• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EFI stub implementation that is shared by arm and arm64 architectures.
3  * This should be #included by the EFI stub implementation files.
4  *
5  * Copyright (C) 2013,2014 Linaro Limited
6  *     Roy Franz <roy.franz@linaro.org
7  * Copyright (C) 2013 Red Hat, Inc.
8  *     Mark Salter <msalter@redhat.com>
9  *
10  * This file is part of the Linux kernel, and is made available under the
11  * terms of the GNU General Public License version 2.
12  *
13  */
14 
15 #include <linux/efi.h>
16 #include <linux/sort.h>
17 #include <asm/efi.h>
18 
19 #include "efistub.h"
20 
efi_get_secureboot(efi_system_table_t * sys_table_arg)21 static int efi_get_secureboot(efi_system_table_t *sys_table_arg)
22 {
23 	static efi_char16_t const sb_var_name[] = {
24 		'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
25 	static efi_char16_t const sm_var_name[] = {
26 		'S', 'e', 't', 'u', 'p', 'M', 'o', 'd', 'e', 0 };
27 
28 	efi_guid_t var_guid = EFI_GLOBAL_VARIABLE_GUID;
29 	efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
30 	u8 val;
31 	unsigned long size = sizeof(val);
32 	efi_status_t status;
33 
34 	status = f_getvar((efi_char16_t *)sb_var_name, (efi_guid_t *)&var_guid,
35 			  NULL, &size, &val);
36 
37 	if (status != EFI_SUCCESS)
38 		goto out_efi_err;
39 
40 	if (val == 0)
41 		return 0;
42 
43 	status = f_getvar((efi_char16_t *)sm_var_name, (efi_guid_t *)&var_guid,
44 			  NULL, &size, &val);
45 
46 	if (status != EFI_SUCCESS)
47 		goto out_efi_err;
48 
49 	if (val == 1)
50 		return 0;
51 
52 	return 1;
53 
54 out_efi_err:
55 	switch (status) {
56 	case EFI_NOT_FOUND:
57 		return 0;
58 	case EFI_DEVICE_ERROR:
59 		return -EIO;
60 	case EFI_SECURITY_VIOLATION:
61 		return -EACCES;
62 	default:
63 		return -EINVAL;
64 	}
65 }
66 
efi_open_volume(efi_system_table_t * sys_table_arg,void * __image,void ** __fh)67 efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
68 			     void *__image, void **__fh)
69 {
70 	efi_file_io_interface_t *io;
71 	efi_loaded_image_t *image = __image;
72 	efi_file_handle_t *fh;
73 	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
74 	efi_status_t status;
75 	void *handle = (void *)(unsigned long)image->device_handle;
76 
77 	status = sys_table_arg->boottime->handle_protocol(handle,
78 				 &fs_proto, (void **)&io);
79 	if (status != EFI_SUCCESS) {
80 		efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
81 		return status;
82 	}
83 
84 	status = io->open_volume(io, &fh);
85 	if (status != EFI_SUCCESS)
86 		efi_printk(sys_table_arg, "Failed to open volume\n");
87 
88 	*__fh = fh;
89 	return status;
90 }
91 
efi_file_close(void * handle)92 efi_status_t efi_file_close(void *handle)
93 {
94 	efi_file_handle_t *fh = handle;
95 
96 	return fh->close(handle);
97 }
98 
99 efi_status_t
efi_file_read(void * handle,unsigned long * size,void * addr)100 efi_file_read(void *handle, unsigned long *size, void *addr)
101 {
102 	efi_file_handle_t *fh = handle;
103 
104 	return fh->read(handle, size, addr);
105 }
106 
107 
108 efi_status_t
efi_file_size(efi_system_table_t * sys_table_arg,void * __fh,efi_char16_t * filename_16,void ** handle,u64 * file_sz)109 efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
110 	      efi_char16_t *filename_16, void **handle, u64 *file_sz)
111 {
112 	efi_file_handle_t *h, *fh = __fh;
113 	efi_file_info_t *info;
114 	efi_status_t status;
115 	efi_guid_t info_guid = EFI_FILE_INFO_ID;
116 	unsigned long info_sz;
117 
118 	status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
119 	if (status != EFI_SUCCESS) {
120 		efi_printk(sys_table_arg, "Failed to open file: ");
121 		efi_char16_printk(sys_table_arg, filename_16);
122 		efi_printk(sys_table_arg, "\n");
123 		return status;
124 	}
125 
126 	*handle = h;
127 
128 	info_sz = 0;
129 	status = h->get_info(h, &info_guid, &info_sz, NULL);
130 	if (status != EFI_BUFFER_TOO_SMALL) {
131 		efi_printk(sys_table_arg, "Failed to get file info size\n");
132 		return status;
133 	}
134 
135 grow:
136 	status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
137 				 info_sz, (void **)&info);
138 	if (status != EFI_SUCCESS) {
139 		efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
140 		return status;
141 	}
142 
143 	status = h->get_info(h, &info_guid, &info_sz,
144 						   info);
145 	if (status == EFI_BUFFER_TOO_SMALL) {
146 		sys_table_arg->boottime->free_pool(info);
147 		goto grow;
148 	}
149 
150 	*file_sz = info->file_size;
151 	sys_table_arg->boottime->free_pool(info);
152 
153 	if (status != EFI_SUCCESS)
154 		efi_printk(sys_table_arg, "Failed to get initrd info\n");
155 
156 	return status;
157 }
158 
159 
160 
efi_char16_printk(efi_system_table_t * sys_table_arg,efi_char16_t * str)161 void efi_char16_printk(efi_system_table_t *sys_table_arg,
162 			      efi_char16_t *str)
163 {
164 	struct efi_simple_text_output_protocol *out;
165 
166 	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
167 	out->output_string(out, str);
168 }
169 
setup_graphics(efi_system_table_t * sys_table_arg)170 static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
171 {
172 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
173 	efi_status_t status;
174 	unsigned long size;
175 	void **gop_handle = NULL;
176 	struct screen_info *si = NULL;
177 
178 	size = 0;
179 	status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
180 				&gop_proto, NULL, &size, gop_handle);
181 	if (status == EFI_BUFFER_TOO_SMALL) {
182 		si = alloc_screen_info(sys_table_arg);
183 		if (!si)
184 			return NULL;
185 		efi_setup_gop(sys_table_arg, si, &gop_proto, size);
186 	}
187 	return si;
188 }
189 
190 /*
191  * This function handles the architcture specific differences between arm and
192  * arm64 regarding where the kernel image must be loaded and any memory that
193  * must be reserved. On failure it is required to free all
194  * all allocations it has made.
195  */
196 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
197 				 unsigned long *image_addr,
198 				 unsigned long *image_size,
199 				 unsigned long *reserve_addr,
200 				 unsigned long *reserve_size,
201 				 unsigned long dram_base,
202 				 efi_loaded_image_t *image);
203 /*
204  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
205  * that is described in the PE/COFF header.  Most of the code is the same
206  * for both archictectures, with the arch-specific code provided in the
207  * handle_kernel_image() function.
208  */
efi_entry(void * handle,efi_system_table_t * sys_table,unsigned long * image_addr)209 unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
210 			       unsigned long *image_addr)
211 {
212 	efi_loaded_image_t *image;
213 	efi_status_t status;
214 	unsigned long image_size = 0;
215 	unsigned long dram_base;
216 	/* addr/point and size pairs for memory management*/
217 	unsigned long initrd_addr;
218 	u64 initrd_size = 0;
219 	unsigned long fdt_addr = 0;  /* Original DTB */
220 	unsigned long fdt_size = 0;
221 	char *cmdline_ptr = NULL;
222 	int cmdline_size = 0;
223 	unsigned long new_fdt_addr;
224 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
225 	unsigned long reserve_addr = 0;
226 	unsigned long reserve_size = 0;
227 	int secure_boot = 0;
228 	struct screen_info *si;
229 
230 	/* Check if we were booted by the EFI firmware */
231 	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
232 		goto fail;
233 
234 	pr_efi(sys_table, "Booting Linux Kernel...\n");
235 
236 	status = check_platform_features(sys_table);
237 	if (status != EFI_SUCCESS)
238 		goto fail;
239 
240 	/*
241 	 * Get a handle to the loaded image protocol.  This is used to get
242 	 * information about the running image, such as size and the command
243 	 * line.
244 	 */
245 	status = sys_table->boottime->handle_protocol(handle,
246 					&loaded_image_proto, (void *)&image);
247 	if (status != EFI_SUCCESS) {
248 		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
249 		goto fail;
250 	}
251 
252 	dram_base = get_dram_base(sys_table);
253 	if (dram_base == EFI_ERROR) {
254 		pr_efi_err(sys_table, "Failed to find DRAM base\n");
255 		goto fail;
256 	}
257 
258 	/*
259 	 * Get the command line from EFI, using the LOADED_IMAGE
260 	 * protocol. We are going to copy the command line into the
261 	 * device tree, so this can be allocated anywhere.
262 	 */
263 	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
264 	if (!cmdline_ptr) {
265 		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
266 		goto fail;
267 	}
268 
269 	si = setup_graphics(sys_table);
270 
271 	status = handle_kernel_image(sys_table, image_addr, &image_size,
272 				     &reserve_addr,
273 				     &reserve_size,
274 				     dram_base, image);
275 	if (status != EFI_SUCCESS) {
276 		pr_efi_err(sys_table, "Failed to relocate kernel\n");
277 		goto fail_free_cmdline;
278 	}
279 
280 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
281 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
282 	    cmdline_size == 0)
283 		efi_parse_options(CONFIG_CMDLINE);
284 
285 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
286 		efi_parse_options(cmdline_ptr);
287 
288 	secure_boot = efi_get_secureboot(sys_table);
289 	if (secure_boot > 0)
290 		pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
291 
292 	if (secure_boot < 0) {
293 		pr_efi_err(sys_table,
294 			"could not determine UEFI Secure Boot status.\n");
295 	}
296 
297 	/*
298 	 * Unauthenticated device tree data is a security hazard, so
299 	 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
300 	 */
301 	if (secure_boot != 0 && strstr(cmdline_ptr, "dtb=")) {
302 		pr_efi(sys_table, "Ignoring DTB from command line.\n");
303 	} else {
304 		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
305 					      "dtb=",
306 					      ~0UL, &fdt_addr, &fdt_size);
307 
308 		if (status != EFI_SUCCESS) {
309 			pr_efi_err(sys_table, "Failed to load device tree!\n");
310 			goto fail_free_image;
311 		}
312 	}
313 
314 	if (fdt_addr) {
315 		pr_efi(sys_table, "Using DTB from command line\n");
316 	} else {
317 		/* Look for a device tree configuration table entry. */
318 		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
319 		if (fdt_addr)
320 			pr_efi(sys_table, "Using DTB from configuration table\n");
321 	}
322 
323 	if (!fdt_addr)
324 		pr_efi(sys_table, "Generating empty DTB\n");
325 
326 	status = handle_cmdline_files(sys_table, image, cmdline_ptr,
327 				      "initrd=", dram_base + SZ_512M,
328 				      (unsigned long *)&initrd_addr,
329 				      (unsigned long *)&initrd_size);
330 	if (status != EFI_SUCCESS)
331 		pr_efi_err(sys_table, "Failed initrd from command line!\n");
332 
333 	new_fdt_addr = fdt_addr;
334 	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
335 				&new_fdt_addr, dram_base + MAX_FDT_OFFSET,
336 				initrd_addr, initrd_size, cmdline_ptr,
337 				fdt_addr, fdt_size);
338 
339 	/*
340 	 * If all went well, we need to return the FDT address to the
341 	 * calling function so it can be passed to kernel as part of
342 	 * the kernel boot protocol.
343 	 */
344 	if (status == EFI_SUCCESS)
345 		return new_fdt_addr;
346 
347 	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
348 
349 	efi_free(sys_table, initrd_size, initrd_addr);
350 	efi_free(sys_table, fdt_size, fdt_addr);
351 
352 fail_free_image:
353 	efi_free(sys_table, image_size, *image_addr);
354 	efi_free(sys_table, reserve_size, reserve_addr);
355 fail_free_cmdline:
356 	free_screen_info(sys_table, si);
357 	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
358 fail:
359 	return EFI_ERROR;
360 }
361 
362 /*
363  * This is the base address at which to start allocating virtual memory ranges
364  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
365  * any allocation we choose, and eliminate the risk of a conflict after kexec.
366  * The value chosen is the largest non-zero power of 2 suitable for this purpose
367  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
368  * be mapped efficiently.
369  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
370  * map everything below 1 GB.
371  */
372 #define EFI_RT_VIRTUAL_BASE	SZ_512M
373 
cmp_mem_desc(const void * l,const void * r)374 static int cmp_mem_desc(const void *l, const void *r)
375 {
376 	const efi_memory_desc_t *left = l, *right = r;
377 
378 	return (left->phys_addr > right->phys_addr) ? 1 : -1;
379 }
380 
381 /*
382  * Returns whether region @left ends exactly where region @right starts,
383  * or false if either argument is NULL.
384  */
regions_are_adjacent(efi_memory_desc_t * left,efi_memory_desc_t * right)385 static bool regions_are_adjacent(efi_memory_desc_t *left,
386 				 efi_memory_desc_t *right)
387 {
388 	u64 left_end;
389 
390 	if (left == NULL || right == NULL)
391 		return false;
392 
393 	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
394 
395 	return left_end == right->phys_addr;
396 }
397 
398 /*
399  * Returns whether region @left and region @right have compatible memory type
400  * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
401  */
regions_have_compatible_memory_type_attrs(efi_memory_desc_t * left,efi_memory_desc_t * right)402 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
403 						      efi_memory_desc_t *right)
404 {
405 	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
406 					 EFI_MEMORY_WC | EFI_MEMORY_UC |
407 					 EFI_MEMORY_RUNTIME;
408 
409 	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
410 }
411 
412 /*
413  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
414  *
415  * This function populates the virt_addr fields of all memory region descriptors
416  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
417  * are also copied to @runtime_map, and their total count is returned in @count.
418  */
efi_get_virtmap(efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,efi_memory_desc_t * runtime_map,int * count)419 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
420 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
421 		     int *count)
422 {
423 	u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
424 	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
425 	int l;
426 
427 	/*
428 	 * To work around potential issues with the Properties Table feature
429 	 * introduced in UEFI 2.5, which may split PE/COFF executable images
430 	 * in memory into several RuntimeServicesCode and RuntimeServicesData
431 	 * regions, we need to preserve the relative offsets between adjacent
432 	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
433 	 * The easiest way to find adjacent regions is to sort the memory map
434 	 * before traversing it.
435 	 */
436 	sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
437 
438 	for (l = 0; l < map_size; l += desc_size, prev = in) {
439 		u64 paddr, size;
440 
441 		in = (void *)memory_map + l;
442 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
443 			continue;
444 
445 		paddr = in->phys_addr;
446 		size = in->num_pages * EFI_PAGE_SIZE;
447 
448 		/*
449 		 * Make the mapping compatible with 64k pages: this allows
450 		 * a 4k page size kernel to kexec a 64k page size kernel and
451 		 * vice versa.
452 		 */
453 		if (!regions_are_adjacent(prev, in) ||
454 		    !regions_have_compatible_memory_type_attrs(prev, in)) {
455 
456 			paddr = round_down(in->phys_addr, SZ_64K);
457 			size += in->phys_addr - paddr;
458 
459 			/*
460 			 * Avoid wasting memory on PTEs by choosing a virtual
461 			 * base that is compatible with section mappings if this
462 			 * region has the appropriate size and physical
463 			 * alignment. (Sections are 2 MB on 4k granule kernels)
464 			 */
465 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
466 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
467 			else
468 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
469 		}
470 
471 		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
472 		efi_virt_base += size;
473 
474 		memcpy(out, in, desc_size);
475 		out = (void *)out + desc_size;
476 		++*count;
477 	}
478 }
479