1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #ifndef EFX_IO_H
12 #define EFX_IO_H
13
14 #include <linux/io.h>
15 #include <linux/spinlock.h>
16
17 /**************************************************************************
18 *
19 * NIC register I/O
20 *
21 **************************************************************************
22 *
23 * Notes on locking strategy for the Falcon architecture:
24 *
25 * Many CSRs are very wide and cannot be read or written atomically.
26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
27 * up to 128 bits. Whenever the host writes part of such a register,
28 * the BIU collects the written value and does not write to the
29 * underlying register until all 4 dwords have been written. A
30 * similar buffering scheme applies to host access to the NIC's 64-bit
31 * SRAM.
32 *
33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
34 * since interleaved access can result in lost writes. We use
35 * efx_nic::biu_lock for this.
36 *
37 * We also serialise reads from 128-bit CSRs and SRAM with the same
38 * spinlock. This may not be necessary, but it doesn't really matter
39 * as there are no such reads on the fast path.
40 *
41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
42 * 128-bit but are special-cased in the BIU to avoid the need for
43 * locking in the host:
44 *
45 * - They are write-only.
46 * - The semantics of writing to these registers are such that
47 * replacing the low 96 bits with zero does not affect functionality.
48 * - If the host writes to the last dword address of such a register
49 * (i.e. the high 32 bits) the underlying register will always be
50 * written. If the collector and the current write together do not
51 * provide values for all 128 bits of the register, the low 96 bits
52 * will be written as zero.
53 * - If the host writes to the address of any other part of such a
54 * register while the collector already holds values for some other
55 * register, the write is discarded and the collector maintains its
56 * current state.
57 *
58 * The EF10 architecture exposes very few registers to the host and
59 * most of them are only 32 bits wide. The only exceptions are the MC
60 * doorbell register pair, which has its own latching, and
61 * TX_DESC_UPD, which works in a similar way to the Falcon
62 * architecture.
63 */
64
65 #if BITS_PER_LONG == 64
66 #define EFX_USE_QWORD_IO 1
67 #endif
68
69 /* Hardware issue requires that only 64-bit naturally aligned writes
70 * are seen by hardware. Its not strictly necessary to restrict to
71 * x86_64 arch, but done for safety since unusual write combining behaviour
72 * can break PIO.
73 */
74 #ifdef CONFIG_X86_64
75 /* PIO is a win only if write-combining is possible */
76 #ifdef ARCH_HAS_IOREMAP_WC
77 #define EFX_USE_PIO 1
78 #endif
79 #endif
80
81 #ifdef EFX_USE_QWORD_IO
_efx_writeq(struct efx_nic * efx,__le64 value,unsigned int reg)82 static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
83 unsigned int reg)
84 {
85 __raw_writeq((__force u64)value, efx->membase + reg);
86 }
_efx_readq(struct efx_nic * efx,unsigned int reg)87 static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
88 {
89 return (__force __le64)__raw_readq(efx->membase + reg);
90 }
91 #endif
92
_efx_writed(struct efx_nic * efx,__le32 value,unsigned int reg)93 static inline void _efx_writed(struct efx_nic *efx, __le32 value,
94 unsigned int reg)
95 {
96 __raw_writel((__force u32)value, efx->membase + reg);
97 }
_efx_readd(struct efx_nic * efx,unsigned int reg)98 static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
99 {
100 return (__force __le32)__raw_readl(efx->membase + reg);
101 }
102
103 /* Write a normal 128-bit CSR, locking as appropriate. */
efx_writeo(struct efx_nic * efx,const efx_oword_t * value,unsigned int reg)104 static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
105 unsigned int reg)
106 {
107 unsigned long flags __attribute__ ((unused));
108
109 netif_vdbg(efx, hw, efx->net_dev,
110 "writing register %x with " EFX_OWORD_FMT "\n", reg,
111 EFX_OWORD_VAL(*value));
112
113 spin_lock_irqsave(&efx->biu_lock, flags);
114 #ifdef EFX_USE_QWORD_IO
115 _efx_writeq(efx, value->u64[0], reg + 0);
116 _efx_writeq(efx, value->u64[1], reg + 8);
117 #else
118 _efx_writed(efx, value->u32[0], reg + 0);
119 _efx_writed(efx, value->u32[1], reg + 4);
120 _efx_writed(efx, value->u32[2], reg + 8);
121 _efx_writed(efx, value->u32[3], reg + 12);
122 #endif
123 mmiowb();
124 spin_unlock_irqrestore(&efx->biu_lock, flags);
125 }
126
127 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
efx_sram_writeq(struct efx_nic * efx,void __iomem * membase,const efx_qword_t * value,unsigned int index)128 static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
129 const efx_qword_t *value, unsigned int index)
130 {
131 unsigned int addr = index * sizeof(*value);
132 unsigned long flags __attribute__ ((unused));
133
134 netif_vdbg(efx, hw, efx->net_dev,
135 "writing SRAM address %x with " EFX_QWORD_FMT "\n",
136 addr, EFX_QWORD_VAL(*value));
137
138 spin_lock_irqsave(&efx->biu_lock, flags);
139 #ifdef EFX_USE_QWORD_IO
140 __raw_writeq((__force u64)value->u64[0], membase + addr);
141 #else
142 __raw_writel((__force u32)value->u32[0], membase + addr);
143 __raw_writel((__force u32)value->u32[1], membase + addr + 4);
144 #endif
145 mmiowb();
146 spin_unlock_irqrestore(&efx->biu_lock, flags);
147 }
148
149 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
efx_writed(struct efx_nic * efx,const efx_dword_t * value,unsigned int reg)150 static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
151 unsigned int reg)
152 {
153 netif_vdbg(efx, hw, efx->net_dev,
154 "writing register %x with "EFX_DWORD_FMT"\n",
155 reg, EFX_DWORD_VAL(*value));
156
157 /* No lock required */
158 _efx_writed(efx, value->u32[0], reg);
159 }
160
161 /* Read a 128-bit CSR, locking as appropriate. */
efx_reado(struct efx_nic * efx,efx_oword_t * value,unsigned int reg)162 static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
163 unsigned int reg)
164 {
165 unsigned long flags __attribute__ ((unused));
166
167 spin_lock_irqsave(&efx->biu_lock, flags);
168 value->u32[0] = _efx_readd(efx, reg + 0);
169 value->u32[1] = _efx_readd(efx, reg + 4);
170 value->u32[2] = _efx_readd(efx, reg + 8);
171 value->u32[3] = _efx_readd(efx, reg + 12);
172 spin_unlock_irqrestore(&efx->biu_lock, flags);
173
174 netif_vdbg(efx, hw, efx->net_dev,
175 "read from register %x, got " EFX_OWORD_FMT "\n", reg,
176 EFX_OWORD_VAL(*value));
177 }
178
179 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
efx_sram_readq(struct efx_nic * efx,void __iomem * membase,efx_qword_t * value,unsigned int index)180 static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
181 efx_qword_t *value, unsigned int index)
182 {
183 unsigned int addr = index * sizeof(*value);
184 unsigned long flags __attribute__ ((unused));
185
186 spin_lock_irqsave(&efx->biu_lock, flags);
187 #ifdef EFX_USE_QWORD_IO
188 value->u64[0] = (__force __le64)__raw_readq(membase + addr);
189 #else
190 value->u32[0] = (__force __le32)__raw_readl(membase + addr);
191 value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
192 #endif
193 spin_unlock_irqrestore(&efx->biu_lock, flags);
194
195 netif_vdbg(efx, hw, efx->net_dev,
196 "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
197 addr, EFX_QWORD_VAL(*value));
198 }
199
200 /* Read a 32-bit CSR or SRAM */
efx_readd(struct efx_nic * efx,efx_dword_t * value,unsigned int reg)201 static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
202 unsigned int reg)
203 {
204 value->u32[0] = _efx_readd(efx, reg);
205 netif_vdbg(efx, hw, efx->net_dev,
206 "read from register %x, got "EFX_DWORD_FMT"\n",
207 reg, EFX_DWORD_VAL(*value));
208 }
209
210 /* Write a 128-bit CSR forming part of a table */
211 static inline void
efx_writeo_table(struct efx_nic * efx,const efx_oword_t * value,unsigned int reg,unsigned int index)212 efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
213 unsigned int reg, unsigned int index)
214 {
215 efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
216 }
217
218 /* Read a 128-bit CSR forming part of a table */
efx_reado_table(struct efx_nic * efx,efx_oword_t * value,unsigned int reg,unsigned int index)219 static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
220 unsigned int reg, unsigned int index)
221 {
222 efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
223 }
224
225 /* Page size used as step between per-VI registers */
226 #define EFX_VI_PAGE_SIZE 0x2000
227
228 /* Calculate offset to page-mapped register */
229 #define EFX_PAGED_REG(page, reg) \
230 ((page) * EFX_VI_PAGE_SIZE + (reg))
231
232 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
_efx_writeo_page(struct efx_nic * efx,efx_oword_t * value,unsigned int reg,unsigned int page)233 static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
234 unsigned int reg, unsigned int page)
235 {
236 reg = EFX_PAGED_REG(page, reg);
237
238 netif_vdbg(efx, hw, efx->net_dev,
239 "writing register %x with " EFX_OWORD_FMT "\n", reg,
240 EFX_OWORD_VAL(*value));
241
242 #ifdef EFX_USE_QWORD_IO
243 _efx_writeq(efx, value->u64[0], reg + 0);
244 _efx_writeq(efx, value->u64[1], reg + 8);
245 #else
246 _efx_writed(efx, value->u32[0], reg + 0);
247 _efx_writed(efx, value->u32[1], reg + 4);
248 _efx_writed(efx, value->u32[2], reg + 8);
249 _efx_writed(efx, value->u32[3], reg + 12);
250 #endif
251 }
252 #define efx_writeo_page(efx, value, reg, page) \
253 _efx_writeo_page(efx, value, \
254 reg + \
255 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
256 page)
257
258 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
259 * high bits of RX_DESC_UPD or TX_DESC_UPD)
260 */
261 static inline void
_efx_writed_page(struct efx_nic * efx,const efx_dword_t * value,unsigned int reg,unsigned int page)262 _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
263 unsigned int reg, unsigned int page)
264 {
265 efx_writed(efx, value, EFX_PAGED_REG(page, reg));
266 }
267 #define efx_writed_page(efx, value, reg, page) \
268 _efx_writed_page(efx, value, \
269 reg + \
270 BUILD_BUG_ON_ZERO((reg) != 0x400 && \
271 (reg) != 0x420 && \
272 (reg) != 0x830 && \
273 (reg) != 0x83c && \
274 (reg) != 0xa18 && \
275 (reg) != 0xa1c), \
276 page)
277
278 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
279 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
280 * collector register.
281 */
_efx_writed_page_locked(struct efx_nic * efx,const efx_dword_t * value,unsigned int reg,unsigned int page)282 static inline void _efx_writed_page_locked(struct efx_nic *efx,
283 const efx_dword_t *value,
284 unsigned int reg,
285 unsigned int page)
286 {
287 unsigned long flags __attribute__ ((unused));
288
289 if (page == 0) {
290 spin_lock_irqsave(&efx->biu_lock, flags);
291 efx_writed(efx, value, EFX_PAGED_REG(page, reg));
292 spin_unlock_irqrestore(&efx->biu_lock, flags);
293 } else {
294 efx_writed(efx, value, EFX_PAGED_REG(page, reg));
295 }
296 }
297 #define efx_writed_page_locked(efx, value, reg, page) \
298 _efx_writed_page_locked(efx, value, \
299 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
300 page)
301
302 #endif /* EFX_IO_H */
303