1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 #include "phy.h"
19
20 /**************************************************************************
21 *
22 * Management-Controller-to-Driver Interface
23 *
24 **************************************************************************
25 */
26
27 #define MCDI_RPC_TIMEOUT (10 * HZ)
28
29 /* A reboot/assertion causes the MCDI status word to be set after the
30 * command word is set or a REBOOT event is sent. If we notice a reboot
31 * via these mechanisms then wait 250ms for the status word to be set.
32 */
33 #define MCDI_STATUS_DELAY_US 100
34 #define MCDI_STATUS_DELAY_COUNT 2500
35 #define MCDI_STATUS_SLEEP_MS \
36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37
38 #define SEQ_MASK \
39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40
41 struct efx_mcdi_async_param {
42 struct list_head list;
43 unsigned int cmd;
44 size_t inlen;
45 size_t outlen;
46 bool quiet;
47 efx_mcdi_async_completer *complete;
48 unsigned long cookie;
49 /* followed by request/response buffer */
50 };
51
52 static void efx_mcdi_timeout_async(unsigned long context);
53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54 bool *was_attached_out);
55 static bool efx_mcdi_poll_once(struct efx_nic *efx);
56 static void efx_mcdi_abandon(struct efx_nic *efx);
57
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default;
60 module_param(mcdi_logging_default, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default,
62 "Enable MCDI logging on newly-probed functions");
63 #endif
64
efx_mcdi_init(struct efx_nic * efx)65 int efx_mcdi_init(struct efx_nic *efx)
66 {
67 struct efx_mcdi_iface *mcdi;
68 bool already_attached;
69 int rc = -ENOMEM;
70
71 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 if (!efx->mcdi)
73 goto fail;
74
75 mcdi = efx_mcdi(efx);
76 mcdi->efx = efx;
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 /* consuming code assumes buffer is page-sized */
79 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80 if (!mcdi->logging_buffer)
81 goto fail1;
82 mcdi->logging_enabled = mcdi_logging_default;
83 #endif
84 init_waitqueue_head(&mcdi->wq);
85 init_waitqueue_head(&mcdi->proxy_rx_wq);
86 spin_lock_init(&mcdi->iface_lock);
87 mcdi->state = MCDI_STATE_QUIESCENT;
88 mcdi->mode = MCDI_MODE_POLL;
89 spin_lock_init(&mcdi->async_lock);
90 INIT_LIST_HEAD(&mcdi->async_list);
91 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
92 (unsigned long)mcdi);
93
94 (void) efx_mcdi_poll_reboot(efx);
95 mcdi->new_epoch = true;
96
97 /* Recover from a failed assertion before probing */
98 rc = efx_mcdi_handle_assertion(efx);
99 if (rc)
100 goto fail2;
101
102 /* Let the MC (and BMC, if this is a LOM) know that the driver
103 * is loaded. We should do this before we reset the NIC.
104 */
105 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
106 if (rc) {
107 netif_err(efx, probe, efx->net_dev,
108 "Unable to register driver with MCPU\n");
109 goto fail2;
110 }
111 if (already_attached)
112 /* Not a fatal error */
113 netif_err(efx, probe, efx->net_dev,
114 "Host already registered with MCPU\n");
115
116 if (efx->mcdi->fn_flags &
117 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
118 efx->primary = efx;
119
120 return 0;
121 fail2:
122 #ifdef CONFIG_SFC_MCDI_LOGGING
123 free_page((unsigned long)mcdi->logging_buffer);
124 fail1:
125 #endif
126 kfree(efx->mcdi);
127 efx->mcdi = NULL;
128 fail:
129 return rc;
130 }
131
efx_mcdi_fini(struct efx_nic * efx)132 void efx_mcdi_fini(struct efx_nic *efx)
133 {
134 if (!efx->mcdi)
135 return;
136
137 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
138
139 /* Relinquish the device (back to the BMC, if this is a LOM) */
140 efx_mcdi_drv_attach(efx, false, NULL);
141
142 #ifdef CONFIG_SFC_MCDI_LOGGING
143 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
144 #endif
145
146 kfree(efx->mcdi);
147 }
148
efx_mcdi_send_request(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)149 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
150 const efx_dword_t *inbuf, size_t inlen)
151 {
152 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
153 #ifdef CONFIG_SFC_MCDI_LOGGING
154 char *buf = mcdi->logging_buffer; /* page-sized */
155 #endif
156 efx_dword_t hdr[2];
157 size_t hdr_len;
158 u32 xflags, seqno;
159
160 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
161
162 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
163 spin_lock_bh(&mcdi->iface_lock);
164 ++mcdi->seqno;
165 spin_unlock_bh(&mcdi->iface_lock);
166
167 seqno = mcdi->seqno & SEQ_MASK;
168 xflags = 0;
169 if (mcdi->mode == MCDI_MODE_EVENTS)
170 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
171
172 if (efx->type->mcdi_max_ver == 1) {
173 /* MCDI v1 */
174 EFX_POPULATE_DWORD_7(hdr[0],
175 MCDI_HEADER_RESPONSE, 0,
176 MCDI_HEADER_RESYNC, 1,
177 MCDI_HEADER_CODE, cmd,
178 MCDI_HEADER_DATALEN, inlen,
179 MCDI_HEADER_SEQ, seqno,
180 MCDI_HEADER_XFLAGS, xflags,
181 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
182 hdr_len = 4;
183 } else {
184 /* MCDI v2 */
185 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
186 EFX_POPULATE_DWORD_7(hdr[0],
187 MCDI_HEADER_RESPONSE, 0,
188 MCDI_HEADER_RESYNC, 1,
189 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
190 MCDI_HEADER_DATALEN, 0,
191 MCDI_HEADER_SEQ, seqno,
192 MCDI_HEADER_XFLAGS, xflags,
193 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
194 EFX_POPULATE_DWORD_2(hdr[1],
195 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
196 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
197 hdr_len = 8;
198 }
199
200 #ifdef CONFIG_SFC_MCDI_LOGGING
201 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
202 int bytes = 0;
203 int i;
204 /* Lengths should always be a whole number of dwords, so scream
205 * if they're not.
206 */
207 WARN_ON_ONCE(hdr_len % 4);
208 WARN_ON_ONCE(inlen % 4);
209
210 /* We own the logging buffer, as only one MCDI can be in
211 * progress on a NIC at any one time. So no need for locking.
212 */
213 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
214 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
215 " %08x", le32_to_cpu(hdr[i].u32[0]));
216
217 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 " %08x", le32_to_cpu(inbuf[i].u32[0]));
220
221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
222 }
223 #endif
224
225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
226
227 mcdi->new_epoch = false;
228 }
229
efx_mcdi_errno(unsigned int mcdi_err)230 static int efx_mcdi_errno(unsigned int mcdi_err)
231 {
232 switch (mcdi_err) {
233 case 0:
234 return 0;
235 #define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
237 return -name;
238 TRANSLATE_ERROR(EPERM);
239 TRANSLATE_ERROR(ENOENT);
240 TRANSLATE_ERROR(EINTR);
241 TRANSLATE_ERROR(EAGAIN);
242 TRANSLATE_ERROR(EACCES);
243 TRANSLATE_ERROR(EBUSY);
244 TRANSLATE_ERROR(EINVAL);
245 TRANSLATE_ERROR(EDEADLK);
246 TRANSLATE_ERROR(ENOSYS);
247 TRANSLATE_ERROR(ETIME);
248 TRANSLATE_ERROR(EALREADY);
249 TRANSLATE_ERROR(ENOSPC);
250 #undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP:
252 return -EOPNOTSUPP;
253 case MC_CMD_ERR_ALLOC_FAIL:
254 return -ENOBUFS;
255 case MC_CMD_ERR_MAC_EXIST:
256 return -EADDRINUSE;
257 default:
258 return -EPROTO;
259 }
260 }
261
efx_mcdi_read_response_header(struct efx_nic * efx)262 static void efx_mcdi_read_response_header(struct efx_nic *efx)
263 {
264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 unsigned int respseq, respcmd, error;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf = mcdi->logging_buffer; /* page-sized */
268 #endif
269 efx_dword_t hdr;
270
271 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
275
276 if (respcmd != MC_CMD_V2_EXTN) {
277 mcdi->resp_hdr_len = 4;
278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279 } else {
280 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 mcdi->resp_hdr_len = 8;
282 mcdi->resp_data_len =
283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
284 }
285
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 size_t hdr_len, data_len;
289 int bytes = 0;
290 int i;
291
292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 hdr_len = mcdi->resp_hdr_len / 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
296 */
297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
298
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
301 */
302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
305 " %08x", le32_to_cpu(hdr.u32[0]));
306 }
307
308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 efx->type->mcdi_read_response(efx, &hdr,
310 mcdi->resp_hdr_len + (i * 4), 4);
311 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
312 " %08x", le32_to_cpu(hdr.u32[0]));
313 }
314
315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
316 }
317 #endif
318
319 mcdi->resprc_raw = 0;
320 if (error && mcdi->resp_data_len == 0) {
321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322 mcdi->resprc = -EIO;
323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 netif_err(efx, hw, efx->net_dev,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq, mcdi->seqno);
327 mcdi->resprc = -EIO;
328 } else if (error) {
329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332 } else {
333 mcdi->resprc = 0;
334 }
335 }
336
efx_mcdi_poll_once(struct efx_nic * efx)337 static bool efx_mcdi_poll_once(struct efx_nic *efx)
338 {
339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
340
341 rmb();
342 if (!efx->type->mcdi_poll_response(efx))
343 return false;
344
345 spin_lock_bh(&mcdi->iface_lock);
346 efx_mcdi_read_response_header(efx);
347 spin_unlock_bh(&mcdi->iface_lock);
348
349 return true;
350 }
351
efx_mcdi_poll(struct efx_nic * efx)352 static int efx_mcdi_poll(struct efx_nic *efx)
353 {
354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 unsigned long time, finish;
356 unsigned int spins;
357 int rc;
358
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc = efx_mcdi_poll_reboot(efx);
361 if (rc) {
362 spin_lock_bh(&mcdi->iface_lock);
363 mcdi->resprc = rc;
364 mcdi->resp_hdr_len = 0;
365 mcdi->resp_data_len = 0;
366 spin_unlock_bh(&mcdi->iface_lock);
367 return 0;
368 }
369
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
373 */
374 spins = TICK_USEC;
375 finish = jiffies + MCDI_RPC_TIMEOUT;
376
377 while (1) {
378 if (spins != 0) {
379 --spins;
380 udelay(1);
381 } else {
382 schedule_timeout_uninterruptible(1);
383 }
384
385 time = jiffies;
386
387 if (efx_mcdi_poll_once(efx))
388 break;
389
390 if (time_after(time, finish))
391 return -ETIMEDOUT;
392 }
393
394 /* Return rc=0 like wait_event_timeout() */
395 return 0;
396 }
397
398 /* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
400 */
efx_mcdi_poll_reboot(struct efx_nic * efx)401 int efx_mcdi_poll_reboot(struct efx_nic *efx)
402 {
403 if (!efx->mcdi)
404 return 0;
405
406 return efx->type->mcdi_poll_reboot(efx);
407 }
408
efx_mcdi_acquire_async(struct efx_mcdi_iface * mcdi)409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
410 {
411 return cmpxchg(&mcdi->state,
412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 MCDI_STATE_QUIESCENT;
414 }
415
efx_mcdi_acquire_sync(struct efx_mcdi_iface * mcdi)416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
417 {
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
420 */
421 wait_event(mcdi->wq,
422 cmpxchg(&mcdi->state,
423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 MCDI_STATE_QUIESCENT);
425 }
426
efx_mcdi_await_completion(struct efx_nic * efx)427 static int efx_mcdi_await_completion(struct efx_nic *efx)
428 {
429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
430
431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 MCDI_RPC_TIMEOUT) == 0)
433 return -ETIMEDOUT;
434
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
439 *
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
442 */
443 if (mcdi->mode == MCDI_MODE_POLL)
444 return efx_mcdi_poll(efx);
445
446 return 0;
447 }
448
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
451 */
efx_mcdi_complete_sync(struct efx_mcdi_iface * mcdi)452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
453 {
454 if (cmpxchg(&mcdi->state,
455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 MCDI_STATE_RUNNING_SYNC) {
457 wake_up(&mcdi->wq);
458 return true;
459 }
460
461 return false;
462 }
463
efx_mcdi_release(struct efx_mcdi_iface * mcdi)464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
465 {
466 if (mcdi->mode == MCDI_MODE_EVENTS) {
467 struct efx_mcdi_async_param *async;
468 struct efx_nic *efx = mcdi->efx;
469
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi->async_lock);
472 async = list_first_entry_or_null(
473 &mcdi->async_list, struct efx_mcdi_async_param, list);
474 if (async) {
475 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 efx_mcdi_send_request(efx, async->cmd,
477 (const efx_dword_t *)(async + 1),
478 async->inlen);
479 mod_timer(&mcdi->async_timer,
480 jiffies + MCDI_RPC_TIMEOUT);
481 }
482 spin_unlock_bh(&mcdi->async_lock);
483
484 if (async)
485 return;
486 }
487
488 mcdi->state = MCDI_STATE_QUIESCENT;
489 wake_up(&mcdi->wq);
490 }
491
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
496 */
efx_mcdi_complete_async(struct efx_mcdi_iface * mcdi,bool timeout)497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
498 {
499 struct efx_nic *efx = mcdi->efx;
500 struct efx_mcdi_async_param *async;
501 size_t hdr_len, data_len, err_len;
502 efx_dword_t *outbuf;
503 MCDI_DECLARE_BUF_ERR(errbuf);
504 int rc;
505
506 if (cmpxchg(&mcdi->state,
507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 MCDI_STATE_RUNNING_ASYNC)
509 return false;
510
511 spin_lock(&mcdi->iface_lock);
512 if (timeout) {
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
515 */
516 ++mcdi->seqno;
517 ++mcdi->credits;
518 rc = -ETIMEDOUT;
519 hdr_len = 0;
520 data_len = 0;
521 } else {
522 rc = mcdi->resprc;
523 hdr_len = mcdi->resp_hdr_len;
524 data_len = mcdi->resp_data_len;
525 }
526 spin_unlock(&mcdi->iface_lock);
527
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
531 */
532 if (!timeout)
533 del_timer_sync(&mcdi->async_timer);
534
535 spin_lock(&mcdi->async_lock);
536 async = list_first_entry(&mcdi->async_list,
537 struct efx_mcdi_async_param, list);
538 list_del(&async->list);
539 spin_unlock(&mcdi->async_lock);
540
541 outbuf = (efx_dword_t *)(async + 1);
542 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 min(async->outlen, data_len));
544 if (!timeout && rc && !async->quiet) {
545 err_len = min(sizeof(errbuf), data_len);
546 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547 sizeof(errbuf));
548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549 err_len, rc);
550 }
551
552 if (async->complete)
553 async->complete(efx, async->cookie, rc, outbuf,
554 min(async->outlen, data_len));
555 kfree(async);
556
557 efx_mcdi_release(mcdi);
558
559 return true;
560 }
561
efx_mcdi_ev_cpl(struct efx_nic * efx,unsigned int seqno,unsigned int datalen,unsigned int mcdi_err)562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
563 unsigned int datalen, unsigned int mcdi_err)
564 {
565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
566 bool wake = false;
567
568 spin_lock(&mcdi->iface_lock);
569
570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
571 if (mcdi->credits)
572 /* The request has been cancelled */
573 --mcdi->credits;
574 else
575 netif_err(efx, hw, efx->net_dev,
576 "MC response mismatch tx seq 0x%x rx "
577 "seq 0x%x\n", seqno, mcdi->seqno);
578 } else {
579 if (efx->type->mcdi_max_ver >= 2) {
580 /* MCDI v2 responses don't fit in an event */
581 efx_mcdi_read_response_header(efx);
582 } else {
583 mcdi->resprc = efx_mcdi_errno(mcdi_err);
584 mcdi->resp_hdr_len = 4;
585 mcdi->resp_data_len = datalen;
586 }
587
588 wake = true;
589 }
590
591 spin_unlock(&mcdi->iface_lock);
592
593 if (wake) {
594 if (!efx_mcdi_complete_async(mcdi, false))
595 (void) efx_mcdi_complete_sync(mcdi);
596
597 /* If the interface isn't RUNNING_ASYNC or
598 * RUNNING_SYNC then we've received a duplicate
599 * completion after we've already transitioned back to
600 * QUIESCENT. [A subsequent invocation would increment
601 * seqno, so would have failed the seqno check].
602 */
603 }
604 }
605
efx_mcdi_timeout_async(unsigned long context)606 static void efx_mcdi_timeout_async(unsigned long context)
607 {
608 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
609
610 efx_mcdi_complete_async(mcdi, true);
611 }
612
613 static int
efx_mcdi_check_supported(struct efx_nic * efx,unsigned int cmd,size_t inlen)614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
615 {
616 if (efx->type->mcdi_max_ver < 0 ||
617 (efx->type->mcdi_max_ver < 2 &&
618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
619 return -EINVAL;
620
621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
622 (efx->type->mcdi_max_ver < 2 &&
623 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
624 return -EMSGSIZE;
625
626 return 0;
627 }
628
efx_mcdi_get_proxy_handle(struct efx_nic * efx,size_t hdr_len,size_t data_len,u32 * proxy_handle)629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
630 size_t hdr_len, size_t data_len,
631 u32 *proxy_handle)
632 {
633 MCDI_DECLARE_BUF_ERR(testbuf);
634 const size_t buflen = sizeof(testbuf);
635
636 if (!proxy_handle || data_len < buflen)
637 return false;
638
639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
642 return true;
643 }
644
645 return false;
646 }
647
_efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned int cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet,u32 * proxy_handle,int * raw_rc)648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
649 size_t inlen,
650 efx_dword_t *outbuf, size_t outlen,
651 size_t *outlen_actual, bool quiet,
652 u32 *proxy_handle, int *raw_rc)
653 {
654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
655 MCDI_DECLARE_BUF_ERR(errbuf);
656 int rc;
657
658 if (mcdi->mode == MCDI_MODE_POLL)
659 rc = efx_mcdi_poll(efx);
660 else
661 rc = efx_mcdi_await_completion(efx);
662
663 if (rc != 0) {
664 netif_err(efx, hw, efx->net_dev,
665 "MC command 0x%x inlen %d mode %d timed out\n",
666 cmd, (int)inlen, mcdi->mode);
667
668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
669 netif_err(efx, hw, efx->net_dev,
670 "MCDI request was completed without an event\n");
671 rc = 0;
672 }
673
674 efx_mcdi_abandon(efx);
675
676 /* Close the race with efx_mcdi_ev_cpl() executing just too late
677 * and completing a request we've just cancelled, by ensuring
678 * that the seqno check therein fails.
679 */
680 spin_lock_bh(&mcdi->iface_lock);
681 ++mcdi->seqno;
682 ++mcdi->credits;
683 spin_unlock_bh(&mcdi->iface_lock);
684 }
685
686 if (proxy_handle)
687 *proxy_handle = 0;
688
689 if (rc != 0) {
690 if (outlen_actual)
691 *outlen_actual = 0;
692 } else {
693 size_t hdr_len, data_len, err_len;
694
695 /* At the very least we need a memory barrier here to ensure
696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 * acquiring the iface_lock. */
699 spin_lock_bh(&mcdi->iface_lock);
700 rc = mcdi->resprc;
701 if (raw_rc)
702 *raw_rc = mcdi->resprc_raw;
703 hdr_len = mcdi->resp_hdr_len;
704 data_len = mcdi->resp_data_len;
705 err_len = min(sizeof(errbuf), data_len);
706 spin_unlock_bh(&mcdi->iface_lock);
707
708 BUG_ON(rc > 0);
709
710 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
711 min(outlen, data_len));
712 if (outlen_actual)
713 *outlen_actual = data_len;
714
715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
716
717 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
718 /* Don't reset if MC_CMD_REBOOT returns EIO */
719 } else if (rc == -EIO || rc == -EINTR) {
720 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
721 -rc);
722 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
723 } else if (proxy_handle && (rc == -EPROTO) &&
724 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
725 proxy_handle)) {
726 mcdi->proxy_rx_status = 0;
727 mcdi->proxy_rx_handle = 0;
728 mcdi->state = MCDI_STATE_PROXY_WAIT;
729 } else if (rc && !quiet) {
730 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
731 rc);
732 }
733
734 if (rc == -EIO || rc == -EINTR) {
735 msleep(MCDI_STATUS_SLEEP_MS);
736 efx_mcdi_poll_reboot(efx);
737 mcdi->new_epoch = true;
738 }
739 }
740
741 if (!proxy_handle || !*proxy_handle)
742 efx_mcdi_release(mcdi);
743 return rc;
744 }
745
efx_mcdi_proxy_abort(struct efx_mcdi_iface * mcdi)746 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
747 {
748 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
749 /* Interrupt the proxy wait. */
750 mcdi->proxy_rx_status = -EINTR;
751 wake_up(&mcdi->proxy_rx_wq);
752 }
753 }
754
efx_mcdi_ev_proxy_response(struct efx_nic * efx,u32 handle,int status)755 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
756 u32 handle, int status)
757 {
758 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
759
760 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
761
762 mcdi->proxy_rx_status = efx_mcdi_errno(status);
763 /* Ensure the status is written before we update the handle, since the
764 * latter is used to check if we've finished.
765 */
766 wmb();
767 mcdi->proxy_rx_handle = handle;
768 wake_up(&mcdi->proxy_rx_wq);
769 }
770
efx_mcdi_proxy_wait(struct efx_nic * efx,u32 handle,bool quiet)771 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
772 {
773 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
774 int rc;
775
776 /* Wait for a proxy event, or timeout. */
777 rc = wait_event_timeout(mcdi->proxy_rx_wq,
778 mcdi->proxy_rx_handle != 0 ||
779 mcdi->proxy_rx_status == -EINTR,
780 MCDI_RPC_TIMEOUT);
781
782 if (rc <= 0) {
783 netif_dbg(efx, hw, efx->net_dev,
784 "MCDI proxy timeout %d\n", handle);
785 return -ETIMEDOUT;
786 } else if (mcdi->proxy_rx_handle != handle) {
787 netif_warn(efx, hw, efx->net_dev,
788 "MCDI proxy unexpected handle %d (expected %d)\n",
789 mcdi->proxy_rx_handle, handle);
790 return -EINVAL;
791 }
792
793 return mcdi->proxy_rx_status;
794 }
795
_efx_mcdi_rpc(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet,int * raw_rc)796 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
797 const efx_dword_t *inbuf, size_t inlen,
798 efx_dword_t *outbuf, size_t outlen,
799 size_t *outlen_actual, bool quiet, int *raw_rc)
800 {
801 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
802 int rc;
803
804 if (inbuf && inlen && (inbuf == outbuf)) {
805 /* The input buffer can't be aliased with the output. */
806 WARN_ON(1);
807 return -EINVAL;
808 }
809
810 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
811 if (rc)
812 return rc;
813
814 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
815 outlen_actual, quiet, &proxy_handle, raw_rc);
816
817 if (proxy_handle) {
818 /* Handle proxy authorisation. This allows approval of MCDI
819 * operations to be delegated to the admin function, allowing
820 * fine control over (eg) multicast subscriptions.
821 */
822 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
823
824 netif_dbg(efx, hw, efx->net_dev,
825 "MCDI waiting for proxy auth %d\n",
826 proxy_handle);
827 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
828
829 if (rc == 0) {
830 netif_dbg(efx, hw, efx->net_dev,
831 "MCDI proxy retry %d\n", proxy_handle);
832
833 /* We now retry the original request. */
834 mcdi->state = MCDI_STATE_RUNNING_SYNC;
835 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
836
837 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
838 outbuf, outlen, outlen_actual,
839 quiet, NULL, raw_rc);
840 } else {
841 netif_printk(efx, hw,
842 rc == -EPERM ? KERN_DEBUG : KERN_ERR,
843 efx->net_dev,
844 "MC command 0x%x failed after proxy auth rc=%d\n",
845 cmd, rc);
846
847 if (rc == -EINTR || rc == -EIO)
848 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
849 efx_mcdi_release(mcdi);
850 }
851 }
852
853 return rc;
854 }
855
_efx_mcdi_rpc_evb_retry(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet)856 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
857 const efx_dword_t *inbuf, size_t inlen,
858 efx_dword_t *outbuf, size_t outlen,
859 size_t *outlen_actual, bool quiet)
860 {
861 int raw_rc = 0;
862 int rc;
863
864 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
865 outbuf, outlen, outlen_actual, true, &raw_rc);
866
867 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
868 efx->type->is_vf) {
869 /* If the EVB port isn't available within a VF this may
870 * mean the PF is still bringing the switch up. We should
871 * retry our request shortly.
872 */
873 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
874 unsigned int delay_us = 10000;
875
876 netif_dbg(efx, hw, efx->net_dev,
877 "%s: NO_EVB_PORT; will retry request\n",
878 __func__);
879
880 do {
881 usleep_range(delay_us, delay_us + 10000);
882 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
883 outbuf, outlen, outlen_actual,
884 true, &raw_rc);
885 if (delay_us < 100000)
886 delay_us <<= 1;
887 } while ((rc == -EPROTO) &&
888 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
889 time_before(jiffies, abort_time));
890 }
891
892 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
893 efx_mcdi_display_error(efx, cmd, inlen,
894 outbuf, outlen, rc);
895
896 return rc;
897 }
898
899 /**
900 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
901 * @efx: NIC through which to issue the command
902 * @cmd: Command type number
903 * @inbuf: Command parameters
904 * @inlen: Length of command parameters, in bytes. Must be a multiple
905 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
906 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
907 * @outlen: Length of response buffer, in bytes. If the actual
908 * response is longer than @outlen & ~3, it will be truncated
909 * to that length.
910 * @outlen_actual: Pointer through which to return the actual response
911 * length. May be %NULL if this is not needed.
912 *
913 * This function may sleep and therefore must be called in an appropriate
914 * context.
915 *
916 * Return: A negative error code, or zero if successful. The error
917 * code may come from the MCDI response or may indicate a failure
918 * to communicate with the MC. In the former case, the response
919 * will still be copied to @outbuf and *@outlen_actual will be
920 * set accordingly. In the latter case, *@outlen_actual will be
921 * set to zero.
922 */
efx_mcdi_rpc(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)923 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
924 const efx_dword_t *inbuf, size_t inlen,
925 efx_dword_t *outbuf, size_t outlen,
926 size_t *outlen_actual)
927 {
928 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
929 outlen_actual, false);
930 }
931
932 /* Normally, on receiving an error code in the MCDI response,
933 * efx_mcdi_rpc will log an error message containing (among other
934 * things) the raw error code, by means of efx_mcdi_display_error.
935 * This _quiet version suppresses that; if the caller wishes to log
936 * the error conditionally on the return code, it should call this
937 * function and is then responsible for calling efx_mcdi_display_error
938 * as needed.
939 */
efx_mcdi_rpc_quiet(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)940 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
941 const efx_dword_t *inbuf, size_t inlen,
942 efx_dword_t *outbuf, size_t outlen,
943 size_t *outlen_actual)
944 {
945 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
946 outlen_actual, true);
947 }
948
efx_mcdi_rpc_start(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)949 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
950 const efx_dword_t *inbuf, size_t inlen)
951 {
952 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
953 int rc;
954
955 rc = efx_mcdi_check_supported(efx, cmd, inlen);
956 if (rc)
957 return rc;
958
959 if (efx->mc_bist_for_other_fn)
960 return -ENETDOWN;
961
962 if (mcdi->mode == MCDI_MODE_FAIL)
963 return -ENETDOWN;
964
965 efx_mcdi_acquire_sync(mcdi);
966 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
967 return 0;
968 }
969
_efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie,bool quiet)970 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
971 const efx_dword_t *inbuf, size_t inlen,
972 size_t outlen,
973 efx_mcdi_async_completer *complete,
974 unsigned long cookie, bool quiet)
975 {
976 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
977 struct efx_mcdi_async_param *async;
978 int rc;
979
980 rc = efx_mcdi_check_supported(efx, cmd, inlen);
981 if (rc)
982 return rc;
983
984 if (efx->mc_bist_for_other_fn)
985 return -ENETDOWN;
986
987 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
988 GFP_ATOMIC);
989 if (!async)
990 return -ENOMEM;
991
992 async->cmd = cmd;
993 async->inlen = inlen;
994 async->outlen = outlen;
995 async->quiet = quiet;
996 async->complete = complete;
997 async->cookie = cookie;
998 memcpy(async + 1, inbuf, inlen);
999
1000 spin_lock_bh(&mcdi->async_lock);
1001
1002 if (mcdi->mode == MCDI_MODE_EVENTS) {
1003 list_add_tail(&async->list, &mcdi->async_list);
1004
1005 /* If this is at the front of the queue, try to start it
1006 * immediately
1007 */
1008 if (mcdi->async_list.next == &async->list &&
1009 efx_mcdi_acquire_async(mcdi)) {
1010 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1011 mod_timer(&mcdi->async_timer,
1012 jiffies + MCDI_RPC_TIMEOUT);
1013 }
1014 } else {
1015 kfree(async);
1016 rc = -ENETDOWN;
1017 }
1018
1019 spin_unlock_bh(&mcdi->async_lock);
1020
1021 return rc;
1022 }
1023
1024 /**
1025 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1026 * @efx: NIC through which to issue the command
1027 * @cmd: Command type number
1028 * @inbuf: Command parameters
1029 * @inlen: Length of command parameters, in bytes
1030 * @outlen: Length to allocate for response buffer, in bytes
1031 * @complete: Function to be called on completion or cancellation.
1032 * @cookie: Arbitrary value to be passed to @complete.
1033 *
1034 * This function does not sleep and therefore may be called in atomic
1035 * context. It will fail if event queues are disabled or if MCDI
1036 * event completions have been disabled due to an error.
1037 *
1038 * If it succeeds, the @complete function will be called exactly once
1039 * in atomic context, when one of the following occurs:
1040 * (a) the completion event is received (in NAPI context)
1041 * (b) event queues are disabled (in the process that disables them)
1042 * (c) the request times-out (in timer context)
1043 */
1044 int
efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)1045 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1046 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1047 efx_mcdi_async_completer *complete, unsigned long cookie)
1048 {
1049 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1050 cookie, false);
1051 }
1052
efx_mcdi_rpc_async_quiet(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)1053 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1054 const efx_dword_t *inbuf, size_t inlen,
1055 size_t outlen, efx_mcdi_async_completer *complete,
1056 unsigned long cookie)
1057 {
1058 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1059 cookie, true);
1060 }
1061
efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)1062 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1063 efx_dword_t *outbuf, size_t outlen,
1064 size_t *outlen_actual)
1065 {
1066 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1067 outlen_actual, false, NULL, NULL);
1068 }
1069
efx_mcdi_rpc_finish_quiet(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)1070 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1071 efx_dword_t *outbuf, size_t outlen,
1072 size_t *outlen_actual)
1073 {
1074 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1075 outlen_actual, true, NULL, NULL);
1076 }
1077
efx_mcdi_display_error(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,int rc)1078 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1079 size_t inlen, efx_dword_t *outbuf,
1080 size_t outlen, int rc)
1081 {
1082 int code = 0, err_arg = 0;
1083
1084 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1085 code = MCDI_DWORD(outbuf, ERR_CODE);
1086 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1087 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1088 netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
1089 efx->net_dev,
1090 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1091 cmd, inlen, rc, code, err_arg);
1092 }
1093
1094 /* Switch to polled MCDI completions. This can be called in various
1095 * error conditions with various locks held, so it must be lockless.
1096 * Caller is responsible for flushing asynchronous requests later.
1097 */
efx_mcdi_mode_poll(struct efx_nic * efx)1098 void efx_mcdi_mode_poll(struct efx_nic *efx)
1099 {
1100 struct efx_mcdi_iface *mcdi;
1101
1102 if (!efx->mcdi)
1103 return;
1104
1105 mcdi = efx_mcdi(efx);
1106 /* If already in polling mode, nothing to do.
1107 * If in fail-fast state, don't switch to polled completion.
1108 * FLR recovery will do that later.
1109 */
1110 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1111 return;
1112
1113 /* We can switch from event completion to polled completion, because
1114 * mcdi requests are always completed in shared memory. We do this by
1115 * switching the mode to POLL'd then completing the request.
1116 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1117 *
1118 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1119 * which efx_mcdi_complete_sync() provides for us.
1120 */
1121 mcdi->mode = MCDI_MODE_POLL;
1122
1123 efx_mcdi_complete_sync(mcdi);
1124 }
1125
1126 /* Flush any running or queued asynchronous requests, after event processing
1127 * is stopped
1128 */
efx_mcdi_flush_async(struct efx_nic * efx)1129 void efx_mcdi_flush_async(struct efx_nic *efx)
1130 {
1131 struct efx_mcdi_async_param *async, *next;
1132 struct efx_mcdi_iface *mcdi;
1133
1134 if (!efx->mcdi)
1135 return;
1136
1137 mcdi = efx_mcdi(efx);
1138
1139 /* We must be in poll or fail mode so no more requests can be queued */
1140 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1141
1142 del_timer_sync(&mcdi->async_timer);
1143
1144 /* If a request is still running, make sure we give the MC
1145 * time to complete it so that the response won't overwrite our
1146 * next request.
1147 */
1148 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1149 efx_mcdi_poll(efx);
1150 mcdi->state = MCDI_STATE_QUIESCENT;
1151 }
1152
1153 /* Nothing else will access the async list now, so it is safe
1154 * to walk it without holding async_lock. If we hold it while
1155 * calling a completer then lockdep may warn that we have
1156 * acquired locks in the wrong order.
1157 */
1158 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1159 if (async->complete)
1160 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1161 list_del(&async->list);
1162 kfree(async);
1163 }
1164 }
1165
efx_mcdi_mode_event(struct efx_nic * efx)1166 void efx_mcdi_mode_event(struct efx_nic *efx)
1167 {
1168 struct efx_mcdi_iface *mcdi;
1169
1170 if (!efx->mcdi)
1171 return;
1172
1173 mcdi = efx_mcdi(efx);
1174 /* If already in event completion mode, nothing to do.
1175 * If in fail-fast state, don't switch to event completion. FLR
1176 * recovery will do that later.
1177 */
1178 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1179 return;
1180
1181 /* We can't switch from polled to event completion in the middle of a
1182 * request, because the completion method is specified in the request.
1183 * So acquire the interface to serialise the requestors. We don't need
1184 * to acquire the iface_lock to change the mode here, but we do need a
1185 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1186 * efx_mcdi_acquire() provides.
1187 */
1188 efx_mcdi_acquire_sync(mcdi);
1189 mcdi->mode = MCDI_MODE_EVENTS;
1190 efx_mcdi_release(mcdi);
1191 }
1192
efx_mcdi_ev_death(struct efx_nic * efx,int rc)1193 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1194 {
1195 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1196
1197 /* If there is an outstanding MCDI request, it has been terminated
1198 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1199 * in polled mode, then do nothing because the MC reboot handler will
1200 * set the header correctly. However, if the mcdi interface is waiting
1201 * for a CMDDONE event it won't receive it [and since all MCDI events
1202 * are sent to the same queue, we can't be racing with
1203 * efx_mcdi_ev_cpl()]
1204 *
1205 * If there is an outstanding asynchronous request, we can't
1206 * complete it now (efx_mcdi_complete() would deadlock). The
1207 * reset process will take care of this.
1208 *
1209 * There's a race here with efx_mcdi_send_request(), because
1210 * we might receive a REBOOT event *before* the request has
1211 * been copied out. In polled mode (during startup) this is
1212 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1213 * event mode, this condition is just an edge-case of
1214 * receiving a REBOOT event after posting the MCDI
1215 * request. Did the mc reboot before or after the copyout? The
1216 * best we can do always is just return failure.
1217 *
1218 * If there is an outstanding proxy response expected it is not going
1219 * to arrive. We should thus abort it.
1220 */
1221 spin_lock(&mcdi->iface_lock);
1222 efx_mcdi_proxy_abort(mcdi);
1223
1224 if (efx_mcdi_complete_sync(mcdi)) {
1225 if (mcdi->mode == MCDI_MODE_EVENTS) {
1226 mcdi->resprc = rc;
1227 mcdi->resp_hdr_len = 0;
1228 mcdi->resp_data_len = 0;
1229 ++mcdi->credits;
1230 }
1231 } else {
1232 int count;
1233
1234 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1235 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1236 rc = efx_mcdi_poll_reboot(efx);
1237 if (rc)
1238 break;
1239 udelay(MCDI_STATUS_DELAY_US);
1240 }
1241
1242 /* On EF10, a CODE_MC_REBOOT event can be received without the
1243 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1244 * If zero was returned from the final call to
1245 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1246 * MC has definitely rebooted so prepare for the reset.
1247 */
1248 if (!rc && efx->type->mcdi_reboot_detected)
1249 efx->type->mcdi_reboot_detected(efx);
1250
1251 mcdi->new_epoch = true;
1252
1253 /* Nobody was waiting for an MCDI request, so trigger a reset */
1254 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1255 }
1256
1257 spin_unlock(&mcdi->iface_lock);
1258 }
1259
1260 /* The MC is going down in to BIST mode. set the BIST flag to block
1261 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1262 * (which doesn't actually execute a reset, it waits for the controlling
1263 * function to reset it).
1264 */
efx_mcdi_ev_bist(struct efx_nic * efx)1265 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1266 {
1267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1268
1269 spin_lock(&mcdi->iface_lock);
1270 efx->mc_bist_for_other_fn = true;
1271 efx_mcdi_proxy_abort(mcdi);
1272
1273 if (efx_mcdi_complete_sync(mcdi)) {
1274 if (mcdi->mode == MCDI_MODE_EVENTS) {
1275 mcdi->resprc = -EIO;
1276 mcdi->resp_hdr_len = 0;
1277 mcdi->resp_data_len = 0;
1278 ++mcdi->credits;
1279 }
1280 }
1281 mcdi->new_epoch = true;
1282 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1283 spin_unlock(&mcdi->iface_lock);
1284 }
1285
1286 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1287 * to recover.
1288 */
efx_mcdi_abandon(struct efx_nic * efx)1289 static void efx_mcdi_abandon(struct efx_nic *efx)
1290 {
1291 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1292
1293 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1294 return; /* it had already been done */
1295 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1296 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1297 }
1298
1299 /* Called from falcon_process_eventq for MCDI events */
efx_mcdi_process_event(struct efx_channel * channel,efx_qword_t * event)1300 void efx_mcdi_process_event(struct efx_channel *channel,
1301 efx_qword_t *event)
1302 {
1303 struct efx_nic *efx = channel->efx;
1304 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1305 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1306
1307 switch (code) {
1308 case MCDI_EVENT_CODE_BADSSERT:
1309 netif_err(efx, hw, efx->net_dev,
1310 "MC watchdog or assertion failure at 0x%x\n", data);
1311 efx_mcdi_ev_death(efx, -EINTR);
1312 break;
1313
1314 case MCDI_EVENT_CODE_PMNOTICE:
1315 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1316 break;
1317
1318 case MCDI_EVENT_CODE_CMDDONE:
1319 efx_mcdi_ev_cpl(efx,
1320 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1321 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1322 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1323 break;
1324
1325 case MCDI_EVENT_CODE_LINKCHANGE:
1326 efx_mcdi_process_link_change(efx, event);
1327 break;
1328 case MCDI_EVENT_CODE_SENSOREVT:
1329 efx_mcdi_sensor_event(efx, event);
1330 break;
1331 case MCDI_EVENT_CODE_SCHEDERR:
1332 netif_dbg(efx, hw, efx->net_dev,
1333 "MC Scheduler alert (0x%x)\n", data);
1334 break;
1335 case MCDI_EVENT_CODE_REBOOT:
1336 case MCDI_EVENT_CODE_MC_REBOOT:
1337 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1338 efx_mcdi_ev_death(efx, -EIO);
1339 break;
1340 case MCDI_EVENT_CODE_MC_BIST:
1341 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1342 efx_mcdi_ev_bist(efx);
1343 break;
1344 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1345 /* MAC stats are gather lazily. We can ignore this. */
1346 break;
1347 case MCDI_EVENT_CODE_FLR:
1348 if (efx->type->sriov_flr)
1349 efx->type->sriov_flr(efx,
1350 MCDI_EVENT_FIELD(*event, FLR_VF));
1351 break;
1352 case MCDI_EVENT_CODE_PTP_RX:
1353 case MCDI_EVENT_CODE_PTP_FAULT:
1354 case MCDI_EVENT_CODE_PTP_PPS:
1355 efx_ptp_event(efx, event);
1356 break;
1357 case MCDI_EVENT_CODE_PTP_TIME:
1358 efx_time_sync_event(channel, event);
1359 break;
1360 case MCDI_EVENT_CODE_TX_FLUSH:
1361 case MCDI_EVENT_CODE_RX_FLUSH:
1362 /* Two flush events will be sent: one to the same event
1363 * queue as completions, and one to event queue 0.
1364 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1365 * flag will be set, and we should ignore the event
1366 * because we want to wait for all completions.
1367 */
1368 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1369 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1370 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1371 efx_ef10_handle_drain_event(efx);
1372 break;
1373 case MCDI_EVENT_CODE_TX_ERR:
1374 case MCDI_EVENT_CODE_RX_ERR:
1375 netif_err(efx, hw, efx->net_dev,
1376 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1377 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1378 EFX_QWORD_VAL(*event));
1379 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1380 break;
1381 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1382 efx_mcdi_ev_proxy_response(efx,
1383 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1384 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1385 break;
1386 default:
1387 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1388 code);
1389 }
1390 }
1391
1392 /**************************************************************************
1393 *
1394 * Specific request functions
1395 *
1396 **************************************************************************
1397 */
1398
efx_mcdi_print_fwver(struct efx_nic * efx,char * buf,size_t len)1399 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1400 {
1401 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1402 size_t outlength;
1403 const __le16 *ver_words;
1404 size_t offset;
1405 int rc;
1406
1407 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1408 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1409 outbuf, sizeof(outbuf), &outlength);
1410 if (rc)
1411 goto fail;
1412 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1413 rc = -EIO;
1414 goto fail;
1415 }
1416
1417 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1418 offset = snprintf(buf, len, "%u.%u.%u.%u",
1419 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1420 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1421
1422 /* EF10 may have multiple datapath firmware variants within a
1423 * single version. Report which variants are running.
1424 */
1425 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1426 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1427
1428 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1429 nic_data->rx_dpcpu_fw_id,
1430 nic_data->tx_dpcpu_fw_id);
1431
1432 /* It's theoretically possible for the string to exceed 31
1433 * characters, though in practice the first three version
1434 * components are short enough that this doesn't happen.
1435 */
1436 if (WARN_ON(offset >= len))
1437 buf[0] = 0;
1438 }
1439
1440 return;
1441
1442 fail:
1443 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1444 buf[0] = 0;
1445 }
1446
efx_mcdi_drv_attach(struct efx_nic * efx,bool driver_operating,bool * was_attached)1447 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1448 bool *was_attached)
1449 {
1450 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1451 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1452 size_t outlen;
1453 int rc;
1454
1455 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1456 driver_operating ? 1 : 0);
1457 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1458 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1459
1460 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1461 outbuf, sizeof(outbuf), &outlen);
1462 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1463 * specified will fail with EPERM, and we have to tell the MC we don't
1464 * care what firmware we get.
1465 */
1466 if (rc == -EPERM) {
1467 netif_dbg(efx, probe, efx->net_dev,
1468 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1469 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1470 MC_CMD_FW_DONT_CARE);
1471 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1472 sizeof(inbuf), outbuf, sizeof(outbuf),
1473 &outlen);
1474 }
1475 if (rc) {
1476 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1477 outbuf, outlen, rc);
1478 goto fail;
1479 }
1480 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1481 rc = -EIO;
1482 goto fail;
1483 }
1484
1485 if (driver_operating) {
1486 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1487 efx->mcdi->fn_flags =
1488 MCDI_DWORD(outbuf,
1489 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1490 } else {
1491 /* Synthesise flags for Siena */
1492 efx->mcdi->fn_flags =
1493 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1494 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1495 (efx_port_num(efx) == 0) <<
1496 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1497 }
1498 }
1499
1500 /* We currently assume we have control of the external link
1501 * and are completely trusted by firmware. Abort probing
1502 * if that's not true for this function.
1503 */
1504
1505 if (was_attached != NULL)
1506 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1507 return 0;
1508
1509 fail:
1510 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1511 return rc;
1512 }
1513
efx_mcdi_get_board_cfg(struct efx_nic * efx,u8 * mac_address,u16 * fw_subtype_list,u32 * capabilities)1514 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1515 u16 *fw_subtype_list, u32 *capabilities)
1516 {
1517 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1518 size_t outlen, i;
1519 int port_num = efx_port_num(efx);
1520 int rc;
1521
1522 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1523 /* we need __aligned(2) for ether_addr_copy */
1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1525 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1526
1527 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1528 outbuf, sizeof(outbuf), &outlen);
1529 if (rc)
1530 goto fail;
1531
1532 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1533 rc = -EIO;
1534 goto fail;
1535 }
1536
1537 if (mac_address)
1538 ether_addr_copy(mac_address,
1539 port_num ?
1540 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1541 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1542 if (fw_subtype_list) {
1543 for (i = 0;
1544 i < MCDI_VAR_ARRAY_LEN(outlen,
1545 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1546 i++)
1547 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1548 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1549 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1550 fw_subtype_list[i] = 0;
1551 }
1552 if (capabilities) {
1553 if (port_num)
1554 *capabilities = MCDI_DWORD(outbuf,
1555 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1556 else
1557 *capabilities = MCDI_DWORD(outbuf,
1558 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1559 }
1560
1561 return 0;
1562
1563 fail:
1564 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1565 __func__, rc, (int)outlen);
1566
1567 return rc;
1568 }
1569
efx_mcdi_log_ctrl(struct efx_nic * efx,bool evq,bool uart,u32 dest_evq)1570 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1571 {
1572 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1573 u32 dest = 0;
1574 int rc;
1575
1576 if (uart)
1577 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1578 if (evq)
1579 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1580
1581 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1582 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1583
1584 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1585
1586 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1587 NULL, 0, NULL);
1588 return rc;
1589 }
1590
efx_mcdi_nvram_types(struct efx_nic * efx,u32 * nvram_types_out)1591 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1592 {
1593 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1594 size_t outlen;
1595 int rc;
1596
1597 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1598
1599 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1600 outbuf, sizeof(outbuf), &outlen);
1601 if (rc)
1602 goto fail;
1603 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1604 rc = -EIO;
1605 goto fail;
1606 }
1607
1608 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1609 return 0;
1610
1611 fail:
1612 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1613 __func__, rc);
1614 return rc;
1615 }
1616
efx_mcdi_nvram_info(struct efx_nic * efx,unsigned int type,size_t * size_out,size_t * erase_size_out,bool * protected_out)1617 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1618 size_t *size_out, size_t *erase_size_out,
1619 bool *protected_out)
1620 {
1621 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1622 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1623 size_t outlen;
1624 int rc;
1625
1626 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1627
1628 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1629 outbuf, sizeof(outbuf), &outlen);
1630 if (rc)
1631 goto fail;
1632 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1633 rc = -EIO;
1634 goto fail;
1635 }
1636
1637 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1638 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1639 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1640 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1641 return 0;
1642
1643 fail:
1644 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1645 return rc;
1646 }
1647
efx_mcdi_nvram_test(struct efx_nic * efx,unsigned int type)1648 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1649 {
1650 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1651 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1652 int rc;
1653
1654 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1655
1656 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1657 outbuf, sizeof(outbuf), NULL);
1658 if (rc)
1659 return rc;
1660
1661 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1662 case MC_CMD_NVRAM_TEST_PASS:
1663 case MC_CMD_NVRAM_TEST_NOTSUPP:
1664 return 0;
1665 default:
1666 return -EIO;
1667 }
1668 }
1669
efx_mcdi_nvram_test_all(struct efx_nic * efx)1670 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1671 {
1672 u32 nvram_types;
1673 unsigned int type;
1674 int rc;
1675
1676 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1677 if (rc)
1678 goto fail1;
1679
1680 type = 0;
1681 while (nvram_types != 0) {
1682 if (nvram_types & 1) {
1683 rc = efx_mcdi_nvram_test(efx, type);
1684 if (rc)
1685 goto fail2;
1686 }
1687 type++;
1688 nvram_types >>= 1;
1689 }
1690
1691 return 0;
1692
1693 fail2:
1694 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1695 __func__, type);
1696 fail1:
1697 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1698 return rc;
1699 }
1700
1701 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1702 * negative on error.
1703 */
efx_mcdi_read_assertion(struct efx_nic * efx)1704 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1705 {
1706 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1707 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1708 unsigned int flags, index;
1709 const char *reason;
1710 size_t outlen;
1711 int retry;
1712 int rc;
1713
1714 /* Attempt to read any stored assertion state before we reboot
1715 * the mcfw out of the assertion handler. Retry twice, once
1716 * because a boot-time assertion might cause this command to fail
1717 * with EINTR. And once again because GET_ASSERTS can race with
1718 * MC_CMD_REBOOT running on the other port. */
1719 retry = 2;
1720 do {
1721 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1722 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1723 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1724 outbuf, sizeof(outbuf), &outlen);
1725 if (rc == -EPERM)
1726 return 0;
1727 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1728
1729 if (rc) {
1730 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1731 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1732 outlen, rc);
1733 return rc;
1734 }
1735 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1736 return -EIO;
1737
1738 /* Print out any recorded assertion state */
1739 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1740 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1741 return 0;
1742
1743 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1744 ? "system-level assertion"
1745 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1746 ? "thread-level assertion"
1747 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1748 ? "watchdog reset"
1749 : "unknown assertion";
1750 netif_err(efx, hw, efx->net_dev,
1751 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1752 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1753 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1754
1755 /* Print out the registers */
1756 for (index = 0;
1757 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1758 index++)
1759 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1760 1 + index,
1761 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1762 index));
1763
1764 return 1;
1765 }
1766
efx_mcdi_exit_assertion(struct efx_nic * efx)1767 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1768 {
1769 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1770 int rc;
1771
1772 /* If the MC is running debug firmware, it might now be
1773 * waiting for a debugger to attach, but we just want it to
1774 * reboot. We set a flag that makes the command a no-op if it
1775 * has already done so.
1776 * The MCDI will thus return either 0 or -EIO.
1777 */
1778 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1779 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1780 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1781 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1782 NULL, 0, NULL);
1783 if (rc == -EIO)
1784 rc = 0;
1785 if (rc)
1786 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1787 NULL, 0, rc);
1788 return rc;
1789 }
1790
efx_mcdi_handle_assertion(struct efx_nic * efx)1791 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1792 {
1793 int rc;
1794
1795 rc = efx_mcdi_read_assertion(efx);
1796 if (rc <= 0)
1797 return rc;
1798
1799 return efx_mcdi_exit_assertion(efx);
1800 }
1801
efx_mcdi_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)1802 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1803 {
1804 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1805 int rc;
1806
1807 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1808 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1809 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1810
1811 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1812
1813 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1814
1815 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1816 NULL, 0, NULL);
1817 }
1818
efx_mcdi_reset_func(struct efx_nic * efx)1819 static int efx_mcdi_reset_func(struct efx_nic *efx)
1820 {
1821 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1822 int rc;
1823
1824 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1825 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1826 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1827 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1828 NULL, 0, NULL);
1829 return rc;
1830 }
1831
efx_mcdi_reset_mc(struct efx_nic * efx)1832 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1833 {
1834 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1835 int rc;
1836
1837 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1838 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1839 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1840 NULL, 0, NULL);
1841 /* White is black, and up is down */
1842 if (rc == -EIO)
1843 return 0;
1844 if (rc == 0)
1845 rc = -EIO;
1846 return rc;
1847 }
1848
efx_mcdi_map_reset_reason(enum reset_type reason)1849 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1850 {
1851 return RESET_TYPE_RECOVER_OR_ALL;
1852 }
1853
efx_mcdi_reset(struct efx_nic * efx,enum reset_type method)1854 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1855 {
1856 int rc;
1857
1858 /* If MCDI is down, we can't handle_assertion */
1859 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1860 rc = pci_reset_function(efx->pci_dev);
1861 if (rc)
1862 return rc;
1863 /* Re-enable polled MCDI completion */
1864 if (efx->mcdi) {
1865 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1866 mcdi->mode = MCDI_MODE_POLL;
1867 }
1868 return 0;
1869 }
1870
1871 /* Recover from a failed assertion pre-reset */
1872 rc = efx_mcdi_handle_assertion(efx);
1873 if (rc)
1874 return rc;
1875
1876 if (method == RESET_TYPE_DATAPATH)
1877 return 0;
1878 else if (method == RESET_TYPE_WORLD)
1879 return efx_mcdi_reset_mc(efx);
1880 else
1881 return efx_mcdi_reset_func(efx);
1882 }
1883
efx_mcdi_wol_filter_set(struct efx_nic * efx,u32 type,const u8 * mac,int * id_out)1884 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1885 const u8 *mac, int *id_out)
1886 {
1887 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1888 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1889 size_t outlen;
1890 int rc;
1891
1892 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1893 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1894 MC_CMD_FILTER_MODE_SIMPLE);
1895 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1896
1897 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1898 outbuf, sizeof(outbuf), &outlen);
1899 if (rc)
1900 goto fail;
1901
1902 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1903 rc = -EIO;
1904 goto fail;
1905 }
1906
1907 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1908
1909 return 0;
1910
1911 fail:
1912 *id_out = -1;
1913 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1914 return rc;
1915
1916 }
1917
1918
1919 int
efx_mcdi_wol_filter_set_magic(struct efx_nic * efx,const u8 * mac,int * id_out)1920 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1921 {
1922 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1923 }
1924
1925
efx_mcdi_wol_filter_get_magic(struct efx_nic * efx,int * id_out)1926 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1927 {
1928 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1929 size_t outlen;
1930 int rc;
1931
1932 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1933 outbuf, sizeof(outbuf), &outlen);
1934 if (rc)
1935 goto fail;
1936
1937 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1938 rc = -EIO;
1939 goto fail;
1940 }
1941
1942 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1943
1944 return 0;
1945
1946 fail:
1947 *id_out = -1;
1948 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1949 return rc;
1950 }
1951
1952
efx_mcdi_wol_filter_remove(struct efx_nic * efx,int id)1953 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1954 {
1955 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1956 int rc;
1957
1958 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1959
1960 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1961 NULL, 0, NULL);
1962 return rc;
1963 }
1964
efx_mcdi_flush_rxqs(struct efx_nic * efx)1965 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1966 {
1967 struct efx_channel *channel;
1968 struct efx_rx_queue *rx_queue;
1969 MCDI_DECLARE_BUF(inbuf,
1970 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1971 int rc, count;
1972
1973 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1974 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1975
1976 count = 0;
1977 efx_for_each_channel(channel, efx) {
1978 efx_for_each_channel_rx_queue(rx_queue, channel) {
1979 if (rx_queue->flush_pending) {
1980 rx_queue->flush_pending = false;
1981 atomic_dec(&efx->rxq_flush_pending);
1982 MCDI_SET_ARRAY_DWORD(
1983 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1984 count, efx_rx_queue_index(rx_queue));
1985 count++;
1986 }
1987 }
1988 }
1989
1990 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1991 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1992 WARN_ON(rc < 0);
1993
1994 return rc;
1995 }
1996
efx_mcdi_wol_filter_reset(struct efx_nic * efx)1997 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1998 {
1999 int rc;
2000
2001 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2002 return rc;
2003 }
2004
efx_mcdi_set_workaround(struct efx_nic * efx,u32 type,bool enabled,unsigned int * flags)2005 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2006 unsigned int *flags)
2007 {
2008 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2009 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2010 size_t outlen;
2011 int rc;
2012
2013 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2014 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2015 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2016 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2017 outbuf, sizeof(outbuf), &outlen);
2018 if (rc)
2019 return rc;
2020
2021 if (!flags)
2022 return 0;
2023
2024 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2025 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2026 else
2027 *flags = 0;
2028
2029 return 0;
2030 }
2031
efx_mcdi_get_workarounds(struct efx_nic * efx,unsigned int * impl_out,unsigned int * enabled_out)2032 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2033 unsigned int *enabled_out)
2034 {
2035 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2036 size_t outlen;
2037 int rc;
2038
2039 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2040 outbuf, sizeof(outbuf), &outlen);
2041 if (rc)
2042 goto fail;
2043
2044 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2045 rc = -EIO;
2046 goto fail;
2047 }
2048
2049 if (impl_out)
2050 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2051
2052 if (enabled_out)
2053 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2054
2055 return 0;
2056
2057 fail:
2058 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2059 * terrifying. The call site will have to deal with it though.
2060 */
2061 netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
2062 efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2063 return rc;
2064 }
2065
2066 #ifdef CONFIG_SFC_MTD
2067
2068 #define EFX_MCDI_NVRAM_LEN_MAX 128
2069
efx_mcdi_nvram_update_start(struct efx_nic * efx,unsigned int type)2070 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2071 {
2072 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2073 int rc;
2074
2075 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2076
2077 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2078
2079 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2080 NULL, 0, NULL);
2081 return rc;
2082 }
2083
efx_mcdi_nvram_read(struct efx_nic * efx,unsigned int type,loff_t offset,u8 * buffer,size_t length)2084 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2085 loff_t offset, u8 *buffer, size_t length)
2086 {
2087 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2088 MCDI_DECLARE_BUF(outbuf,
2089 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2090 size_t outlen;
2091 int rc;
2092
2093 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2094 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2095 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2096
2097 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2098 outbuf, sizeof(outbuf), &outlen);
2099 if (rc)
2100 return rc;
2101
2102 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2103 return 0;
2104 }
2105
efx_mcdi_nvram_write(struct efx_nic * efx,unsigned int type,loff_t offset,const u8 * buffer,size_t length)2106 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2107 loff_t offset, const u8 *buffer, size_t length)
2108 {
2109 MCDI_DECLARE_BUF(inbuf,
2110 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2111 int rc;
2112
2113 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2114 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2115 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2116 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2117
2118 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2119
2120 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2121 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2122 NULL, 0, NULL);
2123 return rc;
2124 }
2125
efx_mcdi_nvram_erase(struct efx_nic * efx,unsigned int type,loff_t offset,size_t length)2126 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2127 loff_t offset, size_t length)
2128 {
2129 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2130 int rc;
2131
2132 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2133 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2134 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2135
2136 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2137
2138 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2139 NULL, 0, NULL);
2140 return rc;
2141 }
2142
efx_mcdi_nvram_update_finish(struct efx_nic * efx,unsigned int type)2143 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2144 {
2145 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2146 int rc;
2147
2148 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2149
2150 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2151
2152 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2153 NULL, 0, NULL);
2154 return rc;
2155 }
2156
efx_mcdi_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)2157 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2158 size_t len, size_t *retlen, u8 *buffer)
2159 {
2160 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2161 struct efx_nic *efx = mtd->priv;
2162 loff_t offset = start;
2163 loff_t end = min_t(loff_t, start + len, mtd->size);
2164 size_t chunk;
2165 int rc = 0;
2166
2167 while (offset < end) {
2168 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2169 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2170 buffer, chunk);
2171 if (rc)
2172 goto out;
2173 offset += chunk;
2174 buffer += chunk;
2175 }
2176 out:
2177 *retlen = offset - start;
2178 return rc;
2179 }
2180
efx_mcdi_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)2181 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2182 {
2183 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2184 struct efx_nic *efx = mtd->priv;
2185 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2186 loff_t end = min_t(loff_t, start + len, mtd->size);
2187 size_t chunk = part->common.mtd.erasesize;
2188 int rc = 0;
2189
2190 if (!part->updating) {
2191 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2192 if (rc)
2193 goto out;
2194 part->updating = true;
2195 }
2196
2197 /* The MCDI interface can in fact do multiple erase blocks at once;
2198 * but erasing may be slow, so we make multiple calls here to avoid
2199 * tripping the MCDI RPC timeout. */
2200 while (offset < end) {
2201 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2202 chunk);
2203 if (rc)
2204 goto out;
2205 offset += chunk;
2206 }
2207 out:
2208 return rc;
2209 }
2210
efx_mcdi_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)2211 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2212 size_t len, size_t *retlen, const u8 *buffer)
2213 {
2214 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2215 struct efx_nic *efx = mtd->priv;
2216 loff_t offset = start;
2217 loff_t end = min_t(loff_t, start + len, mtd->size);
2218 size_t chunk;
2219 int rc = 0;
2220
2221 if (!part->updating) {
2222 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2223 if (rc)
2224 goto out;
2225 part->updating = true;
2226 }
2227
2228 while (offset < end) {
2229 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2230 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2231 buffer, chunk);
2232 if (rc)
2233 goto out;
2234 offset += chunk;
2235 buffer += chunk;
2236 }
2237 out:
2238 *retlen = offset - start;
2239 return rc;
2240 }
2241
efx_mcdi_mtd_sync(struct mtd_info * mtd)2242 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2243 {
2244 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2245 struct efx_nic *efx = mtd->priv;
2246 int rc = 0;
2247
2248 if (part->updating) {
2249 part->updating = false;
2250 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2251 }
2252
2253 return rc;
2254 }
2255
efx_mcdi_mtd_rename(struct efx_mtd_partition * part)2256 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2257 {
2258 struct efx_mcdi_mtd_partition *mcdi_part =
2259 container_of(part, struct efx_mcdi_mtd_partition, common);
2260 struct efx_nic *efx = part->mtd.priv;
2261
2262 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2263 efx->name, part->type_name, mcdi_part->fw_subtype);
2264 }
2265
2266 #endif /* CONFIG_SFC_MTD */
2267