• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27 
28 #ifdef EFX_USE_PIO
29 
30 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
31 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
32 
33 #endif /* EFX_USE_PIO */
34 
35 static inline unsigned int
efx_tx_queue_get_insert_index(const struct efx_tx_queue * tx_queue)36 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
37 {
38 	return tx_queue->insert_count & tx_queue->ptr_mask;
39 }
40 
41 static inline struct efx_tx_buffer *
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)42 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
43 {
44 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
45 }
46 
47 static inline struct efx_tx_buffer *
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)48 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
49 {
50 	struct efx_tx_buffer *buffer =
51 		__efx_tx_queue_get_insert_buffer(tx_queue);
52 
53 	EFX_BUG_ON_PARANOID(buffer->len);
54 	EFX_BUG_ON_PARANOID(buffer->flags);
55 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
56 
57 	return buffer;
58 }
59 
efx_dequeue_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,unsigned int * pkts_compl,unsigned int * bytes_compl)60 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
61 			       struct efx_tx_buffer *buffer,
62 			       unsigned int *pkts_compl,
63 			       unsigned int *bytes_compl)
64 {
65 	if (buffer->unmap_len) {
66 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
67 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
68 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
69 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
70 					 DMA_TO_DEVICE);
71 		else
72 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
73 				       DMA_TO_DEVICE);
74 		buffer->unmap_len = 0;
75 	}
76 
77 	if (buffer->flags & EFX_TX_BUF_SKB) {
78 		(*pkts_compl)++;
79 		(*bytes_compl) += buffer->skb->len;
80 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
81 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
82 			   "TX queue %d transmission id %x complete\n",
83 			   tx_queue->queue, tx_queue->read_count);
84 	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
85 		kfree(buffer->heap_buf);
86 	}
87 
88 	buffer->len = 0;
89 	buffer->flags = 0;
90 }
91 
92 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
93 			       struct sk_buff *skb);
94 
95 static inline unsigned
efx_max_tx_len(struct efx_nic * efx,dma_addr_t dma_addr)96 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
97 {
98 	/* Depending on the NIC revision, we can use descriptor
99 	 * lengths up to 8K or 8K-1.  However, since PCI Express
100 	 * devices must split read requests at 4K boundaries, there is
101 	 * little benefit from using descriptors that cross those
102 	 * boundaries and we keep things simple by not doing so.
103 	 */
104 	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
105 
106 	/* Work around hardware bug for unaligned buffers. */
107 	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
108 		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
109 
110 	return len;
111 }
112 
efx_tx_max_skb_descs(struct efx_nic * efx)113 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
114 {
115 	/* Header and payload descriptor for each output segment, plus
116 	 * one for every input fragment boundary within a segment
117 	 */
118 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
119 
120 	/* Possibly one more per segment for the alignment workaround,
121 	 * or for option descriptors
122 	 */
123 	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
124 		max_descs += EFX_TSO_MAX_SEGS;
125 
126 	/* Possibly more for PCIe page boundaries within input fragments */
127 	if (PAGE_SIZE > EFX_PAGE_SIZE)
128 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
129 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
130 
131 	return max_descs;
132 }
133 
efx_tx_maybe_stop_queue(struct efx_tx_queue * txq1)134 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
135 {
136 	/* We need to consider both queues that the net core sees as one */
137 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
138 	struct efx_nic *efx = txq1->efx;
139 	unsigned int fill_level;
140 
141 	fill_level = max(txq1->insert_count - txq1->old_read_count,
142 			 txq2->insert_count - txq2->old_read_count);
143 	if (likely(fill_level < efx->txq_stop_thresh))
144 		return;
145 
146 	/* We used the stale old_read_count above, which gives us a
147 	 * pessimistic estimate of the fill level (which may even
148 	 * validly be >= efx->txq_entries).  Now try again using
149 	 * read_count (more likely to be a cache miss).
150 	 *
151 	 * If we read read_count and then conditionally stop the
152 	 * queue, it is possible for the completion path to race with
153 	 * us and complete all outstanding descriptors in the middle,
154 	 * after which there will be no more completions to wake it.
155 	 * Therefore we stop the queue first, then read read_count
156 	 * (with a memory barrier to ensure the ordering), then
157 	 * restart the queue if the fill level turns out to be low
158 	 * enough.
159 	 */
160 	netif_tx_stop_queue(txq1->core_txq);
161 	smp_mb();
162 	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
163 	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
164 
165 	fill_level = max(txq1->insert_count - txq1->old_read_count,
166 			 txq2->insert_count - txq2->old_read_count);
167 	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
168 	if (likely(fill_level < efx->txq_stop_thresh)) {
169 		smp_mb();
170 		if (likely(!efx->loopback_selftest))
171 			netif_tx_start_queue(txq1->core_txq);
172 	}
173 }
174 
175 #ifdef EFX_USE_PIO
176 
177 struct efx_short_copy_buffer {
178 	int used;
179 	u8 buf[L1_CACHE_BYTES];
180 };
181 
182 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
183  * Advances piobuf pointer. Leaves additional data in the copy buffer.
184  */
efx_memcpy_toio_aligned(struct efx_nic * efx,u8 __iomem ** piobuf,u8 * data,int len,struct efx_short_copy_buffer * copy_buf)185 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
186 				    u8 *data, int len,
187 				    struct efx_short_copy_buffer *copy_buf)
188 {
189 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
190 
191 	__iowrite64_copy(*piobuf, data, block_len >> 3);
192 	*piobuf += block_len;
193 	len -= block_len;
194 
195 	if (len) {
196 		data += block_len;
197 		BUG_ON(copy_buf->used);
198 		BUG_ON(len > sizeof(copy_buf->buf));
199 		memcpy(copy_buf->buf, data, len);
200 		copy_buf->used = len;
201 	}
202 }
203 
204 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
205  * Advances piobuf pointer. Leaves additional data in the copy buffer.
206  */
efx_memcpy_toio_aligned_cb(struct efx_nic * efx,u8 __iomem ** piobuf,u8 * data,int len,struct efx_short_copy_buffer * copy_buf)207 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
208 				       u8 *data, int len,
209 				       struct efx_short_copy_buffer *copy_buf)
210 {
211 	if (copy_buf->used) {
212 		/* if the copy buffer is partially full, fill it up and write */
213 		int copy_to_buf =
214 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
215 
216 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
217 		copy_buf->used += copy_to_buf;
218 
219 		/* if we didn't fill it up then we're done for now */
220 		if (copy_buf->used < sizeof(copy_buf->buf))
221 			return;
222 
223 		__iowrite64_copy(*piobuf, copy_buf->buf,
224 				 sizeof(copy_buf->buf) >> 3);
225 		*piobuf += sizeof(copy_buf->buf);
226 		data += copy_to_buf;
227 		len -= copy_to_buf;
228 		copy_buf->used = 0;
229 	}
230 
231 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
232 }
233 
efx_flush_copy_buffer(struct efx_nic * efx,u8 __iomem * piobuf,struct efx_short_copy_buffer * copy_buf)234 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
235 				  struct efx_short_copy_buffer *copy_buf)
236 {
237 	/* if there's anything in it, write the whole buffer, including junk */
238 	if (copy_buf->used)
239 		__iowrite64_copy(piobuf, copy_buf->buf,
240 				 sizeof(copy_buf->buf) >> 3);
241 }
242 
243 /* Traverse skb structure and copy fragments in to PIO buffer.
244  * Advances piobuf pointer.
245  */
efx_skb_copy_bits_to_pio(struct efx_nic * efx,struct sk_buff * skb,u8 __iomem ** piobuf,struct efx_short_copy_buffer * copy_buf)246 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
247 				     u8 __iomem **piobuf,
248 				     struct efx_short_copy_buffer *copy_buf)
249 {
250 	int i;
251 
252 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
253 				copy_buf);
254 
255 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
256 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
257 		u8 *vaddr;
258 
259 		vaddr = kmap_atomic(skb_frag_page(f));
260 
261 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
262 					   skb_frag_size(f), copy_buf);
263 		kunmap_atomic(vaddr);
264 	}
265 
266 	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
267 }
268 
269 static struct efx_tx_buffer *
efx_enqueue_skb_pio(struct efx_tx_queue * tx_queue,struct sk_buff * skb)270 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
271 {
272 	struct efx_tx_buffer *buffer =
273 		efx_tx_queue_get_insert_buffer(tx_queue);
274 	u8 __iomem *piobuf = tx_queue->piobuf;
275 
276 	/* Copy to PIO buffer. Ensure the writes are padded to the end
277 	 * of a cache line, as this is required for write-combining to be
278 	 * effective on at least x86.
279 	 */
280 
281 	if (skb_shinfo(skb)->nr_frags) {
282 		/* The size of the copy buffer will ensure all writes
283 		 * are the size of a cache line.
284 		 */
285 		struct efx_short_copy_buffer copy_buf;
286 
287 		copy_buf.used = 0;
288 
289 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
290 					 &piobuf, &copy_buf);
291 		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
292 	} else {
293 		/* Pad the write to the size of a cache line.
294 		 * We can do this because we know the skb_shared_info sruct is
295 		 * after the source, and the destination buffer is big enough.
296 		 */
297 		BUILD_BUG_ON(L1_CACHE_BYTES >
298 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
299 		__iowrite64_copy(tx_queue->piobuf, skb->data,
300 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
301 	}
302 
303 	EFX_POPULATE_QWORD_5(buffer->option,
304 			     ESF_DZ_TX_DESC_IS_OPT, 1,
305 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
306 			     ESF_DZ_TX_PIO_CONT, 0,
307 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
308 			     ESF_DZ_TX_PIO_BUF_ADDR,
309 			     tx_queue->piobuf_offset);
310 	++tx_queue->pio_packets;
311 	++tx_queue->insert_count;
312 	return buffer;
313 }
314 #endif /* EFX_USE_PIO */
315 
316 /*
317  * Add a socket buffer to a TX queue
318  *
319  * This maps all fragments of a socket buffer for DMA and adds them to
320  * the TX queue.  The queue's insert pointer will be incremented by
321  * the number of fragments in the socket buffer.
322  *
323  * If any DMA mapping fails, any mapped fragments will be unmapped,
324  * the queue's insert pointer will be restored to its original value.
325  *
326  * This function is split out from efx_hard_start_xmit to allow the
327  * loopback test to direct packets via specific TX queues.
328  *
329  * Returns NETDEV_TX_OK.
330  * You must hold netif_tx_lock() to call this function.
331  */
efx_enqueue_skb(struct efx_tx_queue * tx_queue,struct sk_buff * skb)332 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
333 {
334 	struct efx_nic *efx = tx_queue->efx;
335 	struct device *dma_dev = &efx->pci_dev->dev;
336 	struct efx_tx_buffer *buffer;
337 	unsigned int old_insert_count = tx_queue->insert_count;
338 	skb_frag_t *fragment;
339 	unsigned int len, unmap_len = 0;
340 	dma_addr_t dma_addr, unmap_addr = 0;
341 	unsigned int dma_len;
342 	unsigned short dma_flags;
343 	int i = 0;
344 
345 	if (skb_shinfo(skb)->gso_size)
346 		return efx_enqueue_skb_tso(tx_queue, skb);
347 
348 	/* Get size of the initial fragment */
349 	len = skb_headlen(skb);
350 
351 	/* Pad if necessary */
352 	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
353 		EFX_BUG_ON_PARANOID(skb->data_len);
354 		len = 32 + 1;
355 		if (skb_pad(skb, len - skb->len))
356 			return NETDEV_TX_OK;
357 	}
358 
359 	/* Consider using PIO for short packets */
360 #ifdef EFX_USE_PIO
361 	if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
362 	    efx_nic_may_tx_pio(tx_queue)) {
363 		buffer = efx_enqueue_skb_pio(tx_queue, skb);
364 		dma_flags = EFX_TX_BUF_OPTION;
365 		goto finish_packet;
366 	}
367 #endif
368 
369 	/* Map for DMA.  Use dma_map_single rather than dma_map_page
370 	 * since this is more efficient on machines with sparse
371 	 * memory.
372 	 */
373 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
374 	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
375 
376 	/* Process all fragments */
377 	while (1) {
378 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
379 			goto dma_err;
380 
381 		/* Store fields for marking in the per-fragment final
382 		 * descriptor */
383 		unmap_len = len;
384 		unmap_addr = dma_addr;
385 
386 		/* Add to TX queue, splitting across DMA boundaries */
387 		do {
388 			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
389 
390 			dma_len = efx_max_tx_len(efx, dma_addr);
391 			if (likely(dma_len >= len))
392 				dma_len = len;
393 
394 			/* Fill out per descriptor fields */
395 			buffer->len = dma_len;
396 			buffer->dma_addr = dma_addr;
397 			buffer->flags = EFX_TX_BUF_CONT;
398 			len -= dma_len;
399 			dma_addr += dma_len;
400 			++tx_queue->insert_count;
401 		} while (len);
402 
403 		/* Transfer ownership of the unmapping to the final buffer */
404 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
405 		buffer->unmap_len = unmap_len;
406 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
407 		unmap_len = 0;
408 
409 		/* Get address and size of next fragment */
410 		if (i >= skb_shinfo(skb)->nr_frags)
411 			break;
412 		fragment = &skb_shinfo(skb)->frags[i];
413 		len = skb_frag_size(fragment);
414 		i++;
415 		/* Map for DMA */
416 		dma_flags = 0;
417 		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
418 					    DMA_TO_DEVICE);
419 	}
420 
421 	/* Transfer ownership of the skb to the final buffer */
422 #ifdef EFX_USE_PIO
423 finish_packet:
424 #endif
425 	buffer->skb = skb;
426 	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
427 
428 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
429 
430 	efx_tx_maybe_stop_queue(tx_queue);
431 
432 	/* Pass off to hardware */
433 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
434 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
435 
436 		/* There could be packets left on the partner queue if those
437 		 * SKBs had skb->xmit_more set. If we do not push those they
438 		 * could be left for a long time and cause a netdev watchdog.
439 		 */
440 		if (txq2->xmit_more_available)
441 			efx_nic_push_buffers(txq2);
442 
443 		efx_nic_push_buffers(tx_queue);
444 	} else {
445 		tx_queue->xmit_more_available = skb->xmit_more;
446 	}
447 
448 	tx_queue->tx_packets++;
449 
450 	return NETDEV_TX_OK;
451 
452  dma_err:
453 	netif_err(efx, tx_err, efx->net_dev,
454 		  " TX queue %d could not map skb with %d bytes %d "
455 		  "fragments for DMA\n", tx_queue->queue, skb->len,
456 		  skb_shinfo(skb)->nr_frags + 1);
457 
458 	/* Mark the packet as transmitted, and free the SKB ourselves */
459 	dev_kfree_skb_any(skb);
460 
461 	/* Work backwards until we hit the original insert pointer value */
462 	while (tx_queue->insert_count != old_insert_count) {
463 		unsigned int pkts_compl = 0, bytes_compl = 0;
464 		--tx_queue->insert_count;
465 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
466 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
467 	}
468 
469 	/* Free the fragment we were mid-way through pushing */
470 	if (unmap_len) {
471 		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
472 			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
473 					 DMA_TO_DEVICE);
474 		else
475 			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
476 				       DMA_TO_DEVICE);
477 	}
478 
479 	return NETDEV_TX_OK;
480 }
481 
482 /* Remove packets from the TX queue
483  *
484  * This removes packets from the TX queue, up to and including the
485  * specified index.
486  */
efx_dequeue_buffers(struct efx_tx_queue * tx_queue,unsigned int index,unsigned int * pkts_compl,unsigned int * bytes_compl)487 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
488 				unsigned int index,
489 				unsigned int *pkts_compl,
490 				unsigned int *bytes_compl)
491 {
492 	struct efx_nic *efx = tx_queue->efx;
493 	unsigned int stop_index, read_ptr;
494 
495 	stop_index = (index + 1) & tx_queue->ptr_mask;
496 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
497 
498 	while (read_ptr != stop_index) {
499 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
500 
501 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
502 		    unlikely(buffer->len == 0)) {
503 			netif_err(efx, tx_err, efx->net_dev,
504 				  "TX queue %d spurious TX completion id %x\n",
505 				  tx_queue->queue, read_ptr);
506 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
507 			return;
508 		}
509 
510 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
511 
512 		++tx_queue->read_count;
513 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
514 	}
515 }
516 
517 /* Initiate a packet transmission.  We use one channel per CPU
518  * (sharing when we have more CPUs than channels).  On Falcon, the TX
519  * completion events will be directed back to the CPU that transmitted
520  * the packet, which should be cache-efficient.
521  *
522  * Context: non-blocking.
523  * Note that returning anything other than NETDEV_TX_OK will cause the
524  * OS to free the skb.
525  */
efx_hard_start_xmit(struct sk_buff * skb,struct net_device * net_dev)526 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
527 				struct net_device *net_dev)
528 {
529 	struct efx_nic *efx = netdev_priv(net_dev);
530 	struct efx_tx_queue *tx_queue;
531 	unsigned index, type;
532 
533 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
534 
535 	/* PTP "event" packet */
536 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
537 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
538 		return efx_ptp_tx(efx, skb);
539 	}
540 
541 	index = skb_get_queue_mapping(skb);
542 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
543 	if (index >= efx->n_tx_channels) {
544 		index -= efx->n_tx_channels;
545 		type |= EFX_TXQ_TYPE_HIGHPRI;
546 	}
547 	tx_queue = efx_get_tx_queue(efx, index, type);
548 
549 	return efx_enqueue_skb(tx_queue, skb);
550 }
551 
efx_init_tx_queue_core_txq(struct efx_tx_queue * tx_queue)552 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
553 {
554 	struct efx_nic *efx = tx_queue->efx;
555 
556 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
557 	tx_queue->core_txq =
558 		netdev_get_tx_queue(efx->net_dev,
559 				    tx_queue->queue / EFX_TXQ_TYPES +
560 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
561 				     efx->n_tx_channels : 0));
562 }
563 
efx_setup_tc(struct net_device * net_dev,u32 handle,__be16 proto,struct tc_to_netdev * ntc)564 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
565 		 struct tc_to_netdev *ntc)
566 {
567 	struct efx_nic *efx = netdev_priv(net_dev);
568 	struct efx_channel *channel;
569 	struct efx_tx_queue *tx_queue;
570 	unsigned tc, num_tc;
571 	int rc;
572 
573 	if (ntc->type != TC_SETUP_MQPRIO)
574 		return -EINVAL;
575 
576 	num_tc = ntc->tc;
577 
578 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
579 		return -EINVAL;
580 
581 	if (num_tc == net_dev->num_tc)
582 		return 0;
583 
584 	for (tc = 0; tc < num_tc; tc++) {
585 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
586 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
587 	}
588 
589 	if (num_tc > net_dev->num_tc) {
590 		/* Initialise high-priority queues as necessary */
591 		efx_for_each_channel(channel, efx) {
592 			efx_for_each_possible_channel_tx_queue(tx_queue,
593 							       channel) {
594 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
595 					continue;
596 				if (!tx_queue->buffer) {
597 					rc = efx_probe_tx_queue(tx_queue);
598 					if (rc)
599 						return rc;
600 				}
601 				if (!tx_queue->initialised)
602 					efx_init_tx_queue(tx_queue);
603 				efx_init_tx_queue_core_txq(tx_queue);
604 			}
605 		}
606 	} else {
607 		/* Reduce number of classes before number of queues */
608 		net_dev->num_tc = num_tc;
609 	}
610 
611 	rc = netif_set_real_num_tx_queues(net_dev,
612 					  max_t(int, num_tc, 1) *
613 					  efx->n_tx_channels);
614 	if (rc)
615 		return rc;
616 
617 	/* Do not destroy high-priority queues when they become
618 	 * unused.  We would have to flush them first, and it is
619 	 * fairly difficult to flush a subset of TX queues.  Leave
620 	 * it to efx_fini_channels().
621 	 */
622 
623 	net_dev->num_tc = num_tc;
624 	return 0;
625 }
626 
efx_xmit_done(struct efx_tx_queue * tx_queue,unsigned int index)627 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
628 {
629 	unsigned fill_level;
630 	struct efx_nic *efx = tx_queue->efx;
631 	struct efx_tx_queue *txq2;
632 	unsigned int pkts_compl = 0, bytes_compl = 0;
633 
634 	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
635 
636 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
637 	tx_queue->pkts_compl += pkts_compl;
638 	tx_queue->bytes_compl += bytes_compl;
639 
640 	if (pkts_compl > 1)
641 		++tx_queue->merge_events;
642 
643 	/* See if we need to restart the netif queue.  This memory
644 	 * barrier ensures that we write read_count (inside
645 	 * efx_dequeue_buffers()) before reading the queue status.
646 	 */
647 	smp_mb();
648 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
649 	    likely(efx->port_enabled) &&
650 	    likely(netif_device_present(efx->net_dev))) {
651 		txq2 = efx_tx_queue_partner(tx_queue);
652 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
653 				 txq2->insert_count - txq2->read_count);
654 		if (fill_level <= efx->txq_wake_thresh)
655 			netif_tx_wake_queue(tx_queue->core_txq);
656 	}
657 
658 	/* Check whether the hardware queue is now empty */
659 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
660 		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
661 		if (tx_queue->read_count == tx_queue->old_write_count) {
662 			smp_mb();
663 			tx_queue->empty_read_count =
664 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
665 		}
666 	}
667 }
668 
669 /* Size of page-based TSO header buffers.  Larger blocks must be
670  * allocated from the heap.
671  */
672 #define TSOH_STD_SIZE	128
673 #define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
674 
675 /* At most half the descriptors in the queue at any time will refer to
676  * a TSO header buffer, since they must always be followed by a
677  * payload descriptor referring to an skb.
678  */
efx_tsoh_page_count(struct efx_tx_queue * tx_queue)679 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
680 {
681 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
682 }
683 
efx_probe_tx_queue(struct efx_tx_queue * tx_queue)684 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
685 {
686 	struct efx_nic *efx = tx_queue->efx;
687 	unsigned int entries;
688 	int rc;
689 
690 	/* Create the smallest power-of-two aligned ring */
691 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
692 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
693 	tx_queue->ptr_mask = entries - 1;
694 
695 	netif_dbg(efx, probe, efx->net_dev,
696 		  "creating TX queue %d size %#x mask %#x\n",
697 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
698 
699 	/* Allocate software ring */
700 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
701 				   GFP_KERNEL);
702 	if (!tx_queue->buffer)
703 		return -ENOMEM;
704 
705 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
706 		tx_queue->tsoh_page =
707 			kcalloc(efx_tsoh_page_count(tx_queue),
708 				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
709 		if (!tx_queue->tsoh_page) {
710 			rc = -ENOMEM;
711 			goto fail1;
712 		}
713 	}
714 
715 	/* Allocate hardware ring */
716 	rc = efx_nic_probe_tx(tx_queue);
717 	if (rc)
718 		goto fail2;
719 
720 	return 0;
721 
722 fail2:
723 	kfree(tx_queue->tsoh_page);
724 	tx_queue->tsoh_page = NULL;
725 fail1:
726 	kfree(tx_queue->buffer);
727 	tx_queue->buffer = NULL;
728 	return rc;
729 }
730 
efx_init_tx_queue(struct efx_tx_queue * tx_queue)731 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
732 {
733 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
734 		  "initialising TX queue %d\n", tx_queue->queue);
735 
736 	tx_queue->insert_count = 0;
737 	tx_queue->write_count = 0;
738 	tx_queue->old_write_count = 0;
739 	tx_queue->read_count = 0;
740 	tx_queue->old_read_count = 0;
741 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
742 	tx_queue->xmit_more_available = false;
743 
744 	/* Set up TX descriptor ring */
745 	efx_nic_init_tx(tx_queue);
746 
747 	tx_queue->initialised = true;
748 }
749 
efx_fini_tx_queue(struct efx_tx_queue * tx_queue)750 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
751 {
752 	struct efx_tx_buffer *buffer;
753 
754 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
755 		  "shutting down TX queue %d\n", tx_queue->queue);
756 
757 	if (!tx_queue->buffer)
758 		return;
759 
760 	/* Free any buffers left in the ring */
761 	while (tx_queue->read_count != tx_queue->write_count) {
762 		unsigned int pkts_compl = 0, bytes_compl = 0;
763 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
764 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
765 
766 		++tx_queue->read_count;
767 	}
768 	tx_queue->xmit_more_available = false;
769 	netdev_tx_reset_queue(tx_queue->core_txq);
770 }
771 
efx_remove_tx_queue(struct efx_tx_queue * tx_queue)772 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
773 {
774 	int i;
775 
776 	if (!tx_queue->buffer)
777 		return;
778 
779 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
780 		  "destroying TX queue %d\n", tx_queue->queue);
781 	efx_nic_remove_tx(tx_queue);
782 
783 	if (tx_queue->tsoh_page) {
784 		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
785 			efx_nic_free_buffer(tx_queue->efx,
786 					    &tx_queue->tsoh_page[i]);
787 		kfree(tx_queue->tsoh_page);
788 		tx_queue->tsoh_page = NULL;
789 	}
790 
791 	kfree(tx_queue->buffer);
792 	tx_queue->buffer = NULL;
793 }
794 
795 
796 /* Efx TCP segmentation acceleration.
797  *
798  * Why?  Because by doing it here in the driver we can go significantly
799  * faster than the GSO.
800  *
801  * Requires TX checksum offload support.
802  */
803 
804 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
805 
806 /**
807  * struct tso_state - TSO state for an SKB
808  * @out_len: Remaining length in current segment
809  * @seqnum: Current sequence number
810  * @ipv4_id: Current IPv4 ID, host endian
811  * @packet_space: Remaining space in current packet
812  * @dma_addr: DMA address of current position
813  * @in_len: Remaining length in current SKB fragment
814  * @unmap_len: Length of SKB fragment
815  * @unmap_addr: DMA address of SKB fragment
816  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
817  * @protocol: Network protocol (after any VLAN header)
818  * @ip_off: Offset of IP header
819  * @tcp_off: Offset of TCP header
820  * @header_len: Number of bytes of header
821  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
822  * @header_dma_addr: Header DMA address, when using option descriptors
823  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
824  *	descriptors
825  *
826  * The state used during segmentation.  It is put into this data structure
827  * just to make it easy to pass into inline functions.
828  */
829 struct tso_state {
830 	/* Output position */
831 	unsigned out_len;
832 	unsigned seqnum;
833 	u16 ipv4_id;
834 	unsigned packet_space;
835 
836 	/* Input position */
837 	dma_addr_t dma_addr;
838 	unsigned in_len;
839 	unsigned unmap_len;
840 	dma_addr_t unmap_addr;
841 	unsigned short dma_flags;
842 
843 	__be16 protocol;
844 	unsigned int ip_off;
845 	unsigned int tcp_off;
846 	unsigned header_len;
847 	unsigned int ip_base_len;
848 	dma_addr_t header_dma_addr;
849 	unsigned int header_unmap_len;
850 };
851 
852 
853 /*
854  * Verify that our various assumptions about sk_buffs and the conditions
855  * under which TSO will be attempted hold true.  Return the protocol number.
856  */
efx_tso_check_protocol(struct sk_buff * skb)857 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
858 {
859 	__be16 protocol = skb->protocol;
860 
861 	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
862 			    protocol);
863 	if (protocol == htons(ETH_P_8021Q)) {
864 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
865 		protocol = veh->h_vlan_encapsulated_proto;
866 	}
867 
868 	if (protocol == htons(ETH_P_IP)) {
869 		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
870 	} else {
871 		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
872 		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
873 	}
874 	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
875 			     + (tcp_hdr(skb)->doff << 2u)) >
876 			    skb_headlen(skb));
877 
878 	return protocol;
879 }
880 
efx_tsoh_get_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,unsigned int len)881 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
882 			       struct efx_tx_buffer *buffer, unsigned int len)
883 {
884 	u8 *result;
885 
886 	EFX_BUG_ON_PARANOID(buffer->len);
887 	EFX_BUG_ON_PARANOID(buffer->flags);
888 	EFX_BUG_ON_PARANOID(buffer->unmap_len);
889 
890 	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
891 		unsigned index =
892 			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
893 		struct efx_buffer *page_buf =
894 			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
895 		unsigned offset =
896 			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
897 
898 		if (unlikely(!page_buf->addr) &&
899 		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
900 					 GFP_ATOMIC))
901 			return NULL;
902 
903 		result = (u8 *)page_buf->addr + offset;
904 		buffer->dma_addr = page_buf->dma_addr + offset;
905 		buffer->flags = EFX_TX_BUF_CONT;
906 	} else {
907 		tx_queue->tso_long_headers++;
908 
909 		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
910 		if (unlikely(!buffer->heap_buf))
911 			return NULL;
912 		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
913 		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
914 	}
915 
916 	buffer->len = len;
917 
918 	return result;
919 }
920 
921 /**
922  * efx_tx_queue_insert - push descriptors onto the TX queue
923  * @tx_queue:		Efx TX queue
924  * @dma_addr:		DMA address of fragment
925  * @len:		Length of fragment
926  * @final_buffer:	The final buffer inserted into the queue
927  *
928  * Push descriptors onto the TX queue.
929  */
efx_tx_queue_insert(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned len,struct efx_tx_buffer ** final_buffer)930 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
931 				dma_addr_t dma_addr, unsigned len,
932 				struct efx_tx_buffer **final_buffer)
933 {
934 	struct efx_tx_buffer *buffer;
935 	struct efx_nic *efx = tx_queue->efx;
936 	unsigned dma_len;
937 
938 	EFX_BUG_ON_PARANOID(len <= 0);
939 
940 	while (1) {
941 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
942 		++tx_queue->insert_count;
943 
944 		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
945 				    tx_queue->read_count >=
946 				    efx->txq_entries);
947 
948 		buffer->dma_addr = dma_addr;
949 
950 		dma_len = efx_max_tx_len(efx, dma_addr);
951 
952 		/* If there is enough space to send then do so */
953 		if (dma_len >= len)
954 			break;
955 
956 		buffer->len = dma_len;
957 		buffer->flags = EFX_TX_BUF_CONT;
958 		dma_addr += dma_len;
959 		len -= dma_len;
960 	}
961 
962 	EFX_BUG_ON_PARANOID(!len);
963 	buffer->len = len;
964 	*final_buffer = buffer;
965 }
966 
967 
968 /*
969  * Put a TSO header into the TX queue.
970  *
971  * This is special-cased because we know that it is small enough to fit in
972  * a single fragment, and we know it doesn't cross a page boundary.  It
973  * also allows us to not worry about end-of-packet etc.
974  */
efx_tso_put_header(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,u8 * header)975 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
976 			      struct efx_tx_buffer *buffer, u8 *header)
977 {
978 	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
979 		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
980 						  header, buffer->len,
981 						  DMA_TO_DEVICE);
982 		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
983 					       buffer->dma_addr))) {
984 			kfree(buffer->heap_buf);
985 			buffer->len = 0;
986 			buffer->flags = 0;
987 			return -ENOMEM;
988 		}
989 		buffer->unmap_len = buffer->len;
990 		buffer->dma_offset = 0;
991 		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
992 	}
993 
994 	++tx_queue->insert_count;
995 	return 0;
996 }
997 
998 
999 /* Remove buffers put into a tx_queue.  None of the buffers must have
1000  * an skb attached.
1001  */
efx_enqueue_unwind(struct efx_tx_queue * tx_queue,unsigned int insert_count)1002 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
1003 			       unsigned int insert_count)
1004 {
1005 	struct efx_tx_buffer *buffer;
1006 
1007 	/* Work backwards until we hit the original insert pointer value */
1008 	while (tx_queue->insert_count != insert_count) {
1009 		--tx_queue->insert_count;
1010 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1011 		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1012 	}
1013 }
1014 
1015 
1016 /* Parse the SKB header and initialise state. */
tso_start(struct tso_state * st,struct efx_nic * efx,struct efx_tx_queue * tx_queue,const struct sk_buff * skb)1017 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1018 		     struct efx_tx_queue *tx_queue,
1019 		     const struct sk_buff *skb)
1020 {
1021 	struct device *dma_dev = &efx->pci_dev->dev;
1022 	unsigned int header_len, in_len;
1023 	bool use_opt_desc = false;
1024 	dma_addr_t dma_addr;
1025 
1026 	if (tx_queue->tso_version == 1)
1027 		use_opt_desc = true;
1028 
1029 	st->ip_off = skb_network_header(skb) - skb->data;
1030 	st->tcp_off = skb_transport_header(skb) - skb->data;
1031 	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1032 	in_len = skb_headlen(skb) - header_len;
1033 	st->header_len = header_len;
1034 	st->in_len = in_len;
1035 	if (st->protocol == htons(ETH_P_IP)) {
1036 		st->ip_base_len = st->header_len - st->ip_off;
1037 		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1038 	} else {
1039 		st->ip_base_len = st->header_len - st->tcp_off;
1040 		st->ipv4_id = 0;
1041 	}
1042 	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1043 
1044 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1045 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1046 	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1047 
1048 	st->out_len = skb->len - header_len;
1049 
1050 	if (!use_opt_desc) {
1051 		st->header_unmap_len = 0;
1052 
1053 		if (likely(in_len == 0)) {
1054 			st->dma_flags = 0;
1055 			st->unmap_len = 0;
1056 			return 0;
1057 		}
1058 
1059 		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1060 					  in_len, DMA_TO_DEVICE);
1061 		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1062 		st->dma_addr = dma_addr;
1063 		st->unmap_addr = dma_addr;
1064 		st->unmap_len = in_len;
1065 	} else {
1066 		dma_addr = dma_map_single(dma_dev, skb->data,
1067 					  skb_headlen(skb), DMA_TO_DEVICE);
1068 		st->header_dma_addr = dma_addr;
1069 		st->header_unmap_len = skb_headlen(skb);
1070 		st->dma_flags = 0;
1071 		st->dma_addr = dma_addr + header_len;
1072 		st->unmap_len = 0;
1073 	}
1074 
1075 	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1076 }
1077 
tso_get_fragment(struct tso_state * st,struct efx_nic * efx,skb_frag_t * frag)1078 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1079 			    skb_frag_t *frag)
1080 {
1081 	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1082 					  skb_frag_size(frag), DMA_TO_DEVICE);
1083 	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1084 		st->dma_flags = 0;
1085 		st->unmap_len = skb_frag_size(frag);
1086 		st->in_len = skb_frag_size(frag);
1087 		st->dma_addr = st->unmap_addr;
1088 		return 0;
1089 	}
1090 	return -ENOMEM;
1091 }
1092 
1093 
1094 /**
1095  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1096  * @tx_queue:		Efx TX queue
1097  * @skb:		Socket buffer
1098  * @st:			TSO state
1099  *
1100  * Form descriptors for the current fragment, until we reach the end
1101  * of fragment or end-of-packet.
1102  */
tso_fill_packet_with_fragment(struct efx_tx_queue * tx_queue,const struct sk_buff * skb,struct tso_state * st)1103 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1104 					  const struct sk_buff *skb,
1105 					  struct tso_state *st)
1106 {
1107 	struct efx_tx_buffer *buffer;
1108 	int n;
1109 
1110 	if (st->in_len == 0)
1111 		return;
1112 	if (st->packet_space == 0)
1113 		return;
1114 
1115 	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1116 	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1117 
1118 	n = min(st->in_len, st->packet_space);
1119 
1120 	st->packet_space -= n;
1121 	st->out_len -= n;
1122 	st->in_len -= n;
1123 
1124 	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1125 
1126 	if (st->out_len == 0) {
1127 		/* Transfer ownership of the skb */
1128 		buffer->skb = skb;
1129 		buffer->flags = EFX_TX_BUF_SKB;
1130 	} else if (st->packet_space != 0) {
1131 		buffer->flags = EFX_TX_BUF_CONT;
1132 	}
1133 
1134 	if (st->in_len == 0) {
1135 		/* Transfer ownership of the DMA mapping */
1136 		buffer->unmap_len = st->unmap_len;
1137 		buffer->dma_offset = buffer->unmap_len - buffer->len;
1138 		buffer->flags |= st->dma_flags;
1139 		st->unmap_len = 0;
1140 	}
1141 
1142 	st->dma_addr += n;
1143 }
1144 
1145 
1146 /**
1147  * tso_start_new_packet - generate a new header and prepare for the new packet
1148  * @tx_queue:		Efx TX queue
1149  * @skb:		Socket buffer
1150  * @st:			TSO state
1151  *
1152  * Generate a new header and prepare for the new packet.  Return 0 on
1153  * success, or -%ENOMEM if failed to alloc header.
1154  */
tso_start_new_packet(struct efx_tx_queue * tx_queue,const struct sk_buff * skb,struct tso_state * st)1155 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1156 				const struct sk_buff *skb,
1157 				struct tso_state *st)
1158 {
1159 	struct efx_tx_buffer *buffer =
1160 		efx_tx_queue_get_insert_buffer(tx_queue);
1161 	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1162 	u8 tcp_flags_clear;
1163 
1164 	if (!is_last) {
1165 		st->packet_space = skb_shinfo(skb)->gso_size;
1166 		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1167 	} else {
1168 		st->packet_space = st->out_len;
1169 		tcp_flags_clear = 0x00;
1170 	}
1171 
1172 	if (!st->header_unmap_len) {
1173 		/* Allocate and insert a DMA-mapped header buffer. */
1174 		struct tcphdr *tsoh_th;
1175 		unsigned ip_length;
1176 		u8 *header;
1177 		int rc;
1178 
1179 		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1180 		if (!header)
1181 			return -ENOMEM;
1182 
1183 		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1184 
1185 		/* Copy and update the headers. */
1186 		memcpy(header, skb->data, st->header_len);
1187 
1188 		tsoh_th->seq = htonl(st->seqnum);
1189 		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1190 
1191 		ip_length = st->ip_base_len + st->packet_space;
1192 
1193 		if (st->protocol == htons(ETH_P_IP)) {
1194 			struct iphdr *tsoh_iph =
1195 				(struct iphdr *)(header + st->ip_off);
1196 
1197 			tsoh_iph->tot_len = htons(ip_length);
1198 			tsoh_iph->id = htons(st->ipv4_id);
1199 		} else {
1200 			struct ipv6hdr *tsoh_iph =
1201 				(struct ipv6hdr *)(header + st->ip_off);
1202 
1203 			tsoh_iph->payload_len = htons(ip_length);
1204 		}
1205 
1206 		rc = efx_tso_put_header(tx_queue, buffer, header);
1207 		if (unlikely(rc))
1208 			return rc;
1209 	} else {
1210 		/* Send the original headers with a TSO option descriptor
1211 		 * in front
1212 		 */
1213 		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1214 
1215 		buffer->flags = EFX_TX_BUF_OPTION;
1216 		buffer->len = 0;
1217 		buffer->unmap_len = 0;
1218 		EFX_POPULATE_QWORD_5(buffer->option,
1219 				     ESF_DZ_TX_DESC_IS_OPT, 1,
1220 				     ESF_DZ_TX_OPTION_TYPE,
1221 				     ESE_DZ_TX_OPTION_DESC_TSO,
1222 				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1223 				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1224 				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1225 		++tx_queue->insert_count;
1226 
1227 		/* We mapped the headers in tso_start().  Unmap them
1228 		 * when the last segment is completed.
1229 		 */
1230 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1231 		buffer->dma_addr = st->header_dma_addr;
1232 		buffer->len = st->header_len;
1233 		if (is_last) {
1234 			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1235 			buffer->unmap_len = st->header_unmap_len;
1236 			buffer->dma_offset = 0;
1237 			/* Ensure we only unmap them once in case of a
1238 			 * later DMA mapping error and rollback
1239 			 */
1240 			st->header_unmap_len = 0;
1241 		} else {
1242 			buffer->flags = EFX_TX_BUF_CONT;
1243 			buffer->unmap_len = 0;
1244 		}
1245 		++tx_queue->insert_count;
1246 	}
1247 
1248 	st->seqnum += skb_shinfo(skb)->gso_size;
1249 
1250 	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1251 	++st->ipv4_id;
1252 
1253 	++tx_queue->tso_packets;
1254 
1255 	++tx_queue->tx_packets;
1256 
1257 	return 0;
1258 }
1259 
1260 
1261 /**
1262  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1263  * @tx_queue:		Efx TX queue
1264  * @skb:		Socket buffer
1265  *
1266  * Context: You must hold netif_tx_lock() to call this function.
1267  *
1268  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1269  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1270  * %NETDEV_TX_OK.
1271  */
efx_enqueue_skb_tso(struct efx_tx_queue * tx_queue,struct sk_buff * skb)1272 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1273 			       struct sk_buff *skb)
1274 {
1275 	struct efx_nic *efx = tx_queue->efx;
1276 	unsigned int old_insert_count = tx_queue->insert_count;
1277 	int frag_i, rc;
1278 	struct tso_state state;
1279 
1280 	/* Find the packet protocol and sanity-check it */
1281 	state.protocol = efx_tso_check_protocol(skb);
1282 
1283 	rc = tso_start(&state, efx, tx_queue, skb);
1284 	if (rc)
1285 		goto mem_err;
1286 
1287 	if (likely(state.in_len == 0)) {
1288 		/* Grab the first payload fragment. */
1289 		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1290 		frag_i = 0;
1291 		rc = tso_get_fragment(&state, efx,
1292 				      skb_shinfo(skb)->frags + frag_i);
1293 		if (rc)
1294 			goto mem_err;
1295 	} else {
1296 		/* Payload starts in the header area. */
1297 		frag_i = -1;
1298 	}
1299 
1300 	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1301 		goto mem_err;
1302 
1303 	while (1) {
1304 		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1305 
1306 		/* Move onto the next fragment? */
1307 		if (state.in_len == 0) {
1308 			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1309 				/* End of payload reached. */
1310 				break;
1311 			rc = tso_get_fragment(&state, efx,
1312 					      skb_shinfo(skb)->frags + frag_i);
1313 			if (rc)
1314 				goto mem_err;
1315 		}
1316 
1317 		/* Start at new packet? */
1318 		if (state.packet_space == 0 &&
1319 		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1320 			goto mem_err;
1321 	}
1322 
1323 	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1324 
1325 	efx_tx_maybe_stop_queue(tx_queue);
1326 
1327 	/* Pass off to hardware */
1328 	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1329 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1330 
1331 		/* There could be packets left on the partner queue if those
1332 		 * SKBs had skb->xmit_more set. If we do not push those they
1333 		 * could be left for a long time and cause a netdev watchdog.
1334 		 */
1335 		if (txq2->xmit_more_available)
1336 			efx_nic_push_buffers(txq2);
1337 
1338 		efx_nic_push_buffers(tx_queue);
1339 	} else {
1340 		tx_queue->xmit_more_available = skb->xmit_more;
1341 	}
1342 
1343 	tx_queue->tso_bursts++;
1344 	return NETDEV_TX_OK;
1345 
1346  mem_err:
1347 	netif_err(efx, tx_err, efx->net_dev,
1348 		  "Out of memory for TSO headers, or DMA mapping error\n");
1349 	dev_kfree_skb_any(skb);
1350 
1351 	/* Free the DMA mapping we were in the process of writing out */
1352 	if (state.unmap_len) {
1353 		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1354 			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1355 					 state.unmap_len, DMA_TO_DEVICE);
1356 		else
1357 			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1358 				       state.unmap_len, DMA_TO_DEVICE);
1359 	}
1360 
1361 	/* Free the header DMA mapping, if using option descriptors */
1362 	if (state.header_unmap_len)
1363 		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1364 				 state.header_unmap_len, DMA_TO_DEVICE);
1365 
1366 	efx_enqueue_unwind(tx_queue, old_insert_count);
1367 	return NETDEV_TX_OK;
1368 }
1369