• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #include "e1000.h"
23 
24 /**
25  *  e1000e_get_bus_info_pcie - Get PCIe bus information
26  *  @hw: pointer to the HW structure
27  *
28  *  Determines and stores the system bus information for a particular
29  *  network interface.  The following bus information is determined and stored:
30  *  bus speed, bus width, type (PCIe), and PCIe function.
31  **/
e1000e_get_bus_info_pcie(struct e1000_hw * hw)32 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
33 {
34 	struct e1000_mac_info *mac = &hw->mac;
35 	struct e1000_bus_info *bus = &hw->bus;
36 	struct e1000_adapter *adapter = hw->adapter;
37 	u16 pcie_link_status, cap_offset;
38 
39 	cap_offset = adapter->pdev->pcie_cap;
40 	if (!cap_offset) {
41 		bus->width = e1000_bus_width_unknown;
42 	} else {
43 		pci_read_config_word(adapter->pdev,
44 				     cap_offset + PCIE_LINK_STATUS,
45 				     &pcie_link_status);
46 		bus->width = (enum e1000_bus_width)((pcie_link_status &
47 						     PCIE_LINK_WIDTH_MASK) >>
48 						    PCIE_LINK_WIDTH_SHIFT);
49 	}
50 
51 	mac->ops.set_lan_id(hw);
52 
53 	return 0;
54 }
55 
56 /**
57  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
58  *
59  *  @hw: pointer to the HW structure
60  *
61  *  Determines the LAN function id by reading memory-mapped registers
62  *  and swaps the port value if requested.
63  **/
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)64 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
65 {
66 	struct e1000_bus_info *bus = &hw->bus;
67 	u32 reg;
68 
69 	/* The status register reports the correct function number
70 	 * for the device regardless of function swap state.
71 	 */
72 	reg = er32(STATUS);
73 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
74 }
75 
76 /**
77  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
78  *  @hw: pointer to the HW structure
79  *
80  *  Sets the LAN function id to zero for a single port device.
81  **/
e1000_set_lan_id_single_port(struct e1000_hw * hw)82 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
83 {
84 	struct e1000_bus_info *bus = &hw->bus;
85 
86 	bus->func = 0;
87 }
88 
89 /**
90  *  e1000_clear_vfta_generic - Clear VLAN filter table
91  *  @hw: pointer to the HW structure
92  *
93  *  Clears the register array which contains the VLAN filter table by
94  *  setting all the values to 0.
95  **/
e1000_clear_vfta_generic(struct e1000_hw * hw)96 void e1000_clear_vfta_generic(struct e1000_hw *hw)
97 {
98 	u32 offset;
99 
100 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
101 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
102 		e1e_flush();
103 	}
104 }
105 
106 /**
107  *  e1000_write_vfta_generic - Write value to VLAN filter table
108  *  @hw: pointer to the HW structure
109  *  @offset: register offset in VLAN filter table
110  *  @value: register value written to VLAN filter table
111  *
112  *  Writes value at the given offset in the register array which stores
113  *  the VLAN filter table.
114  **/
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)115 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
116 {
117 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
118 	e1e_flush();
119 }
120 
121 /**
122  *  e1000e_init_rx_addrs - Initialize receive address's
123  *  @hw: pointer to the HW structure
124  *  @rar_count: receive address registers
125  *
126  *  Setup the receive address registers by setting the base receive address
127  *  register to the devices MAC address and clearing all the other receive
128  *  address registers to 0.
129  **/
e1000e_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)130 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
131 {
132 	u32 i;
133 	u8 mac_addr[ETH_ALEN] = { 0 };
134 
135 	/* Setup the receive address */
136 	e_dbg("Programming MAC Address into RAR[0]\n");
137 
138 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
139 
140 	/* Zero out the other (rar_entry_count - 1) receive addresses */
141 	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
142 	for (i = 1; i < rar_count; i++)
143 		hw->mac.ops.rar_set(hw, mac_addr, i);
144 }
145 
146 /**
147  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
148  *  @hw: pointer to the HW structure
149  *
150  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
151  *  can be setup by pre-boot software and must be treated like a permanent
152  *  address and must override the actual permanent MAC address. If an
153  *  alternate MAC address is found it is programmed into RAR0, replacing
154  *  the permanent address that was installed into RAR0 by the Si on reset.
155  *  This function will return SUCCESS unless it encounters an error while
156  *  reading the EEPROM.
157  **/
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)158 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
159 {
160 	u32 i;
161 	s32 ret_val;
162 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
163 	u8 alt_mac_addr[ETH_ALEN];
164 
165 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
166 	if (ret_val)
167 		return ret_val;
168 
169 	/* not supported on 82573 */
170 	if (hw->mac.type == e1000_82573)
171 		return 0;
172 
173 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
174 				 &nvm_alt_mac_addr_offset);
175 	if (ret_val) {
176 		e_dbg("NVM Read Error\n");
177 		return ret_val;
178 	}
179 
180 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
181 	    (nvm_alt_mac_addr_offset == 0x0000))
182 		/* There is no Alternate MAC Address */
183 		return 0;
184 
185 	if (hw->bus.func == E1000_FUNC_1)
186 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
187 	for (i = 0; i < ETH_ALEN; i += 2) {
188 		offset = nvm_alt_mac_addr_offset + (i >> 1);
189 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
190 		if (ret_val) {
191 			e_dbg("NVM Read Error\n");
192 			return ret_val;
193 		}
194 
195 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
196 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
197 	}
198 
199 	/* if multicast bit is set, the alternate address will not be used */
200 	if (is_multicast_ether_addr(alt_mac_addr)) {
201 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
202 		return 0;
203 	}
204 
205 	/* We have a valid alternate MAC address, and we want to treat it the
206 	 * same as the normal permanent MAC address stored by the HW into the
207 	 * RAR. Do this by mapping this address into RAR0.
208 	 */
209 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
210 
211 	return 0;
212 }
213 
e1000e_rar_get_count_generic(struct e1000_hw * hw)214 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
215 {
216 	return hw->mac.rar_entry_count;
217 }
218 
219 /**
220  *  e1000e_rar_set_generic - Set receive address register
221  *  @hw: pointer to the HW structure
222  *  @addr: pointer to the receive address
223  *  @index: receive address array register
224  *
225  *  Sets the receive address array register at index to the address passed
226  *  in by addr.
227  **/
e1000e_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)228 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
229 {
230 	u32 rar_low, rar_high;
231 
232 	/* HW expects these in little endian so we reverse the byte order
233 	 * from network order (big endian) to little endian
234 	 */
235 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
236 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
237 
238 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
239 
240 	/* If MAC address zero, no need to set the AV bit */
241 	if (rar_low || rar_high)
242 		rar_high |= E1000_RAH_AV;
243 
244 	/* Some bridges will combine consecutive 32-bit writes into
245 	 * a single burst write, which will malfunction on some parts.
246 	 * The flushes avoid this.
247 	 */
248 	ew32(RAL(index), rar_low);
249 	e1e_flush();
250 	ew32(RAH(index), rar_high);
251 	e1e_flush();
252 
253 	return 0;
254 }
255 
256 /**
257  *  e1000_hash_mc_addr - Generate a multicast hash value
258  *  @hw: pointer to the HW structure
259  *  @mc_addr: pointer to a multicast address
260  *
261  *  Generates a multicast address hash value which is used to determine
262  *  the multicast filter table array address and new table value.
263  **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
265 {
266 	u32 hash_value, hash_mask;
267 	u8 bit_shift = 0;
268 
269 	/* Register count multiplied by bits per register */
270 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
271 
272 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 	 * where 0xFF would still fall within the hash mask.
274 	 */
275 	while (hash_mask >> bit_shift != 0xFF)
276 		bit_shift++;
277 
278 	/* The portion of the address that is used for the hash table
279 	 * is determined by the mc_filter_type setting.
280 	 * The algorithm is such that there is a total of 8 bits of shifting.
281 	 * The bit_shift for a mc_filter_type of 0 represents the number of
282 	 * left-shifts where the MSB of mc_addr[5] would still fall within
283 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
284 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
285 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
286 	 * cases are a variation of this algorithm...essentially raising the
287 	 * number of bits to shift mc_addr[5] left, while still keeping the
288 	 * 8-bit shifting total.
289 	 *
290 	 * For example, given the following Destination MAC Address and an
291 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
292 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
293 	 * values resulting from each mc_filter_type...
294 	 * [0] [1] [2] [3] [4] [5]
295 	 * 01  AA  00  12  34  56
296 	 * LSB           MSB
297 	 *
298 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
299 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
300 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
301 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
302 	 */
303 	switch (hw->mac.mc_filter_type) {
304 	default:
305 	case 0:
306 		break;
307 	case 1:
308 		bit_shift += 1;
309 		break;
310 	case 2:
311 		bit_shift += 2;
312 		break;
313 	case 3:
314 		bit_shift += 4;
315 		break;
316 	}
317 
318 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319 				   (((u16)mc_addr[5]) << bit_shift)));
320 
321 	return hash_value;
322 }
323 
324 /**
325  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
326  *  @hw: pointer to the HW structure
327  *  @mc_addr_list: array of multicast addresses to program
328  *  @mc_addr_count: number of multicast addresses to program
329  *
330  *  Updates entire Multicast Table Array.
331  *  The caller must have a packed mc_addr_list of multicast addresses.
332  **/
e1000e_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334 					u8 *mc_addr_list, u32 mc_addr_count)
335 {
336 	u32 hash_value, hash_bit, hash_reg;
337 	int i;
338 
339 	/* clear mta_shadow */
340 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341 
342 	/* update mta_shadow from mc_addr_list */
343 	for (i = 0; (u32)i < mc_addr_count; i++) {
344 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345 
346 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
347 		hash_bit = hash_value & 0x1F;
348 
349 		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
350 		mc_addr_list += (ETH_ALEN);
351 	}
352 
353 	/* replace the entire MTA table */
354 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
355 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356 	e1e_flush();
357 }
358 
359 /**
360  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
361  *  @hw: pointer to the HW structure
362  *
363  *  Clears the base hardware counters by reading the counter registers.
364  **/
e1000e_clear_hw_cntrs_base(struct e1000_hw * hw)365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
366 {
367 	er32(CRCERRS);
368 	er32(SYMERRS);
369 	er32(MPC);
370 	er32(SCC);
371 	er32(ECOL);
372 	er32(MCC);
373 	er32(LATECOL);
374 	er32(COLC);
375 	er32(DC);
376 	er32(SEC);
377 	er32(RLEC);
378 	er32(XONRXC);
379 	er32(XONTXC);
380 	er32(XOFFRXC);
381 	er32(XOFFTXC);
382 	er32(FCRUC);
383 	er32(GPRC);
384 	er32(BPRC);
385 	er32(MPRC);
386 	er32(GPTC);
387 	er32(GORCL);
388 	er32(GORCH);
389 	er32(GOTCL);
390 	er32(GOTCH);
391 	er32(RNBC);
392 	er32(RUC);
393 	er32(RFC);
394 	er32(ROC);
395 	er32(RJC);
396 	er32(TORL);
397 	er32(TORH);
398 	er32(TOTL);
399 	er32(TOTH);
400 	er32(TPR);
401 	er32(TPT);
402 	er32(MPTC);
403 	er32(BPTC);
404 }
405 
406 /**
407  *  e1000e_check_for_copper_link - Check for link (Copper)
408  *  @hw: pointer to the HW structure
409  *
410  *  Checks to see of the link status of the hardware has changed.  If a
411  *  change in link status has been detected, then we read the PHY registers
412  *  to get the current speed/duplex if link exists.
413  *
414  *  Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
415  *  up).
416  **/
e1000e_check_for_copper_link(struct e1000_hw * hw)417 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
418 {
419 	struct e1000_mac_info *mac = &hw->mac;
420 	s32 ret_val;
421 	bool link;
422 
423 	/* We only want to go out to the PHY registers to see if Auto-Neg
424 	 * has completed and/or if our link status has changed.  The
425 	 * get_link_status flag is set upon receiving a Link Status
426 	 * Change or Rx Sequence Error interrupt.
427 	 */
428 	if (!mac->get_link_status)
429 		return 1;
430 
431 	/* First we want to see if the MII Status Register reports
432 	 * link.  If so, then we want to get the current speed/duplex
433 	 * of the PHY.
434 	 */
435 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
436 	if (ret_val)
437 		return ret_val;
438 
439 	if (!link)
440 		return 0;	/* No link detected */
441 
442 	mac->get_link_status = false;
443 
444 	/* Check if there was DownShift, must be checked
445 	 * immediately after link-up
446 	 */
447 	e1000e_check_downshift(hw);
448 
449 	/* If we are forcing speed/duplex, then we simply return since
450 	 * we have already determined whether we have link or not.
451 	 */
452 	if (!mac->autoneg)
453 		return -E1000_ERR_CONFIG;
454 
455 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
456 	 * of MAC speed/duplex configuration.  So we only need to
457 	 * configure Collision Distance in the MAC.
458 	 */
459 	mac->ops.config_collision_dist(hw);
460 
461 	/* Configure Flow Control now that Auto-Neg has completed.
462 	 * First, we need to restore the desired flow control
463 	 * settings because we may have had to re-autoneg with a
464 	 * different link partner.
465 	 */
466 	ret_val = e1000e_config_fc_after_link_up(hw);
467 	if (ret_val) {
468 		e_dbg("Error configuring flow control\n");
469 		return ret_val;
470 	}
471 
472 	return 1;
473 }
474 
475 /**
476  *  e1000e_check_for_fiber_link - Check for link (Fiber)
477  *  @hw: pointer to the HW structure
478  *
479  *  Checks for link up on the hardware.  If link is not up and we have
480  *  a signal, then we need to force link up.
481  **/
e1000e_check_for_fiber_link(struct e1000_hw * hw)482 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
483 {
484 	struct e1000_mac_info *mac = &hw->mac;
485 	u32 rxcw;
486 	u32 ctrl;
487 	u32 status;
488 	s32 ret_val;
489 
490 	ctrl = er32(CTRL);
491 	status = er32(STATUS);
492 	rxcw = er32(RXCW);
493 
494 	/* If we don't have link (auto-negotiation failed or link partner
495 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
496 	 * and our link partner is not trying to auto-negotiate with us (we
497 	 * are receiving idles or data), we need to force link up. We also
498 	 * need to give auto-negotiation time to complete, in case the cable
499 	 * was just plugged in. The autoneg_failed flag does this.
500 	 */
501 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
502 	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
503 	    !(rxcw & E1000_RXCW_C)) {
504 		if (!mac->autoneg_failed) {
505 			mac->autoneg_failed = true;
506 			return 0;
507 		}
508 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
509 
510 		/* Disable auto-negotiation in the TXCW register */
511 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
512 
513 		/* Force link-up and also force full-duplex. */
514 		ctrl = er32(CTRL);
515 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
516 		ew32(CTRL, ctrl);
517 
518 		/* Configure Flow Control after forcing link up. */
519 		ret_val = e1000e_config_fc_after_link_up(hw);
520 		if (ret_val) {
521 			e_dbg("Error configuring flow control\n");
522 			return ret_val;
523 		}
524 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
525 		/* If we are forcing link and we are receiving /C/ ordered
526 		 * sets, re-enable auto-negotiation in the TXCW register
527 		 * and disable forced link in the Device Control register
528 		 * in an attempt to auto-negotiate with our link partner.
529 		 */
530 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
531 		ew32(TXCW, mac->txcw);
532 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
533 
534 		mac->serdes_has_link = true;
535 	}
536 
537 	return 0;
538 }
539 
540 /**
541  *  e1000e_check_for_serdes_link - Check for link (Serdes)
542  *  @hw: pointer to the HW structure
543  *
544  *  Checks for link up on the hardware.  If link is not up and we have
545  *  a signal, then we need to force link up.
546  **/
e1000e_check_for_serdes_link(struct e1000_hw * hw)547 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
548 {
549 	struct e1000_mac_info *mac = &hw->mac;
550 	u32 rxcw;
551 	u32 ctrl;
552 	u32 status;
553 	s32 ret_val;
554 
555 	ctrl = er32(CTRL);
556 	status = er32(STATUS);
557 	rxcw = er32(RXCW);
558 
559 	/* If we don't have link (auto-negotiation failed or link partner
560 	 * cannot auto-negotiate), and our link partner is not trying to
561 	 * auto-negotiate with us (we are receiving idles or data),
562 	 * we need to force link up. We also need to give auto-negotiation
563 	 * time to complete.
564 	 */
565 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
566 	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
567 		if (!mac->autoneg_failed) {
568 			mac->autoneg_failed = true;
569 			return 0;
570 		}
571 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
572 
573 		/* Disable auto-negotiation in the TXCW register */
574 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
575 
576 		/* Force link-up and also force full-duplex. */
577 		ctrl = er32(CTRL);
578 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
579 		ew32(CTRL, ctrl);
580 
581 		/* Configure Flow Control after forcing link up. */
582 		ret_val = e1000e_config_fc_after_link_up(hw);
583 		if (ret_val) {
584 			e_dbg("Error configuring flow control\n");
585 			return ret_val;
586 		}
587 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
588 		/* If we are forcing link and we are receiving /C/ ordered
589 		 * sets, re-enable auto-negotiation in the TXCW register
590 		 * and disable forced link in the Device Control register
591 		 * in an attempt to auto-negotiate with our link partner.
592 		 */
593 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
594 		ew32(TXCW, mac->txcw);
595 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
596 
597 		mac->serdes_has_link = true;
598 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
599 		/* If we force link for non-auto-negotiation switch, check
600 		 * link status based on MAC synchronization for internal
601 		 * serdes media type.
602 		 */
603 		/* SYNCH bit and IV bit are sticky. */
604 		usleep_range(10, 20);
605 		rxcw = er32(RXCW);
606 		if (rxcw & E1000_RXCW_SYNCH) {
607 			if (!(rxcw & E1000_RXCW_IV)) {
608 				mac->serdes_has_link = true;
609 				e_dbg("SERDES: Link up - forced.\n");
610 			}
611 		} else {
612 			mac->serdes_has_link = false;
613 			e_dbg("SERDES: Link down - force failed.\n");
614 		}
615 	}
616 
617 	if (E1000_TXCW_ANE & er32(TXCW)) {
618 		status = er32(STATUS);
619 		if (status & E1000_STATUS_LU) {
620 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
621 			usleep_range(10, 20);
622 			rxcw = er32(RXCW);
623 			if (rxcw & E1000_RXCW_SYNCH) {
624 				if (!(rxcw & E1000_RXCW_IV)) {
625 					mac->serdes_has_link = true;
626 					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
627 				} else {
628 					mac->serdes_has_link = false;
629 					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
630 				}
631 			} else {
632 				mac->serdes_has_link = false;
633 				e_dbg("SERDES: Link down - no sync.\n");
634 			}
635 		} else {
636 			mac->serdes_has_link = false;
637 			e_dbg("SERDES: Link down - autoneg failed\n");
638 		}
639 	}
640 
641 	return 0;
642 }
643 
644 /**
645  *  e1000_set_default_fc_generic - Set flow control default values
646  *  @hw: pointer to the HW structure
647  *
648  *  Read the EEPROM for the default values for flow control and store the
649  *  values.
650  **/
e1000_set_default_fc_generic(struct e1000_hw * hw)651 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
652 {
653 	s32 ret_val;
654 	u16 nvm_data;
655 
656 	/* Read and store word 0x0F of the EEPROM. This word contains bits
657 	 * that determine the hardware's default PAUSE (flow control) mode,
658 	 * a bit that determines whether the HW defaults to enabling or
659 	 * disabling auto-negotiation, and the direction of the
660 	 * SW defined pins. If there is no SW over-ride of the flow
661 	 * control setting, then the variable hw->fc will
662 	 * be initialized based on a value in the EEPROM.
663 	 */
664 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
665 
666 	if (ret_val) {
667 		e_dbg("NVM Read Error\n");
668 		return ret_val;
669 	}
670 
671 	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
672 		hw->fc.requested_mode = e1000_fc_none;
673 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
674 		hw->fc.requested_mode = e1000_fc_tx_pause;
675 	else
676 		hw->fc.requested_mode = e1000_fc_full;
677 
678 	return 0;
679 }
680 
681 /**
682  *  e1000e_setup_link_generic - Setup flow control and link settings
683  *  @hw: pointer to the HW structure
684  *
685  *  Determines which flow control settings to use, then configures flow
686  *  control.  Calls the appropriate media-specific link configuration
687  *  function.  Assuming the adapter has a valid link partner, a valid link
688  *  should be established.  Assumes the hardware has previously been reset
689  *  and the transmitter and receiver are not enabled.
690  **/
e1000e_setup_link_generic(struct e1000_hw * hw)691 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
692 {
693 	s32 ret_val;
694 
695 	/* In the case of the phy reset being blocked, we already have a link.
696 	 * We do not need to set it up again.
697 	 */
698 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
699 		return 0;
700 
701 	/* If requested flow control is set to default, set flow control
702 	 * based on the EEPROM flow control settings.
703 	 */
704 	if (hw->fc.requested_mode == e1000_fc_default) {
705 		ret_val = e1000_set_default_fc_generic(hw);
706 		if (ret_val)
707 			return ret_val;
708 	}
709 
710 	/* Save off the requested flow control mode for use later.  Depending
711 	 * on the link partner's capabilities, we may or may not use this mode.
712 	 */
713 	hw->fc.current_mode = hw->fc.requested_mode;
714 
715 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
716 
717 	/* Call the necessary media_type subroutine to configure the link. */
718 	ret_val = hw->mac.ops.setup_physical_interface(hw);
719 	if (ret_val)
720 		return ret_val;
721 
722 	/* Initialize the flow control address, type, and PAUSE timer
723 	 * registers to their default values.  This is done even if flow
724 	 * control is disabled, because it does not hurt anything to
725 	 * initialize these registers.
726 	 */
727 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
728 	ew32(FCT, FLOW_CONTROL_TYPE);
729 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
730 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
731 
732 	ew32(FCTTV, hw->fc.pause_time);
733 
734 	return e1000e_set_fc_watermarks(hw);
735 }
736 
737 /**
738  *  e1000_commit_fc_settings_generic - Configure flow control
739  *  @hw: pointer to the HW structure
740  *
741  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
742  *  base on the flow control settings in e1000_mac_info.
743  **/
e1000_commit_fc_settings_generic(struct e1000_hw * hw)744 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
745 {
746 	struct e1000_mac_info *mac = &hw->mac;
747 	u32 txcw;
748 
749 	/* Check for a software override of the flow control settings, and
750 	 * setup the device accordingly.  If auto-negotiation is enabled, then
751 	 * software will have to set the "PAUSE" bits to the correct value in
752 	 * the Transmit Config Word Register (TXCW) and re-start auto-
753 	 * negotiation.  However, if auto-negotiation is disabled, then
754 	 * software will have to manually configure the two flow control enable
755 	 * bits in the CTRL register.
756 	 *
757 	 * The possible values of the "fc" parameter are:
758 	 *      0:  Flow control is completely disabled
759 	 *      1:  Rx flow control is enabled (we can receive pause frames,
760 	 *          but not send pause frames).
761 	 *      2:  Tx flow control is enabled (we can send pause frames but we
762 	 *          do not support receiving pause frames).
763 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
764 	 */
765 	switch (hw->fc.current_mode) {
766 	case e1000_fc_none:
767 		/* Flow control completely disabled by a software over-ride. */
768 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
769 		break;
770 	case e1000_fc_rx_pause:
771 		/* Rx Flow control is enabled and Tx Flow control is disabled
772 		 * by a software over-ride. Since there really isn't a way to
773 		 * advertise that we are capable of Rx Pause ONLY, we will
774 		 * advertise that we support both symmetric and asymmetric Rx
775 		 * PAUSE.  Later, we will disable the adapter's ability to send
776 		 * PAUSE frames.
777 		 */
778 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
779 		break;
780 	case e1000_fc_tx_pause:
781 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
782 		 * by a software over-ride.
783 		 */
784 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
785 		break;
786 	case e1000_fc_full:
787 		/* Flow control (both Rx and Tx) is enabled by a software
788 		 * over-ride.
789 		 */
790 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
791 		break;
792 	default:
793 		e_dbg("Flow control param set incorrectly\n");
794 		return -E1000_ERR_CONFIG;
795 	}
796 
797 	ew32(TXCW, txcw);
798 	mac->txcw = txcw;
799 
800 	return 0;
801 }
802 
803 /**
804  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
805  *  @hw: pointer to the HW structure
806  *
807  *  Polls for link up by reading the status register, if link fails to come
808  *  up with auto-negotiation, then the link is forced if a signal is detected.
809  **/
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)810 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
811 {
812 	struct e1000_mac_info *mac = &hw->mac;
813 	u32 i, status;
814 	s32 ret_val;
815 
816 	/* If we have a signal (the cable is plugged in, or assumed true for
817 	 * serdes media) then poll for a "Link-Up" indication in the Device
818 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
819 	 * seconds (Auto-negotiation should complete in less than 500
820 	 * milliseconds even if the other end is doing it in SW).
821 	 */
822 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
823 		usleep_range(10000, 20000);
824 		status = er32(STATUS);
825 		if (status & E1000_STATUS_LU)
826 			break;
827 	}
828 	if (i == FIBER_LINK_UP_LIMIT) {
829 		e_dbg("Never got a valid link from auto-neg!!!\n");
830 		mac->autoneg_failed = true;
831 		/* AutoNeg failed to achieve a link, so we'll call
832 		 * mac->check_for_link. This routine will force the
833 		 * link up if we detect a signal. This will allow us to
834 		 * communicate with non-autonegotiating link partners.
835 		 */
836 		ret_val = mac->ops.check_for_link(hw);
837 		if (ret_val) {
838 			e_dbg("Error while checking for link\n");
839 			return ret_val;
840 		}
841 		mac->autoneg_failed = false;
842 	} else {
843 		mac->autoneg_failed = false;
844 		e_dbg("Valid Link Found\n");
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
852  *  @hw: pointer to the HW structure
853  *
854  *  Configures collision distance and flow control for fiber and serdes
855  *  links.  Upon successful setup, poll for link.
856  **/
e1000e_setup_fiber_serdes_link(struct e1000_hw * hw)857 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
858 {
859 	u32 ctrl;
860 	s32 ret_val;
861 
862 	ctrl = er32(CTRL);
863 
864 	/* Take the link out of reset */
865 	ctrl &= ~E1000_CTRL_LRST;
866 
867 	hw->mac.ops.config_collision_dist(hw);
868 
869 	ret_val = e1000_commit_fc_settings_generic(hw);
870 	if (ret_val)
871 		return ret_val;
872 
873 	/* Since auto-negotiation is enabled, take the link out of reset (the
874 	 * link will be in reset, because we previously reset the chip). This
875 	 * will restart auto-negotiation.  If auto-negotiation is successful
876 	 * then the link-up status bit will be set and the flow control enable
877 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
878 	 */
879 	e_dbg("Auto-negotiation enabled\n");
880 
881 	ew32(CTRL, ctrl);
882 	e1e_flush();
883 	usleep_range(1000, 2000);
884 
885 	/* For these adapters, the SW definable pin 1 is set when the optics
886 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
887 	 * indication.
888 	 */
889 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
890 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
891 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
892 	} else {
893 		e_dbg("No signal detected\n");
894 	}
895 
896 	return ret_val;
897 }
898 
899 /**
900  *  e1000e_config_collision_dist_generic - Configure collision distance
901  *  @hw: pointer to the HW structure
902  *
903  *  Configures the collision distance to the default value and is used
904  *  during link setup.
905  **/
e1000e_config_collision_dist_generic(struct e1000_hw * hw)906 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
907 {
908 	u32 tctl;
909 
910 	tctl = er32(TCTL);
911 
912 	tctl &= ~E1000_TCTL_COLD;
913 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
914 
915 	ew32(TCTL, tctl);
916 	e1e_flush();
917 }
918 
919 /**
920  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
921  *  @hw: pointer to the HW structure
922  *
923  *  Sets the flow control high/low threshold (watermark) registers.  If
924  *  flow control XON frame transmission is enabled, then set XON frame
925  *  transmission as well.
926  **/
e1000e_set_fc_watermarks(struct e1000_hw * hw)927 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
928 {
929 	u32 fcrtl = 0, fcrth = 0;
930 
931 	/* Set the flow control receive threshold registers.  Normally,
932 	 * these registers will be set to a default threshold that may be
933 	 * adjusted later by the driver's runtime code.  However, if the
934 	 * ability to transmit pause frames is not enabled, then these
935 	 * registers will be set to 0.
936 	 */
937 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
938 		/* We need to set up the Receive Threshold high and low water
939 		 * marks as well as (optionally) enabling the transmission of
940 		 * XON frames.
941 		 */
942 		fcrtl = hw->fc.low_water;
943 		if (hw->fc.send_xon)
944 			fcrtl |= E1000_FCRTL_XONE;
945 
946 		fcrth = hw->fc.high_water;
947 	}
948 	ew32(FCRTL, fcrtl);
949 	ew32(FCRTH, fcrth);
950 
951 	return 0;
952 }
953 
954 /**
955  *  e1000e_force_mac_fc - Force the MAC's flow control settings
956  *  @hw: pointer to the HW structure
957  *
958  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
959  *  device control register to reflect the adapter settings.  TFCE and RFCE
960  *  need to be explicitly set by software when a copper PHY is used because
961  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
962  *  also configure these bits when link is forced on a fiber connection.
963  **/
e1000e_force_mac_fc(struct e1000_hw * hw)964 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
965 {
966 	u32 ctrl;
967 
968 	ctrl = er32(CTRL);
969 
970 	/* Because we didn't get link via the internal auto-negotiation
971 	 * mechanism (we either forced link or we got link via PHY
972 	 * auto-neg), we have to manually enable/disable transmit an
973 	 * receive flow control.
974 	 *
975 	 * The "Case" statement below enables/disable flow control
976 	 * according to the "hw->fc.current_mode" parameter.
977 	 *
978 	 * The possible values of the "fc" parameter are:
979 	 *      0:  Flow control is completely disabled
980 	 *      1:  Rx flow control is enabled (we can receive pause
981 	 *          frames but not send pause frames).
982 	 *      2:  Tx flow control is enabled (we can send pause frames
983 	 *          frames but we do not receive pause frames).
984 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
985 	 *  other:  No other values should be possible at this point.
986 	 */
987 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
988 
989 	switch (hw->fc.current_mode) {
990 	case e1000_fc_none:
991 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
992 		break;
993 	case e1000_fc_rx_pause:
994 		ctrl &= (~E1000_CTRL_TFCE);
995 		ctrl |= E1000_CTRL_RFCE;
996 		break;
997 	case e1000_fc_tx_pause:
998 		ctrl &= (~E1000_CTRL_RFCE);
999 		ctrl |= E1000_CTRL_TFCE;
1000 		break;
1001 	case e1000_fc_full:
1002 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1003 		break;
1004 	default:
1005 		e_dbg("Flow control param set incorrectly\n");
1006 		return -E1000_ERR_CONFIG;
1007 	}
1008 
1009 	ew32(CTRL, ctrl);
1010 
1011 	return 0;
1012 }
1013 
1014 /**
1015  *  e1000e_config_fc_after_link_up - Configures flow control after link
1016  *  @hw: pointer to the HW structure
1017  *
1018  *  Checks the status of auto-negotiation after link up to ensure that the
1019  *  speed and duplex were not forced.  If the link needed to be forced, then
1020  *  flow control needs to be forced also.  If auto-negotiation is enabled
1021  *  and did not fail, then we configure flow control based on our link
1022  *  partner.
1023  **/
e1000e_config_fc_after_link_up(struct e1000_hw * hw)1024 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1025 {
1026 	struct e1000_mac_info *mac = &hw->mac;
1027 	s32 ret_val = 0;
1028 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1029 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1030 	u16 speed, duplex;
1031 
1032 	/* Check for the case where we have fiber media and auto-neg failed
1033 	 * so we had to force link.  In this case, we need to force the
1034 	 * configuration of the MAC to match the "fc" parameter.
1035 	 */
1036 	if (mac->autoneg_failed) {
1037 		if (hw->phy.media_type == e1000_media_type_fiber ||
1038 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1039 			ret_val = e1000e_force_mac_fc(hw);
1040 	} else {
1041 		if (hw->phy.media_type == e1000_media_type_copper)
1042 			ret_val = e1000e_force_mac_fc(hw);
1043 	}
1044 
1045 	if (ret_val) {
1046 		e_dbg("Error forcing flow control settings\n");
1047 		return ret_val;
1048 	}
1049 
1050 	/* Check for the case where we have copper media and auto-neg is
1051 	 * enabled.  In this case, we need to check and see if Auto-Neg
1052 	 * has completed, and if so, how the PHY and link partner has
1053 	 * flow control configured.
1054 	 */
1055 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1056 		/* Read the MII Status Register and check to see if AutoNeg
1057 		 * has completed.  We read this twice because this reg has
1058 		 * some "sticky" (latched) bits.
1059 		 */
1060 		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1061 		if (ret_val)
1062 			return ret_val;
1063 		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1064 		if (ret_val)
1065 			return ret_val;
1066 
1067 		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1068 			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1069 			return ret_val;
1070 		}
1071 
1072 		/* The AutoNeg process has completed, so we now need to
1073 		 * read both the Auto Negotiation Advertisement
1074 		 * Register (Address 4) and the Auto_Negotiation Base
1075 		 * Page Ability Register (Address 5) to determine how
1076 		 * flow control was negotiated.
1077 		 */
1078 		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1079 		if (ret_val)
1080 			return ret_val;
1081 		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1082 		if (ret_val)
1083 			return ret_val;
1084 
1085 		/* Two bits in the Auto Negotiation Advertisement Register
1086 		 * (Address 4) and two bits in the Auto Negotiation Base
1087 		 * Page Ability Register (Address 5) determine flow control
1088 		 * for both the PHY and the link partner.  The following
1089 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1090 		 * 1999, describes these PAUSE resolution bits and how flow
1091 		 * control is determined based upon these settings.
1092 		 * NOTE:  DC = Don't Care
1093 		 *
1094 		 *   LOCAL DEVICE  |   LINK PARTNER
1095 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1096 		 *-------|---------|-------|---------|--------------------
1097 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1098 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1099 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1100 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1101 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1102 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1103 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1104 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1105 		 *
1106 		 * Are both PAUSE bits set to 1?  If so, this implies
1107 		 * Symmetric Flow Control is enabled at both ends.  The
1108 		 * ASM_DIR bits are irrelevant per the spec.
1109 		 *
1110 		 * For Symmetric Flow Control:
1111 		 *
1112 		 *   LOCAL DEVICE  |   LINK PARTNER
1113 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1114 		 *-------|---------|-------|---------|--------------------
1115 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1116 		 *
1117 		 */
1118 		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1119 		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1120 			/* Now we need to check if the user selected Rx ONLY
1121 			 * of pause frames.  In this case, we had to advertise
1122 			 * FULL flow control because we could not advertise Rx
1123 			 * ONLY. Hence, we must now check to see if we need to
1124 			 * turn OFF the TRANSMISSION of PAUSE frames.
1125 			 */
1126 			if (hw->fc.requested_mode == e1000_fc_full) {
1127 				hw->fc.current_mode = e1000_fc_full;
1128 				e_dbg("Flow Control = FULL.\n");
1129 			} else {
1130 				hw->fc.current_mode = e1000_fc_rx_pause;
1131 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1132 			}
1133 		}
1134 		/* For receiving PAUSE frames ONLY.
1135 		 *
1136 		 *   LOCAL DEVICE  |   LINK PARTNER
1137 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1138 		 *-------|---------|-------|---------|--------------------
1139 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1140 		 */
1141 		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1142 			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1143 			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1144 			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1145 			hw->fc.current_mode = e1000_fc_tx_pause;
1146 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1147 		}
1148 		/* For transmitting PAUSE frames ONLY.
1149 		 *
1150 		 *   LOCAL DEVICE  |   LINK PARTNER
1151 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1152 		 *-------|---------|-------|---------|--------------------
1153 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1154 		 */
1155 		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1156 			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1157 			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1158 			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1159 			hw->fc.current_mode = e1000_fc_rx_pause;
1160 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1161 		} else {
1162 			/* Per the IEEE spec, at this point flow control
1163 			 * should be disabled.
1164 			 */
1165 			hw->fc.current_mode = e1000_fc_none;
1166 			e_dbg("Flow Control = NONE.\n");
1167 		}
1168 
1169 		/* Now we need to do one last check...  If we auto-
1170 		 * negotiated to HALF DUPLEX, flow control should not be
1171 		 * enabled per IEEE 802.3 spec.
1172 		 */
1173 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1174 		if (ret_val) {
1175 			e_dbg("Error getting link speed and duplex\n");
1176 			return ret_val;
1177 		}
1178 
1179 		if (duplex == HALF_DUPLEX)
1180 			hw->fc.current_mode = e1000_fc_none;
1181 
1182 		/* Now we call a subroutine to actually force the MAC
1183 		 * controller to use the correct flow control settings.
1184 		 */
1185 		ret_val = e1000e_force_mac_fc(hw);
1186 		if (ret_val) {
1187 			e_dbg("Error forcing flow control settings\n");
1188 			return ret_val;
1189 		}
1190 	}
1191 
1192 	/* Check for the case where we have SerDes media and auto-neg is
1193 	 * enabled.  In this case, we need to check and see if Auto-Neg
1194 	 * has completed, and if so, how the PHY and link partner has
1195 	 * flow control configured.
1196 	 */
1197 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1198 	    mac->autoneg) {
1199 		/* Read the PCS_LSTS and check to see if AutoNeg
1200 		 * has completed.
1201 		 */
1202 		pcs_status_reg = er32(PCS_LSTAT);
1203 
1204 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1205 			e_dbg("PCS Auto Neg has not completed.\n");
1206 			return ret_val;
1207 		}
1208 
1209 		/* The AutoNeg process has completed, so we now need to
1210 		 * read both the Auto Negotiation Advertisement
1211 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1212 		 * Page Ability Register (PCS_LPAB) to determine how
1213 		 * flow control was negotiated.
1214 		 */
1215 		pcs_adv_reg = er32(PCS_ANADV);
1216 		pcs_lp_ability_reg = er32(PCS_LPAB);
1217 
1218 		/* Two bits in the Auto Negotiation Advertisement Register
1219 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1220 		 * Page Ability Register (PCS_LPAB) determine flow control
1221 		 * for both the PHY and the link partner.  The following
1222 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1223 		 * 1999, describes these PAUSE resolution bits and how flow
1224 		 * control is determined based upon these settings.
1225 		 * NOTE:  DC = Don't Care
1226 		 *
1227 		 *   LOCAL DEVICE  |   LINK PARTNER
1228 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1229 		 *-------|---------|-------|---------|--------------------
1230 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1231 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1232 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1233 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1234 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1235 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1236 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1237 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1238 		 *
1239 		 * Are both PAUSE bits set to 1?  If so, this implies
1240 		 * Symmetric Flow Control is enabled at both ends.  The
1241 		 * ASM_DIR bits are irrelevant per the spec.
1242 		 *
1243 		 * For Symmetric Flow Control:
1244 		 *
1245 		 *   LOCAL DEVICE  |   LINK PARTNER
1246 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1247 		 *-------|---------|-------|---------|--------------------
1248 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1249 		 *
1250 		 */
1251 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1252 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1253 			/* Now we need to check if the user selected Rx ONLY
1254 			 * of pause frames.  In this case, we had to advertise
1255 			 * FULL flow control because we could not advertise Rx
1256 			 * ONLY. Hence, we must now check to see if we need to
1257 			 * turn OFF the TRANSMISSION of PAUSE frames.
1258 			 */
1259 			if (hw->fc.requested_mode == e1000_fc_full) {
1260 				hw->fc.current_mode = e1000_fc_full;
1261 				e_dbg("Flow Control = FULL.\n");
1262 			} else {
1263 				hw->fc.current_mode = e1000_fc_rx_pause;
1264 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1265 			}
1266 		}
1267 		/* For receiving PAUSE frames ONLY.
1268 		 *
1269 		 *   LOCAL DEVICE  |   LINK PARTNER
1270 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1271 		 *-------|---------|-------|---------|--------------------
1272 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1273 		 */
1274 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1275 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1276 			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1277 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1278 			hw->fc.current_mode = e1000_fc_tx_pause;
1279 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1280 		}
1281 		/* For transmitting PAUSE frames ONLY.
1282 		 *
1283 		 *   LOCAL DEVICE  |   LINK PARTNER
1284 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1285 		 *-------|---------|-------|---------|--------------------
1286 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1287 		 */
1288 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1289 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1290 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1291 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1292 			hw->fc.current_mode = e1000_fc_rx_pause;
1293 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1294 		} else {
1295 			/* Per the IEEE spec, at this point flow control
1296 			 * should be disabled.
1297 			 */
1298 			hw->fc.current_mode = e1000_fc_none;
1299 			e_dbg("Flow Control = NONE.\n");
1300 		}
1301 
1302 		/* Now we call a subroutine to actually force the MAC
1303 		 * controller to use the correct flow control settings.
1304 		 */
1305 		pcs_ctrl_reg = er32(PCS_LCTL);
1306 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1307 		ew32(PCS_LCTL, pcs_ctrl_reg);
1308 
1309 		ret_val = e1000e_force_mac_fc(hw);
1310 		if (ret_val) {
1311 			e_dbg("Error forcing flow control settings\n");
1312 			return ret_val;
1313 		}
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1321  *  @hw: pointer to the HW structure
1322  *  @speed: stores the current speed
1323  *  @duplex: stores the current duplex
1324  *
1325  *  Read the status register for the current speed/duplex and store the current
1326  *  speed and duplex for copper connections.
1327  **/
e1000e_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1328 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1329 				       u16 *duplex)
1330 {
1331 	u32 status;
1332 
1333 	status = er32(STATUS);
1334 	if (status & E1000_STATUS_SPEED_1000)
1335 		*speed = SPEED_1000;
1336 	else if (status & E1000_STATUS_SPEED_100)
1337 		*speed = SPEED_100;
1338 	else
1339 		*speed = SPEED_10;
1340 
1341 	if (status & E1000_STATUS_FD)
1342 		*duplex = FULL_DUPLEX;
1343 	else
1344 		*duplex = HALF_DUPLEX;
1345 
1346 	e_dbg("%u Mbps, %s Duplex\n",
1347 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1348 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1355  *  @hw: pointer to the HW structure
1356  *  @speed: stores the current speed
1357  *  @duplex: stores the current duplex
1358  *
1359  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1360  *  for fiber/serdes links.
1361  **/
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused * hw,u16 * speed,u16 * duplex)1362 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1363 					     *hw, u16 *speed, u16 *duplex)
1364 {
1365 	*speed = SPEED_1000;
1366 	*duplex = FULL_DUPLEX;
1367 
1368 	return 0;
1369 }
1370 
1371 /**
1372  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1373  *  @hw: pointer to the HW structure
1374  *
1375  *  Acquire the HW semaphore to access the PHY or NVM
1376  **/
e1000e_get_hw_semaphore(struct e1000_hw * hw)1377 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1378 {
1379 	u32 swsm;
1380 	s32 timeout = hw->nvm.word_size + 1;
1381 	s32 i = 0;
1382 
1383 	/* Get the SW semaphore */
1384 	while (i < timeout) {
1385 		swsm = er32(SWSM);
1386 		if (!(swsm & E1000_SWSM_SMBI))
1387 			break;
1388 
1389 		usleep_range(50, 100);
1390 		i++;
1391 	}
1392 
1393 	if (i == timeout) {
1394 		e_dbg("Driver can't access device - SMBI bit is set.\n");
1395 		return -E1000_ERR_NVM;
1396 	}
1397 
1398 	/* Get the FW semaphore. */
1399 	for (i = 0; i < timeout; i++) {
1400 		swsm = er32(SWSM);
1401 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1402 
1403 		/* Semaphore acquired if bit latched */
1404 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1405 			break;
1406 
1407 		usleep_range(50, 100);
1408 	}
1409 
1410 	if (i == timeout) {
1411 		/* Release semaphores */
1412 		e1000e_put_hw_semaphore(hw);
1413 		e_dbg("Driver can't access the NVM\n");
1414 		return -E1000_ERR_NVM;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 /**
1421  *  e1000e_put_hw_semaphore - Release hardware semaphore
1422  *  @hw: pointer to the HW structure
1423  *
1424  *  Release hardware semaphore used to access the PHY or NVM
1425  **/
e1000e_put_hw_semaphore(struct e1000_hw * hw)1426 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1427 {
1428 	u32 swsm;
1429 
1430 	swsm = er32(SWSM);
1431 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1432 	ew32(SWSM, swsm);
1433 }
1434 
1435 /**
1436  *  e1000e_get_auto_rd_done - Check for auto read completion
1437  *  @hw: pointer to the HW structure
1438  *
1439  *  Check EEPROM for Auto Read done bit.
1440  **/
e1000e_get_auto_rd_done(struct e1000_hw * hw)1441 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1442 {
1443 	s32 i = 0;
1444 
1445 	while (i < AUTO_READ_DONE_TIMEOUT) {
1446 		if (er32(EECD) & E1000_EECD_AUTO_RD)
1447 			break;
1448 		usleep_range(1000, 2000);
1449 		i++;
1450 	}
1451 
1452 	if (i == AUTO_READ_DONE_TIMEOUT) {
1453 		e_dbg("Auto read by HW from NVM has not completed.\n");
1454 		return -E1000_ERR_RESET;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  *  e1000e_valid_led_default - Verify a valid default LED config
1462  *  @hw: pointer to the HW structure
1463  *  @data: pointer to the NVM (EEPROM)
1464  *
1465  *  Read the EEPROM for the current default LED configuration.  If the
1466  *  LED configuration is not valid, set to a valid LED configuration.
1467  **/
e1000e_valid_led_default(struct e1000_hw * hw,u16 * data)1468 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1469 {
1470 	s32 ret_val;
1471 
1472 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1473 	if (ret_val) {
1474 		e_dbg("NVM Read Error\n");
1475 		return ret_val;
1476 	}
1477 
1478 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1479 		*data = ID_LED_DEFAULT;
1480 
1481 	return 0;
1482 }
1483 
1484 /**
1485  *  e1000e_id_led_init_generic -
1486  *  @hw: pointer to the HW structure
1487  *
1488  **/
e1000e_id_led_init_generic(struct e1000_hw * hw)1489 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1490 {
1491 	struct e1000_mac_info *mac = &hw->mac;
1492 	s32 ret_val;
1493 	const u32 ledctl_mask = 0x000000FF;
1494 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1495 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1496 	u16 data, i, temp;
1497 	const u16 led_mask = 0x0F;
1498 
1499 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1500 	if (ret_val)
1501 		return ret_val;
1502 
1503 	mac->ledctl_default = er32(LEDCTL);
1504 	mac->ledctl_mode1 = mac->ledctl_default;
1505 	mac->ledctl_mode2 = mac->ledctl_default;
1506 
1507 	for (i = 0; i < 4; i++) {
1508 		temp = (data >> (i << 2)) & led_mask;
1509 		switch (temp) {
1510 		case ID_LED_ON1_DEF2:
1511 		case ID_LED_ON1_ON2:
1512 		case ID_LED_ON1_OFF2:
1513 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1514 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1515 			break;
1516 		case ID_LED_OFF1_DEF2:
1517 		case ID_LED_OFF1_ON2:
1518 		case ID_LED_OFF1_OFF2:
1519 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1520 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1521 			break;
1522 		default:
1523 			/* Do nothing */
1524 			break;
1525 		}
1526 		switch (temp) {
1527 		case ID_LED_DEF1_ON2:
1528 		case ID_LED_ON1_ON2:
1529 		case ID_LED_OFF1_ON2:
1530 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1531 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1532 			break;
1533 		case ID_LED_DEF1_OFF2:
1534 		case ID_LED_ON1_OFF2:
1535 		case ID_LED_OFF1_OFF2:
1536 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1537 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1538 			break;
1539 		default:
1540 			/* Do nothing */
1541 			break;
1542 		}
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 /**
1549  *  e1000e_setup_led_generic - Configures SW controllable LED
1550  *  @hw: pointer to the HW structure
1551  *
1552  *  This prepares the SW controllable LED for use and saves the current state
1553  *  of the LED so it can be later restored.
1554  **/
e1000e_setup_led_generic(struct e1000_hw * hw)1555 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1556 {
1557 	u32 ledctl;
1558 
1559 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1560 		return -E1000_ERR_CONFIG;
1561 
1562 	if (hw->phy.media_type == e1000_media_type_fiber) {
1563 		ledctl = er32(LEDCTL);
1564 		hw->mac.ledctl_default = ledctl;
1565 		/* Turn off LED0 */
1566 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1567 			    E1000_LEDCTL_LED0_MODE_MASK);
1568 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1569 			   E1000_LEDCTL_LED0_MODE_SHIFT);
1570 		ew32(LEDCTL, ledctl);
1571 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1572 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  *  e1000e_cleanup_led_generic - Set LED config to default operation
1580  *  @hw: pointer to the HW structure
1581  *
1582  *  Remove the current LED configuration and set the LED configuration
1583  *  to the default value, saved from the EEPROM.
1584  **/
e1000e_cleanup_led_generic(struct e1000_hw * hw)1585 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1586 {
1587 	ew32(LEDCTL, hw->mac.ledctl_default);
1588 	return 0;
1589 }
1590 
1591 /**
1592  *  e1000e_blink_led_generic - Blink LED
1593  *  @hw: pointer to the HW structure
1594  *
1595  *  Blink the LEDs which are set to be on.
1596  **/
e1000e_blink_led_generic(struct e1000_hw * hw)1597 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1598 {
1599 	u32 ledctl_blink = 0;
1600 	u32 i;
1601 
1602 	if (hw->phy.media_type == e1000_media_type_fiber) {
1603 		/* always blink LED0 for PCI-E fiber */
1604 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1605 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1606 	} else {
1607 		/* Set the blink bit for each LED that's "on" (0x0E)
1608 		 * (or "off" if inverted) in ledctl_mode2.  The blink
1609 		 * logic in hardware only works when mode is set to "on"
1610 		 * so it must be changed accordingly when the mode is
1611 		 * "off" and inverted.
1612 		 */
1613 		ledctl_blink = hw->mac.ledctl_mode2;
1614 		for (i = 0; i < 32; i += 8) {
1615 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1616 			    E1000_LEDCTL_LED0_MODE_MASK;
1617 			u32 led_default = hw->mac.ledctl_default >> i;
1618 
1619 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1620 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1621 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1622 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1623 				ledctl_blink &=
1624 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1625 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1626 						 E1000_LEDCTL_MODE_LED_ON) << i;
1627 			}
1628 		}
1629 	}
1630 
1631 	ew32(LEDCTL, ledctl_blink);
1632 
1633 	return 0;
1634 }
1635 
1636 /**
1637  *  e1000e_led_on_generic - Turn LED on
1638  *  @hw: pointer to the HW structure
1639  *
1640  *  Turn LED on.
1641  **/
e1000e_led_on_generic(struct e1000_hw * hw)1642 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1643 {
1644 	u32 ctrl;
1645 
1646 	switch (hw->phy.media_type) {
1647 	case e1000_media_type_fiber:
1648 		ctrl = er32(CTRL);
1649 		ctrl &= ~E1000_CTRL_SWDPIN0;
1650 		ctrl |= E1000_CTRL_SWDPIO0;
1651 		ew32(CTRL, ctrl);
1652 		break;
1653 	case e1000_media_type_copper:
1654 		ew32(LEDCTL, hw->mac.ledctl_mode2);
1655 		break;
1656 	default:
1657 		break;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  *  e1000e_led_off_generic - Turn LED off
1665  *  @hw: pointer to the HW structure
1666  *
1667  *  Turn LED off.
1668  **/
e1000e_led_off_generic(struct e1000_hw * hw)1669 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1670 {
1671 	u32 ctrl;
1672 
1673 	switch (hw->phy.media_type) {
1674 	case e1000_media_type_fiber:
1675 		ctrl = er32(CTRL);
1676 		ctrl |= E1000_CTRL_SWDPIN0;
1677 		ctrl |= E1000_CTRL_SWDPIO0;
1678 		ew32(CTRL, ctrl);
1679 		break;
1680 	case e1000_media_type_copper:
1681 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1682 		break;
1683 	default:
1684 		break;
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1692  *  @hw: pointer to the HW structure
1693  *  @no_snoop: bitmap of snoop events
1694  *
1695  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1696  **/
e1000e_set_pcie_no_snoop(struct e1000_hw * hw,u32 no_snoop)1697 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1698 {
1699 	u32 gcr;
1700 
1701 	if (no_snoop) {
1702 		gcr = er32(GCR);
1703 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1704 		gcr |= no_snoop;
1705 		ew32(GCR, gcr);
1706 	}
1707 }
1708 
1709 /**
1710  *  e1000e_disable_pcie_master - Disables PCI-express master access
1711  *  @hw: pointer to the HW structure
1712  *
1713  *  Returns 0 if successful, else returns -10
1714  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1715  *  the master requests to be disabled.
1716  *
1717  *  Disables PCI-Express master access and verifies there are no pending
1718  *  requests.
1719  **/
e1000e_disable_pcie_master(struct e1000_hw * hw)1720 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1721 {
1722 	u32 ctrl;
1723 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1724 
1725 	ctrl = er32(CTRL);
1726 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1727 	ew32(CTRL, ctrl);
1728 
1729 	while (timeout) {
1730 		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1731 			break;
1732 		usleep_range(100, 200);
1733 		timeout--;
1734 	}
1735 
1736 	if (!timeout) {
1737 		e_dbg("Master requests are pending.\n");
1738 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 /**
1745  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1746  *  @hw: pointer to the HW structure
1747  *
1748  *  Reset the Adaptive Interframe Spacing throttle to default values.
1749  **/
e1000e_reset_adaptive(struct e1000_hw * hw)1750 void e1000e_reset_adaptive(struct e1000_hw *hw)
1751 {
1752 	struct e1000_mac_info *mac = &hw->mac;
1753 
1754 	if (!mac->adaptive_ifs) {
1755 		e_dbg("Not in Adaptive IFS mode!\n");
1756 		return;
1757 	}
1758 
1759 	mac->current_ifs_val = 0;
1760 	mac->ifs_min_val = IFS_MIN;
1761 	mac->ifs_max_val = IFS_MAX;
1762 	mac->ifs_step_size = IFS_STEP;
1763 	mac->ifs_ratio = IFS_RATIO;
1764 
1765 	mac->in_ifs_mode = false;
1766 	ew32(AIT, 0);
1767 }
1768 
1769 /**
1770  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1771  *  @hw: pointer to the HW structure
1772  *
1773  *  Update the Adaptive Interframe Spacing Throttle value based on the
1774  *  time between transmitted packets and time between collisions.
1775  **/
e1000e_update_adaptive(struct e1000_hw * hw)1776 void e1000e_update_adaptive(struct e1000_hw *hw)
1777 {
1778 	struct e1000_mac_info *mac = &hw->mac;
1779 
1780 	if (!mac->adaptive_ifs) {
1781 		e_dbg("Not in Adaptive IFS mode!\n");
1782 		return;
1783 	}
1784 
1785 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1786 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1787 			mac->in_ifs_mode = true;
1788 			if (mac->current_ifs_val < mac->ifs_max_val) {
1789 				if (!mac->current_ifs_val)
1790 					mac->current_ifs_val = mac->ifs_min_val;
1791 				else
1792 					mac->current_ifs_val +=
1793 					    mac->ifs_step_size;
1794 				ew32(AIT, mac->current_ifs_val);
1795 			}
1796 		}
1797 	} else {
1798 		if (mac->in_ifs_mode &&
1799 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1800 			mac->current_ifs_val = 0;
1801 			mac->in_ifs_mode = false;
1802 			ew32(AIT, 0);
1803 		}
1804 	}
1805 }
1806