• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27 
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29 
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36 
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46 
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49 
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56 
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59 
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
65 
66 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
68 
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
72 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
73 			   efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
75 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
76 			   efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
78 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
79 			   (_tx_queue)->queue)
80 
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82 
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90 				     unsigned int index)
91 {
92 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93 			value, index);
94 }
95 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97 				     const efx_oword_t *mask)
98 {
99 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)103 int efx_farch_test_registers(struct efx_nic *efx,
104 			     const struct efx_farch_register_test *regs,
105 			     size_t n_regs)
106 {
107 	unsigned address = 0;
108 	int i, j;
109 	efx_oword_t mask, imask, original, reg, buf;
110 
111 	for (i = 0; i < n_regs; ++i) {
112 		address = regs[i].address;
113 		mask = imask = regs[i].mask;
114 		EFX_INVERT_OWORD(imask);
115 
116 		efx_reado(efx, &original, address);
117 
118 		/* bit sweep on and off */
119 		for (j = 0; j < 128; j++) {
120 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
121 				continue;
122 
123 			/* Test this testable bit can be set in isolation */
124 			EFX_AND_OWORD(reg, original, mask);
125 			EFX_SET_OWORD32(reg, j, j, 1);
126 
127 			efx_writeo(efx, &reg, address);
128 			efx_reado(efx, &buf, address);
129 
130 			if (efx_masked_compare_oword(&reg, &buf, &mask))
131 				goto fail;
132 
133 			/* Test this testable bit can be cleared in isolation */
134 			EFX_OR_OWORD(reg, original, mask);
135 			EFX_SET_OWORD32(reg, j, j, 0);
136 
137 			efx_writeo(efx, &reg, address);
138 			efx_reado(efx, &buf, address);
139 
140 			if (efx_masked_compare_oword(&reg, &buf, &mask))
141 				goto fail;
142 		}
143 
144 		efx_writeo(efx, &original, address);
145 	}
146 
147 	return 0;
148 
149 fail:
150 	netif_err(efx, hw, efx->net_dev,
151 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
152 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
153 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
154 	return -EIO;
155 }
156 
157 /**************************************************************************
158  *
159  * Special buffer handling
160  * Special buffers are used for event queues and the TX and RX
161  * descriptor rings.
162  *
163  *************************************************************************/
164 
165 /*
166  * Initialise a special buffer
167  *
168  * This will define a buffer (previously allocated via
169  * efx_alloc_special_buffer()) in the buffer table, allowing
170  * it to be used for event queues, descriptor rings etc.
171  */
172 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)173 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
174 {
175 	efx_qword_t buf_desc;
176 	unsigned int index;
177 	dma_addr_t dma_addr;
178 	int i;
179 
180 	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
181 
182 	/* Write buffer descriptors to NIC */
183 	for (i = 0; i < buffer->entries; i++) {
184 		index = buffer->index + i;
185 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
186 		netif_dbg(efx, probe, efx->net_dev,
187 			  "mapping special buffer %d at %llx\n",
188 			  index, (unsigned long long)dma_addr);
189 		EFX_POPULATE_QWORD_3(buf_desc,
190 				     FRF_AZ_BUF_ADR_REGION, 0,
191 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
192 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
193 		efx_write_buf_tbl(efx, &buf_desc, index);
194 	}
195 }
196 
197 /* Unmaps a buffer and clears the buffer table entries */
198 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)199 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
200 {
201 	efx_oword_t buf_tbl_upd;
202 	unsigned int start = buffer->index;
203 	unsigned int end = (buffer->index + buffer->entries - 1);
204 
205 	if (!buffer->entries)
206 		return;
207 
208 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
209 		  buffer->index, buffer->index + buffer->entries - 1);
210 
211 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
212 			     FRF_AZ_BUF_UPD_CMD, 0,
213 			     FRF_AZ_BUF_CLR_CMD, 1,
214 			     FRF_AZ_BUF_CLR_END_ID, end,
215 			     FRF_AZ_BUF_CLR_START_ID, start);
216 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
217 }
218 
219 /*
220  * Allocate a new special buffer
221  *
222  * This allocates memory for a new buffer, clears it and allocates a
223  * new buffer ID range.  It does not write into the buffer table.
224  *
225  * This call will allocate 4KB buffers, since 8KB buffers can't be
226  * used for event queues and descriptor rings.
227  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)228 static int efx_alloc_special_buffer(struct efx_nic *efx,
229 				    struct efx_special_buffer *buffer,
230 				    unsigned int len)
231 {
232 #ifdef CONFIG_SFC_SRIOV
233 	struct siena_nic_data *nic_data = efx->nic_data;
234 #endif
235 	len = ALIGN(len, EFX_BUF_SIZE);
236 
237 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
238 		return -ENOMEM;
239 	buffer->entries = len / EFX_BUF_SIZE;
240 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
241 
242 	/* Select new buffer ID */
243 	buffer->index = efx->next_buffer_table;
244 	efx->next_buffer_table += buffer->entries;
245 #ifdef CONFIG_SFC_SRIOV
246 	BUG_ON(efx_siena_sriov_enabled(efx) &&
247 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
248 #endif
249 
250 	netif_dbg(efx, probe, efx->net_dev,
251 		  "allocating special buffers %d-%d at %llx+%x "
252 		  "(virt %p phys %llx)\n", buffer->index,
253 		  buffer->index + buffer->entries - 1,
254 		  (u64)buffer->buf.dma_addr, len,
255 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
256 
257 	return 0;
258 }
259 
260 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)261 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
262 {
263 	if (!buffer->buf.addr)
264 		return;
265 
266 	netif_dbg(efx, hw, efx->net_dev,
267 		  "deallocating special buffers %d-%d at %llx+%x "
268 		  "(virt %p phys %llx)\n", buffer->index,
269 		  buffer->index + buffer->entries - 1,
270 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
271 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272 
273 	efx_nic_free_buffer(efx, &buffer->buf);
274 	buffer->entries = 0;
275 }
276 
277 /**************************************************************************
278  *
279  * TX path
280  *
281  **************************************************************************/
282 
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
285 {
286 	unsigned write_ptr;
287 	efx_dword_t reg;
288 
289 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
290 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
291 	efx_writed_page(tx_queue->efx, &reg,
292 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 }
294 
295 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
297 					  const efx_qword_t *txd)
298 {
299 	unsigned write_ptr;
300 	efx_oword_t reg;
301 
302 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
303 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
304 
305 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
306 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
307 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
308 	reg.qword[0] = *txd;
309 	efx_writeo_page(tx_queue->efx, &reg,
310 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
311 }
312 
313 
314 /* For each entry inserted into the software descriptor ring, create a
315  * descriptor in the hardware TX descriptor ring (in host memory), and
316  * write a doorbell.
317  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)318 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
319 {
320 	struct efx_tx_buffer *buffer;
321 	efx_qword_t *txd;
322 	unsigned write_ptr;
323 	unsigned old_write_count = tx_queue->write_count;
324 
325 	tx_queue->xmit_more_available = false;
326 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
327 		return;
328 
329 	do {
330 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
331 		buffer = &tx_queue->buffer[write_ptr];
332 		txd = efx_tx_desc(tx_queue, write_ptr);
333 		++tx_queue->write_count;
334 
335 		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336 
337 		/* Create TX descriptor ring entry */
338 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
339 		EFX_POPULATE_QWORD_4(*txd,
340 				     FSF_AZ_TX_KER_CONT,
341 				     buffer->flags & EFX_TX_BUF_CONT,
342 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
343 				     FSF_AZ_TX_KER_BUF_REGION, 0,
344 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
345 	} while (tx_queue->write_count != tx_queue->insert_count);
346 
347 	wmb(); /* Ensure descriptors are written before they are fetched */
348 
349 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
350 		txd = efx_tx_desc(tx_queue,
351 				  old_write_count & tx_queue->ptr_mask);
352 		efx_farch_push_tx_desc(tx_queue, txd);
353 		++tx_queue->pushes;
354 	} else {
355 		efx_farch_notify_tx_desc(tx_queue);
356 	}
357 }
358 
359 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)360 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
361 {
362 	struct efx_nic *efx = tx_queue->efx;
363 	unsigned entries;
364 
365 	entries = tx_queue->ptr_mask + 1;
366 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
367 					entries * sizeof(efx_qword_t));
368 }
369 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)370 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
371 {
372 	struct efx_nic *efx = tx_queue->efx;
373 	efx_oword_t reg;
374 
375 	/* Pin TX descriptor ring */
376 	efx_init_special_buffer(efx, &tx_queue->txd);
377 
378 	/* Push TX descriptor ring to card */
379 	EFX_POPULATE_OWORD_10(reg,
380 			      FRF_AZ_TX_DESCQ_EN, 1,
381 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
382 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
383 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
384 			      FRF_AZ_TX_DESCQ_EVQ_ID,
385 			      tx_queue->channel->channel,
386 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
387 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
388 			      FRF_AZ_TX_DESCQ_SIZE,
389 			      __ffs(tx_queue->txd.entries),
390 			      FRF_AZ_TX_DESCQ_TYPE, 0,
391 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
392 
393 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
394 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
395 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
396 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
397 				    !csum);
398 	}
399 
400 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
401 			 tx_queue->queue);
402 
403 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
404 		/* Only 128 bits in this register */
405 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
406 
407 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
408 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
409 			__clear_bit_le(tx_queue->queue, &reg);
410 		else
411 			__set_bit_le(tx_queue->queue, &reg);
412 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
413 	}
414 
415 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
416 		EFX_POPULATE_OWORD_1(reg,
417 				     FRF_BZ_TX_PACE,
418 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
419 				     FFE_BZ_TX_PACE_OFF :
420 				     FFE_BZ_TX_PACE_RESERVED);
421 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
422 				 tx_queue->queue);
423 	}
424 }
425 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)426 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
427 {
428 	struct efx_nic *efx = tx_queue->efx;
429 	efx_oword_t tx_flush_descq;
430 
431 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
432 	atomic_set(&tx_queue->flush_outstanding, 1);
433 
434 	EFX_POPULATE_OWORD_2(tx_flush_descq,
435 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
436 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
437 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
438 }
439 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)440 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
441 {
442 	struct efx_nic *efx = tx_queue->efx;
443 	efx_oword_t tx_desc_ptr;
444 
445 	/* Remove TX descriptor ring from card */
446 	EFX_ZERO_OWORD(tx_desc_ptr);
447 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
448 			 tx_queue->queue);
449 
450 	/* Unpin TX descriptor ring */
451 	efx_fini_special_buffer(efx, &tx_queue->txd);
452 }
453 
454 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)455 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
456 {
457 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
458 }
459 
460 /**************************************************************************
461  *
462  * RX path
463  *
464  **************************************************************************/
465 
466 /* This creates an entry in the RX descriptor queue */
467 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)468 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
469 {
470 	struct efx_rx_buffer *rx_buf;
471 	efx_qword_t *rxd;
472 
473 	rxd = efx_rx_desc(rx_queue, index);
474 	rx_buf = efx_rx_buffer(rx_queue, index);
475 	EFX_POPULATE_QWORD_3(*rxd,
476 			     FSF_AZ_RX_KER_BUF_SIZE,
477 			     rx_buf->len -
478 			     rx_queue->efx->type->rx_buffer_padding,
479 			     FSF_AZ_RX_KER_BUF_REGION, 0,
480 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
481 }
482 
483 /* This writes to the RX_DESC_WPTR register for the specified receive
484  * descriptor ring.
485  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)486 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
487 {
488 	struct efx_nic *efx = rx_queue->efx;
489 	efx_dword_t reg;
490 	unsigned write_ptr;
491 
492 	while (rx_queue->notified_count != rx_queue->added_count) {
493 		efx_farch_build_rx_desc(
494 			rx_queue,
495 			rx_queue->notified_count & rx_queue->ptr_mask);
496 		++rx_queue->notified_count;
497 	}
498 
499 	wmb();
500 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
501 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
502 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
503 			efx_rx_queue_index(rx_queue));
504 }
505 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)506 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
507 {
508 	struct efx_nic *efx = rx_queue->efx;
509 	unsigned entries;
510 
511 	entries = rx_queue->ptr_mask + 1;
512 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
513 					entries * sizeof(efx_qword_t));
514 }
515 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)516 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
517 {
518 	efx_oword_t rx_desc_ptr;
519 	struct efx_nic *efx = rx_queue->efx;
520 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
521 	bool iscsi_digest_en = is_b0;
522 	bool jumbo_en;
523 
524 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
525 	 * DMA to continue after a PCIe page boundary (and scattering
526 	 * is not possible).  In Falcon B0 and Siena, it enables
527 	 * scatter.
528 	 */
529 	jumbo_en = !is_b0 || efx->rx_scatter;
530 
531 	netif_dbg(efx, hw, efx->net_dev,
532 		  "RX queue %d ring in special buffers %d-%d\n",
533 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
534 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
535 
536 	rx_queue->scatter_n = 0;
537 
538 	/* Pin RX descriptor ring */
539 	efx_init_special_buffer(efx, &rx_queue->rxd);
540 
541 	/* Push RX descriptor ring to card */
542 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
543 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
544 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
545 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
546 			      FRF_AZ_RX_DESCQ_EVQ_ID,
547 			      efx_rx_queue_channel(rx_queue)->channel,
548 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
549 			      FRF_AZ_RX_DESCQ_LABEL,
550 			      efx_rx_queue_index(rx_queue),
551 			      FRF_AZ_RX_DESCQ_SIZE,
552 			      __ffs(rx_queue->rxd.entries),
553 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
554 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
555 			      FRF_AZ_RX_DESCQ_EN, 1);
556 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
557 			 efx_rx_queue_index(rx_queue));
558 }
559 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)560 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
561 {
562 	struct efx_nic *efx = rx_queue->efx;
563 	efx_oword_t rx_flush_descq;
564 
565 	EFX_POPULATE_OWORD_2(rx_flush_descq,
566 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
567 			     FRF_AZ_RX_FLUSH_DESCQ,
568 			     efx_rx_queue_index(rx_queue));
569 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
570 }
571 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)572 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
573 {
574 	efx_oword_t rx_desc_ptr;
575 	struct efx_nic *efx = rx_queue->efx;
576 
577 	/* Remove RX descriptor ring from card */
578 	EFX_ZERO_OWORD(rx_desc_ptr);
579 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
580 			 efx_rx_queue_index(rx_queue));
581 
582 	/* Unpin RX descriptor ring */
583 	efx_fini_special_buffer(efx, &rx_queue->rxd);
584 }
585 
586 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)587 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
588 {
589 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
590 }
591 
592 /**************************************************************************
593  *
594  * Flush handling
595  *
596  **************************************************************************/
597 
598 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
599  * or more RX flushes can be kicked off.
600  */
efx_farch_flush_wake(struct efx_nic * efx)601 static bool efx_farch_flush_wake(struct efx_nic *efx)
602 {
603 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
604 	smp_mb();
605 
606 	return (atomic_read(&efx->active_queues) == 0 ||
607 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
608 		 && atomic_read(&efx->rxq_flush_pending) > 0));
609 }
610 
efx_check_tx_flush_complete(struct efx_nic * efx)611 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
612 {
613 	bool i = true;
614 	efx_oword_t txd_ptr_tbl;
615 	struct efx_channel *channel;
616 	struct efx_tx_queue *tx_queue;
617 
618 	efx_for_each_channel(channel, efx) {
619 		efx_for_each_channel_tx_queue(tx_queue, channel) {
620 			efx_reado_table(efx, &txd_ptr_tbl,
621 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
622 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
623 					    FRF_AZ_TX_DESCQ_FLUSH) ||
624 			    EFX_OWORD_FIELD(txd_ptr_tbl,
625 					    FRF_AZ_TX_DESCQ_EN)) {
626 				netif_dbg(efx, hw, efx->net_dev,
627 					  "flush did not complete on TXQ %d\n",
628 					  tx_queue->queue);
629 				i = false;
630 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
631 						  1, 0)) {
632 				/* The flush is complete, but we didn't
633 				 * receive a flush completion event
634 				 */
635 				netif_dbg(efx, hw, efx->net_dev,
636 					  "flush complete on TXQ %d, so drain "
637 					  "the queue\n", tx_queue->queue);
638 				/* Don't need to increment active_queues as it
639 				 * has already been incremented for the queues
640 				 * which did not drain
641 				 */
642 				efx_farch_magic_event(channel,
643 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
644 							      tx_queue));
645 			}
646 		}
647 	}
648 
649 	return i;
650 }
651 
652 /* Flush all the transmit queues, and continue flushing receive queues until
653  * they're all flushed. Wait for the DRAIN events to be received so that there
654  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)655 static int efx_farch_do_flush(struct efx_nic *efx)
656 {
657 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
658 	struct efx_channel *channel;
659 	struct efx_rx_queue *rx_queue;
660 	struct efx_tx_queue *tx_queue;
661 	int rc = 0;
662 
663 	efx_for_each_channel(channel, efx) {
664 		efx_for_each_channel_tx_queue(tx_queue, channel) {
665 			efx_farch_flush_tx_queue(tx_queue);
666 		}
667 		efx_for_each_channel_rx_queue(rx_queue, channel) {
668 			rx_queue->flush_pending = true;
669 			atomic_inc(&efx->rxq_flush_pending);
670 		}
671 	}
672 
673 	while (timeout && atomic_read(&efx->active_queues) > 0) {
674 		/* If SRIOV is enabled, then offload receive queue flushing to
675 		 * the firmware (though we will still have to poll for
676 		 * completion). If that fails, fall back to the old scheme.
677 		 */
678 		if (efx_siena_sriov_enabled(efx)) {
679 			rc = efx_mcdi_flush_rxqs(efx);
680 			if (!rc)
681 				goto wait;
682 		}
683 
684 		/* The hardware supports four concurrent rx flushes, each of
685 		 * which may need to be retried if there is an outstanding
686 		 * descriptor fetch
687 		 */
688 		efx_for_each_channel(channel, efx) {
689 			efx_for_each_channel_rx_queue(rx_queue, channel) {
690 				if (atomic_read(&efx->rxq_flush_outstanding) >=
691 				    EFX_RX_FLUSH_COUNT)
692 					break;
693 
694 				if (rx_queue->flush_pending) {
695 					rx_queue->flush_pending = false;
696 					atomic_dec(&efx->rxq_flush_pending);
697 					atomic_inc(&efx->rxq_flush_outstanding);
698 					efx_farch_flush_rx_queue(rx_queue);
699 				}
700 			}
701 		}
702 
703 	wait:
704 		timeout = wait_event_timeout(efx->flush_wq,
705 					     efx_farch_flush_wake(efx),
706 					     timeout);
707 	}
708 
709 	if (atomic_read(&efx->active_queues) &&
710 	    !efx_check_tx_flush_complete(efx)) {
711 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
712 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
713 			  atomic_read(&efx->rxq_flush_outstanding),
714 			  atomic_read(&efx->rxq_flush_pending));
715 		rc = -ETIMEDOUT;
716 
717 		atomic_set(&efx->active_queues, 0);
718 		atomic_set(&efx->rxq_flush_pending, 0);
719 		atomic_set(&efx->rxq_flush_outstanding, 0);
720 	}
721 
722 	return rc;
723 }
724 
efx_farch_fini_dmaq(struct efx_nic * efx)725 int efx_farch_fini_dmaq(struct efx_nic *efx)
726 {
727 	struct efx_channel *channel;
728 	struct efx_tx_queue *tx_queue;
729 	struct efx_rx_queue *rx_queue;
730 	int rc = 0;
731 
732 	/* Do not attempt to write to the NIC during EEH recovery */
733 	if (efx->state != STATE_RECOVERY) {
734 		/* Only perform flush if DMA is enabled */
735 		if (efx->pci_dev->is_busmaster) {
736 			efx->type->prepare_flush(efx);
737 			rc = efx_farch_do_flush(efx);
738 			efx->type->finish_flush(efx);
739 		}
740 
741 		efx_for_each_channel(channel, efx) {
742 			efx_for_each_channel_rx_queue(rx_queue, channel)
743 				efx_farch_rx_fini(rx_queue);
744 			efx_for_each_channel_tx_queue(tx_queue, channel)
745 				efx_farch_tx_fini(tx_queue);
746 		}
747 	}
748 
749 	return rc;
750 }
751 
752 /* Reset queue and flush accounting after FLR
753  *
754  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
755  * mastering was disabled), in which case we don't receive (RXQ) flush
756  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
757  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
758  * events were received, and we didn't go through efx_check_tx_flush_complete())
759  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
760  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
761  * for batched flush requests; and the efx->active_queues gets messed up because
762  * we keep incrementing for the newly initialised queues, but it never went to
763  * zero previously.  Then we get a timeout every time we try to restart the
764  * queues, as it doesn't go back to zero when we should be flushing the queues.
765  */
efx_farch_finish_flr(struct efx_nic * efx)766 void efx_farch_finish_flr(struct efx_nic *efx)
767 {
768 	atomic_set(&efx->rxq_flush_pending, 0);
769 	atomic_set(&efx->rxq_flush_outstanding, 0);
770 	atomic_set(&efx->active_queues, 0);
771 }
772 
773 
774 /**************************************************************************
775  *
776  * Event queue processing
777  * Event queues are processed by per-channel tasklets.
778  *
779  **************************************************************************/
780 
781 /* Update a channel's event queue's read pointer (RPTR) register
782  *
783  * This writes the EVQ_RPTR_REG register for the specified channel's
784  * event queue.
785  */
efx_farch_ev_read_ack(struct efx_channel * channel)786 void efx_farch_ev_read_ack(struct efx_channel *channel)
787 {
788 	efx_dword_t reg;
789 	struct efx_nic *efx = channel->efx;
790 
791 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
792 			     channel->eventq_read_ptr & channel->eventq_mask);
793 
794 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
795 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
796 	 */
797 	efx_writed(efx, &reg,
798 		   efx->type->evq_rptr_tbl_base +
799 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
800 }
801 
802 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)803 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
804 			      efx_qword_t *event)
805 {
806 	efx_oword_t drv_ev_reg;
807 
808 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
809 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
810 	drv_ev_reg.u32[0] = event->u32[0];
811 	drv_ev_reg.u32[1] = event->u32[1];
812 	drv_ev_reg.u32[2] = 0;
813 	drv_ev_reg.u32[3] = 0;
814 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
815 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
816 }
817 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)818 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
819 {
820 	efx_qword_t event;
821 
822 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
823 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
824 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
825 	efx_farch_generate_event(channel->efx, channel->channel, &event);
826 }
827 
828 /* Handle a transmit completion event
829  *
830  * The NIC batches TX completion events; the message we receive is of
831  * the form "complete all TX events up to this index".
832  */
833 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)834 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
835 {
836 	unsigned int tx_ev_desc_ptr;
837 	unsigned int tx_ev_q_label;
838 	struct efx_tx_queue *tx_queue;
839 	struct efx_nic *efx = channel->efx;
840 	int tx_packets = 0;
841 
842 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
843 		return 0;
844 
845 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
846 		/* Transmit completion */
847 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
848 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849 		tx_queue = efx_channel_get_tx_queue(
850 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
851 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
852 			      tx_queue->ptr_mask);
853 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
854 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
855 		/* Rewrite the FIFO write pointer */
856 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
857 		tx_queue = efx_channel_get_tx_queue(
858 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
859 
860 		netif_tx_lock(efx->net_dev);
861 		efx_farch_notify_tx_desc(tx_queue);
862 		netif_tx_unlock(efx->net_dev);
863 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
864 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
865 	} else {
866 		netif_err(efx, tx_err, efx->net_dev,
867 			  "channel %d unexpected TX event "
868 			  EFX_QWORD_FMT"\n", channel->channel,
869 			  EFX_QWORD_VAL(*event));
870 	}
871 
872 	return tx_packets;
873 }
874 
875 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)876 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
877 				      const efx_qword_t *event)
878 {
879 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
880 	struct efx_nic *efx = rx_queue->efx;
881 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
882 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
883 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
884 	bool rx_ev_other_err, rx_ev_pause_frm;
885 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
886 	unsigned rx_ev_pkt_type;
887 
888 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
889 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
890 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
891 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
892 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
893 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
894 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
895 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
896 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
897 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
898 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
899 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
900 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
901 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
902 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
903 
904 	/* Every error apart from tobe_disc and pause_frm */
905 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
906 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
907 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
908 
909 	/* Count errors that are not in MAC stats.  Ignore expected
910 	 * checksum errors during self-test. */
911 	if (rx_ev_frm_trunc)
912 		++channel->n_rx_frm_trunc;
913 	else if (rx_ev_tobe_disc)
914 		++channel->n_rx_tobe_disc;
915 	else if (!efx->loopback_selftest) {
916 		if (rx_ev_ip_hdr_chksum_err)
917 			++channel->n_rx_ip_hdr_chksum_err;
918 		else if (rx_ev_tcp_udp_chksum_err)
919 			++channel->n_rx_tcp_udp_chksum_err;
920 	}
921 
922 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
923 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
924 	 * to a FIFO overflow.
925 	 */
926 #ifdef DEBUG
927 	if (rx_ev_other_err && net_ratelimit()) {
928 		netif_dbg(efx, rx_err, efx->net_dev,
929 			  " RX queue %d unexpected RX event "
930 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
931 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
932 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
933 			  rx_ev_ip_hdr_chksum_err ?
934 			  " [IP_HDR_CHKSUM_ERR]" : "",
935 			  rx_ev_tcp_udp_chksum_err ?
936 			  " [TCP_UDP_CHKSUM_ERR]" : "",
937 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
938 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
939 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
940 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
941 			  rx_ev_pause_frm ? " [PAUSE]" : "");
942 	}
943 #endif
944 
945 	/* The frame must be discarded if any of these are true. */
946 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
947 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
948 		EFX_RX_PKT_DISCARD : 0;
949 }
950 
951 /* Handle receive events that are not in-order. Return true if this
952  * can be handled as a partial packet discard, false if it's more
953  * serious.
954  */
955 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)956 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
957 {
958 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
959 	struct efx_nic *efx = rx_queue->efx;
960 	unsigned expected, dropped;
961 
962 	if (rx_queue->scatter_n &&
963 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
964 		      rx_queue->ptr_mask)) {
965 		++channel->n_rx_nodesc_trunc;
966 		return true;
967 	}
968 
969 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
970 	dropped = (index - expected) & rx_queue->ptr_mask;
971 	netif_info(efx, rx_err, efx->net_dev,
972 		   "dropped %d events (index=%d expected=%d)\n",
973 		   dropped, index, expected);
974 
975 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
976 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
977 	return false;
978 }
979 
980 /* Handle a packet received event
981  *
982  * The NIC gives a "discard" flag if it's a unicast packet with the
983  * wrong destination address
984  * Also "is multicast" and "matches multicast filter" flags can be used to
985  * discard non-matching multicast packets.
986  */
987 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)988 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
989 {
990 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
991 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
992 	unsigned expected_ptr;
993 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
994 	u16 flags;
995 	struct efx_rx_queue *rx_queue;
996 	struct efx_nic *efx = channel->efx;
997 
998 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
999 		return;
1000 
1001 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1002 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1003 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1004 		channel->channel);
1005 
1006 	rx_queue = efx_channel_get_rx_queue(channel);
1007 
1008 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1009 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1010 			rx_queue->ptr_mask);
1011 
1012 	/* Check for partial drops and other errors */
1013 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1014 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1015 		if (rx_ev_desc_ptr != expected_ptr &&
1016 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1017 			return;
1018 
1019 		/* Discard all pending fragments */
1020 		if (rx_queue->scatter_n) {
1021 			efx_rx_packet(
1022 				rx_queue,
1023 				rx_queue->removed_count & rx_queue->ptr_mask,
1024 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1025 			rx_queue->removed_count += rx_queue->scatter_n;
1026 			rx_queue->scatter_n = 0;
1027 		}
1028 
1029 		/* Return if there is no new fragment */
1030 		if (rx_ev_desc_ptr != expected_ptr)
1031 			return;
1032 
1033 		/* Discard new fragment if not SOP */
1034 		if (!rx_ev_sop) {
1035 			efx_rx_packet(
1036 				rx_queue,
1037 				rx_queue->removed_count & rx_queue->ptr_mask,
1038 				1, 0, EFX_RX_PKT_DISCARD);
1039 			++rx_queue->removed_count;
1040 			return;
1041 		}
1042 	}
1043 
1044 	++rx_queue->scatter_n;
1045 	if (rx_ev_cont)
1046 		return;
1047 
1048 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1049 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1050 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1051 
1052 	if (likely(rx_ev_pkt_ok)) {
1053 		/* If packet is marked as OK then we can rely on the
1054 		 * hardware checksum and classification.
1055 		 */
1056 		flags = 0;
1057 		switch (rx_ev_hdr_type) {
1058 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1059 			flags |= EFX_RX_PKT_TCP;
1060 			/* fall through */
1061 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1062 			flags |= EFX_RX_PKT_CSUMMED;
1063 			/* fall through */
1064 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1065 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1066 			break;
1067 		}
1068 	} else {
1069 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1070 	}
1071 
1072 	/* Detect multicast packets that didn't match the filter */
1073 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1074 	if (rx_ev_mcast_pkt) {
1075 		unsigned int rx_ev_mcast_hash_match =
1076 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1077 
1078 		if (unlikely(!rx_ev_mcast_hash_match)) {
1079 			++channel->n_rx_mcast_mismatch;
1080 			flags |= EFX_RX_PKT_DISCARD;
1081 		}
1082 	}
1083 
1084 	channel->irq_mod_score += 2;
1085 
1086 	/* Handle received packet */
1087 	efx_rx_packet(rx_queue,
1088 		      rx_queue->removed_count & rx_queue->ptr_mask,
1089 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1090 	rx_queue->removed_count += rx_queue->scatter_n;
1091 	rx_queue->scatter_n = 0;
1092 }
1093 
1094 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1095  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1096  * of all transmit completions.
1097  */
1098 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1099 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1100 {
1101 	struct efx_tx_queue *tx_queue;
1102 	int qid;
1103 
1104 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1105 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1106 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1107 					    qid % EFX_TXQ_TYPES);
1108 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1109 			efx_farch_magic_event(tx_queue->channel,
1110 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1111 		}
1112 	}
1113 }
1114 
1115 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1116  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1117  * the RX queue back to the mask of RX queues in need of flushing.
1118  */
1119 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1120 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1121 {
1122 	struct efx_channel *channel;
1123 	struct efx_rx_queue *rx_queue;
1124 	int qid;
1125 	bool failed;
1126 
1127 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1128 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1129 	if (qid >= efx->n_channels)
1130 		return;
1131 	channel = efx_get_channel(efx, qid);
1132 	if (!efx_channel_has_rx_queue(channel))
1133 		return;
1134 	rx_queue = efx_channel_get_rx_queue(channel);
1135 
1136 	if (failed) {
1137 		netif_info(efx, hw, efx->net_dev,
1138 			   "RXQ %d flush retry\n", qid);
1139 		rx_queue->flush_pending = true;
1140 		atomic_inc(&efx->rxq_flush_pending);
1141 	} else {
1142 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1143 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1144 	}
1145 	atomic_dec(&efx->rxq_flush_outstanding);
1146 	if (efx_farch_flush_wake(efx))
1147 		wake_up(&efx->flush_wq);
1148 }
1149 
1150 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1151 efx_farch_handle_drain_event(struct efx_channel *channel)
1152 {
1153 	struct efx_nic *efx = channel->efx;
1154 
1155 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1156 	atomic_dec(&efx->active_queues);
1157 	if (efx_farch_flush_wake(efx))
1158 		wake_up(&efx->flush_wq);
1159 }
1160 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1161 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1162 					     efx_qword_t *event)
1163 {
1164 	struct efx_nic *efx = channel->efx;
1165 	struct efx_rx_queue *rx_queue =
1166 		efx_channel_has_rx_queue(channel) ?
1167 		efx_channel_get_rx_queue(channel) : NULL;
1168 	unsigned magic, code;
1169 
1170 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1171 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1172 
1173 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1174 		channel->event_test_cpu = raw_smp_processor_id();
1175 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1176 		/* The queue must be empty, so we won't receive any rx
1177 		 * events, so efx_process_channel() won't refill the
1178 		 * queue. Refill it here */
1179 		efx_fast_push_rx_descriptors(rx_queue, true);
1180 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1181 		efx_farch_handle_drain_event(channel);
1182 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1183 		efx_farch_handle_drain_event(channel);
1184 	} else {
1185 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1186 			  "generated event "EFX_QWORD_FMT"\n",
1187 			  channel->channel, EFX_QWORD_VAL(*event));
1188 	}
1189 }
1190 
1191 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1192 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1193 {
1194 	struct efx_nic *efx = channel->efx;
1195 	unsigned int ev_sub_code;
1196 	unsigned int ev_sub_data;
1197 
1198 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1199 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1200 
1201 	switch (ev_sub_code) {
1202 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1203 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1204 			   channel->channel, ev_sub_data);
1205 		efx_farch_handle_tx_flush_done(efx, event);
1206 #ifdef CONFIG_SFC_SRIOV
1207 		efx_siena_sriov_tx_flush_done(efx, event);
1208 #endif
1209 		break;
1210 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1211 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1212 			   channel->channel, ev_sub_data);
1213 		efx_farch_handle_rx_flush_done(efx, event);
1214 #ifdef CONFIG_SFC_SRIOV
1215 		efx_siena_sriov_rx_flush_done(efx, event);
1216 #endif
1217 		break;
1218 	case FSE_AZ_EVQ_INIT_DONE_EV:
1219 		netif_dbg(efx, hw, efx->net_dev,
1220 			  "channel %d EVQ %d initialised\n",
1221 			  channel->channel, ev_sub_data);
1222 		break;
1223 	case FSE_AZ_SRM_UPD_DONE_EV:
1224 		netif_vdbg(efx, hw, efx->net_dev,
1225 			   "channel %d SRAM update done\n", channel->channel);
1226 		break;
1227 	case FSE_AZ_WAKE_UP_EV:
1228 		netif_vdbg(efx, hw, efx->net_dev,
1229 			   "channel %d RXQ %d wakeup event\n",
1230 			   channel->channel, ev_sub_data);
1231 		break;
1232 	case FSE_AZ_TIMER_EV:
1233 		netif_vdbg(efx, hw, efx->net_dev,
1234 			   "channel %d RX queue %d timer expired\n",
1235 			   channel->channel, ev_sub_data);
1236 		break;
1237 	case FSE_AA_RX_RECOVER_EV:
1238 		netif_err(efx, rx_err, efx->net_dev,
1239 			  "channel %d seen DRIVER RX_RESET event. "
1240 			"Resetting.\n", channel->channel);
1241 		atomic_inc(&efx->rx_reset);
1242 		efx_schedule_reset(efx,
1243 				   EFX_WORKAROUND_6555(efx) ?
1244 				   RESET_TYPE_RX_RECOVERY :
1245 				   RESET_TYPE_DISABLE);
1246 		break;
1247 	case FSE_BZ_RX_DSC_ERROR_EV:
1248 		if (ev_sub_data < EFX_VI_BASE) {
1249 			netif_err(efx, rx_err, efx->net_dev,
1250 				  "RX DMA Q %d reports descriptor fetch error."
1251 				  " RX Q %d is disabled.\n", ev_sub_data,
1252 				  ev_sub_data);
1253 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1254 		}
1255 #ifdef CONFIG_SFC_SRIOV
1256 		else
1257 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1258 #endif
1259 		break;
1260 	case FSE_BZ_TX_DSC_ERROR_EV:
1261 		if (ev_sub_data < EFX_VI_BASE) {
1262 			netif_err(efx, tx_err, efx->net_dev,
1263 				  "TX DMA Q %d reports descriptor fetch error."
1264 				  " TX Q %d is disabled.\n", ev_sub_data,
1265 				  ev_sub_data);
1266 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1267 		}
1268 #ifdef CONFIG_SFC_SRIOV
1269 		else
1270 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1271 #endif
1272 		break;
1273 	default:
1274 		netif_vdbg(efx, hw, efx->net_dev,
1275 			   "channel %d unknown driver event code %d "
1276 			   "data %04x\n", channel->channel, ev_sub_code,
1277 			   ev_sub_data);
1278 		break;
1279 	}
1280 }
1281 
efx_farch_ev_process(struct efx_channel * channel,int budget)1282 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1283 {
1284 	struct efx_nic *efx = channel->efx;
1285 	unsigned int read_ptr;
1286 	efx_qword_t event, *p_event;
1287 	int ev_code;
1288 	int tx_packets = 0;
1289 	int spent = 0;
1290 
1291 	if (budget <= 0)
1292 		return spent;
1293 
1294 	read_ptr = channel->eventq_read_ptr;
1295 
1296 	for (;;) {
1297 		p_event = efx_event(channel, read_ptr);
1298 		event = *p_event;
1299 
1300 		if (!efx_event_present(&event))
1301 			/* End of events */
1302 			break;
1303 
1304 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1305 			   "channel %d event is "EFX_QWORD_FMT"\n",
1306 			   channel->channel, EFX_QWORD_VAL(event));
1307 
1308 		/* Clear this event by marking it all ones */
1309 		EFX_SET_QWORD(*p_event);
1310 
1311 		++read_ptr;
1312 
1313 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1314 
1315 		switch (ev_code) {
1316 		case FSE_AZ_EV_CODE_RX_EV:
1317 			efx_farch_handle_rx_event(channel, &event);
1318 			if (++spent == budget)
1319 				goto out;
1320 			break;
1321 		case FSE_AZ_EV_CODE_TX_EV:
1322 			tx_packets += efx_farch_handle_tx_event(channel,
1323 								&event);
1324 			if (tx_packets > efx->txq_entries) {
1325 				spent = budget;
1326 				goto out;
1327 			}
1328 			break;
1329 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1330 			efx_farch_handle_generated_event(channel, &event);
1331 			break;
1332 		case FSE_AZ_EV_CODE_DRIVER_EV:
1333 			efx_farch_handle_driver_event(channel, &event);
1334 			break;
1335 #ifdef CONFIG_SFC_SRIOV
1336 		case FSE_CZ_EV_CODE_USER_EV:
1337 			efx_siena_sriov_event(channel, &event);
1338 			break;
1339 #endif
1340 		case FSE_CZ_EV_CODE_MCDI_EV:
1341 			efx_mcdi_process_event(channel, &event);
1342 			break;
1343 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1344 			if (efx->type->handle_global_event &&
1345 			    efx->type->handle_global_event(channel, &event))
1346 				break;
1347 			/* else fall through */
1348 		default:
1349 			netif_err(channel->efx, hw, channel->efx->net_dev,
1350 				  "channel %d unknown event type %d (data "
1351 				  EFX_QWORD_FMT ")\n", channel->channel,
1352 				  ev_code, EFX_QWORD_VAL(event));
1353 		}
1354 	}
1355 
1356 out:
1357 	channel->eventq_read_ptr = read_ptr;
1358 	return spent;
1359 }
1360 
1361 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1362 int efx_farch_ev_probe(struct efx_channel *channel)
1363 {
1364 	struct efx_nic *efx = channel->efx;
1365 	unsigned entries;
1366 
1367 	entries = channel->eventq_mask + 1;
1368 	return efx_alloc_special_buffer(efx, &channel->eventq,
1369 					entries * sizeof(efx_qword_t));
1370 }
1371 
efx_farch_ev_init(struct efx_channel * channel)1372 int efx_farch_ev_init(struct efx_channel *channel)
1373 {
1374 	efx_oword_t reg;
1375 	struct efx_nic *efx = channel->efx;
1376 
1377 	netif_dbg(efx, hw, efx->net_dev,
1378 		  "channel %d event queue in special buffers %d-%d\n",
1379 		  channel->channel, channel->eventq.index,
1380 		  channel->eventq.index + channel->eventq.entries - 1);
1381 
1382 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1383 		EFX_POPULATE_OWORD_3(reg,
1384 				     FRF_CZ_TIMER_Q_EN, 1,
1385 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1386 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1387 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388 	}
1389 
1390 	/* Pin event queue buffer */
1391 	efx_init_special_buffer(efx, &channel->eventq);
1392 
1393 	/* Fill event queue with all ones (i.e. empty events) */
1394 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1395 
1396 	/* Push event queue to card */
1397 	EFX_POPULATE_OWORD_3(reg,
1398 			     FRF_AZ_EVQ_EN, 1,
1399 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1400 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1401 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1402 			 channel->channel);
1403 
1404 	return 0;
1405 }
1406 
efx_farch_ev_fini(struct efx_channel * channel)1407 void efx_farch_ev_fini(struct efx_channel *channel)
1408 {
1409 	efx_oword_t reg;
1410 	struct efx_nic *efx = channel->efx;
1411 
1412 	/* Remove event queue from card */
1413 	EFX_ZERO_OWORD(reg);
1414 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1415 			 channel->channel);
1416 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1417 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1418 
1419 	/* Unpin event queue */
1420 	efx_fini_special_buffer(efx, &channel->eventq);
1421 }
1422 
1423 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1424 void efx_farch_ev_remove(struct efx_channel *channel)
1425 {
1426 	efx_free_special_buffer(channel->efx, &channel->eventq);
1427 }
1428 
1429 
efx_farch_ev_test_generate(struct efx_channel * channel)1430 void efx_farch_ev_test_generate(struct efx_channel *channel)
1431 {
1432 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1433 }
1434 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1435 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1436 {
1437 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1438 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1439 }
1440 
1441 /**************************************************************************
1442  *
1443  * Hardware interrupts
1444  * The hardware interrupt handler does very little work; all the event
1445  * queue processing is carried out by per-channel tasklets.
1446  *
1447  **************************************************************************/
1448 
1449 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1450 static inline void efx_farch_interrupts(struct efx_nic *efx,
1451 				      bool enabled, bool force)
1452 {
1453 	efx_oword_t int_en_reg_ker;
1454 
1455 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1456 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1457 			     FRF_AZ_KER_INT_KER, force,
1458 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1459 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1460 }
1461 
efx_farch_irq_enable_master(struct efx_nic * efx)1462 void efx_farch_irq_enable_master(struct efx_nic *efx)
1463 {
1464 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1465 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1466 
1467 	efx_farch_interrupts(efx, true, false);
1468 }
1469 
efx_farch_irq_disable_master(struct efx_nic * efx)1470 void efx_farch_irq_disable_master(struct efx_nic *efx)
1471 {
1472 	/* Disable interrupts */
1473 	efx_farch_interrupts(efx, false, false);
1474 }
1475 
1476 /* Generate a test interrupt
1477  * Interrupt must already have been enabled, otherwise nasty things
1478  * may happen.
1479  */
efx_farch_irq_test_generate(struct efx_nic * efx)1480 int efx_farch_irq_test_generate(struct efx_nic *efx)
1481 {
1482 	efx_farch_interrupts(efx, true, true);
1483 	return 0;
1484 }
1485 
1486 /* Process a fatal interrupt
1487  * Disable bus mastering ASAP and schedule a reset
1488  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1489 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1490 {
1491 	struct falcon_nic_data *nic_data = efx->nic_data;
1492 	efx_oword_t *int_ker = efx->irq_status.addr;
1493 	efx_oword_t fatal_intr;
1494 	int error, mem_perr;
1495 
1496 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1497 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1498 
1499 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1500 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1501 		  EFX_OWORD_VAL(fatal_intr),
1502 		  error ? "disabling bus mastering" : "no recognised error");
1503 
1504 	/* If this is a memory parity error dump which blocks are offending */
1505 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1506 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1507 	if (mem_perr) {
1508 		efx_oword_t reg;
1509 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1510 		netif_err(efx, hw, efx->net_dev,
1511 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1512 			  EFX_OWORD_VAL(reg));
1513 	}
1514 
1515 	/* Disable both devices */
1516 	pci_clear_master(efx->pci_dev);
1517 	if (efx_nic_is_dual_func(efx))
1518 		pci_clear_master(nic_data->pci_dev2);
1519 	efx_farch_irq_disable_master(efx);
1520 
1521 	/* Count errors and reset or disable the NIC accordingly */
1522 	if (efx->int_error_count == 0 ||
1523 	    time_after(jiffies, efx->int_error_expire)) {
1524 		efx->int_error_count = 0;
1525 		efx->int_error_expire =
1526 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1527 	}
1528 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1529 		netif_err(efx, hw, efx->net_dev,
1530 			  "SYSTEM ERROR - reset scheduled\n");
1531 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1532 	} else {
1533 		netif_err(efx, hw, efx->net_dev,
1534 			  "SYSTEM ERROR - max number of errors seen."
1535 			  "NIC will be disabled\n");
1536 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1537 	}
1538 
1539 	return IRQ_HANDLED;
1540 }
1541 
1542 /* Handle a legacy interrupt
1543  * Acknowledges the interrupt and schedule event queue processing.
1544  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1545 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1546 {
1547 	struct efx_nic *efx = dev_id;
1548 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1549 	efx_oword_t *int_ker = efx->irq_status.addr;
1550 	irqreturn_t result = IRQ_NONE;
1551 	struct efx_channel *channel;
1552 	efx_dword_t reg;
1553 	u32 queues;
1554 	int syserr;
1555 
1556 	/* Read the ISR which also ACKs the interrupts */
1557 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1558 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1559 
1560 	/* Legacy interrupts are disabled too late by the EEH kernel
1561 	 * code. Disable them earlier.
1562 	 * If an EEH error occurred, the read will have returned all ones.
1563 	 */
1564 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1565 	    !efx->eeh_disabled_legacy_irq) {
1566 		disable_irq_nosync(efx->legacy_irq);
1567 		efx->eeh_disabled_legacy_irq = true;
1568 	}
1569 
1570 	/* Handle non-event-queue sources */
1571 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1572 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1573 		if (unlikely(syserr))
1574 			return efx_farch_fatal_interrupt(efx);
1575 		efx->last_irq_cpu = raw_smp_processor_id();
1576 	}
1577 
1578 	if (queues != 0) {
1579 		efx->irq_zero_count = 0;
1580 
1581 		/* Schedule processing of any interrupting queues */
1582 		if (likely(soft_enabled)) {
1583 			efx_for_each_channel(channel, efx) {
1584 				if (queues & 1)
1585 					efx_schedule_channel_irq(channel);
1586 				queues >>= 1;
1587 			}
1588 		}
1589 		result = IRQ_HANDLED;
1590 
1591 	} else {
1592 		efx_qword_t *event;
1593 
1594 		/* Legacy ISR read can return zero once (SF bug 15783) */
1595 
1596 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1597 		 * because this might be a shared interrupt. */
1598 		if (efx->irq_zero_count++ == 0)
1599 			result = IRQ_HANDLED;
1600 
1601 		/* Ensure we schedule or rearm all event queues */
1602 		if (likely(soft_enabled)) {
1603 			efx_for_each_channel(channel, efx) {
1604 				event = efx_event(channel,
1605 						  channel->eventq_read_ptr);
1606 				if (efx_event_present(event))
1607 					efx_schedule_channel_irq(channel);
1608 				else
1609 					efx_farch_ev_read_ack(channel);
1610 			}
1611 		}
1612 	}
1613 
1614 	if (result == IRQ_HANDLED)
1615 		netif_vdbg(efx, intr, efx->net_dev,
1616 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1617 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1618 
1619 	return result;
1620 }
1621 
1622 /* Handle an MSI interrupt
1623  *
1624  * Handle an MSI hardware interrupt.  This routine schedules event
1625  * queue processing.  No interrupt acknowledgement cycle is necessary.
1626  * Also, we never need to check that the interrupt is for us, since
1627  * MSI interrupts cannot be shared.
1628  */
efx_farch_msi_interrupt(int irq,void * dev_id)1629 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1630 {
1631 	struct efx_msi_context *context = dev_id;
1632 	struct efx_nic *efx = context->efx;
1633 	efx_oword_t *int_ker = efx->irq_status.addr;
1634 	int syserr;
1635 
1636 	netif_vdbg(efx, intr, efx->net_dev,
1637 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1638 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1639 
1640 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1641 		return IRQ_HANDLED;
1642 
1643 	/* Handle non-event-queue sources */
1644 	if (context->index == efx->irq_level) {
1645 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1646 		if (unlikely(syserr))
1647 			return efx_farch_fatal_interrupt(efx);
1648 		efx->last_irq_cpu = raw_smp_processor_id();
1649 	}
1650 
1651 	/* Schedule processing of the channel */
1652 	efx_schedule_channel_irq(efx->channel[context->index]);
1653 
1654 	return IRQ_HANDLED;
1655 }
1656 
1657 /* Setup RSS indirection table.
1658  * This maps from the hash value of the packet to RXQ
1659  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1660 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1661 {
1662 	size_t i = 0;
1663 	efx_dword_t dword;
1664 
1665 	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1666 
1667 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1668 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1669 
1670 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1671 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1672 				     efx->rx_indir_table[i]);
1673 		efx_writed(efx, &dword,
1674 			   FR_BZ_RX_INDIRECTION_TBL +
1675 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1676 	}
1677 }
1678 
1679 /* Looks at available SRAM resources and works out how many queues we
1680  * can support, and where things like descriptor caches should live.
1681  *
1682  * SRAM is split up as follows:
1683  * 0                          buftbl entries for channels
1684  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1685  * efx->rx_dc_base            RX descriptor caches
1686  * efx->tx_dc_base            TX descriptor caches
1687  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1688 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1689 {
1690 	unsigned vi_count, buftbl_min;
1691 
1692 #ifdef CONFIG_SFC_SRIOV
1693 	struct siena_nic_data *nic_data = efx->nic_data;
1694 #endif
1695 
1696 	/* Account for the buffer table entries backing the datapath channels
1697 	 * and the descriptor caches for those channels.
1698 	 */
1699 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1700 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1701 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1702 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1703 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1704 
1705 #ifdef CONFIG_SFC_SRIOV
1706 	if (efx->type->sriov_wanted) {
1707 		if (efx->type->sriov_wanted(efx)) {
1708 			unsigned vi_dc_entries, buftbl_free;
1709 			unsigned entries_per_vf, vf_limit;
1710 
1711 			nic_data->vf_buftbl_base = buftbl_min;
1712 
1713 			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1714 			vi_count = max(vi_count, EFX_VI_BASE);
1715 			buftbl_free = (sram_lim_qw - buftbl_min -
1716 				       vi_count * vi_dc_entries);
1717 
1718 			entries_per_vf = ((vi_dc_entries +
1719 					   EFX_VF_BUFTBL_PER_VI) *
1720 					  efx_vf_size(efx));
1721 			vf_limit = min(buftbl_free / entries_per_vf,
1722 				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1723 
1724 			if (efx->vf_count > vf_limit) {
1725 				netif_err(efx, probe, efx->net_dev,
1726 					  "Reducing VF count from from %d to %d\n",
1727 					  efx->vf_count, vf_limit);
1728 				efx->vf_count = vf_limit;
1729 			}
1730 			vi_count += efx->vf_count * efx_vf_size(efx);
1731 		}
1732 	}
1733 #endif
1734 
1735 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1736 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1737 }
1738 
efx_farch_fpga_ver(struct efx_nic * efx)1739 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1740 {
1741 	efx_oword_t altera_build;
1742 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1743 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1744 }
1745 
efx_farch_init_common(struct efx_nic * efx)1746 void efx_farch_init_common(struct efx_nic *efx)
1747 {
1748 	efx_oword_t temp;
1749 
1750 	/* Set positions of descriptor caches in SRAM. */
1751 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1752 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1753 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1754 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1755 
1756 	/* Set TX descriptor cache size. */
1757 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1758 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1759 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1760 
1761 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1762 	 * this allows most efficient prefetching.
1763 	 */
1764 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1765 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1766 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1767 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1768 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1769 
1770 	/* Program INT_KER address */
1771 	EFX_POPULATE_OWORD_2(temp,
1772 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1773 			     EFX_INT_MODE_USE_MSI(efx),
1774 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1775 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1776 
1777 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1778 		/* Use an interrupt level unused by event queues */
1779 		efx->irq_level = 0x1f;
1780 	else
1781 		/* Use a valid MSI-X vector */
1782 		efx->irq_level = 0;
1783 
1784 	/* Enable all the genuinely fatal interrupts.  (They are still
1785 	 * masked by the overall interrupt mask, controlled by
1786 	 * falcon_interrupts()).
1787 	 *
1788 	 * Note: All other fatal interrupts are enabled
1789 	 */
1790 	EFX_POPULATE_OWORD_3(temp,
1791 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1792 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1793 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1794 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1795 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1796 	EFX_INVERT_OWORD(temp);
1797 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1798 
1799 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1800 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1801 	 */
1802 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1803 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1804 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1805 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1806 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1807 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1808 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1809 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1810 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1811 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1812 	/* Disable hardware watchdog which can misfire */
1813 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1814 	/* Squash TX of packets of 16 bytes or less */
1815 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1816 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1817 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1818 
1819 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1820 		EFX_POPULATE_OWORD_4(temp,
1821 				     /* Default values */
1822 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1823 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1824 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1825 				     /* Allow large pace values in the
1826 				      * fast bin. */
1827 				     FRF_BZ_TX_PACE_BIN_TH,
1828 				     FFE_BZ_TX_PACE_RESERVED);
1829 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1830 	}
1831 }
1832 
1833 /**************************************************************************
1834  *
1835  * Filter tables
1836  *
1837  **************************************************************************
1838  */
1839 
1840 /* "Fudge factors" - difference between programmed value and actual depth.
1841  * Due to pipelined implementation we need to program H/W with a value that
1842  * is larger than the hop limit we want.
1843  */
1844 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1845 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1846 
1847 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1848  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1849  * table is full.
1850  */
1851 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1852 
1853 /* Don't try very hard to find space for performance hints, as this is
1854  * counter-productive. */
1855 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1856 
1857 enum efx_farch_filter_type {
1858 	EFX_FARCH_FILTER_TCP_FULL = 0,
1859 	EFX_FARCH_FILTER_TCP_WILD,
1860 	EFX_FARCH_FILTER_UDP_FULL,
1861 	EFX_FARCH_FILTER_UDP_WILD,
1862 	EFX_FARCH_FILTER_MAC_FULL = 4,
1863 	EFX_FARCH_FILTER_MAC_WILD,
1864 	EFX_FARCH_FILTER_UC_DEF = 8,
1865 	EFX_FARCH_FILTER_MC_DEF,
1866 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1867 };
1868 
1869 enum efx_farch_filter_table_id {
1870 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1871 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1872 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1873 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1874 	EFX_FARCH_FILTER_TABLE_COUNT,
1875 };
1876 
1877 enum efx_farch_filter_index {
1878 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1879 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1880 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1881 };
1882 
1883 struct efx_farch_filter_spec {
1884 	u8	type:4;
1885 	u8	priority:4;
1886 	u8	flags;
1887 	u16	dmaq_id;
1888 	u32	data[3];
1889 };
1890 
1891 struct efx_farch_filter_table {
1892 	enum efx_farch_filter_table_id id;
1893 	u32		offset;		/* address of table relative to BAR */
1894 	unsigned	size;		/* number of entries */
1895 	unsigned	step;		/* step between entries */
1896 	unsigned	used;		/* number currently used */
1897 	unsigned long	*used_bitmap;
1898 	struct efx_farch_filter_spec *spec;
1899 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1900 };
1901 
1902 struct efx_farch_filter_state {
1903 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1904 };
1905 
1906 static void
1907 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1908 				   struct efx_farch_filter_table *table,
1909 				   unsigned int filter_idx);
1910 
1911 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1912  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1913 static u16 efx_farch_filter_hash(u32 key)
1914 {
1915 	u16 tmp;
1916 
1917 	/* First 16 rounds */
1918 	tmp = 0x1fff ^ key >> 16;
1919 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1920 	tmp = tmp ^ tmp >> 9;
1921 	/* Last 16 rounds */
1922 	tmp = tmp ^ tmp << 13 ^ key;
1923 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1924 	return tmp ^ tmp >> 9;
1925 }
1926 
1927 /* To allow for hash collisions, filter search continues at these
1928  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1929 static u16 efx_farch_filter_increment(u32 key)
1930 {
1931 	return key * 2 - 1;
1932 }
1933 
1934 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1935 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1936 {
1937 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1939 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1941 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1942 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1943 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1944 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1945 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1946 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1947 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1948 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1949 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1950 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1951 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1952 }
1953 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1954 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1955 {
1956 	struct efx_farch_filter_state *state = efx->filter_state;
1957 	struct efx_farch_filter_table *table;
1958 	efx_oword_t filter_ctl;
1959 
1960 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1961 
1962 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1963 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1964 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1965 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1966 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1967 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1968 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1969 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1970 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1971 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1972 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1973 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1974 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1975 
1976 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1977 	if (table->size) {
1978 		EFX_SET_OWORD_FIELD(
1979 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1980 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1981 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1982 		EFX_SET_OWORD_FIELD(
1983 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1984 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1985 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1986 	}
1987 
1988 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1989 	if (table->size) {
1990 		EFX_SET_OWORD_FIELD(
1991 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1992 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1993 		EFX_SET_OWORD_FIELD(
1994 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1995 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1996 			   EFX_FILTER_FLAG_RX_RSS));
1997 		EFX_SET_OWORD_FIELD(
1998 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1999 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
2000 		EFX_SET_OWORD_FIELD(
2001 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2002 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2003 			   EFX_FILTER_FLAG_RX_RSS));
2004 
2005 		/* There is a single bit to enable RX scatter for all
2006 		 * unmatched packets.  Only set it if scatter is
2007 		 * enabled in both filter specs.
2008 		 */
2009 		EFX_SET_OWORD_FIELD(
2010 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2011 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2012 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2013 			   EFX_FILTER_FLAG_RX_SCATTER));
2014 	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2015 		/* We don't expose 'default' filters because unmatched
2016 		 * packets always go to the queue number found in the
2017 		 * RSS table.  But we still need to set the RX scatter
2018 		 * bit here.
2019 		 */
2020 		EFX_SET_OWORD_FIELD(
2021 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2022 			efx->rx_scatter);
2023 	}
2024 
2025 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2026 }
2027 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2028 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2029 {
2030 	struct efx_farch_filter_state *state = efx->filter_state;
2031 	struct efx_farch_filter_table *table;
2032 	efx_oword_t tx_cfg;
2033 
2034 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2035 
2036 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2037 	if (table->size) {
2038 		EFX_SET_OWORD_FIELD(
2039 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2040 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2041 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2042 		EFX_SET_OWORD_FIELD(
2043 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2044 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2045 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2046 	}
2047 
2048 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2049 }
2050 
2051 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2052 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2053 			       const struct efx_filter_spec *gen_spec)
2054 {
2055 	bool is_full = false;
2056 
2057 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2058 	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2059 		return -EINVAL;
2060 
2061 	spec->priority = gen_spec->priority;
2062 	spec->flags = gen_spec->flags;
2063 	spec->dmaq_id = gen_spec->dmaq_id;
2064 
2065 	switch (gen_spec->match_flags) {
2066 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2067 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2068 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2069 		is_full = true;
2070 		/* fall through */
2071 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2072 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2073 		__be32 rhost, host1, host2;
2074 		__be16 rport, port1, port2;
2075 
2076 		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2077 
2078 		if (gen_spec->ether_type != htons(ETH_P_IP))
2079 			return -EPROTONOSUPPORT;
2080 		if (gen_spec->loc_port == 0 ||
2081 		    (is_full && gen_spec->rem_port == 0))
2082 			return -EADDRNOTAVAIL;
2083 		switch (gen_spec->ip_proto) {
2084 		case IPPROTO_TCP:
2085 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2086 				      EFX_FARCH_FILTER_TCP_WILD);
2087 			break;
2088 		case IPPROTO_UDP:
2089 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2090 				      EFX_FARCH_FILTER_UDP_WILD);
2091 			break;
2092 		default:
2093 			return -EPROTONOSUPPORT;
2094 		}
2095 
2096 		/* Filter is constructed in terms of source and destination,
2097 		 * with the odd wrinkle that the ports are swapped in a UDP
2098 		 * wildcard filter.  We need to convert from local and remote
2099 		 * (= zero for wildcard) addresses.
2100 		 */
2101 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2102 		rport = is_full ? gen_spec->rem_port : 0;
2103 		host1 = rhost;
2104 		host2 = gen_spec->loc_host[0];
2105 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2106 			port1 = gen_spec->loc_port;
2107 			port2 = rport;
2108 		} else {
2109 			port1 = rport;
2110 			port2 = gen_spec->loc_port;
2111 		}
2112 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2113 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2114 		spec->data[2] = ntohl(host2);
2115 
2116 		break;
2117 	}
2118 
2119 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2120 		is_full = true;
2121 		/* fall through */
2122 	case EFX_FILTER_MATCH_LOC_MAC:
2123 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2124 			      EFX_FARCH_FILTER_MAC_WILD);
2125 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2126 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2127 				 gen_spec->loc_mac[3] << 16 |
2128 				 gen_spec->loc_mac[4] << 8 |
2129 				 gen_spec->loc_mac[5]);
2130 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2131 				 gen_spec->loc_mac[1]);
2132 		break;
2133 
2134 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2135 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2136 			      EFX_FARCH_FILTER_MC_DEF :
2137 			      EFX_FARCH_FILTER_UC_DEF);
2138 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2139 		break;
2140 
2141 	default:
2142 		return -EPROTONOSUPPORT;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2149 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2150 			     const struct efx_farch_filter_spec *spec)
2151 {
2152 	bool is_full = false;
2153 
2154 	/* *gen_spec should be completely initialised, to be consistent
2155 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2156 	 * it back to userland.
2157 	 */
2158 	memset(gen_spec, 0, sizeof(*gen_spec));
2159 
2160 	gen_spec->priority = spec->priority;
2161 	gen_spec->flags = spec->flags;
2162 	gen_spec->dmaq_id = spec->dmaq_id;
2163 
2164 	switch (spec->type) {
2165 	case EFX_FARCH_FILTER_TCP_FULL:
2166 	case EFX_FARCH_FILTER_UDP_FULL:
2167 		is_full = true;
2168 		/* fall through */
2169 	case EFX_FARCH_FILTER_TCP_WILD:
2170 	case EFX_FARCH_FILTER_UDP_WILD: {
2171 		__be32 host1, host2;
2172 		__be16 port1, port2;
2173 
2174 		gen_spec->match_flags =
2175 			EFX_FILTER_MATCH_ETHER_TYPE |
2176 			EFX_FILTER_MATCH_IP_PROTO |
2177 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2178 		if (is_full)
2179 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2180 						  EFX_FILTER_MATCH_REM_PORT);
2181 		gen_spec->ether_type = htons(ETH_P_IP);
2182 		gen_spec->ip_proto =
2183 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2184 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2185 			IPPROTO_TCP : IPPROTO_UDP;
2186 
2187 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2188 		port1 = htons(spec->data[0]);
2189 		host2 = htonl(spec->data[2]);
2190 		port2 = htons(spec->data[1] >> 16);
2191 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2192 			gen_spec->loc_host[0] = host1;
2193 			gen_spec->rem_host[0] = host2;
2194 		} else {
2195 			gen_spec->loc_host[0] = host2;
2196 			gen_spec->rem_host[0] = host1;
2197 		}
2198 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2199 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2200 			gen_spec->loc_port = port1;
2201 			gen_spec->rem_port = port2;
2202 		} else {
2203 			gen_spec->loc_port = port2;
2204 			gen_spec->rem_port = port1;
2205 		}
2206 
2207 		break;
2208 	}
2209 
2210 	case EFX_FARCH_FILTER_MAC_FULL:
2211 		is_full = true;
2212 		/* fall through */
2213 	case EFX_FARCH_FILTER_MAC_WILD:
2214 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2215 		if (is_full)
2216 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2217 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2218 		gen_spec->loc_mac[1] = spec->data[2];
2219 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2220 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2221 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2222 		gen_spec->loc_mac[5] = spec->data[1];
2223 		gen_spec->outer_vid = htons(spec->data[0]);
2224 		break;
2225 
2226 	case EFX_FARCH_FILTER_UC_DEF:
2227 	case EFX_FARCH_FILTER_MC_DEF:
2228 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2229 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2230 		break;
2231 
2232 	default:
2233 		WARN_ON(1);
2234 		break;
2235 	}
2236 }
2237 
2238 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2239 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2240 			      struct efx_farch_filter_spec *spec)
2241 {
2242 	/* If there's only one channel then disable RSS for non VF
2243 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2244 	 */
2245 	spec->priority = EFX_FILTER_PRI_AUTO;
2246 	spec->flags = (EFX_FILTER_FLAG_RX |
2247 		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2248 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2249 	spec->dmaq_id = 0;
2250 }
2251 
2252 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2253 static u32 efx_farch_filter_build(efx_oword_t *filter,
2254 				  struct efx_farch_filter_spec *spec)
2255 {
2256 	u32 data3;
2257 
2258 	switch (efx_farch_filter_spec_table_id(spec)) {
2259 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2260 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2261 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2262 		EFX_POPULATE_OWORD_7(
2263 			*filter,
2264 			FRF_BZ_RSS_EN,
2265 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2266 			FRF_BZ_SCATTER_EN,
2267 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2268 			FRF_BZ_TCP_UDP, is_udp,
2269 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2270 			EFX_DWORD_2, spec->data[2],
2271 			EFX_DWORD_1, spec->data[1],
2272 			EFX_DWORD_0, spec->data[0]);
2273 		data3 = is_udp;
2274 		break;
2275 	}
2276 
2277 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2278 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2279 		EFX_POPULATE_OWORD_7(
2280 			*filter,
2281 			FRF_CZ_RMFT_RSS_EN,
2282 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2283 			FRF_CZ_RMFT_SCATTER_EN,
2284 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2285 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2286 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2287 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2288 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2289 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2290 		data3 = is_wild;
2291 		break;
2292 	}
2293 
2294 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2295 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2296 		EFX_POPULATE_OWORD_5(*filter,
2297 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2298 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2299 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2300 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2301 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2302 		data3 = is_wild | spec->dmaq_id << 1;
2303 		break;
2304 	}
2305 
2306 	default:
2307 		BUG();
2308 	}
2309 
2310 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2311 }
2312 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2313 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2314 				   const struct efx_farch_filter_spec *right)
2315 {
2316 	if (left->type != right->type ||
2317 	    memcmp(left->data, right->data, sizeof(left->data)))
2318 		return false;
2319 
2320 	if (left->flags & EFX_FILTER_FLAG_TX &&
2321 	    left->dmaq_id != right->dmaq_id)
2322 		return false;
2323 
2324 	return true;
2325 }
2326 
2327 /*
2328  * Construct/deconstruct external filter IDs.  At least the RX filter
2329  * IDs must be ordered by matching priority, for RX NFC semantics.
2330  *
2331  * Deconstruction needs to be robust against invalid IDs so that
2332  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2333  * accept user-provided IDs.
2334  */
2335 
2336 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2337 
2338 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2339 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2340 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2341 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2342 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2343 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2344 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2345 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2346 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2347 };
2348 
2349 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2350 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2351 	EFX_FARCH_FILTER_TABLE_RX_IP,
2352 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2353 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2354 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2355 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2356 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2357 };
2358 
2359 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2360 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2361 
2362 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2363 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2364 			 unsigned int index)
2365 {
2366 	unsigned int range;
2367 
2368 	range = efx_farch_filter_type_match_pri[spec->type];
2369 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2370 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2371 
2372 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2373 }
2374 
2375 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2376 efx_farch_filter_id_table_id(u32 id)
2377 {
2378 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2379 
2380 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2381 		return efx_farch_filter_range_table[range];
2382 	else
2383 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2384 }
2385 
efx_farch_filter_id_index(u32 id)2386 static inline unsigned int efx_farch_filter_id_index(u32 id)
2387 {
2388 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2389 }
2390 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2391 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2392 {
2393 	struct efx_farch_filter_state *state = efx->filter_state;
2394 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2395 	enum efx_farch_filter_table_id table_id;
2396 
2397 	do {
2398 		table_id = efx_farch_filter_range_table[range];
2399 		if (state->table[table_id].size != 0)
2400 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2401 				state->table[table_id].size;
2402 	} while (range--);
2403 
2404 	return 0;
2405 }
2406 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2407 s32 efx_farch_filter_insert(struct efx_nic *efx,
2408 			    struct efx_filter_spec *gen_spec,
2409 			    bool replace_equal)
2410 {
2411 	struct efx_farch_filter_state *state = efx->filter_state;
2412 	struct efx_farch_filter_table *table;
2413 	struct efx_farch_filter_spec spec;
2414 	efx_oword_t filter;
2415 	int rep_index, ins_index;
2416 	unsigned int depth = 0;
2417 	int rc;
2418 
2419 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2420 	if (rc)
2421 		return rc;
2422 
2423 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2424 	if (table->size == 0)
2425 		return -EINVAL;
2426 
2427 	netif_vdbg(efx, hw, efx->net_dev,
2428 		   "%s: type %d search_limit=%d", __func__, spec.type,
2429 		   table->search_limit[spec.type]);
2430 
2431 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2432 		/* One filter spec per type */
2433 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2434 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2435 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2436 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2437 		ins_index = rep_index;
2438 
2439 		spin_lock_bh(&efx->filter_lock);
2440 	} else {
2441 		/* Search concurrently for
2442 		 * (1) a filter to be replaced (rep_index): any filter
2443 		 *     with the same match values, up to the current
2444 		 *     search depth for this type, and
2445 		 * (2) the insertion point (ins_index): (1) or any
2446 		 *     free slot before it or up to the maximum search
2447 		 *     depth for this priority
2448 		 * We fail if we cannot find (2).
2449 		 *
2450 		 * We can stop once either
2451 		 * (a) we find (1), in which case we have definitely
2452 		 *     found (2) as well; or
2453 		 * (b) we have searched exhaustively for (1), and have
2454 		 *     either found (2) or searched exhaustively for it
2455 		 */
2456 		u32 key = efx_farch_filter_build(&filter, &spec);
2457 		unsigned int hash = efx_farch_filter_hash(key);
2458 		unsigned int incr = efx_farch_filter_increment(key);
2459 		unsigned int max_rep_depth = table->search_limit[spec.type];
2460 		unsigned int max_ins_depth =
2461 			spec.priority <= EFX_FILTER_PRI_HINT ?
2462 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2463 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2464 		unsigned int i = hash & (table->size - 1);
2465 
2466 		ins_index = -1;
2467 		depth = 1;
2468 
2469 		spin_lock_bh(&efx->filter_lock);
2470 
2471 		for (;;) {
2472 			if (!test_bit(i, table->used_bitmap)) {
2473 				if (ins_index < 0)
2474 					ins_index = i;
2475 			} else if (efx_farch_filter_equal(&spec,
2476 							  &table->spec[i])) {
2477 				/* Case (a) */
2478 				if (ins_index < 0)
2479 					ins_index = i;
2480 				rep_index = i;
2481 				break;
2482 			}
2483 
2484 			if (depth >= max_rep_depth &&
2485 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2486 				/* Case (b) */
2487 				if (ins_index < 0) {
2488 					rc = -EBUSY;
2489 					goto out;
2490 				}
2491 				rep_index = -1;
2492 				break;
2493 			}
2494 
2495 			i = (i + incr) & (table->size - 1);
2496 			++depth;
2497 		}
2498 	}
2499 
2500 	/* If we found a filter to be replaced, check whether we
2501 	 * should do so
2502 	 */
2503 	if (rep_index >= 0) {
2504 		struct efx_farch_filter_spec *saved_spec =
2505 			&table->spec[rep_index];
2506 
2507 		if (spec.priority == saved_spec->priority && !replace_equal) {
2508 			rc = -EEXIST;
2509 			goto out;
2510 		}
2511 		if (spec.priority < saved_spec->priority) {
2512 			rc = -EPERM;
2513 			goto out;
2514 		}
2515 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2516 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2517 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2518 	}
2519 
2520 	/* Insert the filter */
2521 	if (ins_index != rep_index) {
2522 		__set_bit(ins_index, table->used_bitmap);
2523 		++table->used;
2524 	}
2525 	table->spec[ins_index] = spec;
2526 
2527 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2528 		efx_farch_filter_push_rx_config(efx);
2529 	} else {
2530 		if (table->search_limit[spec.type] < depth) {
2531 			table->search_limit[spec.type] = depth;
2532 			if (spec.flags & EFX_FILTER_FLAG_TX)
2533 				efx_farch_filter_push_tx_limits(efx);
2534 			else
2535 				efx_farch_filter_push_rx_config(efx);
2536 		}
2537 
2538 		efx_writeo(efx, &filter,
2539 			   table->offset + table->step * ins_index);
2540 
2541 		/* If we were able to replace a filter by inserting
2542 		 * at a lower depth, clear the replaced filter
2543 		 */
2544 		if (ins_index != rep_index && rep_index >= 0)
2545 			efx_farch_filter_table_clear_entry(efx, table,
2546 							   rep_index);
2547 	}
2548 
2549 	netif_vdbg(efx, hw, efx->net_dev,
2550 		   "%s: filter type %d index %d rxq %u set",
2551 		   __func__, spec.type, ins_index, spec.dmaq_id);
2552 	rc = efx_farch_filter_make_id(&spec, ins_index);
2553 
2554 out:
2555 	spin_unlock_bh(&efx->filter_lock);
2556 	return rc;
2557 }
2558 
2559 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2560 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2561 				   struct efx_farch_filter_table *table,
2562 				   unsigned int filter_idx)
2563 {
2564 	static efx_oword_t filter;
2565 
2566 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2567 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2568 
2569 	__clear_bit(filter_idx, table->used_bitmap);
2570 	--table->used;
2571 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2572 
2573 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2574 
2575 	/* If this filter required a greater search depth than
2576 	 * any other, the search limit for its type can now be
2577 	 * decreased.  However, it is hard to determine that
2578 	 * unless the table has become completely empty - in
2579 	 * which case, all its search limits can be set to 0.
2580 	 */
2581 	if (unlikely(table->used == 0)) {
2582 		memset(table->search_limit, 0, sizeof(table->search_limit));
2583 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2584 			efx_farch_filter_push_tx_limits(efx);
2585 		else
2586 			efx_farch_filter_push_rx_config(efx);
2587 	}
2588 }
2589 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2590 static int efx_farch_filter_remove(struct efx_nic *efx,
2591 				   struct efx_farch_filter_table *table,
2592 				   unsigned int filter_idx,
2593 				   enum efx_filter_priority priority)
2594 {
2595 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2596 
2597 	if (!test_bit(filter_idx, table->used_bitmap) ||
2598 	    spec->priority != priority)
2599 		return -ENOENT;
2600 
2601 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2602 		efx_farch_filter_init_rx_auto(efx, spec);
2603 		efx_farch_filter_push_rx_config(efx);
2604 	} else {
2605 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2606 	}
2607 
2608 	return 0;
2609 }
2610 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2611 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2612 				 enum efx_filter_priority priority,
2613 				 u32 filter_id)
2614 {
2615 	struct efx_farch_filter_state *state = efx->filter_state;
2616 	enum efx_farch_filter_table_id table_id;
2617 	struct efx_farch_filter_table *table;
2618 	unsigned int filter_idx;
2619 	struct efx_farch_filter_spec *spec;
2620 	int rc;
2621 
2622 	table_id = efx_farch_filter_id_table_id(filter_id);
2623 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2624 		return -ENOENT;
2625 	table = &state->table[table_id];
2626 
2627 	filter_idx = efx_farch_filter_id_index(filter_id);
2628 	if (filter_idx >= table->size)
2629 		return -ENOENT;
2630 	spec = &table->spec[filter_idx];
2631 
2632 	spin_lock_bh(&efx->filter_lock);
2633 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2634 	spin_unlock_bh(&efx->filter_lock);
2635 
2636 	return rc;
2637 }
2638 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2639 int efx_farch_filter_get_safe(struct efx_nic *efx,
2640 			      enum efx_filter_priority priority,
2641 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2642 {
2643 	struct efx_farch_filter_state *state = efx->filter_state;
2644 	enum efx_farch_filter_table_id table_id;
2645 	struct efx_farch_filter_table *table;
2646 	struct efx_farch_filter_spec *spec;
2647 	unsigned int filter_idx;
2648 	int rc;
2649 
2650 	table_id = efx_farch_filter_id_table_id(filter_id);
2651 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2652 		return -ENOENT;
2653 	table = &state->table[table_id];
2654 
2655 	filter_idx = efx_farch_filter_id_index(filter_id);
2656 	if (filter_idx >= table->size)
2657 		return -ENOENT;
2658 	spec = &table->spec[filter_idx];
2659 
2660 	spin_lock_bh(&efx->filter_lock);
2661 
2662 	if (test_bit(filter_idx, table->used_bitmap) &&
2663 	    spec->priority == priority) {
2664 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2665 		rc = 0;
2666 	} else {
2667 		rc = -ENOENT;
2668 	}
2669 
2670 	spin_unlock_bh(&efx->filter_lock);
2671 
2672 	return rc;
2673 }
2674 
2675 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2676 efx_farch_filter_table_clear(struct efx_nic *efx,
2677 			     enum efx_farch_filter_table_id table_id,
2678 			     enum efx_filter_priority priority)
2679 {
2680 	struct efx_farch_filter_state *state = efx->filter_state;
2681 	struct efx_farch_filter_table *table = &state->table[table_id];
2682 	unsigned int filter_idx;
2683 
2684 	spin_lock_bh(&efx->filter_lock);
2685 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2686 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2687 			efx_farch_filter_remove(efx, table,
2688 						filter_idx, priority);
2689 	}
2690 	spin_unlock_bh(&efx->filter_lock);
2691 }
2692 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2693 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2694 			       enum efx_filter_priority priority)
2695 {
2696 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2697 				     priority);
2698 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2699 				     priority);
2700 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2701 				     priority);
2702 	return 0;
2703 }
2704 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2705 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2706 				   enum efx_filter_priority priority)
2707 {
2708 	struct efx_farch_filter_state *state = efx->filter_state;
2709 	enum efx_farch_filter_table_id table_id;
2710 	struct efx_farch_filter_table *table;
2711 	unsigned int filter_idx;
2712 	u32 count = 0;
2713 
2714 	spin_lock_bh(&efx->filter_lock);
2715 
2716 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2717 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2718 	     table_id++) {
2719 		table = &state->table[table_id];
2720 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2721 			if (test_bit(filter_idx, table->used_bitmap) &&
2722 			    table->spec[filter_idx].priority == priority)
2723 				++count;
2724 		}
2725 	}
2726 
2727 	spin_unlock_bh(&efx->filter_lock);
2728 
2729 	return count;
2730 }
2731 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2732 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2733 				enum efx_filter_priority priority,
2734 				u32 *buf, u32 size)
2735 {
2736 	struct efx_farch_filter_state *state = efx->filter_state;
2737 	enum efx_farch_filter_table_id table_id;
2738 	struct efx_farch_filter_table *table;
2739 	unsigned int filter_idx;
2740 	s32 count = 0;
2741 
2742 	spin_lock_bh(&efx->filter_lock);
2743 
2744 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2745 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2746 	     table_id++) {
2747 		table = &state->table[table_id];
2748 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2749 			if (test_bit(filter_idx, table->used_bitmap) &&
2750 			    table->spec[filter_idx].priority == priority) {
2751 				if (count == size) {
2752 					count = -EMSGSIZE;
2753 					goto out;
2754 				}
2755 				buf[count++] = efx_farch_filter_make_id(
2756 					&table->spec[filter_idx], filter_idx);
2757 			}
2758 		}
2759 	}
2760 out:
2761 	spin_unlock_bh(&efx->filter_lock);
2762 
2763 	return count;
2764 }
2765 
2766 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2767 void efx_farch_filter_table_restore(struct efx_nic *efx)
2768 {
2769 	struct efx_farch_filter_state *state = efx->filter_state;
2770 	enum efx_farch_filter_table_id table_id;
2771 	struct efx_farch_filter_table *table;
2772 	efx_oword_t filter;
2773 	unsigned int filter_idx;
2774 
2775 	spin_lock_bh(&efx->filter_lock);
2776 
2777 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778 		table = &state->table[table_id];
2779 
2780 		/* Check whether this is a regular register table */
2781 		if (table->step == 0)
2782 			continue;
2783 
2784 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2785 			if (!test_bit(filter_idx, table->used_bitmap))
2786 				continue;
2787 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2788 			efx_writeo(efx, &filter,
2789 				   table->offset + table->step * filter_idx);
2790 		}
2791 	}
2792 
2793 	efx_farch_filter_push_rx_config(efx);
2794 	efx_farch_filter_push_tx_limits(efx);
2795 
2796 	spin_unlock_bh(&efx->filter_lock);
2797 }
2798 
efx_farch_filter_table_remove(struct efx_nic * efx)2799 void efx_farch_filter_table_remove(struct efx_nic *efx)
2800 {
2801 	struct efx_farch_filter_state *state = efx->filter_state;
2802 	enum efx_farch_filter_table_id table_id;
2803 
2804 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2805 		kfree(state->table[table_id].used_bitmap);
2806 		vfree(state->table[table_id].spec);
2807 	}
2808 	kfree(state);
2809 }
2810 
efx_farch_filter_table_probe(struct efx_nic * efx)2811 int efx_farch_filter_table_probe(struct efx_nic *efx)
2812 {
2813 	struct efx_farch_filter_state *state;
2814 	struct efx_farch_filter_table *table;
2815 	unsigned table_id;
2816 
2817 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2818 	if (!state)
2819 		return -ENOMEM;
2820 	efx->filter_state = state;
2821 
2822 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2823 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2824 		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2825 		table->offset = FR_BZ_RX_FILTER_TBL0;
2826 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2827 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2828 	}
2829 
2830 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2831 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2832 		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2833 		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2834 		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2835 		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2836 
2837 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2838 		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2839 		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2840 
2841 		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2842 		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2843 		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2844 		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2845 		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2846 	}
2847 
2848 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2849 		table = &state->table[table_id];
2850 		if (table->size == 0)
2851 			continue;
2852 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2853 					     sizeof(unsigned long),
2854 					     GFP_KERNEL);
2855 		if (!table->used_bitmap)
2856 			goto fail;
2857 		table->spec = vzalloc(table->size * sizeof(*table->spec));
2858 		if (!table->spec)
2859 			goto fail;
2860 	}
2861 
2862 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2863 	if (table->size) {
2864 		/* RX default filters must always exist */
2865 		struct efx_farch_filter_spec *spec;
2866 		unsigned i;
2867 
2868 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2869 			spec = &table->spec[i];
2870 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2871 			efx_farch_filter_init_rx_auto(efx, spec);
2872 			__set_bit(i, table->used_bitmap);
2873 		}
2874 	}
2875 
2876 	efx_farch_filter_push_rx_config(efx);
2877 
2878 	return 0;
2879 
2880 fail:
2881 	efx_farch_filter_table_remove(efx);
2882 	return -ENOMEM;
2883 }
2884 
2885 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2886 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2887 {
2888 	struct efx_farch_filter_state *state = efx->filter_state;
2889 	enum efx_farch_filter_table_id table_id;
2890 	struct efx_farch_filter_table *table;
2891 	efx_oword_t filter;
2892 	unsigned int filter_idx;
2893 
2894 	spin_lock_bh(&efx->filter_lock);
2895 
2896 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2897 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2898 	     table_id++) {
2899 		table = &state->table[table_id];
2900 
2901 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2902 			if (!test_bit(filter_idx, table->used_bitmap) ||
2903 			    table->spec[filter_idx].dmaq_id >=
2904 			    efx->n_rx_channels)
2905 				continue;
2906 
2907 			if (efx->rx_scatter)
2908 				table->spec[filter_idx].flags |=
2909 					EFX_FILTER_FLAG_RX_SCATTER;
2910 			else
2911 				table->spec[filter_idx].flags &=
2912 					~EFX_FILTER_FLAG_RX_SCATTER;
2913 
2914 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2915 				/* Pushed by efx_farch_filter_push_rx_config() */
2916 				continue;
2917 
2918 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2919 			efx_writeo(efx, &filter,
2920 				   table->offset + table->step * filter_idx);
2921 		}
2922 	}
2923 
2924 	efx_farch_filter_push_rx_config(efx);
2925 
2926 	spin_unlock_bh(&efx->filter_lock);
2927 }
2928 
2929 #ifdef CONFIG_RFS_ACCEL
2930 
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2931 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2932 				struct efx_filter_spec *gen_spec)
2933 {
2934 	return efx_farch_filter_insert(efx, gen_spec, true);
2935 }
2936 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2937 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2938 				     unsigned int index)
2939 {
2940 	struct efx_farch_filter_state *state = efx->filter_state;
2941 	struct efx_farch_filter_table *table =
2942 		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2943 
2944 	if (test_bit(index, table->used_bitmap) &&
2945 	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2946 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2947 				flow_id, index)) {
2948 		efx_farch_filter_table_clear_entry(efx, table, index);
2949 		return true;
2950 	}
2951 
2952 	return false;
2953 }
2954 
2955 #endif /* CONFIG_RFS_ACCEL */
2956 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2957 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2958 {
2959 	struct net_device *net_dev = efx->net_dev;
2960 	struct netdev_hw_addr *ha;
2961 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2962 	u32 crc;
2963 	int bit;
2964 
2965 	if (!efx_dev_registered(efx))
2966 		return;
2967 
2968 	netif_addr_lock_bh(net_dev);
2969 
2970 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2971 
2972 	/* Build multicast hash table */
2973 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2974 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2975 	} else {
2976 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2977 		netdev_for_each_mc_addr(ha, net_dev) {
2978 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2979 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2980 			__set_bit_le(bit, mc_hash);
2981 		}
2982 
2983 		/* Broadcast packets go through the multicast hash filter.
2984 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2985 		 * so we always add bit 0xff to the mask.
2986 		 */
2987 		__set_bit_le(0xff, mc_hash);
2988 	}
2989 
2990 	netif_addr_unlock_bh(net_dev);
2991 }
2992