1 #define pr_fmt(fmt) "efi: " fmt
2
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 #include <asm/efi.h>
15 #include <asm/uv/uv.h>
16
17 #define EFI_MIN_RESERVE 5120
18
19 #define EFI_DUMMY_GUID \
20 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
21
22 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
23
24 static bool efi_no_storage_paranoia;
25
26 /*
27 * Some firmware implementations refuse to boot if there's insufficient
28 * space in the variable store. The implementation of garbage collection
29 * in some FW versions causes stale (deleted) variables to take up space
30 * longer than intended and space is only freed once the store becomes
31 * almost completely full.
32 *
33 * Enabling this option disables the space checks in
34 * efi_query_variable_store() and forces garbage collection.
35 *
36 * Only enable this option if deleting EFI variables does not free up
37 * space in your variable store, e.g. if despite deleting variables
38 * you're unable to create new ones.
39 */
setup_storage_paranoia(char * arg)40 static int __init setup_storage_paranoia(char *arg)
41 {
42 efi_no_storage_paranoia = true;
43 return 0;
44 }
45 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
46
47 /*
48 * Deleting the dummy variable which kicks off garbage collection
49 */
efi_delete_dummy_variable(void)50 void efi_delete_dummy_variable(void)
51 {
52 efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
53 EFI_VARIABLE_NON_VOLATILE |
54 EFI_VARIABLE_BOOTSERVICE_ACCESS |
55 EFI_VARIABLE_RUNTIME_ACCESS,
56 0, NULL);
57 }
58
59 /*
60 * In the nonblocking case we do not attempt to perform garbage
61 * collection if we do not have enough free space. Rather, we do the
62 * bare minimum check and give up immediately if the available space
63 * is below EFI_MIN_RESERVE.
64 *
65 * This function is intended to be small and simple because it is
66 * invoked from crash handler paths.
67 */
68 static efi_status_t
query_variable_store_nonblocking(u32 attributes,unsigned long size)69 query_variable_store_nonblocking(u32 attributes, unsigned long size)
70 {
71 efi_status_t status;
72 u64 storage_size, remaining_size, max_size;
73
74 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
75 &remaining_size,
76 &max_size);
77 if (status != EFI_SUCCESS)
78 return status;
79
80 if (remaining_size - size < EFI_MIN_RESERVE)
81 return EFI_OUT_OF_RESOURCES;
82
83 return EFI_SUCCESS;
84 }
85
86 /*
87 * Some firmware implementations refuse to boot if there's insufficient space
88 * in the variable store. Ensure that we never use more than a safe limit.
89 *
90 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
91 * store.
92 */
efi_query_variable_store(u32 attributes,unsigned long size,bool nonblocking)93 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
94 bool nonblocking)
95 {
96 efi_status_t status;
97 u64 storage_size, remaining_size, max_size;
98
99 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
100 return 0;
101
102 if (nonblocking)
103 return query_variable_store_nonblocking(attributes, size);
104
105 status = efi.query_variable_info(attributes, &storage_size,
106 &remaining_size, &max_size);
107 if (status != EFI_SUCCESS)
108 return status;
109
110 /*
111 * We account for that by refusing the write if permitting it would
112 * reduce the available space to under 5KB. This figure was provided by
113 * Samsung, so should be safe.
114 */
115 if ((remaining_size - size < EFI_MIN_RESERVE) &&
116 !efi_no_storage_paranoia) {
117
118 /*
119 * Triggering garbage collection may require that the firmware
120 * generate a real EFI_OUT_OF_RESOURCES error. We can force
121 * that by attempting to use more space than is available.
122 */
123 unsigned long dummy_size = remaining_size + 1024;
124 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
125
126 if (!dummy)
127 return EFI_OUT_OF_RESOURCES;
128
129 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
130 EFI_VARIABLE_NON_VOLATILE |
131 EFI_VARIABLE_BOOTSERVICE_ACCESS |
132 EFI_VARIABLE_RUNTIME_ACCESS,
133 dummy_size, dummy);
134
135 if (status == EFI_SUCCESS) {
136 /*
137 * This should have failed, so if it didn't make sure
138 * that we delete it...
139 */
140 efi_delete_dummy_variable();
141 }
142
143 kfree(dummy);
144
145 /*
146 * The runtime code may now have triggered a garbage collection
147 * run, so check the variable info again
148 */
149 status = efi.query_variable_info(attributes, &storage_size,
150 &remaining_size, &max_size);
151
152 if (status != EFI_SUCCESS)
153 return status;
154
155 /*
156 * There still isn't enough room, so return an error
157 */
158 if (remaining_size - size < EFI_MIN_RESERVE)
159 return EFI_OUT_OF_RESOURCES;
160 }
161
162 return EFI_SUCCESS;
163 }
164 EXPORT_SYMBOL_GPL(efi_query_variable_store);
165
166 /*
167 * The UEFI specification makes it clear that the operating system is
168 * free to do whatever it wants with boot services code after
169 * ExitBootServices() has been called. Ignoring this recommendation a
170 * significant bunch of EFI implementations continue calling into boot
171 * services code (SetVirtualAddressMap). In order to work around such
172 * buggy implementations we reserve boot services region during EFI
173 * init and make sure it stays executable. Then, after
174 * SetVirtualAddressMap(), it is discarded.
175 *
176 * However, some boot services regions contain data that is required
177 * by drivers, so we need to track which memory ranges can never be
178 * freed. This is done by tagging those regions with the
179 * EFI_MEMORY_RUNTIME attribute.
180 *
181 * Any driver that wants to mark a region as reserved must use
182 * efi_mem_reserve() which will insert a new EFI memory descriptor
183 * into efi.memmap (splitting existing regions if necessary) and tag
184 * it with EFI_MEMORY_RUNTIME.
185 */
efi_arch_mem_reserve(phys_addr_t addr,u64 size)186 void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
187 {
188 phys_addr_t new_phys, new_size;
189 struct efi_mem_range mr;
190 efi_memory_desc_t md;
191 int num_entries;
192 void *new;
193
194 if (efi_mem_desc_lookup(addr, &md)) {
195 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
196 return;
197 }
198
199 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
200 pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
201 return;
202 }
203
204 /* No need to reserve regions that will never be freed. */
205 if (md.attribute & EFI_MEMORY_RUNTIME)
206 return;
207
208 size += addr % EFI_PAGE_SIZE;
209 size = round_up(size, EFI_PAGE_SIZE);
210 addr = round_down(addr, EFI_PAGE_SIZE);
211
212 mr.range.start = addr;
213 mr.range.end = addr + size - 1;
214 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
215
216 num_entries = efi_memmap_split_count(&md, &mr.range);
217 num_entries += efi.memmap.nr_map;
218
219 new_size = efi.memmap.desc_size * num_entries;
220
221 new_phys = efi_memmap_alloc(num_entries);
222 if (!new_phys) {
223 pr_err("Could not allocate boot services memmap\n");
224 return;
225 }
226
227 new = early_memremap(new_phys, new_size);
228 if (!new) {
229 pr_err("Failed to map new boot services memmap\n");
230 return;
231 }
232
233 efi_memmap_insert(&efi.memmap, new, &mr);
234 early_memunmap(new, new_size);
235
236 efi_memmap_install(new_phys, num_entries);
237 }
238
239 /*
240 * Helper function for efi_reserve_boot_services() to figure out if we
241 * can free regions in efi_free_boot_services().
242 *
243 * Use this function to ensure we do not free regions owned by somebody
244 * else. We must only reserve (and then free) regions:
245 *
246 * - Not within any part of the kernel
247 * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
248 */
can_free_region(u64 start,u64 size)249 static bool can_free_region(u64 start, u64 size)
250 {
251 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
252 return false;
253
254 if (!e820_all_mapped(start, start+size, E820_RAM))
255 return false;
256
257 return true;
258 }
259
efi_reserve_boot_services(void)260 void __init efi_reserve_boot_services(void)
261 {
262 efi_memory_desc_t *md;
263
264 for_each_efi_memory_desc(md) {
265 u64 start = md->phys_addr;
266 u64 size = md->num_pages << EFI_PAGE_SHIFT;
267 bool already_reserved;
268
269 if (md->type != EFI_BOOT_SERVICES_CODE &&
270 md->type != EFI_BOOT_SERVICES_DATA)
271 continue;
272
273 already_reserved = memblock_is_region_reserved(start, size);
274
275 /*
276 * Because the following memblock_reserve() is paired
277 * with free_bootmem_late() for this region in
278 * efi_free_boot_services(), we must be extremely
279 * careful not to reserve, and subsequently free,
280 * critical regions of memory (like the kernel image) or
281 * those regions that somebody else has already
282 * reserved.
283 *
284 * A good example of a critical region that must not be
285 * freed is page zero (first 4Kb of memory), which may
286 * contain boot services code/data but is marked
287 * E820_RESERVED by trim_bios_range().
288 */
289 if (!already_reserved) {
290 memblock_reserve(start, size);
291
292 /*
293 * If we are the first to reserve the region, no
294 * one else cares about it. We own it and can
295 * free it later.
296 */
297 if (can_free_region(start, size))
298 continue;
299 }
300
301 /*
302 * We don't own the region. We must not free it.
303 *
304 * Setting this bit for a boot services region really
305 * doesn't make sense as far as the firmware is
306 * concerned, but it does provide us with a way to tag
307 * those regions that must not be paired with
308 * free_bootmem_late().
309 */
310 md->attribute |= EFI_MEMORY_RUNTIME;
311 }
312 }
313
efi_free_boot_services(void)314 void __init efi_free_boot_services(void)
315 {
316 phys_addr_t new_phys, new_size;
317 efi_memory_desc_t *md;
318 int num_entries = 0;
319 void *new, *new_md;
320
321 for_each_efi_memory_desc(md) {
322 unsigned long long start = md->phys_addr;
323 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
324 size_t rm_size;
325
326 if (md->type != EFI_BOOT_SERVICES_CODE &&
327 md->type != EFI_BOOT_SERVICES_DATA) {
328 num_entries++;
329 continue;
330 }
331
332 /* Do not free, someone else owns it: */
333 if (md->attribute & EFI_MEMORY_RUNTIME) {
334 num_entries++;
335 continue;
336 }
337
338 /*
339 * Nasty quirk: if all sub-1MB memory is used for boot
340 * services, we can get here without having allocated the
341 * real mode trampoline. It's too late to hand boot services
342 * memory back to the memblock allocator, so instead
343 * try to manually allocate the trampoline if needed.
344 *
345 * I've seen this on a Dell XPS 13 9350 with firmware
346 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
347 * grub2-efi on a hard disk. (And no, I don't know why
348 * this happened, but Linux should still try to boot rather
349 * panicing early.)
350 */
351 rm_size = real_mode_size_needed();
352 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
353 set_real_mode_mem(start, rm_size);
354 start += rm_size;
355 size -= rm_size;
356 }
357
358 free_bootmem_late(start, size);
359 }
360
361 if (!num_entries)
362 return;
363
364 new_size = efi.memmap.desc_size * num_entries;
365 new_phys = efi_memmap_alloc(num_entries);
366 if (!new_phys) {
367 pr_err("Failed to allocate new EFI memmap\n");
368 return;
369 }
370
371 new = memremap(new_phys, new_size, MEMREMAP_WB);
372 if (!new) {
373 pr_err("Failed to map new EFI memmap\n");
374 return;
375 }
376
377 /*
378 * Build a new EFI memmap that excludes any boot services
379 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
380 * regions have now been freed.
381 */
382 new_md = new;
383 for_each_efi_memory_desc(md) {
384 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
385 (md->type == EFI_BOOT_SERVICES_CODE ||
386 md->type == EFI_BOOT_SERVICES_DATA))
387 continue;
388
389 memcpy(new_md, md, efi.memmap.desc_size);
390 new_md += efi.memmap.desc_size;
391 }
392
393 memunmap(new);
394
395 if (efi_memmap_install(new_phys, num_entries)) {
396 pr_err("Could not install new EFI memmap\n");
397 return;
398 }
399 }
400
401 /*
402 * A number of config table entries get remapped to virtual addresses
403 * after entering EFI virtual mode. However, the kexec kernel requires
404 * their physical addresses therefore we pass them via setup_data and
405 * correct those entries to their respective physical addresses here.
406 *
407 * Currently only handles smbios which is necessary for some firmware
408 * implementation.
409 */
efi_reuse_config(u64 tables,int nr_tables)410 int __init efi_reuse_config(u64 tables, int nr_tables)
411 {
412 int i, sz, ret = 0;
413 void *p, *tablep;
414 struct efi_setup_data *data;
415
416 if (!efi_setup)
417 return 0;
418
419 if (!efi_enabled(EFI_64BIT))
420 return 0;
421
422 data = early_memremap(efi_setup, sizeof(*data));
423 if (!data) {
424 ret = -ENOMEM;
425 goto out;
426 }
427
428 if (!data->smbios)
429 goto out_memremap;
430
431 sz = sizeof(efi_config_table_64_t);
432
433 p = tablep = early_memremap(tables, nr_tables * sz);
434 if (!p) {
435 pr_err("Could not map Configuration table!\n");
436 ret = -ENOMEM;
437 goto out_memremap;
438 }
439
440 for (i = 0; i < efi.systab->nr_tables; i++) {
441 efi_guid_t guid;
442
443 guid = ((efi_config_table_64_t *)p)->guid;
444
445 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
446 ((efi_config_table_64_t *)p)->table = data->smbios;
447 p += sz;
448 }
449 early_memunmap(tablep, nr_tables * sz);
450
451 out_memremap:
452 early_memunmap(data, sizeof(*data));
453 out:
454 return ret;
455 }
456
457 static const struct dmi_system_id sgi_uv1_dmi[] = {
458 { NULL, "SGI UV1",
459 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
460 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
461 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
462 }
463 },
464 { } /* NULL entry stops DMI scanning */
465 };
466
efi_apply_memmap_quirks(void)467 void __init efi_apply_memmap_quirks(void)
468 {
469 /*
470 * Once setup is done earlier, unmap the EFI memory map on mismatched
471 * firmware/kernel architectures since there is no support for runtime
472 * services.
473 */
474 if (!efi_runtime_supported()) {
475 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
476 efi_memmap_unmap();
477 }
478
479 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
480 if (dmi_check_system(sgi_uv1_dmi))
481 set_bit(EFI_OLD_MEMMAP, &efi.flags);
482 }
483
484 /*
485 * For most modern platforms the preferred method of powering off is via
486 * ACPI. However, there are some that are known to require the use of
487 * EFI runtime services and for which ACPI does not work at all.
488 *
489 * Using EFI is a last resort, to be used only if no other option
490 * exists.
491 */
efi_reboot_required(void)492 bool efi_reboot_required(void)
493 {
494 if (!acpi_gbl_reduced_hardware)
495 return false;
496
497 efi_reboot_quirk_mode = EFI_RESET_WARM;
498 return true;
499 }
500
efi_poweroff_required(void)501 bool efi_poweroff_required(void)
502 {
503 return acpi_gbl_reduced_hardware || acpi_no_s5;
504 }
505