1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 /* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "farch_regs.h"
50 #include "nic.h"
51
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
54
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
57
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
60
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
63
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
66
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
69
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
72
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
75
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
78
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83 #define PTP_DPORT_OFFSET 22
84
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
87
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
90
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
93
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97 #define PTP_V1_MIN_LENGTH 64
98
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
101
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
104
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
112
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
115
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119 #define PTP_V2_MIN_LENGTH 63
120
121 #define PTP_MIN_LENGTH 63
122
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
126
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130 #define PTP_VERSION_V1 1
131
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
134
135 enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140 };
141
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
151
152 /* Number of bits required to hold the above */
153 #define MAX_PPB_BITS 20
154
155 /* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159 #define PPB_EXTRA_BITS 2
160
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165 #define PTP_SYNC_ATTEMPTS 4
166
167 /**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175 struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179 };
180
181 /**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187 struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193 };
194
195 /**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @major: Hardware timestamp, major
199 * @minor: Hardware timestamp, minor
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206 struct efx_ptp_timeset {
207 u32 host_start;
208 u32 major;
209 u32 minor;
210 u32 host_end;
211 u32 wait;
212 u32 window; /* Derived: end - start, allowing for wrap */
213 };
214
215 /**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @efx: The NIC context
218 * @channel: The PTP channel (Siena only)
219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
220 * separate events)
221 * @rxq: Receive queue (awaiting timestamps)
222 * @txq: Transmit queue
223 * @evt_list: List of MC receive events awaiting packets
224 * @evt_free_list: List of free events
225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
226 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
227 * @workwq: Work queue for processing pending PTP operations
228 * @work: Work task
229 * @reset_required: A serious error has occurred and the PTP task needs to be
230 * reset (disable, enable).
231 * @rxfilter_event: Receive filter when operating
232 * @rxfilter_general: Receive filter when operating
233 * @config: Current timestamp configuration
234 * @enabled: PTP operation enabled
235 * @mode: Mode in which PTP operating (PTP version)
236 * @time_format: Time format supported by this NIC
237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
238 * @nic_to_kernel_time: Function to convert from NIC to kernel time
239 * @min_synchronisation_ns: Minimum acceptable corrected sync window
240 * @ts_corrections.tx: Required driver correction of transmit timestamps
241 * @ts_corrections.rx: Required driver correction of receive timestamps
242 * @ts_corrections.pps_out: PPS output error (information only)
243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
244 * @evt_frags: Partly assembled PTP events
245 * @evt_frag_idx: Current fragment number
246 * @evt_code: Last event code
247 * @start: Address at which MC indicates ready for synchronisation
248 * @host_time_pps: Host time at last PPS
249 * @current_adjfreq: Current ppb adjustment.
250 * @phc_clock: Pointer to registered phc device (if primary function)
251 * @phc_clock_info: Registration structure for phc device
252 * @pps_work: pps work task for handling pps events
253 * @pps_workwq: pps work queue
254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
256 * allocations in main data path).
257 * @good_syncs: Number of successful synchronisations.
258 * @fast_syncs: Number of synchronisations requiring short delay
259 * @bad_syncs: Number of failed synchronisations.
260 * @sync_timeouts: Number of synchronisation timeouts
261 * @no_time_syncs: Number of synchronisations with no good times.
262 * @invalid_sync_windows: Number of sync windows with bad durations.
263 * @undersize_sync_windows: Number of corrected sync windows that are too small
264 * @oversize_sync_windows: Number of corrected sync windows that are too large
265 * @rx_no_timestamp: Number of packets received without a timestamp.
266 * @timeset: Last set of synchronisation statistics.
267 */
268 struct efx_ptp_data {
269 struct efx_nic *efx;
270 struct efx_channel *channel;
271 bool rx_ts_inline;
272 struct sk_buff_head rxq;
273 struct sk_buff_head txq;
274 struct list_head evt_list;
275 struct list_head evt_free_list;
276 spinlock_t evt_lock;
277 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
278 struct workqueue_struct *workwq;
279 struct work_struct work;
280 bool reset_required;
281 u32 rxfilter_event;
282 u32 rxfilter_general;
283 bool rxfilter_installed;
284 struct hwtstamp_config config;
285 bool enabled;
286 unsigned int mode;
287 unsigned int time_format;
288 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
289 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
290 s32 correction);
291 unsigned int min_synchronisation_ns;
292 struct {
293 s32 tx;
294 s32 rx;
295 s32 pps_out;
296 s32 pps_in;
297 } ts_corrections;
298 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
299 int evt_frag_idx;
300 int evt_code;
301 struct efx_buffer start;
302 struct pps_event_time host_time_pps;
303 s64 current_adjfreq;
304 struct ptp_clock *phc_clock;
305 struct ptp_clock_info phc_clock_info;
306 struct work_struct pps_work;
307 struct workqueue_struct *pps_workwq;
308 bool nic_ts_enabled;
309 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
310
311 unsigned int good_syncs;
312 unsigned int fast_syncs;
313 unsigned int bad_syncs;
314 unsigned int sync_timeouts;
315 unsigned int no_time_syncs;
316 unsigned int invalid_sync_windows;
317 unsigned int undersize_sync_windows;
318 unsigned int oversize_sync_windows;
319 unsigned int rx_no_timestamp;
320 struct efx_ptp_timeset
321 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
322 };
323
324 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
325 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
326 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
327 static int efx_phc_settime(struct ptp_clock_info *ptp,
328 const struct timespec64 *e_ts);
329 static int efx_phc_enable(struct ptp_clock_info *ptp,
330 struct ptp_clock_request *request, int on);
331
332 #define PTP_SW_STAT(ext_name, field_name) \
333 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
334 #define PTP_MC_STAT(ext_name, mcdi_name) \
335 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
336 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
337 PTP_SW_STAT(ptp_good_syncs, good_syncs),
338 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
339 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
340 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
341 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
342 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
343 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
344 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
345 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
346 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
347 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
348 PTP_MC_STAT(ptp_timestamp_packets, TS),
349 PTP_MC_STAT(ptp_filter_matches, FM),
350 PTP_MC_STAT(ptp_non_filter_matches, NFM),
351 };
352 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
353 static const unsigned long efx_ptp_stat_mask[] = {
354 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
355 };
356
efx_ptp_describe_stats(struct efx_nic * efx,u8 * strings)357 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
358 {
359 if (!efx->ptp_data)
360 return 0;
361
362 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
363 efx_ptp_stat_mask, strings);
364 }
365
efx_ptp_update_stats(struct efx_nic * efx,u64 * stats)366 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
367 {
368 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
369 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
370 size_t i;
371 int rc;
372
373 if (!efx->ptp_data)
374 return 0;
375
376 /* Copy software statistics */
377 for (i = 0; i < PTP_STAT_COUNT; i++) {
378 if (efx_ptp_stat_desc[i].dma_width)
379 continue;
380 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
381 efx_ptp_stat_desc[i].offset);
382 }
383
384 /* Fetch MC statistics. We *must* fill in all statistics or
385 * risk leaking kernel memory to userland, so if the MCDI
386 * request fails we pretend we got zeroes.
387 */
388 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
389 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
390 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
391 outbuf, sizeof(outbuf), NULL);
392 if (rc)
393 memset(outbuf, 0, sizeof(outbuf));
394 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
395 efx_ptp_stat_mask,
396 stats, _MCDI_PTR(outbuf, 0), false);
397
398 return PTP_STAT_COUNT;
399 }
400
401 /* For Siena platforms NIC time is s and ns */
efx_ptp_ns_to_s_ns(s64 ns,u32 * nic_major,u32 * nic_minor)402 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
403 {
404 struct timespec64 ts = ns_to_timespec64(ns);
405 *nic_major = (u32)ts.tv_sec;
406 *nic_minor = ts.tv_nsec;
407 }
408
efx_ptp_s_ns_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)409 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
410 s32 correction)
411 {
412 ktime_t kt = ktime_set(nic_major, nic_minor);
413 if (correction >= 0)
414 kt = ktime_add_ns(kt, (u64)correction);
415 else
416 kt = ktime_sub_ns(kt, (u64)-correction);
417 return kt;
418 }
419
420 /* To convert from s27 format to ns we multiply then divide by a power of 2.
421 * For the conversion from ns to s27, the operation is also converted to a
422 * multiply and shift.
423 */
424 #define S27_TO_NS_SHIFT (27)
425 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
426 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
427 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
428
429 /* For Huntington platforms NIC time is in seconds and fractions of a second
430 * where the minor register only uses 27 bits in units of 2^-27s.
431 */
efx_ptp_ns_to_s27(s64 ns,u32 * nic_major,u32 * nic_minor)432 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
433 {
434 struct timespec64 ts = ns_to_timespec64(ns);
435 u32 maj = (u32)ts.tv_sec;
436 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
437 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
438
439 /* The conversion can result in the minor value exceeding the maximum.
440 * In this case, round up to the next second.
441 */
442 if (min >= S27_MINOR_MAX) {
443 min -= S27_MINOR_MAX;
444 maj++;
445 }
446
447 *nic_major = maj;
448 *nic_minor = min;
449 }
450
efx_ptp_s27_to_ktime(u32 nic_major,u32 nic_minor)451 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
452 {
453 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
454 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
455 return ktime_set(nic_major, ns);
456 }
457
efx_ptp_s27_to_ktime_correction(u32 nic_major,u32 nic_minor,s32 correction)458 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
459 s32 correction)
460 {
461 /* Apply the correction and deal with carry */
462 nic_minor += correction;
463 if ((s32)nic_minor < 0) {
464 nic_minor += S27_MINOR_MAX;
465 nic_major--;
466 } else if (nic_minor >= S27_MINOR_MAX) {
467 nic_minor -= S27_MINOR_MAX;
468 nic_major++;
469 }
470
471 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
472 }
473
474 /* Get PTP attributes and set up time conversions */
efx_ptp_get_attributes(struct efx_nic * efx)475 static int efx_ptp_get_attributes(struct efx_nic *efx)
476 {
477 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
478 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
479 struct efx_ptp_data *ptp = efx->ptp_data;
480 int rc;
481 u32 fmt;
482 size_t out_len;
483
484 /* Get the PTP attributes. If the NIC doesn't support the operation we
485 * use the default format for compatibility with older NICs i.e.
486 * seconds and nanoseconds.
487 */
488 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
489 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
490 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
491 outbuf, sizeof(outbuf), &out_len);
492 if (rc == 0) {
493 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
494 } else if (rc == -EINVAL) {
495 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
496 } else if (rc == -EPERM) {
497 netif_info(efx, probe, efx->net_dev, "no PTP support\n");
498 return rc;
499 } else {
500 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
501 outbuf, sizeof(outbuf), rc);
502 return rc;
503 }
504
505 if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
506 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
507 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
508 } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
509 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
510 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
511 } else {
512 return -ERANGE;
513 }
514
515 ptp->time_format = fmt;
516
517 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
518 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
519 * to use for the minimum acceptable corrected synchronization window.
520 * If we have the extra information store it. For older firmware that
521 * does not implement the extended command use the default value.
522 */
523 if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
524 ptp->min_synchronisation_ns =
525 MCDI_DWORD(outbuf,
526 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
527 else
528 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
529
530 return 0;
531 }
532
533 /* Get PTP timestamp corrections */
efx_ptp_get_timestamp_corrections(struct efx_nic * efx)534 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
535 {
536 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
537 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
538 int rc;
539
540 /* Get the timestamp corrections from the NIC. If this operation is
541 * not supported (older NICs) then no correction is required.
542 */
543 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
544 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
545 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
546
547 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
548 outbuf, sizeof(outbuf), NULL);
549 if (rc == 0) {
550 efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
551 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
552 efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
553 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
554 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
555 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
556 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
557 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
558 } else if (rc == -EINVAL) {
559 efx->ptp_data->ts_corrections.tx = 0;
560 efx->ptp_data->ts_corrections.rx = 0;
561 efx->ptp_data->ts_corrections.pps_out = 0;
562 efx->ptp_data->ts_corrections.pps_in = 0;
563 } else {
564 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
565 sizeof(outbuf), rc);
566 return rc;
567 }
568
569 return 0;
570 }
571
572 /* Enable MCDI PTP support. */
efx_ptp_enable(struct efx_nic * efx)573 static int efx_ptp_enable(struct efx_nic *efx)
574 {
575 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
576 MCDI_DECLARE_BUF_ERR(outbuf);
577 int rc;
578
579 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
580 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
581 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
582 efx->ptp_data->channel ?
583 efx->ptp_data->channel->channel : 0);
584 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
585
586 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
587 outbuf, sizeof(outbuf), NULL);
588 rc = (rc == -EALREADY) ? 0 : rc;
589 if (rc)
590 efx_mcdi_display_error(efx, MC_CMD_PTP,
591 MC_CMD_PTP_IN_ENABLE_LEN,
592 outbuf, sizeof(outbuf), rc);
593 return rc;
594 }
595
596 /* Disable MCDI PTP support.
597 *
598 * Note that this function should never rely on the presence of ptp_data -
599 * may be called before that exists.
600 */
efx_ptp_disable(struct efx_nic * efx)601 static int efx_ptp_disable(struct efx_nic *efx)
602 {
603 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
604 MCDI_DECLARE_BUF_ERR(outbuf);
605 int rc;
606
607 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
608 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
609 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
610 outbuf, sizeof(outbuf), NULL);
611 rc = (rc == -EALREADY) ? 0 : rc;
612 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
613 * should only have been called during probe.
614 */
615 if (rc == -ENOSYS || rc == -EPERM)
616 netif_info(efx, probe, efx->net_dev, "no PTP support\n");
617 else if (rc)
618 efx_mcdi_display_error(efx, MC_CMD_PTP,
619 MC_CMD_PTP_IN_DISABLE_LEN,
620 outbuf, sizeof(outbuf), rc);
621 return rc;
622 }
623
efx_ptp_deliver_rx_queue(struct sk_buff_head * q)624 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
625 {
626 struct sk_buff *skb;
627
628 while ((skb = skb_dequeue(q))) {
629 local_bh_disable();
630 netif_receive_skb(skb);
631 local_bh_enable();
632 }
633 }
634
efx_ptp_handle_no_channel(struct efx_nic * efx)635 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
636 {
637 netif_err(efx, drv, efx->net_dev,
638 "ERROR: PTP requires MSI-X and 1 additional interrupt"
639 "vector. PTP disabled\n");
640 }
641
642 /* Repeatedly send the host time to the MC which will capture the hardware
643 * time.
644 */
efx_ptp_send_times(struct efx_nic * efx,struct pps_event_time * last_time)645 static void efx_ptp_send_times(struct efx_nic *efx,
646 struct pps_event_time *last_time)
647 {
648 struct pps_event_time now;
649 struct timespec64 limit;
650 struct efx_ptp_data *ptp = efx->ptp_data;
651 struct timespec64 start;
652 int *mc_running = ptp->start.addr;
653
654 pps_get_ts(&now);
655 start = now.ts_real;
656 limit = now.ts_real;
657 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
658
659 /* Write host time for specified period or until MC is done */
660 while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
661 ACCESS_ONCE(*mc_running)) {
662 struct timespec64 update_time;
663 unsigned int host_time;
664
665 /* Don't update continuously to avoid saturating the PCIe bus */
666 update_time = now.ts_real;
667 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
668 do {
669 pps_get_ts(&now);
670 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
671 ACCESS_ONCE(*mc_running));
672
673 /* Synchronise NIC with single word of time only */
674 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
675 now.ts_real.tv_nsec);
676 /* Update host time in NIC memory */
677 efx->type->ptp_write_host_time(efx, host_time);
678 }
679 *last_time = now;
680 }
681
682 /* Read a timeset from the MC's results and partial process. */
efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR (data),struct efx_ptp_timeset * timeset)683 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
684 struct efx_ptp_timeset *timeset)
685 {
686 unsigned start_ns, end_ns;
687
688 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
689 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
690 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
691 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
692 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
693
694 /* Ignore seconds */
695 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
696 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
697 /* Allow for rollover */
698 if (end_ns < start_ns)
699 end_ns += NSEC_PER_SEC;
700 /* Determine duration of operation */
701 timeset->window = end_ns - start_ns;
702 }
703
704 /* Process times received from MC.
705 *
706 * Extract times from returned results, and establish the minimum value
707 * seen. The minimum value represents the "best" possible time and events
708 * too much greater than this are rejected - the machine is, perhaps, too
709 * busy. A number of readings are taken so that, hopefully, at least one good
710 * synchronisation will be seen in the results.
711 */
712 static int
efx_ptp_process_times(struct efx_nic * efx,MCDI_DECLARE_STRUCT_PTR (synch_buf),size_t response_length,const struct pps_event_time * last_time)713 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
714 size_t response_length,
715 const struct pps_event_time *last_time)
716 {
717 unsigned number_readings =
718 MCDI_VAR_ARRAY_LEN(response_length,
719 PTP_OUT_SYNCHRONIZE_TIMESET);
720 unsigned i;
721 unsigned ngood = 0;
722 unsigned last_good = 0;
723 struct efx_ptp_data *ptp = efx->ptp_data;
724 u32 last_sec;
725 u32 start_sec;
726 struct timespec64 delta;
727 ktime_t mc_time;
728
729 if (number_readings == 0)
730 return -EAGAIN;
731
732 /* Read the set of results and find the last good host-MC
733 * synchronization result. The MC times when it finishes reading the
734 * host time so the corrected window time should be fairly constant
735 * for a given platform. Increment stats for any results that appear
736 * to be erroneous.
737 */
738 for (i = 0; i < number_readings; i++) {
739 s32 window, corrected;
740 struct timespec64 wait;
741
742 efx_ptp_read_timeset(
743 MCDI_ARRAY_STRUCT_PTR(synch_buf,
744 PTP_OUT_SYNCHRONIZE_TIMESET, i),
745 &ptp->timeset[i]);
746
747 wait = ktime_to_timespec64(
748 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
749 window = ptp->timeset[i].window;
750 corrected = window - wait.tv_nsec;
751
752 /* We expect the uncorrected synchronization window to be at
753 * least as large as the interval between host start and end
754 * times. If it is smaller than this then this is mostly likely
755 * to be a consequence of the host's time being adjusted.
756 * Check that the corrected sync window is in a reasonable
757 * range. If it is out of range it is likely to be because an
758 * interrupt or other delay occurred between reading the system
759 * time and writing it to MC memory.
760 */
761 if (window < SYNCHRONISATION_GRANULARITY_NS) {
762 ++ptp->invalid_sync_windows;
763 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
764 ++ptp->oversize_sync_windows;
765 } else if (corrected < ptp->min_synchronisation_ns) {
766 ++ptp->undersize_sync_windows;
767 } else {
768 ngood++;
769 last_good = i;
770 }
771 }
772
773 if (ngood == 0) {
774 netif_warn(efx, drv, efx->net_dev,
775 "PTP no suitable synchronisations\n");
776 return -EAGAIN;
777 }
778
779 /* Calculate delay from last good sync (host time) to last_time.
780 * It is possible that the seconds rolled over between taking
781 * the start reading and the last value written by the host. The
782 * timescales are such that a gap of more than one second is never
783 * expected. delta is *not* normalised.
784 */
785 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
786 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
787 if (start_sec != last_sec &&
788 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
789 netif_warn(efx, hw, efx->net_dev,
790 "PTP bad synchronisation seconds\n");
791 return -EAGAIN;
792 }
793 delta.tv_sec = (last_sec - start_sec) & 1;
794 delta.tv_nsec =
795 last_time->ts_real.tv_nsec -
796 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
797
798 /* Convert the NIC time at last good sync into kernel time.
799 * No correction is required - this time is the output of a
800 * firmware process.
801 */
802 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
803 ptp->timeset[last_good].minor, 0);
804
805 /* Calculate delay from NIC top of second to last_time */
806 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
807
808 /* Set PPS timestamp to match NIC top of second */
809 ptp->host_time_pps = *last_time;
810 pps_sub_ts(&ptp->host_time_pps, delta);
811
812 return 0;
813 }
814
815 /* Synchronize times between the host and the MC */
efx_ptp_synchronize(struct efx_nic * efx,unsigned int num_readings)816 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
817 {
818 struct efx_ptp_data *ptp = efx->ptp_data;
819 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
820 size_t response_length;
821 int rc;
822 unsigned long timeout;
823 struct pps_event_time last_time = {};
824 unsigned int loops = 0;
825 int *start = ptp->start.addr;
826
827 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
828 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
829 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
830 num_readings);
831 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
832 ptp->start.dma_addr);
833
834 /* Clear flag that signals MC ready */
835 ACCESS_ONCE(*start) = 0;
836 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
837 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
838 EFX_BUG_ON_PARANOID(rc);
839
840 /* Wait for start from MCDI (or timeout) */
841 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
842 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
843 udelay(20); /* Usually start MCDI execution quickly */
844 loops++;
845 }
846
847 if (loops <= 1)
848 ++ptp->fast_syncs;
849 if (!time_before(jiffies, timeout))
850 ++ptp->sync_timeouts;
851
852 if (ACCESS_ONCE(*start))
853 efx_ptp_send_times(efx, &last_time);
854
855 /* Collect results */
856 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
857 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
858 synch_buf, sizeof(synch_buf),
859 &response_length);
860 if (rc == 0) {
861 rc = efx_ptp_process_times(efx, synch_buf, response_length,
862 &last_time);
863 if (rc == 0)
864 ++ptp->good_syncs;
865 else
866 ++ptp->no_time_syncs;
867 }
868
869 /* Increment the bad syncs counter if the synchronize fails, whatever
870 * the reason.
871 */
872 if (rc != 0)
873 ++ptp->bad_syncs;
874
875 return rc;
876 }
877
878 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
efx_ptp_xmit_skb(struct efx_nic * efx,struct sk_buff * skb)879 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
880 {
881 struct efx_ptp_data *ptp_data = efx->ptp_data;
882 struct skb_shared_hwtstamps timestamps;
883 int rc = -EIO;
884 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
885 size_t len;
886
887 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
888 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
889 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
890 if (skb_shinfo(skb)->nr_frags != 0) {
891 rc = skb_linearize(skb);
892 if (rc != 0)
893 goto fail;
894 }
895
896 if (skb->ip_summed == CHECKSUM_PARTIAL) {
897 rc = skb_checksum_help(skb);
898 if (rc != 0)
899 goto fail;
900 }
901 skb_copy_from_linear_data(skb,
902 MCDI_PTR(ptp_data->txbuf,
903 PTP_IN_TRANSMIT_PACKET),
904 skb->len);
905 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
906 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
907 txtime, sizeof(txtime), &len);
908 if (rc != 0)
909 goto fail;
910
911 memset(×tamps, 0, sizeof(timestamps));
912 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
913 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
914 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
915 ptp_data->ts_corrections.tx);
916
917 skb_tstamp_tx(skb, ×tamps);
918
919 rc = 0;
920
921 fail:
922 dev_kfree_skb(skb);
923
924 return rc;
925 }
926
efx_ptp_drop_time_expired_events(struct efx_nic * efx)927 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
928 {
929 struct efx_ptp_data *ptp = efx->ptp_data;
930 struct list_head *cursor;
931 struct list_head *next;
932
933 if (ptp->rx_ts_inline)
934 return;
935
936 /* Drop time-expired events */
937 spin_lock_bh(&ptp->evt_lock);
938 if (!list_empty(&ptp->evt_list)) {
939 list_for_each_safe(cursor, next, &ptp->evt_list) {
940 struct efx_ptp_event_rx *evt;
941
942 evt = list_entry(cursor, struct efx_ptp_event_rx,
943 link);
944 if (time_after(jiffies, evt->expiry)) {
945 list_move(&evt->link, &ptp->evt_free_list);
946 netif_warn(efx, hw, efx->net_dev,
947 "PTP rx event dropped\n");
948 }
949 }
950 }
951 spin_unlock_bh(&ptp->evt_lock);
952 }
953
efx_ptp_match_rx(struct efx_nic * efx,struct sk_buff * skb)954 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
955 struct sk_buff *skb)
956 {
957 struct efx_ptp_data *ptp = efx->ptp_data;
958 bool evts_waiting;
959 struct list_head *cursor;
960 struct list_head *next;
961 struct efx_ptp_match *match;
962 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
963
964 WARN_ON_ONCE(ptp->rx_ts_inline);
965
966 spin_lock_bh(&ptp->evt_lock);
967 evts_waiting = !list_empty(&ptp->evt_list);
968 spin_unlock_bh(&ptp->evt_lock);
969
970 if (!evts_waiting)
971 return PTP_PACKET_STATE_UNMATCHED;
972
973 match = (struct efx_ptp_match *)skb->cb;
974 /* Look for a matching timestamp in the event queue */
975 spin_lock_bh(&ptp->evt_lock);
976 list_for_each_safe(cursor, next, &ptp->evt_list) {
977 struct efx_ptp_event_rx *evt;
978
979 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
980 if ((evt->seq0 == match->words[0]) &&
981 (evt->seq1 == match->words[1])) {
982 struct skb_shared_hwtstamps *timestamps;
983
984 /* Match - add in hardware timestamp */
985 timestamps = skb_hwtstamps(skb);
986 timestamps->hwtstamp = evt->hwtimestamp;
987
988 match->state = PTP_PACKET_STATE_MATCHED;
989 rc = PTP_PACKET_STATE_MATCHED;
990 list_move(&evt->link, &ptp->evt_free_list);
991 break;
992 }
993 }
994 spin_unlock_bh(&ptp->evt_lock);
995
996 return rc;
997 }
998
999 /* Process any queued receive events and corresponding packets
1000 *
1001 * q is returned with all the packets that are ready for delivery.
1002 */
efx_ptp_process_events(struct efx_nic * efx,struct sk_buff_head * q)1003 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1004 {
1005 struct efx_ptp_data *ptp = efx->ptp_data;
1006 struct sk_buff *skb;
1007
1008 while ((skb = skb_dequeue(&ptp->rxq))) {
1009 struct efx_ptp_match *match;
1010
1011 match = (struct efx_ptp_match *)skb->cb;
1012 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1013 __skb_queue_tail(q, skb);
1014 } else if (efx_ptp_match_rx(efx, skb) ==
1015 PTP_PACKET_STATE_MATCHED) {
1016 __skb_queue_tail(q, skb);
1017 } else if (time_after(jiffies, match->expiry)) {
1018 match->state = PTP_PACKET_STATE_TIMED_OUT;
1019 ++ptp->rx_no_timestamp;
1020 __skb_queue_tail(q, skb);
1021 } else {
1022 /* Replace unprocessed entry and stop */
1023 skb_queue_head(&ptp->rxq, skb);
1024 break;
1025 }
1026 }
1027 }
1028
1029 /* Complete processing of a received packet */
efx_ptp_process_rx(struct efx_nic * efx,struct sk_buff * skb)1030 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1031 {
1032 local_bh_disable();
1033 netif_receive_skb(skb);
1034 local_bh_enable();
1035 }
1036
efx_ptp_remove_multicast_filters(struct efx_nic * efx)1037 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1038 {
1039 struct efx_ptp_data *ptp = efx->ptp_data;
1040
1041 if (ptp->rxfilter_installed) {
1042 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1043 ptp->rxfilter_general);
1044 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1045 ptp->rxfilter_event);
1046 ptp->rxfilter_installed = false;
1047 }
1048 }
1049
efx_ptp_insert_multicast_filters(struct efx_nic * efx)1050 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1051 {
1052 struct efx_ptp_data *ptp = efx->ptp_data;
1053 struct efx_filter_spec rxfilter;
1054 int rc;
1055
1056 if (!ptp->channel || ptp->rxfilter_installed)
1057 return 0;
1058
1059 /* Must filter on both event and general ports to ensure
1060 * that there is no packet re-ordering.
1061 */
1062 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1063 efx_rx_queue_index(
1064 efx_channel_get_rx_queue(ptp->channel)));
1065 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1066 htonl(PTP_ADDRESS),
1067 htons(PTP_EVENT_PORT));
1068 if (rc != 0)
1069 return rc;
1070
1071 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1072 if (rc < 0)
1073 return rc;
1074 ptp->rxfilter_event = rc;
1075
1076 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1077 efx_rx_queue_index(
1078 efx_channel_get_rx_queue(ptp->channel)));
1079 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1080 htonl(PTP_ADDRESS),
1081 htons(PTP_GENERAL_PORT));
1082 if (rc != 0)
1083 goto fail;
1084
1085 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1086 if (rc < 0)
1087 goto fail;
1088 ptp->rxfilter_general = rc;
1089
1090 ptp->rxfilter_installed = true;
1091 return 0;
1092
1093 fail:
1094 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1095 ptp->rxfilter_event);
1096 return rc;
1097 }
1098
efx_ptp_start(struct efx_nic * efx)1099 static int efx_ptp_start(struct efx_nic *efx)
1100 {
1101 struct efx_ptp_data *ptp = efx->ptp_data;
1102 int rc;
1103
1104 ptp->reset_required = false;
1105
1106 rc = efx_ptp_insert_multicast_filters(efx);
1107 if (rc)
1108 return rc;
1109
1110 rc = efx_ptp_enable(efx);
1111 if (rc != 0)
1112 goto fail;
1113
1114 ptp->evt_frag_idx = 0;
1115 ptp->current_adjfreq = 0;
1116
1117 return 0;
1118
1119 fail:
1120 efx_ptp_remove_multicast_filters(efx);
1121 return rc;
1122 }
1123
efx_ptp_stop(struct efx_nic * efx)1124 static int efx_ptp_stop(struct efx_nic *efx)
1125 {
1126 struct efx_ptp_data *ptp = efx->ptp_data;
1127 struct list_head *cursor;
1128 struct list_head *next;
1129 int rc;
1130
1131 if (ptp == NULL)
1132 return 0;
1133
1134 rc = efx_ptp_disable(efx);
1135
1136 efx_ptp_remove_multicast_filters(efx);
1137
1138 /* Make sure RX packets are really delivered */
1139 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1140 skb_queue_purge(&efx->ptp_data->txq);
1141
1142 /* Drop any pending receive events */
1143 spin_lock_bh(&efx->ptp_data->evt_lock);
1144 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1145 list_move(cursor, &efx->ptp_data->evt_free_list);
1146 }
1147 spin_unlock_bh(&efx->ptp_data->evt_lock);
1148
1149 return rc;
1150 }
1151
efx_ptp_restart(struct efx_nic * efx)1152 static int efx_ptp_restart(struct efx_nic *efx)
1153 {
1154 if (efx->ptp_data && efx->ptp_data->enabled)
1155 return efx_ptp_start(efx);
1156 return 0;
1157 }
1158
efx_ptp_pps_worker(struct work_struct * work)1159 static void efx_ptp_pps_worker(struct work_struct *work)
1160 {
1161 struct efx_ptp_data *ptp =
1162 container_of(work, struct efx_ptp_data, pps_work);
1163 struct efx_nic *efx = ptp->efx;
1164 struct ptp_clock_event ptp_evt;
1165
1166 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1167 return;
1168
1169 ptp_evt.type = PTP_CLOCK_PPSUSR;
1170 ptp_evt.pps_times = ptp->host_time_pps;
1171 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1172 }
1173
efx_ptp_worker(struct work_struct * work)1174 static void efx_ptp_worker(struct work_struct *work)
1175 {
1176 struct efx_ptp_data *ptp_data =
1177 container_of(work, struct efx_ptp_data, work);
1178 struct efx_nic *efx = ptp_data->efx;
1179 struct sk_buff *skb;
1180 struct sk_buff_head tempq;
1181
1182 if (ptp_data->reset_required) {
1183 efx_ptp_stop(efx);
1184 efx_ptp_start(efx);
1185 return;
1186 }
1187
1188 efx_ptp_drop_time_expired_events(efx);
1189
1190 __skb_queue_head_init(&tempq);
1191 efx_ptp_process_events(efx, &tempq);
1192
1193 while ((skb = skb_dequeue(&ptp_data->txq)))
1194 efx_ptp_xmit_skb(efx, skb);
1195
1196 while ((skb = __skb_dequeue(&tempq)))
1197 efx_ptp_process_rx(efx, skb);
1198 }
1199
1200 static const struct ptp_clock_info efx_phc_clock_info = {
1201 .owner = THIS_MODULE,
1202 .name = "sfc",
1203 .max_adj = MAX_PPB,
1204 .n_alarm = 0,
1205 .n_ext_ts = 0,
1206 .n_per_out = 0,
1207 .n_pins = 0,
1208 .pps = 1,
1209 .adjfreq = efx_phc_adjfreq,
1210 .adjtime = efx_phc_adjtime,
1211 .gettime64 = efx_phc_gettime,
1212 .settime64 = efx_phc_settime,
1213 .enable = efx_phc_enable,
1214 };
1215
1216 /* Initialise PTP state. */
efx_ptp_probe(struct efx_nic * efx,struct efx_channel * channel)1217 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1218 {
1219 struct efx_ptp_data *ptp;
1220 int rc = 0;
1221 unsigned int pos;
1222
1223 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1224 efx->ptp_data = ptp;
1225 if (!efx->ptp_data)
1226 return -ENOMEM;
1227
1228 ptp->efx = efx;
1229 ptp->channel = channel;
1230 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1231
1232 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1233 if (rc != 0)
1234 goto fail1;
1235
1236 skb_queue_head_init(&ptp->rxq);
1237 skb_queue_head_init(&ptp->txq);
1238 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1239 if (!ptp->workwq) {
1240 rc = -ENOMEM;
1241 goto fail2;
1242 }
1243
1244 INIT_WORK(&ptp->work, efx_ptp_worker);
1245 ptp->config.flags = 0;
1246 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1247 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1248 INIT_LIST_HEAD(&ptp->evt_list);
1249 INIT_LIST_HEAD(&ptp->evt_free_list);
1250 spin_lock_init(&ptp->evt_lock);
1251 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1252 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1253
1254 /* Get the NIC PTP attributes and set up time conversions */
1255 rc = efx_ptp_get_attributes(efx);
1256 if (rc < 0)
1257 goto fail3;
1258
1259 /* Get the timestamp corrections */
1260 rc = efx_ptp_get_timestamp_corrections(efx);
1261 if (rc < 0)
1262 goto fail3;
1263
1264 if (efx->mcdi->fn_flags &
1265 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1266 ptp->phc_clock_info = efx_phc_clock_info;
1267 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1268 &efx->pci_dev->dev);
1269 if (IS_ERR(ptp->phc_clock)) {
1270 rc = PTR_ERR(ptp->phc_clock);
1271 goto fail3;
1272 } else if (ptp->phc_clock) {
1273 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1274 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1275 if (!ptp->pps_workwq) {
1276 rc = -ENOMEM;
1277 goto fail4;
1278 }
1279 }
1280 }
1281 ptp->nic_ts_enabled = false;
1282
1283 return 0;
1284 fail4:
1285 ptp_clock_unregister(efx->ptp_data->phc_clock);
1286
1287 fail3:
1288 destroy_workqueue(efx->ptp_data->workwq);
1289
1290 fail2:
1291 efx_nic_free_buffer(efx, &ptp->start);
1292
1293 fail1:
1294 kfree(efx->ptp_data);
1295 efx->ptp_data = NULL;
1296
1297 return rc;
1298 }
1299
1300 /* Initialise PTP channel.
1301 *
1302 * Setting core_index to zero causes the queue to be initialised and doesn't
1303 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1304 */
efx_ptp_probe_channel(struct efx_channel * channel)1305 static int efx_ptp_probe_channel(struct efx_channel *channel)
1306 {
1307 struct efx_nic *efx = channel->efx;
1308
1309 channel->irq_moderation_us = 0;
1310 channel->rx_queue.core_index = 0;
1311
1312 return efx_ptp_probe(efx, channel);
1313 }
1314
efx_ptp_remove(struct efx_nic * efx)1315 void efx_ptp_remove(struct efx_nic *efx)
1316 {
1317 if (!efx->ptp_data)
1318 return;
1319
1320 (void)efx_ptp_disable(efx);
1321
1322 cancel_work_sync(&efx->ptp_data->work);
1323 cancel_work_sync(&efx->ptp_data->pps_work);
1324
1325 skb_queue_purge(&efx->ptp_data->rxq);
1326 skb_queue_purge(&efx->ptp_data->txq);
1327
1328 if (efx->ptp_data->phc_clock) {
1329 destroy_workqueue(efx->ptp_data->pps_workwq);
1330 ptp_clock_unregister(efx->ptp_data->phc_clock);
1331 }
1332
1333 destroy_workqueue(efx->ptp_data->workwq);
1334
1335 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1336 kfree(efx->ptp_data);
1337 }
1338
efx_ptp_remove_channel(struct efx_channel * channel)1339 static void efx_ptp_remove_channel(struct efx_channel *channel)
1340 {
1341 efx_ptp_remove(channel->efx);
1342 }
1343
efx_ptp_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1344 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1345 char *buf, size_t len)
1346 {
1347 snprintf(buf, len, "%s-ptp", channel->efx->name);
1348 }
1349
1350 /* Determine whether this packet should be processed by the PTP module
1351 * or transmitted conventionally.
1352 */
efx_ptp_is_ptp_tx(struct efx_nic * efx,struct sk_buff * skb)1353 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1354 {
1355 return efx->ptp_data &&
1356 efx->ptp_data->enabled &&
1357 skb->len >= PTP_MIN_LENGTH &&
1358 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1359 likely(skb->protocol == htons(ETH_P_IP)) &&
1360 skb_transport_header_was_set(skb) &&
1361 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1362 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1363 skb_headlen(skb) >=
1364 skb_transport_offset(skb) + sizeof(struct udphdr) &&
1365 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1366 }
1367
1368 /* Receive a PTP packet. Packets are queued until the arrival of
1369 * the receive timestamp from the MC - this will probably occur after the
1370 * packet arrival because of the processing in the MC.
1371 */
efx_ptp_rx(struct efx_channel * channel,struct sk_buff * skb)1372 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1373 {
1374 struct efx_nic *efx = channel->efx;
1375 struct efx_ptp_data *ptp = efx->ptp_data;
1376 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1377 u8 *match_data_012, *match_data_345;
1378 unsigned int version;
1379 u8 *data;
1380
1381 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1382
1383 /* Correct version? */
1384 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1385 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1386 return false;
1387 }
1388 data = skb->data;
1389 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1390 if (version != PTP_VERSION_V1) {
1391 return false;
1392 }
1393
1394 /* PTP V1 uses all six bytes of the UUID to match the packet
1395 * to the timestamp
1396 */
1397 match_data_012 = data + PTP_V1_UUID_OFFSET;
1398 match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1399 } else {
1400 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1401 return false;
1402 }
1403 data = skb->data;
1404 version = data[PTP_V2_VERSION_OFFSET];
1405 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1406 return false;
1407 }
1408
1409 /* The original V2 implementation uses bytes 2-7 of
1410 * the UUID to match the packet to the timestamp. This
1411 * discards two of the bytes of the MAC address used
1412 * to create the UUID (SF bug 33070). The PTP V2
1413 * enhanced mode fixes this issue and uses bytes 0-2
1414 * and byte 5-7 of the UUID.
1415 */
1416 match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1417 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1418 match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1419 } else {
1420 match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1421 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1422 }
1423 }
1424
1425 /* Does this packet require timestamping? */
1426 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1427 match->state = PTP_PACKET_STATE_UNMATCHED;
1428
1429 /* We expect the sequence number to be in the same position in
1430 * the packet for PTP V1 and V2
1431 */
1432 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1433 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1434
1435 /* Extract UUID/Sequence information */
1436 match->words[0] = (match_data_012[0] |
1437 (match_data_012[1] << 8) |
1438 (match_data_012[2] << 16) |
1439 (match_data_345[0] << 24));
1440 match->words[1] = (match_data_345[1] |
1441 (match_data_345[2] << 8) |
1442 (data[PTP_V1_SEQUENCE_OFFSET +
1443 PTP_V1_SEQUENCE_LENGTH - 1] <<
1444 16));
1445 } else {
1446 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1447 }
1448
1449 skb_queue_tail(&ptp->rxq, skb);
1450 queue_work(ptp->workwq, &ptp->work);
1451
1452 return true;
1453 }
1454
1455 /* Transmit a PTP packet. This has to be transmitted by the MC
1456 * itself, through an MCDI call. MCDI calls aren't permitted
1457 * in the transmit path so defer the actual transmission to a suitable worker.
1458 */
efx_ptp_tx(struct efx_nic * efx,struct sk_buff * skb)1459 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1460 {
1461 struct efx_ptp_data *ptp = efx->ptp_data;
1462
1463 skb_queue_tail(&ptp->txq, skb);
1464
1465 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1466 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1467 efx_xmit_hwtstamp_pending(skb);
1468 queue_work(ptp->workwq, &ptp->work);
1469
1470 return NETDEV_TX_OK;
1471 }
1472
efx_ptp_get_mode(struct efx_nic * efx)1473 int efx_ptp_get_mode(struct efx_nic *efx)
1474 {
1475 return efx->ptp_data->mode;
1476 }
1477
efx_ptp_change_mode(struct efx_nic * efx,bool enable_wanted,unsigned int new_mode)1478 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1479 unsigned int new_mode)
1480 {
1481 if ((enable_wanted != efx->ptp_data->enabled) ||
1482 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1483 int rc = 0;
1484
1485 if (enable_wanted) {
1486 /* Change of mode requires disable */
1487 if (efx->ptp_data->enabled &&
1488 (efx->ptp_data->mode != new_mode)) {
1489 efx->ptp_data->enabled = false;
1490 rc = efx_ptp_stop(efx);
1491 if (rc != 0)
1492 return rc;
1493 }
1494
1495 /* Set new operating mode and establish
1496 * baseline synchronisation, which must
1497 * succeed.
1498 */
1499 efx->ptp_data->mode = new_mode;
1500 if (netif_running(efx->net_dev))
1501 rc = efx_ptp_start(efx);
1502 if (rc == 0) {
1503 rc = efx_ptp_synchronize(efx,
1504 PTP_SYNC_ATTEMPTS * 2);
1505 if (rc != 0)
1506 efx_ptp_stop(efx);
1507 }
1508 } else {
1509 rc = efx_ptp_stop(efx);
1510 }
1511
1512 if (rc != 0)
1513 return rc;
1514
1515 efx->ptp_data->enabled = enable_wanted;
1516 }
1517
1518 return 0;
1519 }
1520
efx_ptp_ts_init(struct efx_nic * efx,struct hwtstamp_config * init)1521 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1522 {
1523 int rc;
1524
1525 if (init->flags)
1526 return -EINVAL;
1527
1528 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1529 (init->tx_type != HWTSTAMP_TX_ON))
1530 return -ERANGE;
1531
1532 rc = efx->type->ptp_set_ts_config(efx, init);
1533 if (rc)
1534 return rc;
1535
1536 efx->ptp_data->config = *init;
1537 return 0;
1538 }
1539
efx_ptp_get_ts_info(struct efx_nic * efx,struct ethtool_ts_info * ts_info)1540 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1541 {
1542 struct efx_ptp_data *ptp = efx->ptp_data;
1543 struct efx_nic *primary = efx->primary;
1544
1545 ASSERT_RTNL();
1546
1547 if (!ptp)
1548 return;
1549
1550 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1551 SOF_TIMESTAMPING_RX_HARDWARE |
1552 SOF_TIMESTAMPING_RAW_HARDWARE);
1553 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1554 ts_info->phc_index =
1555 ptp_clock_index(primary->ptp_data->phc_clock);
1556 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1557 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1558 }
1559
efx_ptp_set_ts_config(struct efx_nic * efx,struct ifreq * ifr)1560 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1561 {
1562 struct hwtstamp_config config;
1563 int rc;
1564
1565 /* Not a PTP enabled port */
1566 if (!efx->ptp_data)
1567 return -EOPNOTSUPP;
1568
1569 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1570 return -EFAULT;
1571
1572 rc = efx_ptp_ts_init(efx, &config);
1573 if (rc != 0)
1574 return rc;
1575
1576 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1577 ? -EFAULT : 0;
1578 }
1579
efx_ptp_get_ts_config(struct efx_nic * efx,struct ifreq * ifr)1580 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1581 {
1582 if (!efx->ptp_data)
1583 return -EOPNOTSUPP;
1584
1585 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1586 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1587 }
1588
ptp_event_failure(struct efx_nic * efx,int expected_frag_len)1589 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1590 {
1591 struct efx_ptp_data *ptp = efx->ptp_data;
1592
1593 netif_err(efx, hw, efx->net_dev,
1594 "PTP unexpected event length: got %d expected %d\n",
1595 ptp->evt_frag_idx, expected_frag_len);
1596 ptp->reset_required = true;
1597 queue_work(ptp->workwq, &ptp->work);
1598 }
1599
1600 /* Process a completed receive event. Put it on the event queue and
1601 * start worker thread. This is required because event and their
1602 * correspoding packets may come in either order.
1603 */
ptp_event_rx(struct efx_nic * efx,struct efx_ptp_data * ptp)1604 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1605 {
1606 struct efx_ptp_event_rx *evt = NULL;
1607
1608 if (WARN_ON_ONCE(ptp->rx_ts_inline))
1609 return;
1610
1611 if (ptp->evt_frag_idx != 3) {
1612 ptp_event_failure(efx, 3);
1613 return;
1614 }
1615
1616 spin_lock_bh(&ptp->evt_lock);
1617 if (!list_empty(&ptp->evt_free_list)) {
1618 evt = list_first_entry(&ptp->evt_free_list,
1619 struct efx_ptp_event_rx, link);
1620 list_del(&evt->link);
1621
1622 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1623 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1624 MCDI_EVENT_SRC) |
1625 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1626 MCDI_EVENT_SRC) << 8) |
1627 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1628 MCDI_EVENT_SRC) << 16));
1629 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1630 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1631 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1632 ptp->ts_corrections.rx);
1633 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1634 list_add_tail(&evt->link, &ptp->evt_list);
1635
1636 queue_work(ptp->workwq, &ptp->work);
1637 } else if (net_ratelimit()) {
1638 /* Log a rate-limited warning message. */
1639 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1640 }
1641 spin_unlock_bh(&ptp->evt_lock);
1642 }
1643
ptp_event_fault(struct efx_nic * efx,struct efx_ptp_data * ptp)1644 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1645 {
1646 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1647 if (ptp->evt_frag_idx != 1) {
1648 ptp_event_failure(efx, 1);
1649 return;
1650 }
1651
1652 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1653 }
1654
ptp_event_pps(struct efx_nic * efx,struct efx_ptp_data * ptp)1655 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1656 {
1657 if (ptp->nic_ts_enabled)
1658 queue_work(ptp->pps_workwq, &ptp->pps_work);
1659 }
1660
efx_ptp_event(struct efx_nic * efx,efx_qword_t * ev)1661 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1662 {
1663 struct efx_ptp_data *ptp = efx->ptp_data;
1664 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1665
1666 if (!ptp) {
1667 if (net_ratelimit())
1668 netif_warn(efx, drv, efx->net_dev,
1669 "Received PTP event but PTP not set up\n");
1670 return;
1671 }
1672
1673 if (!ptp->enabled)
1674 return;
1675
1676 if (ptp->evt_frag_idx == 0) {
1677 ptp->evt_code = code;
1678 } else if (ptp->evt_code != code) {
1679 netif_err(efx, hw, efx->net_dev,
1680 "PTP out of sequence event %d\n", code);
1681 ptp->evt_frag_idx = 0;
1682 }
1683
1684 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1685 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1686 /* Process resulting event */
1687 switch (code) {
1688 case MCDI_EVENT_CODE_PTP_RX:
1689 ptp_event_rx(efx, ptp);
1690 break;
1691 case MCDI_EVENT_CODE_PTP_FAULT:
1692 ptp_event_fault(efx, ptp);
1693 break;
1694 case MCDI_EVENT_CODE_PTP_PPS:
1695 ptp_event_pps(efx, ptp);
1696 break;
1697 default:
1698 netif_err(efx, hw, efx->net_dev,
1699 "PTP unknown event %d\n", code);
1700 break;
1701 }
1702 ptp->evt_frag_idx = 0;
1703 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1704 netif_err(efx, hw, efx->net_dev,
1705 "PTP too many event fragments\n");
1706 ptp->evt_frag_idx = 0;
1707 }
1708 }
1709
efx_time_sync_event(struct efx_channel * channel,efx_qword_t * ev)1710 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1711 {
1712 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1713 channel->sync_timestamp_minor =
1714 MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
1715 /* if sync events have been disabled then we want to silently ignore
1716 * this event, so throw away result.
1717 */
1718 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1719 SYNC_EVENTS_VALID);
1720 }
1721
1722 /* make some assumptions about the time representation rather than abstract it,
1723 * since we currently only support one type of inline timestamping and only on
1724 * EF10.
1725 */
1726 #define MINOR_TICKS_PER_SECOND 0x8000000
1727 /* Fuzz factor for sync events to be out of order with RX events */
1728 #define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1729 #define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1730
efx_rx_buf_timestamp_minor(struct efx_nic * efx,const u8 * eh)1731 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1732 {
1733 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1734 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1735 #else
1736 const u8 *data = eh + efx->rx_packet_ts_offset;
1737 return (u32)data[0] |
1738 (u32)data[1] << 8 |
1739 (u32)data[2] << 16 |
1740 (u32)data[3] << 24;
1741 #endif
1742 }
1743
__efx_rx_skb_attach_timestamp(struct efx_channel * channel,struct sk_buff * skb)1744 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1745 struct sk_buff *skb)
1746 {
1747 struct efx_nic *efx = channel->efx;
1748 u32 pkt_timestamp_major, pkt_timestamp_minor;
1749 u32 diff, carry;
1750 struct skb_shared_hwtstamps *timestamps;
1751
1752 pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
1753 skb_mac_header(skb)) +
1754 (u32) efx->ptp_data->ts_corrections.rx) &
1755 (MINOR_TICKS_PER_SECOND - 1);
1756
1757 /* get the difference between the packet and sync timestamps,
1758 * modulo one second
1759 */
1760 diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
1761 (MINOR_TICKS_PER_SECOND - 1);
1762 /* do we roll over a second boundary and need to carry the one? */
1763 carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1764 1 : 0;
1765
1766 if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
1767 FUZZ) {
1768 /* packet is ahead of the sync event by a quarter of a second or
1769 * less (allowing for fuzz)
1770 */
1771 pkt_timestamp_major = channel->sync_timestamp_major + carry;
1772 } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
1773 /* packet is behind the sync event but within the fuzz factor.
1774 * This means the RX packet and sync event crossed as they were
1775 * placed on the event queue, which can sometimes happen.
1776 */
1777 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
1778 } else {
1779 /* it's outside tolerance in both directions. this might be
1780 * indicative of us missing sync events for some reason, so
1781 * we'll call it an error rather than risk giving a bogus
1782 * timestamp.
1783 */
1784 netif_vdbg(efx, drv, efx->net_dev,
1785 "packet timestamp %x too far from sync event %x:%x\n",
1786 pkt_timestamp_minor, channel->sync_timestamp_major,
1787 channel->sync_timestamp_minor);
1788 return;
1789 }
1790
1791 /* attach the timestamps to the skb */
1792 timestamps = skb_hwtstamps(skb);
1793 timestamps->hwtstamp =
1794 efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
1795 }
1796
efx_phc_adjfreq(struct ptp_clock_info * ptp,s32 delta)1797 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1798 {
1799 struct efx_ptp_data *ptp_data = container_of(ptp,
1800 struct efx_ptp_data,
1801 phc_clock_info);
1802 struct efx_nic *efx = ptp_data->efx;
1803 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1804 s64 adjustment_ns;
1805 int rc;
1806
1807 if (delta > MAX_PPB)
1808 delta = MAX_PPB;
1809 else if (delta < -MAX_PPB)
1810 delta = -MAX_PPB;
1811
1812 /* Convert ppb to fixed point ns. */
1813 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1814 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1815
1816 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1817 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1818 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1819 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1820 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1821 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1822 NULL, 0, NULL);
1823 if (rc != 0)
1824 return rc;
1825
1826 ptp_data->current_adjfreq = adjustment_ns;
1827 return 0;
1828 }
1829
efx_phc_adjtime(struct ptp_clock_info * ptp,s64 delta)1830 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1831 {
1832 u32 nic_major, nic_minor;
1833 struct efx_ptp_data *ptp_data = container_of(ptp,
1834 struct efx_ptp_data,
1835 phc_clock_info);
1836 struct efx_nic *efx = ptp_data->efx;
1837 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1838
1839 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
1840
1841 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1842 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1843 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
1844 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
1845 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
1846 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1847 NULL, 0, NULL);
1848 }
1849
efx_phc_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)1850 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
1851 {
1852 struct efx_ptp_data *ptp_data = container_of(ptp,
1853 struct efx_ptp_data,
1854 phc_clock_info);
1855 struct efx_nic *efx = ptp_data->efx;
1856 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1857 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1858 int rc;
1859 ktime_t kt;
1860
1861 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1862 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1863
1864 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1865 outbuf, sizeof(outbuf), NULL);
1866 if (rc != 0)
1867 return rc;
1868
1869 kt = ptp_data->nic_to_kernel_time(
1870 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
1871 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1872 *ts = ktime_to_timespec64(kt);
1873 return 0;
1874 }
1875
efx_phc_settime(struct ptp_clock_info * ptp,const struct timespec64 * e_ts)1876 static int efx_phc_settime(struct ptp_clock_info *ptp,
1877 const struct timespec64 *e_ts)
1878 {
1879 /* Get the current NIC time, efx_phc_gettime.
1880 * Subtract from the desired time to get the offset
1881 * call efx_phc_adjtime with the offset
1882 */
1883 int rc;
1884 struct timespec64 time_now;
1885 struct timespec64 delta;
1886
1887 rc = efx_phc_gettime(ptp, &time_now);
1888 if (rc != 0)
1889 return rc;
1890
1891 delta = timespec64_sub(*e_ts, time_now);
1892
1893 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
1894 if (rc != 0)
1895 return rc;
1896
1897 return 0;
1898 }
1899
efx_phc_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int enable)1900 static int efx_phc_enable(struct ptp_clock_info *ptp,
1901 struct ptp_clock_request *request,
1902 int enable)
1903 {
1904 struct efx_ptp_data *ptp_data = container_of(ptp,
1905 struct efx_ptp_data,
1906 phc_clock_info);
1907 if (request->type != PTP_CLK_REQ_PPS)
1908 return -EOPNOTSUPP;
1909
1910 ptp_data->nic_ts_enabled = !!enable;
1911 return 0;
1912 }
1913
1914 static const struct efx_channel_type efx_ptp_channel_type = {
1915 .handle_no_channel = efx_ptp_handle_no_channel,
1916 .pre_probe = efx_ptp_probe_channel,
1917 .post_remove = efx_ptp_remove_channel,
1918 .get_name = efx_ptp_get_channel_name,
1919 /* no copy operation; there is no need to reallocate this channel */
1920 .receive_skb = efx_ptp_rx,
1921 .keep_eventq = false,
1922 };
1923
efx_ptp_defer_probe_with_channel(struct efx_nic * efx)1924 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
1925 {
1926 /* Check whether PTP is implemented on this NIC. The DISABLE
1927 * operation will succeed if and only if it is implemented.
1928 */
1929 if (efx_ptp_disable(efx) == 0)
1930 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1931 &efx_ptp_channel_type;
1932 }
1933
efx_ptp_start_datapath(struct efx_nic * efx)1934 void efx_ptp_start_datapath(struct efx_nic *efx)
1935 {
1936 if (efx_ptp_restart(efx))
1937 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
1938 /* re-enable timestamping if it was previously enabled */
1939 if (efx->type->ptp_set_ts_sync_events)
1940 efx->type->ptp_set_ts_sync_events(efx, true, true);
1941 }
1942
efx_ptp_stop_datapath(struct efx_nic * efx)1943 void efx_ptp_stop_datapath(struct efx_nic *efx)
1944 {
1945 /* temporarily disable timestamping */
1946 if (efx->type->ptp_set_ts_sync_events)
1947 efx->type->ptp_set_ts_sync_events(efx, false, true);
1948 efx_ptp_stop(efx);
1949 }
1950