost */
5610 	msleep(1000);
5611 
5612 	/* Now we will re-enable th transmitter on the PHY */
5613 
5614 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5615 	if (ret_val)
5616 		return ret_val;
5617 	msleep(50);
5618 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5619 	if (ret_val)
5620 		return ret_val;
5621 	msleep(50);
5622 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5623 	if (ret_val)
5624 		return ret_val;
5625 	msleep(50);
5626 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5627 	if (ret_val)
5628 		return ret_val;
5629 
5630 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5631 	if (ret_val)
5632 		return ret_val;
5633 
5634 	/* This loop will early-out if the link condition has been met. */
5635 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5636 		/* Read the MII Status Register and wait for Link Status bit
5637 		 * to be set.
5638 		 */
5639 
5640 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5641 		if (ret_val)
5642 			return ret_val;
5643 
5644 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5645 		if (ret_val)
5646 			return ret_val;
5647 
5648 		if (mii_status_reg & MII_SR_LINK_STATUS)
5649 			break;
5650 		msleep(100);
5651 	}
5652 	return E1000_SUCCESS;
5653 }
5654 
5655 /**
5656  * e1000_get_auto_rd_done
5657  * @hw: Struct containing variables accessed by shared code
5658  *
5659  * Check for EEPROM Auto Read bit done.
5660  * returns: - E1000_ERR_RESET if fail to reset MAC
5661  *            E1000_SUCCESS at any other case.
5662  */
e1000_get_auto_rd_done(struct e1000_hw * hw)5663 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5664 {
5665 	msleep(5);
5666 	return E1000_SUCCESS;
5667 }
5668 
5669 /**
5670  * e1000_get_phy_cfg_done
5671  * @hw: Struct containing variables accessed by shared code
5672  *
5673  * Checks if the PHY configuration is done
5674  * returns: - E1000_ERR_RESET if fail to reset MAC
5675  *            E1000_SUCCESS at any other case.
5676  */
e1000_get_phy_cfg_done(struct e1000_hw * hw)5677 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5678 {
5679 	msleep(10);
5680 	return E1000_SUCCESS;
5681 }
5682