1 /*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
6 *
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
14 *
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
18 *
19 * Implemented EFI runtime services and virtual mode calls. --davidm
20 *
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
23 */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG 0
46
47 static __initdata unsigned long palo_phys;
48
49 static __initdata efi_config_table_type_t arch_tables[] = {
50 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51 {NULL_GUID, NULL, 0},
52 };
53
54 extern efi_status_t efi_call_phys (void *, ...);
55
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58
59 #define efi_call_virt(f, args...) (*(f))(args)
60
61 #define STUB_GET_TIME(prefix, adjust_arg) \
62 static efi_status_t \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
64 { \
65 struct ia64_fpreg fr[6]; \
66 efi_time_cap_t *atc = NULL; \
67 efi_status_t ret; \
68 \
69 if (tc) \
70 atc = adjust_arg(tc); \
71 ia64_save_scratch_fpregs(fr); \
72 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
73 adjust_arg(tm), atc); \
74 ia64_load_scratch_fpregs(fr); \
75 return ret; \
76 }
77
78 #define STUB_SET_TIME(prefix, adjust_arg) \
79 static efi_status_t \
80 prefix##_set_time (efi_time_t *tm) \
81 { \
82 struct ia64_fpreg fr[6]; \
83 efi_status_t ret; \
84 \
85 ia64_save_scratch_fpregs(fr); \
86 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
87 adjust_arg(tm)); \
88 ia64_load_scratch_fpregs(fr); \
89 return ret; \
90 }
91
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
93 static efi_status_t \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
95 efi_time_t *tm) \
96 { \
97 struct ia64_fpreg fr[6]; \
98 efi_status_t ret; \
99 \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix( \
102 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
103 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
104 ia64_load_scratch_fpregs(fr); \
105 return ret; \
106 }
107
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
109 static efi_status_t \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
111 { \
112 struct ia64_fpreg fr[6]; \
113 efi_time_t *atm = NULL; \
114 efi_status_t ret; \
115 \
116 if (tm) \
117 atm = adjust_arg(tm); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix( \
120 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
121 enabled, atm); \
122 ia64_load_scratch_fpregs(fr); \
123 return ret; \
124 }
125
126 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
129 unsigned long *data_size, void *data) \
130 { \
131 struct ia64_fpreg fr[6]; \
132 u32 *aattr = NULL; \
133 efi_status_t ret; \
134 \
135 if (attr) \
136 aattr = adjust_arg(attr); \
137 ia64_save_scratch_fpregs(fr); \
138 ret = efi_call_##prefix( \
139 (efi_get_variable_t *) __va(runtime->get_variable), \
140 adjust_arg(name), adjust_arg(vendor), aattr, \
141 adjust_arg(data_size), adjust_arg(data)); \
142 ia64_load_scratch_fpregs(fr); \
143 return ret; \
144 }
145
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
147 static efi_status_t \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
149 efi_guid_t *vendor) \
150 { \
151 struct ia64_fpreg fr[6]; \
152 efi_status_t ret; \
153 \
154 ia64_save_scratch_fpregs(fr); \
155 ret = efi_call_##prefix( \
156 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
157 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
158 ia64_load_scratch_fpregs(fr); \
159 return ret; \
160 }
161
162 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
163 static efi_status_t \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
165 u32 attr, unsigned long data_size, \
166 void *data) \
167 { \
168 struct ia64_fpreg fr[6]; \
169 efi_status_t ret; \
170 \
171 ia64_save_scratch_fpregs(fr); \
172 ret = efi_call_##prefix( \
173 (efi_set_variable_t *) __va(runtime->set_variable), \
174 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
175 adjust_arg(data)); \
176 ia64_load_scratch_fpregs(fr); \
177 return ret; \
178 }
179
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
181 static efi_status_t \
182 prefix##_get_next_high_mono_count (u32 *count) \
183 { \
184 struct ia64_fpreg fr[6]; \
185 efi_status_t ret; \
186 \
187 ia64_save_scratch_fpregs(fr); \
188 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
189 __va(runtime->get_next_high_mono_count), \
190 adjust_arg(count)); \
191 ia64_load_scratch_fpregs(fr); \
192 return ret; \
193 }
194
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
196 static void \
197 prefix##_reset_system (int reset_type, efi_status_t status, \
198 unsigned long data_size, efi_char16_t *data) \
199 { \
200 struct ia64_fpreg fr[6]; \
201 efi_char16_t *adata = NULL; \
202 \
203 if (data) \
204 adata = adjust_arg(data); \
205 \
206 ia64_save_scratch_fpregs(fr); \
207 efi_call_##prefix( \
208 (efi_reset_system_t *) __va(runtime->reset_system), \
209 reset_type, status, data_size, adata); \
210 /* should not return, but just in case... */ \
211 ia64_load_scratch_fpregs(fr); \
212 }
213
214 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
215
STUB_GET_TIME(phys,phys_ptr)216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225
226 #define id(arg) arg
227
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237
238 void
239 efi_gettimeofday (struct timespec64 *ts)
240 {
241 efi_time_t tm;
242
243 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244 memset(ts, 0, sizeof(*ts));
245 return;
246 }
247
248 ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
249 tm.hour, tm.minute, tm.second);
250 ts->tv_nsec = tm.nanosecond;
251 }
252
253 static int
is_memory_available(efi_memory_desc_t * md)254 is_memory_available (efi_memory_desc_t *md)
255 {
256 if (!(md->attribute & EFI_MEMORY_WB))
257 return 0;
258
259 switch (md->type) {
260 case EFI_LOADER_CODE:
261 case EFI_LOADER_DATA:
262 case EFI_BOOT_SERVICES_CODE:
263 case EFI_BOOT_SERVICES_DATA:
264 case EFI_CONVENTIONAL_MEMORY:
265 return 1;
266 }
267 return 0;
268 }
269
270 typedef struct kern_memdesc {
271 u64 attribute;
272 u64 start;
273 u64 num_pages;
274 } kern_memdesc_t;
275
276 static kern_memdesc_t *kern_memmap;
277
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
279
280 static inline u64
kmd_end(kern_memdesc_t * kmd)281 kmd_end(kern_memdesc_t *kmd)
282 {
283 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285
286 static inline u64
efi_md_end(efi_memory_desc_t * md)287 efi_md_end(efi_memory_desc_t *md)
288 {
289 return (md->phys_addr + efi_md_size(md));
290 }
291
292 static inline int
efi_wb(efi_memory_desc_t * md)293 efi_wb(efi_memory_desc_t *md)
294 {
295 return (md->attribute & EFI_MEMORY_WB);
296 }
297
298 static inline int
efi_uc(efi_memory_desc_t * md)299 efi_uc(efi_memory_desc_t *md)
300 {
301 return (md->attribute & EFI_MEMORY_UC);
302 }
303
304 static void
walk(efi_freemem_callback_t callback,void * arg,u64 attr)305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307 kern_memdesc_t *k;
308 u64 start, end, voff;
309
310 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311 for (k = kern_memmap; k->start != ~0UL; k++) {
312 if (k->attribute != attr)
313 continue;
314 start = PAGE_ALIGN(k->start);
315 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316 if (start < end)
317 if ((*callback)(start + voff, end + voff, arg) < 0)
318 return;
319 }
320 }
321
322 /*
323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
324 * descriptor that has memory that is available for OS use.
325 */
326 void
efi_memmap_walk(efi_freemem_callback_t callback,void * arg)327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329 walk(callback, arg, EFI_MEMORY_WB);
330 }
331
332 /*
333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
334 * descriptor that has memory that is available for uncached allocator.
335 */
336 void
efi_memmap_walk_uc(efi_freemem_callback_t callback,void * arg)337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339 walk(callback, arg, EFI_MEMORY_UC);
340 }
341
342 /*
343 * Look for the PAL_CODE region reported by EFI and map it using an
344 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
345 * Abstraction Layer chapter 11 in ADAG
346 */
347 void *
efi_get_pal_addr(void)348 efi_get_pal_addr (void)
349 {
350 void *efi_map_start, *efi_map_end, *p;
351 efi_memory_desc_t *md;
352 u64 efi_desc_size;
353 int pal_code_count = 0;
354 u64 vaddr, mask;
355
356 efi_map_start = __va(ia64_boot_param->efi_memmap);
357 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
358 efi_desc_size = ia64_boot_param->efi_memdesc_size;
359
360 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361 md = p;
362 if (md->type != EFI_PAL_CODE)
363 continue;
364
365 if (++pal_code_count > 1) {
366 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367 "dropped @ %llx\n", md->phys_addr);
368 continue;
369 }
370 /*
371 * The only ITLB entry in region 7 that is used is the one
372 * installed by __start(). That entry covers a 64MB range.
373 */
374 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375 vaddr = PAGE_OFFSET + md->phys_addr;
376
377 /*
378 * We must check that the PAL mapping won't overlap with the
379 * kernel mapping.
380 *
381 * PAL code is guaranteed to be aligned on a power of 2 between
382 * 4k and 256KB and that only one ITR is needed to map it. This
383 * implies that the PAL code is always aligned on its size,
384 * i.e., the closest matching page size supported by the TLB.
385 * Therefore PAL code is guaranteed never to cross a 64MB unless
386 * it is bigger than 64MB (very unlikely!). So for now the
387 * following test is enough to determine whether or not we need
388 * a dedicated ITR for the PAL code.
389 */
390 if ((vaddr & mask) == (KERNEL_START & mask)) {
391 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392 __func__);
393 continue;
394 }
395
396 if (efi_md_size(md) > IA64_GRANULE_SIZE)
397 panic("Whoa! PAL code size bigger than a granule!");
398
399 #if EFI_DEBUG
400 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
401
402 printk(KERN_INFO "CPU %d: mapping PAL code "
403 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404 smp_processor_id(), md->phys_addr,
405 md->phys_addr + efi_md_size(md),
406 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408 return __va(md->phys_addr);
409 }
410 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411 __func__);
412 return NULL;
413 }
414
415
palo_checksum(u8 * buffer,u32 length)416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418 u8 sum = 0;
419 u8 *end = buffer + length;
420
421 while (buffer < end)
422 sum = (u8) (sum + *(buffer++));
423
424 return sum;
425 }
426
427 /*
428 * Parse and handle PALO table which is published at:
429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430 */
handle_palo(unsigned long phys_addr)431 static void __init handle_palo(unsigned long phys_addr)
432 {
433 struct palo_table *palo = __va(phys_addr);
434 u8 checksum;
435
436 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437 printk(KERN_INFO "PALO signature incorrect.\n");
438 return;
439 }
440
441 checksum = palo_checksum((u8 *)palo, palo->length);
442 if (checksum) {
443 printk(KERN_INFO "PALO checksum incorrect.\n");
444 return;
445 }
446
447 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449
450 void
efi_map_pal_code(void)451 efi_map_pal_code (void)
452 {
453 void *pal_vaddr = efi_get_pal_addr ();
454 u64 psr;
455
456 if (!pal_vaddr)
457 return;
458
459 /*
460 * Cannot write to CRx with PSR.ic=1
461 */
462 psr = ia64_clear_ic();
463 ia64_itr(0x1, IA64_TR_PALCODE,
464 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466 IA64_GRANULE_SHIFT);
467 ia64_set_psr(psr); /* restore psr */
468 }
469
470 void __init
efi_init(void)471 efi_init (void)
472 {
473 void *efi_map_start, *efi_map_end;
474 efi_char16_t *c16;
475 u64 efi_desc_size;
476 char *cp, vendor[100] = "unknown";
477 int i;
478
479 set_bit(EFI_BOOT, &efi.flags);
480 set_bit(EFI_64BIT, &efi.flags);
481
482 /*
483 * It's too early to be able to use the standard kernel command line
484 * support...
485 */
486 for (cp = boot_command_line; *cp; ) {
487 if (memcmp(cp, "mem=", 4) == 0) {
488 mem_limit = memparse(cp + 4, &cp);
489 } else if (memcmp(cp, "max_addr=", 9) == 0) {
490 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
491 } else if (memcmp(cp, "min_addr=", 9) == 0) {
492 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
493 } else {
494 while (*cp != ' ' && *cp)
495 ++cp;
496 while (*cp == ' ')
497 ++cp;
498 }
499 }
500 if (min_addr != 0UL)
501 printk(KERN_INFO "Ignoring memory below %lluMB\n",
502 min_addr >> 20);
503 if (max_addr != ~0UL)
504 printk(KERN_INFO "Ignoring memory above %lluMB\n",
505 max_addr >> 20);
506
507 efi.systab = __va(ia64_boot_param->efi_systab);
508
509 /*
510 * Verify the EFI Table
511 */
512 if (efi.systab == NULL)
513 panic("Whoa! Can't find EFI system table.\n");
514 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
515 panic("Whoa! EFI system table signature incorrect\n");
516 if ((efi.systab->hdr.revision >> 16) == 0)
517 printk(KERN_WARNING "Warning: EFI system table version "
518 "%d.%02d, expected 1.00 or greater\n",
519 efi.systab->hdr.revision >> 16,
520 efi.systab->hdr.revision & 0xffff);
521
522 /* Show what we know for posterity */
523 c16 = __va(efi.systab->fw_vendor);
524 if (c16) {
525 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
526 vendor[i] = *c16++;
527 vendor[i] = '\0';
528 }
529
530 printk(KERN_INFO "EFI v%u.%.02u by %s:",
531 efi.systab->hdr.revision >> 16,
532 efi.systab->hdr.revision & 0xffff, vendor);
533
534 palo_phys = EFI_INVALID_TABLE_ADDR;
535
536 if (efi_config_init(arch_tables) != 0)
537 return;
538
539 if (palo_phys != EFI_INVALID_TABLE_ADDR)
540 handle_palo(palo_phys);
541
542 runtime = __va(efi.systab->runtime);
543 efi.get_time = phys_get_time;
544 efi.set_time = phys_set_time;
545 efi.get_wakeup_time = phys_get_wakeup_time;
546 efi.set_wakeup_time = phys_set_wakeup_time;
547 efi.get_variable = phys_get_variable;
548 efi.get_next_variable = phys_get_next_variable;
549 efi.set_variable = phys_set_variable;
550 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
551 efi.reset_system = phys_reset_system;
552
553 efi_map_start = __va(ia64_boot_param->efi_memmap);
554 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
555 efi_desc_size = ia64_boot_param->efi_memdesc_size;
556
557 #if EFI_DEBUG
558 /* print EFI memory map: */
559 {
560 efi_memory_desc_t *md;
561 void *p;
562
563 for (i = 0, p = efi_map_start; p < efi_map_end;
564 ++i, p += efi_desc_size)
565 {
566 const char *unit;
567 unsigned long size;
568 char buf[64];
569
570 md = p;
571 size = md->num_pages << EFI_PAGE_SHIFT;
572
573 if ((size >> 40) > 0) {
574 size >>= 40;
575 unit = "TB";
576 } else if ((size >> 30) > 0) {
577 size >>= 30;
578 unit = "GB";
579 } else if ((size >> 20) > 0) {
580 size >>= 20;
581 unit = "MB";
582 } else {
583 size >>= 10;
584 unit = "KB";
585 }
586
587 printk("mem%02d: %s "
588 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
589 i, efi_md_typeattr_format(buf, sizeof(buf), md),
590 md->phys_addr,
591 md->phys_addr + efi_md_size(md), size, unit);
592 }
593 }
594 #endif
595
596 efi_map_pal_code();
597 efi_enter_virtual_mode();
598 }
599
600 void
efi_enter_virtual_mode(void)601 efi_enter_virtual_mode (void)
602 {
603 void *efi_map_start, *efi_map_end, *p;
604 efi_memory_desc_t *md;
605 efi_status_t status;
606 u64 efi_desc_size;
607
608 efi_map_start = __va(ia64_boot_param->efi_memmap);
609 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
610 efi_desc_size = ia64_boot_param->efi_memdesc_size;
611
612 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
613 md = p;
614 if (md->attribute & EFI_MEMORY_RUNTIME) {
615 /*
616 * Some descriptors have multiple bits set, so the
617 * order of the tests is relevant.
618 */
619 if (md->attribute & EFI_MEMORY_WB) {
620 md->virt_addr = (u64) __va(md->phys_addr);
621 } else if (md->attribute & EFI_MEMORY_UC) {
622 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
623 } else if (md->attribute & EFI_MEMORY_WC) {
624 #if 0
625 md->virt_addr = ia64_remap(md->phys_addr,
626 (_PAGE_A |
627 _PAGE_P |
628 _PAGE_D |
629 _PAGE_MA_WC |
630 _PAGE_PL_0 |
631 _PAGE_AR_RW));
632 #else
633 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
634 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
635 #endif
636 } else if (md->attribute & EFI_MEMORY_WT) {
637 #if 0
638 md->virt_addr = ia64_remap(md->phys_addr,
639 (_PAGE_A |
640 _PAGE_P |
641 _PAGE_D |
642 _PAGE_MA_WT |
643 _PAGE_PL_0 |
644 _PAGE_AR_RW));
645 #else
646 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
647 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648 #endif
649 }
650 }
651 }
652
653 status = efi_call_phys(__va(runtime->set_virtual_address_map),
654 ia64_boot_param->efi_memmap_size,
655 efi_desc_size,
656 ia64_boot_param->efi_memdesc_version,
657 ia64_boot_param->efi_memmap);
658 if (status != EFI_SUCCESS) {
659 printk(KERN_WARNING "warning: unable to switch EFI into "
660 "virtual mode (status=%lu)\n", status);
661 return;
662 }
663
664 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
665
666 /*
667 * Now that EFI is in virtual mode, we call the EFI functions more
668 * efficiently:
669 */
670 efi.get_time = virt_get_time;
671 efi.set_time = virt_set_time;
672 efi.get_wakeup_time = virt_get_wakeup_time;
673 efi.set_wakeup_time = virt_set_wakeup_time;
674 efi.get_variable = virt_get_variable;
675 efi.get_next_variable = virt_get_next_variable;
676 efi.set_variable = virt_set_variable;
677 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
678 efi.reset_system = virt_reset_system;
679 }
680
681 /*
682 * Walk the EFI memory map looking for the I/O port range. There can only be
683 * one entry of this type, other I/O port ranges should be described via ACPI.
684 */
685 u64
efi_get_iobase(void)686 efi_get_iobase (void)
687 {
688 void *efi_map_start, *efi_map_end, *p;
689 efi_memory_desc_t *md;
690 u64 efi_desc_size;
691
692 efi_map_start = __va(ia64_boot_param->efi_memmap);
693 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
694 efi_desc_size = ia64_boot_param->efi_memdesc_size;
695
696 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
697 md = p;
698 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
699 if (md->attribute & EFI_MEMORY_UC)
700 return md->phys_addr;
701 }
702 }
703 return 0;
704 }
705
706 static struct kern_memdesc *
kern_memory_descriptor(unsigned long phys_addr)707 kern_memory_descriptor (unsigned long phys_addr)
708 {
709 struct kern_memdesc *md;
710
711 for (md = kern_memmap; md->start != ~0UL; md++) {
712 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
713 return md;
714 }
715 return NULL;
716 }
717
718 static efi_memory_desc_t *
efi_memory_descriptor(unsigned long phys_addr)719 efi_memory_descriptor (unsigned long phys_addr)
720 {
721 void *efi_map_start, *efi_map_end, *p;
722 efi_memory_desc_t *md;
723 u64 efi_desc_size;
724
725 efi_map_start = __va(ia64_boot_param->efi_memmap);
726 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
727 efi_desc_size = ia64_boot_param->efi_memdesc_size;
728
729 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
730 md = p;
731
732 if (phys_addr - md->phys_addr < efi_md_size(md))
733 return md;
734 }
735 return NULL;
736 }
737
738 static int
efi_memmap_intersects(unsigned long phys_addr,unsigned long size)739 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
740 {
741 void *efi_map_start, *efi_map_end, *p;
742 efi_memory_desc_t *md;
743 u64 efi_desc_size;
744 unsigned long end;
745
746 efi_map_start = __va(ia64_boot_param->efi_memmap);
747 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
748 efi_desc_size = ia64_boot_param->efi_memdesc_size;
749
750 end = phys_addr + size;
751
752 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
753 md = p;
754 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
755 return 1;
756 }
757 return 0;
758 }
759
760 u32
efi_mem_type(unsigned long phys_addr)761 efi_mem_type (unsigned long phys_addr)
762 {
763 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
764
765 if (md)
766 return md->type;
767 return 0;
768 }
769
770 u64
efi_mem_attributes(unsigned long phys_addr)771 efi_mem_attributes (unsigned long phys_addr)
772 {
773 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
774
775 if (md)
776 return md->attribute;
777 return 0;
778 }
779 EXPORT_SYMBOL(efi_mem_attributes);
780
781 u64
efi_mem_attribute(unsigned long phys_addr,unsigned long size)782 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
783 {
784 unsigned long end = phys_addr + size;
785 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
786 u64 attr;
787
788 if (!md)
789 return 0;
790
791 /*
792 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
793 * the kernel that firmware needs this region mapped.
794 */
795 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
796 do {
797 unsigned long md_end = efi_md_end(md);
798
799 if (end <= md_end)
800 return attr;
801
802 md = efi_memory_descriptor(md_end);
803 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
804 return 0;
805 } while (md);
806 return 0; /* never reached */
807 }
808
809 u64
kern_mem_attribute(unsigned long phys_addr,unsigned long size)810 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
811 {
812 unsigned long end = phys_addr + size;
813 struct kern_memdesc *md;
814 u64 attr;
815
816 /*
817 * This is a hack for ioremap calls before we set up kern_memmap.
818 * Maybe we should do efi_memmap_init() earlier instead.
819 */
820 if (!kern_memmap) {
821 attr = efi_mem_attribute(phys_addr, size);
822 if (attr & EFI_MEMORY_WB)
823 return EFI_MEMORY_WB;
824 return 0;
825 }
826
827 md = kern_memory_descriptor(phys_addr);
828 if (!md)
829 return 0;
830
831 attr = md->attribute;
832 do {
833 unsigned long md_end = kmd_end(md);
834
835 if (end <= md_end)
836 return attr;
837
838 md = kern_memory_descriptor(md_end);
839 if (!md || md->attribute != attr)
840 return 0;
841 } while (md);
842 return 0; /* never reached */
843 }
844 EXPORT_SYMBOL(kern_mem_attribute);
845
846 int
valid_phys_addr_range(phys_addr_t phys_addr,unsigned long size)847 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
848 {
849 u64 attr;
850
851 /*
852 * /dev/mem reads and writes use copy_to_user(), which implicitly
853 * uses a granule-sized kernel identity mapping. It's really
854 * only safe to do this for regions in kern_memmap. For more
855 * details, see Documentation/ia64/aliasing.txt.
856 */
857 attr = kern_mem_attribute(phys_addr, size);
858 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
859 return 1;
860 return 0;
861 }
862
863 int
valid_mmap_phys_addr_range(unsigned long pfn,unsigned long size)864 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
865 {
866 unsigned long phys_addr = pfn << PAGE_SHIFT;
867 u64 attr;
868
869 attr = efi_mem_attribute(phys_addr, size);
870
871 /*
872 * /dev/mem mmap uses normal user pages, so we don't need the entire
873 * granule, but the entire region we're mapping must support the same
874 * attribute.
875 */
876 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
877 return 1;
878
879 /*
880 * Intel firmware doesn't tell us about all the MMIO regions, so
881 * in general we have to allow mmap requests. But if EFI *does*
882 * tell us about anything inside this region, we should deny it.
883 * The user can always map a smaller region to avoid the overlap.
884 */
885 if (efi_memmap_intersects(phys_addr, size))
886 return 0;
887
888 return 1;
889 }
890
891 pgprot_t
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)892 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
893 pgprot_t vma_prot)
894 {
895 unsigned long phys_addr = pfn << PAGE_SHIFT;
896 u64 attr;
897
898 /*
899 * For /dev/mem mmap, we use user mappings, but if the region is
900 * in kern_memmap (and hence may be covered by a kernel mapping),
901 * we must use the same attribute as the kernel mapping.
902 */
903 attr = kern_mem_attribute(phys_addr, size);
904 if (attr & EFI_MEMORY_WB)
905 return pgprot_cacheable(vma_prot);
906 else if (attr & EFI_MEMORY_UC)
907 return pgprot_noncached(vma_prot);
908
909 /*
910 * Some chipsets don't support UC access to memory. If
911 * WB is supported, we prefer that.
912 */
913 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
914 return pgprot_cacheable(vma_prot);
915
916 return pgprot_noncached(vma_prot);
917 }
918
919 int __init
efi_uart_console_only(void)920 efi_uart_console_only(void)
921 {
922 efi_status_t status;
923 char *s, name[] = "ConOut";
924 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
925 efi_char16_t *utf16, name_utf16[32];
926 unsigned char data[1024];
927 unsigned long size = sizeof(data);
928 struct efi_generic_dev_path *hdr, *end_addr;
929 int uart = 0;
930
931 /* Convert to UTF-16 */
932 utf16 = name_utf16;
933 s = name;
934 while (*s)
935 *utf16++ = *s++ & 0x7f;
936 *utf16 = 0;
937
938 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
939 if (status != EFI_SUCCESS) {
940 printk(KERN_ERR "No EFI %s variable?\n", name);
941 return 0;
942 }
943
944 hdr = (struct efi_generic_dev_path *) data;
945 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
946 while (hdr < end_addr) {
947 if (hdr->type == EFI_DEV_MSG &&
948 hdr->sub_type == EFI_DEV_MSG_UART)
949 uart = 1;
950 else if (hdr->type == EFI_DEV_END_PATH ||
951 hdr->type == EFI_DEV_END_PATH2) {
952 if (!uart)
953 return 0;
954 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
955 return 1;
956 uart = 0;
957 }
958 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
959 }
960 printk(KERN_ERR "Malformed %s value\n", name);
961 return 0;
962 }
963
964 /*
965 * Look for the first granule aligned memory descriptor memory
966 * that is big enough to hold EFI memory map. Make sure this
967 * descriptor is at least granule sized so it does not get trimmed
968 */
969 struct kern_memdesc *
find_memmap_space(void)970 find_memmap_space (void)
971 {
972 u64 contig_low=0, contig_high=0;
973 u64 as = 0, ae;
974 void *efi_map_start, *efi_map_end, *p, *q;
975 efi_memory_desc_t *md, *pmd = NULL, *check_md;
976 u64 space_needed, efi_desc_size;
977 unsigned long total_mem = 0;
978
979 efi_map_start = __va(ia64_boot_param->efi_memmap);
980 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
981 efi_desc_size = ia64_boot_param->efi_memdesc_size;
982
983 /*
984 * Worst case: we need 3 kernel descriptors for each efi descriptor
985 * (if every entry has a WB part in the middle, and UC head and tail),
986 * plus one for the end marker.
987 */
988 space_needed = sizeof(kern_memdesc_t) *
989 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
990
991 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
992 md = p;
993 if (!efi_wb(md)) {
994 continue;
995 }
996 if (pmd == NULL || !efi_wb(pmd) ||
997 efi_md_end(pmd) != md->phys_addr) {
998 contig_low = GRANULEROUNDUP(md->phys_addr);
999 contig_high = efi_md_end(md);
1000 for (q = p + efi_desc_size; q < efi_map_end;
1001 q += efi_desc_size) {
1002 check_md = q;
1003 if (!efi_wb(check_md))
1004 break;
1005 if (contig_high != check_md->phys_addr)
1006 break;
1007 contig_high = efi_md_end(check_md);
1008 }
1009 contig_high = GRANULEROUNDDOWN(contig_high);
1010 }
1011 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1012 continue;
1013
1014 /* Round ends inward to granule boundaries */
1015 as = max(contig_low, md->phys_addr);
1016 ae = min(contig_high, efi_md_end(md));
1017
1018 /* keep within max_addr= and min_addr= command line arg */
1019 as = max(as, min_addr);
1020 ae = min(ae, max_addr);
1021 if (ae <= as)
1022 continue;
1023
1024 /* avoid going over mem= command line arg */
1025 if (total_mem + (ae - as) > mem_limit)
1026 ae -= total_mem + (ae - as) - mem_limit;
1027
1028 if (ae <= as)
1029 continue;
1030
1031 if (ae - as > space_needed)
1032 break;
1033 }
1034 if (p >= efi_map_end)
1035 panic("Can't allocate space for kernel memory descriptors");
1036
1037 return __va(as);
1038 }
1039
1040 /*
1041 * Walk the EFI memory map and gather all memory available for kernel
1042 * to use. We can allocate partial granules only if the unavailable
1043 * parts exist, and are WB.
1044 */
1045 unsigned long
efi_memmap_init(u64 * s,u64 * e)1046 efi_memmap_init(u64 *s, u64 *e)
1047 {
1048 struct kern_memdesc *k, *prev = NULL;
1049 u64 contig_low=0, contig_high=0;
1050 u64 as, ae, lim;
1051 void *efi_map_start, *efi_map_end, *p, *q;
1052 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1053 u64 efi_desc_size;
1054 unsigned long total_mem = 0;
1055
1056 k = kern_memmap = find_memmap_space();
1057
1058 efi_map_start = __va(ia64_boot_param->efi_memmap);
1059 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1060 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1061
1062 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1063 md = p;
1064 if (!efi_wb(md)) {
1065 if (efi_uc(md) &&
1066 (md->type == EFI_CONVENTIONAL_MEMORY ||
1067 md->type == EFI_BOOT_SERVICES_DATA)) {
1068 k->attribute = EFI_MEMORY_UC;
1069 k->start = md->phys_addr;
1070 k->num_pages = md->num_pages;
1071 k++;
1072 }
1073 continue;
1074 }
1075 if (pmd == NULL || !efi_wb(pmd) ||
1076 efi_md_end(pmd) != md->phys_addr) {
1077 contig_low = GRANULEROUNDUP(md->phys_addr);
1078 contig_high = efi_md_end(md);
1079 for (q = p + efi_desc_size; q < efi_map_end;
1080 q += efi_desc_size) {
1081 check_md = q;
1082 if (!efi_wb(check_md))
1083 break;
1084 if (contig_high != check_md->phys_addr)
1085 break;
1086 contig_high = efi_md_end(check_md);
1087 }
1088 contig_high = GRANULEROUNDDOWN(contig_high);
1089 }
1090 if (!is_memory_available(md))
1091 continue;
1092
1093 /*
1094 * Round ends inward to granule boundaries
1095 * Give trimmings to uncached allocator
1096 */
1097 if (md->phys_addr < contig_low) {
1098 lim = min(efi_md_end(md), contig_low);
1099 if (efi_uc(md)) {
1100 if (k > kern_memmap &&
1101 (k-1)->attribute == EFI_MEMORY_UC &&
1102 kmd_end(k-1) == md->phys_addr) {
1103 (k-1)->num_pages +=
1104 (lim - md->phys_addr)
1105 >> EFI_PAGE_SHIFT;
1106 } else {
1107 k->attribute = EFI_MEMORY_UC;
1108 k->start = md->phys_addr;
1109 k->num_pages = (lim - md->phys_addr)
1110 >> EFI_PAGE_SHIFT;
1111 k++;
1112 }
1113 }
1114 as = contig_low;
1115 } else
1116 as = md->phys_addr;
1117
1118 if (efi_md_end(md) > contig_high) {
1119 lim = max(md->phys_addr, contig_high);
1120 if (efi_uc(md)) {
1121 if (lim == md->phys_addr && k > kern_memmap &&
1122 (k-1)->attribute == EFI_MEMORY_UC &&
1123 kmd_end(k-1) == md->phys_addr) {
1124 (k-1)->num_pages += md->num_pages;
1125 } else {
1126 k->attribute = EFI_MEMORY_UC;
1127 k->start = lim;
1128 k->num_pages = (efi_md_end(md) - lim)
1129 >> EFI_PAGE_SHIFT;
1130 k++;
1131 }
1132 }
1133 ae = contig_high;
1134 } else
1135 ae = efi_md_end(md);
1136
1137 /* keep within max_addr= and min_addr= command line arg */
1138 as = max(as, min_addr);
1139 ae = min(ae, max_addr);
1140 if (ae <= as)
1141 continue;
1142
1143 /* avoid going over mem= command line arg */
1144 if (total_mem + (ae - as) > mem_limit)
1145 ae -= total_mem + (ae - as) - mem_limit;
1146
1147 if (ae <= as)
1148 continue;
1149 if (prev && kmd_end(prev) == md->phys_addr) {
1150 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1151 total_mem += ae - as;
1152 continue;
1153 }
1154 k->attribute = EFI_MEMORY_WB;
1155 k->start = as;
1156 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1157 total_mem += ae - as;
1158 prev = k++;
1159 }
1160 k->start = ~0L; /* end-marker */
1161
1162 /* reserve the memory we are using for kern_memmap */
1163 *s = (u64)kern_memmap;
1164 *e = (u64)++k;
1165
1166 return total_mem;
1167 }
1168
1169 void
efi_initialize_iomem_resources(struct resource * code_resource,struct resource * data_resource,struct resource * bss_resource)1170 efi_initialize_iomem_resources(struct resource *code_resource,
1171 struct resource *data_resource,
1172 struct resource *bss_resource)
1173 {
1174 struct resource *res;
1175 void *efi_map_start, *efi_map_end, *p;
1176 efi_memory_desc_t *md;
1177 u64 efi_desc_size;
1178 char *name;
1179 unsigned long flags, desc;
1180
1181 efi_map_start = __va(ia64_boot_param->efi_memmap);
1182 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1183 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1184
1185 res = NULL;
1186
1187 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1188 md = p;
1189
1190 if (md->num_pages == 0) /* should not happen */
1191 continue;
1192
1193 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1194 desc = IORES_DESC_NONE;
1195
1196 switch (md->type) {
1197
1198 case EFI_MEMORY_MAPPED_IO:
1199 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1200 continue;
1201
1202 case EFI_LOADER_CODE:
1203 case EFI_LOADER_DATA:
1204 case EFI_BOOT_SERVICES_DATA:
1205 case EFI_BOOT_SERVICES_CODE:
1206 case EFI_CONVENTIONAL_MEMORY:
1207 if (md->attribute & EFI_MEMORY_WP) {
1208 name = "System ROM";
1209 flags |= IORESOURCE_READONLY;
1210 } else if (md->attribute == EFI_MEMORY_UC) {
1211 name = "Uncached RAM";
1212 } else {
1213 name = "System RAM";
1214 flags |= IORESOURCE_SYSRAM;
1215 }
1216 break;
1217
1218 case EFI_ACPI_MEMORY_NVS:
1219 name = "ACPI Non-volatile Storage";
1220 desc = IORES_DESC_ACPI_NV_STORAGE;
1221 break;
1222
1223 case EFI_UNUSABLE_MEMORY:
1224 name = "reserved";
1225 flags |= IORESOURCE_DISABLED;
1226 break;
1227
1228 case EFI_PERSISTENT_MEMORY:
1229 name = "Persistent Memory";
1230 desc = IORES_DESC_PERSISTENT_MEMORY;
1231 break;
1232
1233 case EFI_RESERVED_TYPE:
1234 case EFI_RUNTIME_SERVICES_CODE:
1235 case EFI_RUNTIME_SERVICES_DATA:
1236 case EFI_ACPI_RECLAIM_MEMORY:
1237 default:
1238 name = "reserved";
1239 break;
1240 }
1241
1242 if ((res = kzalloc(sizeof(struct resource),
1243 GFP_KERNEL)) == NULL) {
1244 printk(KERN_ERR
1245 "failed to allocate resource for iomem\n");
1246 return;
1247 }
1248
1249 res->name = name;
1250 res->start = md->phys_addr;
1251 res->end = md->phys_addr + efi_md_size(md) - 1;
1252 res->flags = flags;
1253 res->desc = desc;
1254
1255 if (insert_resource(&iomem_resource, res) < 0)
1256 kfree(res);
1257 else {
1258 /*
1259 * We don't know which region contains
1260 * kernel data so we try it repeatedly and
1261 * let the resource manager test it.
1262 */
1263 insert_resource(res, code_resource);
1264 insert_resource(res, data_resource);
1265 insert_resource(res, bss_resource);
1266 #ifdef CONFIG_KEXEC
1267 insert_resource(res, &efi_memmap_res);
1268 insert_resource(res, &boot_param_res);
1269 if (crashk_res.end > crashk_res.start)
1270 insert_resource(res, &crashk_res);
1271 #endif
1272 }
1273 }
1274 }
1275
1276 #ifdef CONFIG_KEXEC
1277 /* find a block of memory aligned to 64M exclude reserved regions
1278 rsvd_regions are sorted
1279 */
1280 unsigned long __init
kdump_find_rsvd_region(unsigned long size,struct rsvd_region * r,int n)1281 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1282 {
1283 int i;
1284 u64 start, end;
1285 u64 alignment = 1UL << _PAGE_SIZE_64M;
1286 void *efi_map_start, *efi_map_end, *p;
1287 efi_memory_desc_t *md;
1288 u64 efi_desc_size;
1289
1290 efi_map_start = __va(ia64_boot_param->efi_memmap);
1291 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1292 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1293
1294 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1295 md = p;
1296 if (!efi_wb(md))
1297 continue;
1298 start = ALIGN(md->phys_addr, alignment);
1299 end = efi_md_end(md);
1300 for (i = 0; i < n; i++) {
1301 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1302 if (__pa(r[i].start) > start + size)
1303 return start;
1304 start = ALIGN(__pa(r[i].end), alignment);
1305 if (i < n-1 &&
1306 __pa(r[i+1].start) < start + size)
1307 continue;
1308 else
1309 break;
1310 }
1311 }
1312 if (end > start + size)
1313 return start;
1314 }
1315
1316 printk(KERN_WARNING
1317 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1318 return ~0UL;
1319 }
1320 #endif
1321
1322 #ifdef CONFIG_CRASH_DUMP
1323 /* locate the size find a the descriptor at a certain address */
1324 unsigned long __init
vmcore_find_descriptor_size(unsigned long address)1325 vmcore_find_descriptor_size (unsigned long address)
1326 {
1327 void *efi_map_start, *efi_map_end, *p;
1328 efi_memory_desc_t *md;
1329 u64 efi_desc_size;
1330 unsigned long ret = 0;
1331
1332 efi_map_start = __va(ia64_boot_param->efi_memmap);
1333 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1334 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1335
1336 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1337 md = p;
1338 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1339 && md->phys_addr == address) {
1340 ret = efi_md_size(md);
1341 break;
1342 }
1343 }
1344
1345 if (ret == 0)
1346 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1347
1348 return ret;
1349 }
1350 #endif
1351