1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43
44 #include "aacraid.h"
45
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
48 #define INQD_PDT_PROC 0x03 /* Processor device */
49 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
50 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
51 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
52 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53
54 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
55 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
56
57 /*
58 * Sense codes
59 */
60
61 #define SENCODE_NO_SENSE 0x00
62 #define SENCODE_END_OF_DATA 0x00
63 #define SENCODE_BECOMING_READY 0x04
64 #define SENCODE_INIT_CMD_REQUIRED 0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
66 #define SENCODE_INVALID_COMMAND 0x20
67 #define SENCODE_LBA_OUT_OF_RANGE 0x21
68 #define SENCODE_INVALID_CDB_FIELD 0x24
69 #define SENCODE_LUN_NOT_SUPPORTED 0x25
70 #define SENCODE_INVALID_PARAM_FIELD 0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
72 #define SENCODE_PARAM_VALUE_INVALID 0x26
73 #define SENCODE_RESET_OCCURRED 0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
81 #define SENCODE_OVERLAPPED_COMMAND 0x4E
82
83 /*
84 * Additional sense codes
85 */
86
87 #define ASENCODE_NO_SENSE 0x00
88 #define ASENCODE_END_OF_DATA 0x05
89 #define ASENCODE_BECOMING_READY 0x01
90 #define ASENCODE_INIT_CMD_REQUIRED 0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
92 #define ASENCODE_INVALID_COMMAND 0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
94 #define ASENCODE_INVALID_CDB_FIELD 0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
96 #define ASENCODE_INVALID_PARAM_FIELD 0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
98 #define ASENCODE_PARAM_VALUE_INVALID 0x02
99 #define ASENCODE_RESET_OCCURRED 0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
107 #define ASENCODE_OVERLAPPED_COMMAND 0x00
108
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113
114 /* MODE_SENSE data format */
115 typedef struct {
116 struct {
117 u8 data_length;
118 u8 med_type;
119 u8 dev_par;
120 u8 bd_length;
121 } __attribute__((packed)) hd;
122 struct {
123 u8 dens_code;
124 u8 block_count[3];
125 u8 reserved;
126 u8 block_length[3];
127 } __attribute__((packed)) bd;
128 u8 mpc_buf[3];
129 } __attribute__((packed)) aac_modep_data;
130
131 /* MODE_SENSE_10 data format */
132 typedef struct {
133 struct {
134 u8 data_length[2];
135 u8 med_type;
136 u8 dev_par;
137 u8 rsrvd[2];
138 u8 bd_length[2];
139 } __attribute__((packed)) hd;
140 struct {
141 u8 dens_code;
142 u8 block_count[3];
143 u8 reserved;
144 u8 block_length[3];
145 } __attribute__((packed)) bd;
146 u8 mpc_buf[3];
147 } __attribute__((packed)) aac_modep10_data;
148
149 /*------------------------------------------------------------------------------
150 * S T R U C T S / T Y P E D E F S
151 *----------------------------------------------------------------------------*/
152 /* SCSI inquiry data */
153 struct inquiry_data {
154 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
155 u8 inqd_dtq; /* RMB | Device Type Qualifier */
156 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
157 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
158 u8 inqd_len; /* Additional length (n-4) */
159 u8 inqd_pad1[2];/* Reserved - must be zero */
160 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
161 u8 inqd_vid[8]; /* Vendor ID */
162 u8 inqd_pid[16];/* Product ID */
163 u8 inqd_prl[4]; /* Product Revision Level */
164 };
165
166 /* Added for VPD 0x83 */
167 typedef struct {
168 u8 CodeSet:4; /* VPD_CODE_SET */
169 u8 Reserved:4;
170 u8 IdentifierType:4; /* VPD_IDENTIFIER_TYPE */
171 u8 Reserved2:4;
172 u8 Reserved3;
173 u8 IdentifierLength;
174 u8 VendId[8];
175 u8 ProductId[16];
176 u8 SerialNumber[8]; /* SN in ASCII */
177
178 } TVPD_ID_Descriptor_Type_1;
179
180 typedef struct {
181 u8 CodeSet:4; /* VPD_CODE_SET */
182 u8 Reserved:4;
183 u8 IdentifierType:4; /* VPD_IDENTIFIER_TYPE */
184 u8 Reserved2:4;
185 u8 Reserved3;
186 u8 IdentifierLength;
187 struct TEU64Id {
188 u32 Serial;
189 /* The serial number supposed to be 40 bits,
190 * bit we only support 32, so make the last byte zero. */
191 u8 Reserved;
192 u8 VendId[3];
193 } EU64Id;
194
195 } TVPD_ID_Descriptor_Type_2;
196
197 typedef struct {
198 u8 DeviceType:5;
199 u8 DeviceTypeQualifier:3;
200 u8 PageCode;
201 u8 Reserved;
202 u8 PageLength;
203 TVPD_ID_Descriptor_Type_1 IdDescriptorType1;
204 TVPD_ID_Descriptor_Type_2 IdDescriptorType2;
205
206 } TVPD_Page83;
207
208 /*
209 * M O D U L E G L O B A L S
210 */
211
212 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
213 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
214 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
215 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
216 struct aac_raw_io2 *rio2, int sg_max);
217 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
218 int pages, int nseg, int nseg_new);
219 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
220 #ifdef AAC_DETAILED_STATUS_INFO
221 static char *aac_get_status_string(u32 status);
222 #endif
223
224 /*
225 * Non dasd selection is handled entirely in aachba now
226 */
227
228 static int nondasd = -1;
229 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
230 static int dacmode = -1;
231 int aac_msi;
232 int aac_commit = -1;
233 int startup_timeout = 180;
234 int aif_timeout = 120;
235 int aac_sync_mode; /* Only Sync. transfer - disabled */
236 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
237
238 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
239 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
240 " 0=off, 1=on");
241 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
242 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
243 " 0=off, 1=on");
244 module_param(nondasd, int, S_IRUGO|S_IWUSR);
245 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
246 " 0=off, 1=on");
247 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
249 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
250 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
251 "\tbit 2 - Disable only if Battery is protecting Cache");
252 module_param(dacmode, int, S_IRUGO|S_IWUSR);
253 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
254 " 0=off, 1=on");
255 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
256 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
257 " adapter for foreign arrays.\n"
258 "This is typically needed in systems that do not have a BIOS."
259 " 0=off, 1=on");
260 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
261 MODULE_PARM_DESC(msi, "IRQ handling."
262 " 0=PIC(default), 1=MSI, 2=MSI-X)");
263 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
264 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
265 " adapter to have it's kernel up and\n"
266 "running. This is typically adjusted for large systems that do not"
267 " have a BIOS.");
268 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
269 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
270 " applications to pick up AIFs before\n"
271 "deregistering them. This is typically adjusted for heavily burdened"
272 " systems.");
273
274 int numacb = -1;
275 module_param(numacb, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
277 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
278 " to use suggestion from Firmware.");
279
280 int acbsize = -1;
281 module_param(acbsize, int, S_IRUGO|S_IWUSR);
282 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
283 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
284 " suggestion from Firmware.");
285
286 int update_interval = 30 * 60;
287 module_param(update_interval, int, S_IRUGO|S_IWUSR);
288 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
289 " updates issued to adapter.");
290
291 int check_interval = 24 * 60 * 60;
292 module_param(check_interval, int, S_IRUGO|S_IWUSR);
293 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
294 " checks.");
295
296 int aac_check_reset = 1;
297 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
298 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
299 " adapter. a value of -1 forces the reset to adapters programmed to"
300 " ignore it.");
301
302 int expose_physicals = -1;
303 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
304 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
305 " -1=protect 0=off, 1=on");
306
307 int aac_reset_devices;
308 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
310
311 int aac_wwn = 1;
312 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
313 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
314 "\t0 - Disable\n"
315 "\t1 - Array Meta Data Signature (default)\n"
316 "\t2 - Adapter Serial Number");
317
318
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)319 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
320 struct fib *fibptr) {
321 struct scsi_device *device;
322
323 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
324 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
325 aac_fib_complete(fibptr);
326 return 0;
327 }
328 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
329 device = scsicmd->device;
330 if (unlikely(!device || !scsi_device_online(device))) {
331 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
332 aac_fib_complete(fibptr);
333 return 0;
334 }
335 return 1;
336 }
337
338 /**
339 * aac_get_config_status - check the adapter configuration
340 * @common: adapter to query
341 *
342 * Query config status, and commit the configuration if needed.
343 */
aac_get_config_status(struct aac_dev * dev,int commit_flag)344 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
345 {
346 int status = 0;
347 struct fib * fibptr;
348
349 if (!(fibptr = aac_fib_alloc(dev)))
350 return -ENOMEM;
351
352 aac_fib_init(fibptr);
353 {
354 struct aac_get_config_status *dinfo;
355 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
356
357 dinfo->command = cpu_to_le32(VM_ContainerConfig);
358 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
359 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
360 }
361
362 status = aac_fib_send(ContainerCommand,
363 fibptr,
364 sizeof (struct aac_get_config_status),
365 FsaNormal,
366 1, 1,
367 NULL, NULL);
368 if (status < 0) {
369 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
370 } else {
371 struct aac_get_config_status_resp *reply
372 = (struct aac_get_config_status_resp *) fib_data(fibptr);
373 dprintk((KERN_WARNING
374 "aac_get_config_status: response=%d status=%d action=%d\n",
375 le32_to_cpu(reply->response),
376 le32_to_cpu(reply->status),
377 le32_to_cpu(reply->data.action)));
378 if ((le32_to_cpu(reply->response) != ST_OK) ||
379 (le32_to_cpu(reply->status) != CT_OK) ||
380 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
381 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
382 status = -EINVAL;
383 }
384 }
385 /* Do not set XferState to zero unless receives a response from F/W */
386 if (status >= 0)
387 aac_fib_complete(fibptr);
388
389 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
390 if (status >= 0) {
391 if ((aac_commit == 1) || commit_flag) {
392 struct aac_commit_config * dinfo;
393 aac_fib_init(fibptr);
394 dinfo = (struct aac_commit_config *) fib_data(fibptr);
395
396 dinfo->command = cpu_to_le32(VM_ContainerConfig);
397 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
398
399 status = aac_fib_send(ContainerCommand,
400 fibptr,
401 sizeof (struct aac_commit_config),
402 FsaNormal,
403 1, 1,
404 NULL, NULL);
405 /* Do not set XferState to zero unless
406 * receives a response from F/W */
407 if (status >= 0)
408 aac_fib_complete(fibptr);
409 } else if (aac_commit == 0) {
410 printk(KERN_WARNING
411 "aac_get_config_status: Foreign device configurations are being ignored\n");
412 }
413 }
414 /* FIB should be freed only after getting the response from the F/W */
415 if (status != -ERESTARTSYS)
416 aac_fib_free(fibptr);
417 return status;
418 }
419
aac_expose_phy_device(struct scsi_cmnd * scsicmd)420 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
421 {
422 char inq_data;
423 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
424 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
425 inq_data &= 0xdf;
426 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
427 }
428 }
429
430 /**
431 * aac_get_containers - list containers
432 * @common: adapter to probe
433 *
434 * Make a list of all containers on this controller
435 */
aac_get_containers(struct aac_dev * dev)436 int aac_get_containers(struct aac_dev *dev)
437 {
438 struct fsa_dev_info *fsa_dev_ptr;
439 u32 index;
440 int status = 0;
441 struct fib * fibptr;
442 struct aac_get_container_count *dinfo;
443 struct aac_get_container_count_resp *dresp;
444 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
445
446 if (!(fibptr = aac_fib_alloc(dev)))
447 return -ENOMEM;
448
449 aac_fib_init(fibptr);
450 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
451 dinfo->command = cpu_to_le32(VM_ContainerConfig);
452 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
453
454 status = aac_fib_send(ContainerCommand,
455 fibptr,
456 sizeof (struct aac_get_container_count),
457 FsaNormal,
458 1, 1,
459 NULL, NULL);
460 if (status >= 0) {
461 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
462 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
463 if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
464 AAC_OPTION_SUPPORTED_240_VOLUMES) {
465 maximum_num_containers =
466 le32_to_cpu(dresp->MaxSimpleVolumes);
467 }
468 aac_fib_complete(fibptr);
469 }
470 /* FIB should be freed only after getting the response from the F/W */
471 if (status != -ERESTARTSYS)
472 aac_fib_free(fibptr);
473
474 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
475 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
476 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
477 GFP_KERNEL);
478 if (!fsa_dev_ptr)
479 return -ENOMEM;
480
481 dev->fsa_dev = fsa_dev_ptr;
482 dev->maximum_num_containers = maximum_num_containers;
483
484 for (index = 0; index < dev->maximum_num_containers; ) {
485 fsa_dev_ptr[index].devname[0] = '\0';
486
487 status = aac_probe_container(dev, index);
488
489 if (status < 0) {
490 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
491 break;
492 }
493
494 /*
495 * If there are no more containers, then stop asking.
496 */
497 if (++index >= status)
498 break;
499 }
500 return status;
501 }
502
get_container_name_callback(void * context,struct fib * fibptr)503 static void get_container_name_callback(void *context, struct fib * fibptr)
504 {
505 struct aac_get_name_resp * get_name_reply;
506 struct scsi_cmnd * scsicmd;
507
508 scsicmd = (struct scsi_cmnd *) context;
509
510 if (!aac_valid_context(scsicmd, fibptr))
511 return;
512
513 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
514 BUG_ON(fibptr == NULL);
515
516 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
517 /* Failure is irrelevant, using default value instead */
518 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
519 && (get_name_reply->data[0] != '\0')) {
520 char *sp = get_name_reply->data;
521 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)] = '\0';
522 while (*sp == ' ')
523 ++sp;
524 if (*sp) {
525 struct inquiry_data inq;
526 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
527 int count = sizeof(d);
528 char *dp = d;
529 do {
530 *dp++ = (*sp) ? *sp++ : ' ';
531 } while (--count > 0);
532
533 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
534 memcpy(inq.inqd_pid, d, sizeof(d));
535 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
536 }
537 }
538
539 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
540
541 aac_fib_complete(fibptr);
542 scsicmd->scsi_done(scsicmd);
543 }
544
545 /**
546 * aac_get_container_name - get container name, none blocking.
547 */
aac_get_container_name(struct scsi_cmnd * scsicmd)548 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
549 {
550 int status;
551 struct aac_get_name *dinfo;
552 struct fib * cmd_fibcontext;
553 struct aac_dev * dev;
554
555 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
556
557 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
558
559 aac_fib_init(cmd_fibcontext);
560 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
561
562 dinfo->command = cpu_to_le32(VM_ContainerConfig);
563 dinfo->type = cpu_to_le32(CT_READ_NAME);
564 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
565 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
566
567 status = aac_fib_send(ContainerCommand,
568 cmd_fibcontext,
569 sizeof(struct aac_get_name_resp),
570 FsaNormal,
571 0, 1,
572 (fib_callback)get_container_name_callback,
573 (void *) scsicmd);
574
575 /*
576 * Check that the command queued to the controller
577 */
578 if (status == -EINPROGRESS) {
579 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
580 return 0;
581 }
582
583 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
584 aac_fib_complete(cmd_fibcontext);
585 return -1;
586 }
587
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)588 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
589 {
590 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
591
592 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
593 return aac_scsi_cmd(scsicmd);
594
595 scsicmd->result = DID_NO_CONNECT << 16;
596 scsicmd->scsi_done(scsicmd);
597 return 0;
598 }
599
_aac_probe_container2(void * context,struct fib * fibptr)600 static void _aac_probe_container2(void * context, struct fib * fibptr)
601 {
602 struct fsa_dev_info *fsa_dev_ptr;
603 int (*callback)(struct scsi_cmnd *);
604 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
605
606
607 if (!aac_valid_context(scsicmd, fibptr))
608 return;
609
610 scsicmd->SCp.Status = 0;
611 fsa_dev_ptr = fibptr->dev->fsa_dev;
612 if (fsa_dev_ptr) {
613 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
614 fsa_dev_ptr += scmd_id(scsicmd);
615
616 if ((le32_to_cpu(dresp->status) == ST_OK) &&
617 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
618 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
619 if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 &
620 AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
621 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
622 fsa_dev_ptr->block_size = 0x200;
623 } else {
624 fsa_dev_ptr->block_size =
625 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
626 }
627 fsa_dev_ptr->valid = 1;
628 /* sense_key holds the current state of the spin-up */
629 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
630 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
631 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
632 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
633 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
634 fsa_dev_ptr->size
635 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
636 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
637 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
638 }
639 if ((fsa_dev_ptr->valid & 1) == 0)
640 fsa_dev_ptr->valid = 0;
641 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
642 }
643 aac_fib_complete(fibptr);
644 aac_fib_free(fibptr);
645 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
646 scsicmd->SCp.ptr = NULL;
647 (*callback)(scsicmd);
648 return;
649 }
650
_aac_probe_container1(void * context,struct fib * fibptr)651 static void _aac_probe_container1(void * context, struct fib * fibptr)
652 {
653 struct scsi_cmnd * scsicmd;
654 struct aac_mount * dresp;
655 struct aac_query_mount *dinfo;
656 int status;
657
658 dresp = (struct aac_mount *) fib_data(fibptr);
659 if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 &
660 AAC_OPTION_VARIABLE_BLOCK_SIZE))
661 dresp->mnt[0].capacityhigh = 0;
662 if ((le32_to_cpu(dresp->status) != ST_OK) ||
663 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
664 _aac_probe_container2(context, fibptr);
665 return;
666 }
667 scsicmd = (struct scsi_cmnd *) context;
668
669 if (!aac_valid_context(scsicmd, fibptr))
670 return;
671
672 aac_fib_init(fibptr);
673
674 dinfo = (struct aac_query_mount *)fib_data(fibptr);
675
676 if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
677 AAC_OPTION_VARIABLE_BLOCK_SIZE)
678 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
679 else
680 dinfo->command = cpu_to_le32(VM_NameServe64);
681
682 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
683 dinfo->type = cpu_to_le32(FT_FILESYS);
684
685 status = aac_fib_send(ContainerCommand,
686 fibptr,
687 sizeof(struct aac_query_mount),
688 FsaNormal,
689 0, 1,
690 _aac_probe_container2,
691 (void *) scsicmd);
692 /*
693 * Check that the command queued to the controller
694 */
695 if (status == -EINPROGRESS)
696 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
697 else if (status < 0) {
698 /* Inherit results from VM_NameServe, if any */
699 dresp->status = cpu_to_le32(ST_OK);
700 _aac_probe_container2(context, fibptr);
701 }
702 }
703
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))704 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
705 {
706 struct fib * fibptr;
707 int status = -ENOMEM;
708
709 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
710 struct aac_query_mount *dinfo;
711
712 aac_fib_init(fibptr);
713
714 dinfo = (struct aac_query_mount *)fib_data(fibptr);
715
716 if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
717 AAC_OPTION_VARIABLE_BLOCK_SIZE)
718 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
719 else
720 dinfo->command = cpu_to_le32(VM_NameServe);
721
722 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
723 dinfo->type = cpu_to_le32(FT_FILESYS);
724 scsicmd->SCp.ptr = (char *)callback;
725
726 status = aac_fib_send(ContainerCommand,
727 fibptr,
728 sizeof(struct aac_query_mount),
729 FsaNormal,
730 0, 1,
731 _aac_probe_container1,
732 (void *) scsicmd);
733 /*
734 * Check that the command queued to the controller
735 */
736 if (status == -EINPROGRESS) {
737 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
738 return 0;
739 }
740 if (status < 0) {
741 scsicmd->SCp.ptr = NULL;
742 aac_fib_complete(fibptr);
743 aac_fib_free(fibptr);
744 }
745 }
746 if (status < 0) {
747 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
748 if (fsa_dev_ptr) {
749 fsa_dev_ptr += scmd_id(scsicmd);
750 if ((fsa_dev_ptr->valid & 1) == 0) {
751 fsa_dev_ptr->valid = 0;
752 return (*callback)(scsicmd);
753 }
754 }
755 }
756 return status;
757 }
758
759 /**
760 * aac_probe_container - query a logical volume
761 * @dev: device to query
762 * @cid: container identifier
763 *
764 * Queries the controller about the given volume. The volume information
765 * is updated in the struct fsa_dev_info structure rather than returned.
766 */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)767 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
768 {
769 scsicmd->device = NULL;
770 return 0;
771 }
772
aac_probe_container(struct aac_dev * dev,int cid)773 int aac_probe_container(struct aac_dev *dev, int cid)
774 {
775 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
776 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
777 int status;
778
779 if (!scsicmd || !scsidev) {
780 kfree(scsicmd);
781 kfree(scsidev);
782 return -ENOMEM;
783 }
784 scsicmd->list.next = NULL;
785 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
786
787 scsicmd->device = scsidev;
788 scsidev->sdev_state = 0;
789 scsidev->id = cid;
790 scsidev->host = dev->scsi_host_ptr;
791
792 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
793 while (scsicmd->device == scsidev)
794 schedule();
795 kfree(scsidev);
796 status = scsicmd->SCp.Status;
797 kfree(scsicmd);
798 return status;
799 }
800
801 /* Local Structure to set SCSI inquiry data strings */
802 struct scsi_inq {
803 char vid[8]; /* Vendor ID */
804 char pid[16]; /* Product ID */
805 char prl[4]; /* Product Revision Level */
806 };
807
808 /**
809 * InqStrCopy - string merge
810 * @a: string to copy from
811 * @b: string to copy to
812 *
813 * Copy a String from one location to another
814 * without copying \0
815 */
816
inqstrcpy(char * a,char * b)817 static void inqstrcpy(char *a, char *b)
818 {
819
820 while (*a != (char)0)
821 *b++ = *a++;
822 }
823
824 static char *container_types[] = {
825 "None",
826 "Volume",
827 "Mirror",
828 "Stripe",
829 "RAID5",
830 "SSRW",
831 "SSRO",
832 "Morph",
833 "Legacy",
834 "RAID4",
835 "RAID10",
836 "RAID00",
837 "V-MIRRORS",
838 "PSEUDO R4",
839 "RAID50",
840 "RAID5D",
841 "RAID5D0",
842 "RAID1E",
843 "RAID6",
844 "RAID60",
845 "Unknown"
846 };
847
get_container_type(unsigned tindex)848 char * get_container_type(unsigned tindex)
849 {
850 if (tindex >= ARRAY_SIZE(container_types))
851 tindex = ARRAY_SIZE(container_types) - 1;
852 return container_types[tindex];
853 }
854
855 /* Function: setinqstr
856 *
857 * Arguments: [1] pointer to void [1] int
858 *
859 * Purpose: Sets SCSI inquiry data strings for vendor, product
860 * and revision level. Allows strings to be set in platform dependent
861 * files instead of in OS dependent driver source.
862 */
863
setinqstr(struct aac_dev * dev,void * data,int tindex)864 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
865 {
866 struct scsi_inq *str;
867
868 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
869 memset(str, ' ', sizeof(*str));
870
871 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
872 char * cp = dev->supplement_adapter_info.AdapterTypeText;
873 int c;
874 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
875 inqstrcpy("SMC", str->vid);
876 else {
877 c = sizeof(str->vid);
878 while (*cp && *cp != ' ' && --c)
879 ++cp;
880 c = *cp;
881 *cp = '\0';
882 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
883 str->vid);
884 *cp = c;
885 while (*cp && *cp != ' ')
886 ++cp;
887 }
888 while (*cp == ' ')
889 ++cp;
890 /* last six chars reserved for vol type */
891 c = 0;
892 if (strlen(cp) > sizeof(str->pid)) {
893 c = cp[sizeof(str->pid)];
894 cp[sizeof(str->pid)] = '\0';
895 }
896 inqstrcpy (cp, str->pid);
897 if (c)
898 cp[sizeof(str->pid)] = c;
899 } else {
900 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
901
902 inqstrcpy (mp->vname, str->vid);
903 /* last six chars reserved for vol type */
904 inqstrcpy (mp->model, str->pid);
905 }
906
907 if (tindex < ARRAY_SIZE(container_types)){
908 char *findit = str->pid;
909
910 for ( ; *findit != ' '; findit++); /* walk till we find a space */
911 /* RAID is superfluous in the context of a RAID device */
912 if (memcmp(findit-4, "RAID", 4) == 0)
913 *(findit -= 4) = ' ';
914 if (((findit - str->pid) + strlen(container_types[tindex]))
915 < (sizeof(str->pid) + sizeof(str->prl)))
916 inqstrcpy (container_types[tindex], findit + 1);
917 }
918 inqstrcpy ("V1.0", str->prl);
919 }
920
get_container_serial_callback(void * context,struct fib * fibptr)921 static void get_container_serial_callback(void *context, struct fib * fibptr)
922 {
923 struct aac_get_serial_resp * get_serial_reply;
924 struct scsi_cmnd * scsicmd;
925
926 BUG_ON(fibptr == NULL);
927
928 scsicmd = (struct scsi_cmnd *) context;
929 if (!aac_valid_context(scsicmd, fibptr))
930 return;
931
932 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
933 /* Failure is irrelevant, using default value instead */
934 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
935 /*Check to see if it's for VPD 0x83 or 0x80 */
936 if (scsicmd->cmnd[2] == 0x83) {
937 /* vpd page 0x83 - Device Identification Page */
938 int i;
939 TVPD_Page83 VPDPage83Data;
940
941 memset(((u8 *)&VPDPage83Data), 0,
942 sizeof(VPDPage83Data));
943
944 /* DIRECT_ACCESS_DEVIC */
945 VPDPage83Data.DeviceType = 0;
946 /* DEVICE_CONNECTED */
947 VPDPage83Data.DeviceTypeQualifier = 0;
948 /* VPD_DEVICE_IDENTIFIERS */
949 VPDPage83Data.PageCode = 0x83;
950 VPDPage83Data.Reserved = 0;
951 VPDPage83Data.PageLength =
952 sizeof(VPDPage83Data.IdDescriptorType1) +
953 sizeof(VPDPage83Data.IdDescriptorType2);
954
955 /* T10 Vendor Identifier Field Format */
956 /* VpdCodeSetAscii */
957 VPDPage83Data.IdDescriptorType1.CodeSet = 2;
958 /* VpdIdentifierTypeVendorId */
959 VPDPage83Data.IdDescriptorType1.IdentifierType = 1;
960 VPDPage83Data.IdDescriptorType1.IdentifierLength =
961 sizeof(VPDPage83Data.IdDescriptorType1) - 4;
962
963 /* "ADAPTEC " for adaptec */
964 memcpy(VPDPage83Data.IdDescriptorType1.VendId,
965 "ADAPTEC ",
966 sizeof(VPDPage83Data.IdDescriptorType1.VendId));
967 memcpy(VPDPage83Data.IdDescriptorType1.ProductId,
968 "ARRAY ",
969 sizeof(
970 VPDPage83Data.IdDescriptorType1.ProductId));
971
972 /* Convert to ascii based serial number.
973 * The LSB is the the end.
974 */
975 for (i = 0; i < 8; i++) {
976 u8 temp =
977 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
978 if (temp > 0x9) {
979 VPDPage83Data.IdDescriptorType1.SerialNumber[i] =
980 'A' + (temp - 0xA);
981 } else {
982 VPDPage83Data.IdDescriptorType1.SerialNumber[i] =
983 '0' + temp;
984 }
985 }
986
987 /* VpdCodeSetBinary */
988 VPDPage83Data.IdDescriptorType2.CodeSet = 1;
989 /* VpdIdentifierTypeEUI64 */
990 VPDPage83Data.IdDescriptorType2.IdentifierType = 2;
991 VPDPage83Data.IdDescriptorType2.IdentifierLength =
992 sizeof(VPDPage83Data.IdDescriptorType2) - 4;
993
994 VPDPage83Data.IdDescriptorType2.EU64Id.VendId[0] = 0xD0;
995 VPDPage83Data.IdDescriptorType2.EU64Id.VendId[1] = 0;
996 VPDPage83Data.IdDescriptorType2.EU64Id.VendId[2] = 0;
997
998 VPDPage83Data.IdDescriptorType2.EU64Id.Serial =
999 get_serial_reply->uid;
1000 VPDPage83Data.IdDescriptorType2.EU64Id.Reserved = 0;
1001
1002 /* Move the inquiry data to the response buffer. */
1003 scsi_sg_copy_from_buffer(scsicmd, &VPDPage83Data,
1004 sizeof(VPDPage83Data));
1005 } else {
1006 /* It must be for VPD 0x80 */
1007 char sp[13];
1008 /* EVPD bit set */
1009 sp[0] = INQD_PDT_DA;
1010 sp[1] = scsicmd->cmnd[2];
1011 sp[2] = 0;
1012 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1013 le32_to_cpu(get_serial_reply->uid));
1014 scsi_sg_copy_from_buffer(scsicmd, sp,
1015 sizeof(sp));
1016 }
1017 }
1018
1019 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1020
1021 aac_fib_complete(fibptr);
1022 scsicmd->scsi_done(scsicmd);
1023 }
1024
1025 /**
1026 * aac_get_container_serial - get container serial, none blocking.
1027 */
aac_get_container_serial(struct scsi_cmnd * scsicmd)1028 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1029 {
1030 int status;
1031 struct aac_get_serial *dinfo;
1032 struct fib * cmd_fibcontext;
1033 struct aac_dev * dev;
1034
1035 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1036
1037 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1038
1039 aac_fib_init(cmd_fibcontext);
1040 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1041
1042 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1043 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1044 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1045
1046 status = aac_fib_send(ContainerCommand,
1047 cmd_fibcontext,
1048 sizeof(struct aac_get_serial_resp),
1049 FsaNormal,
1050 0, 1,
1051 (fib_callback) get_container_serial_callback,
1052 (void *) scsicmd);
1053
1054 /*
1055 * Check that the command queued to the controller
1056 */
1057 if (status == -EINPROGRESS) {
1058 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1059 return 0;
1060 }
1061
1062 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1063 aac_fib_complete(cmd_fibcontext);
1064 return -1;
1065 }
1066
1067 /* Function: setinqserial
1068 *
1069 * Arguments: [1] pointer to void [1] int
1070 *
1071 * Purpose: Sets SCSI Unit Serial number.
1072 * This is a fake. We should read a proper
1073 * serial number from the container. <SuSE>But
1074 * without docs it's quite hard to do it :-)
1075 * So this will have to do in the meantime.</SuSE>
1076 */
1077
setinqserial(struct aac_dev * dev,void * data,int cid)1078 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1079 {
1080 /*
1081 * This breaks array migration.
1082 */
1083 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1084 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1085 }
1086
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)1087 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1088 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1089 {
1090 u8 *sense_buf = (u8 *)sense_data;
1091 /* Sense data valid, err code 70h */
1092 sense_buf[0] = 0x70; /* No info field */
1093 sense_buf[1] = 0; /* Segment number, always zero */
1094
1095 sense_buf[2] = sense_key; /* Sense key */
1096
1097 sense_buf[12] = sense_code; /* Additional sense code */
1098 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1099
1100 if (sense_key == ILLEGAL_REQUEST) {
1101 sense_buf[7] = 10; /* Additional sense length */
1102
1103 sense_buf[15] = bit_pointer;
1104 /* Illegal parameter is in the parameter block */
1105 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1106 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1107 /* Illegal parameter is in the CDB block */
1108 sense_buf[16] = field_pointer >> 8; /* MSB */
1109 sense_buf[17] = field_pointer; /* LSB */
1110 } else
1111 sense_buf[7] = 6; /* Additional sense length */
1112 }
1113
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1114 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1115 {
1116 if (lba & 0xffffffff00000000LL) {
1117 int cid = scmd_id(cmd);
1118 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1119 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1120 SAM_STAT_CHECK_CONDITION;
1121 set_sense(&dev->fsa_dev[cid].sense_data,
1122 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1123 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1124 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1125 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1126 SCSI_SENSE_BUFFERSIZE));
1127 cmd->scsi_done(cmd);
1128 return 1;
1129 }
1130 return 0;
1131 }
1132
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1133 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1134 {
1135 return 0;
1136 }
1137
1138 static void io_callback(void *context, struct fib * fibptr);
1139
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1140 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1141 {
1142 struct aac_dev *dev = fib->dev;
1143 u16 fibsize, command;
1144 long ret;
1145
1146 aac_fib_init(fib);
1147 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1148 struct aac_raw_io2 *readcmd2;
1149 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1150 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1151 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1152 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1153 readcmd2->byteCount = cpu_to_le32(count *
1154 dev->fsa_dev[scmd_id(cmd)].block_size);
1155 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1156 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1157 ret = aac_build_sgraw2(cmd, readcmd2,
1158 dev->scsi_host_ptr->sg_tablesize);
1159 if (ret < 0)
1160 return ret;
1161 command = ContainerRawIo2;
1162 fibsize = sizeof(struct aac_raw_io2) +
1163 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1164 } else {
1165 struct aac_raw_io *readcmd;
1166 readcmd = (struct aac_raw_io *) fib_data(fib);
1167 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1168 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1169 readcmd->count = cpu_to_le32(count *
1170 dev->fsa_dev[scmd_id(cmd)].block_size);
1171 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1172 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1173 readcmd->bpTotal = 0;
1174 readcmd->bpComplete = 0;
1175 ret = aac_build_sgraw(cmd, &readcmd->sg);
1176 if (ret < 0)
1177 return ret;
1178 command = ContainerRawIo;
1179 fibsize = sizeof(struct aac_raw_io) +
1180 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1181 }
1182
1183 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1184 /*
1185 * Now send the Fib to the adapter
1186 */
1187 return aac_fib_send(command,
1188 fib,
1189 fibsize,
1190 FsaNormal,
1191 0, 1,
1192 (fib_callback) io_callback,
1193 (void *) cmd);
1194 }
1195
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1196 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1197 {
1198 u16 fibsize;
1199 struct aac_read64 *readcmd;
1200 long ret;
1201
1202 aac_fib_init(fib);
1203 readcmd = (struct aac_read64 *) fib_data(fib);
1204 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1205 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1206 readcmd->sector_count = cpu_to_le16(count);
1207 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1208 readcmd->pad = 0;
1209 readcmd->flags = 0;
1210
1211 ret = aac_build_sg64(cmd, &readcmd->sg);
1212 if (ret < 0)
1213 return ret;
1214 fibsize = sizeof(struct aac_read64) +
1215 ((le32_to_cpu(readcmd->sg.count) - 1) *
1216 sizeof (struct sgentry64));
1217 BUG_ON (fibsize > (fib->dev->max_fib_size -
1218 sizeof(struct aac_fibhdr)));
1219 /*
1220 * Now send the Fib to the adapter
1221 */
1222 return aac_fib_send(ContainerCommand64,
1223 fib,
1224 fibsize,
1225 FsaNormal,
1226 0, 1,
1227 (fib_callback) io_callback,
1228 (void *) cmd);
1229 }
1230
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1231 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1232 {
1233 u16 fibsize;
1234 struct aac_read *readcmd;
1235 struct aac_dev *dev = fib->dev;
1236 long ret;
1237
1238 aac_fib_init(fib);
1239 readcmd = (struct aac_read *) fib_data(fib);
1240 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1241 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1242 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1243 readcmd->count = cpu_to_le32(count *
1244 dev->fsa_dev[scmd_id(cmd)].block_size);
1245
1246 ret = aac_build_sg(cmd, &readcmd->sg);
1247 if (ret < 0)
1248 return ret;
1249 fibsize = sizeof(struct aac_read) +
1250 ((le32_to_cpu(readcmd->sg.count) - 1) *
1251 sizeof (struct sgentry));
1252 BUG_ON (fibsize > (fib->dev->max_fib_size -
1253 sizeof(struct aac_fibhdr)));
1254 /*
1255 * Now send the Fib to the adapter
1256 */
1257 return aac_fib_send(ContainerCommand,
1258 fib,
1259 fibsize,
1260 FsaNormal,
1261 0, 1,
1262 (fib_callback) io_callback,
1263 (void *) cmd);
1264 }
1265
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1266 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1267 {
1268 struct aac_dev *dev = fib->dev;
1269 u16 fibsize, command;
1270 long ret;
1271
1272 aac_fib_init(fib);
1273 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1274 struct aac_raw_io2 *writecmd2;
1275 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1276 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1277 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1278 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1279 writecmd2->byteCount = cpu_to_le32(count *
1280 dev->fsa_dev[scmd_id(cmd)].block_size);
1281 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1282 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1283 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1284 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1285 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1286 ret = aac_build_sgraw2(cmd, writecmd2,
1287 dev->scsi_host_ptr->sg_tablesize);
1288 if (ret < 0)
1289 return ret;
1290 command = ContainerRawIo2;
1291 fibsize = sizeof(struct aac_raw_io2) +
1292 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1293 } else {
1294 struct aac_raw_io *writecmd;
1295 writecmd = (struct aac_raw_io *) fib_data(fib);
1296 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1297 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1298 writecmd->count = cpu_to_le32(count *
1299 dev->fsa_dev[scmd_id(cmd)].block_size);
1300 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1301 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1302 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1303 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1304 cpu_to_le16(RIO_TYPE_WRITE);
1305 writecmd->bpTotal = 0;
1306 writecmd->bpComplete = 0;
1307 ret = aac_build_sgraw(cmd, &writecmd->sg);
1308 if (ret < 0)
1309 return ret;
1310 command = ContainerRawIo;
1311 fibsize = sizeof(struct aac_raw_io) +
1312 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1313 }
1314
1315 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1316 /*
1317 * Now send the Fib to the adapter
1318 */
1319 return aac_fib_send(command,
1320 fib,
1321 fibsize,
1322 FsaNormal,
1323 0, 1,
1324 (fib_callback) io_callback,
1325 (void *) cmd);
1326 }
1327
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1328 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1329 {
1330 u16 fibsize;
1331 struct aac_write64 *writecmd;
1332 long ret;
1333
1334 aac_fib_init(fib);
1335 writecmd = (struct aac_write64 *) fib_data(fib);
1336 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1337 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1338 writecmd->sector_count = cpu_to_le16(count);
1339 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1340 writecmd->pad = 0;
1341 writecmd->flags = 0;
1342
1343 ret = aac_build_sg64(cmd, &writecmd->sg);
1344 if (ret < 0)
1345 return ret;
1346 fibsize = sizeof(struct aac_write64) +
1347 ((le32_to_cpu(writecmd->sg.count) - 1) *
1348 sizeof (struct sgentry64));
1349 BUG_ON (fibsize > (fib->dev->max_fib_size -
1350 sizeof(struct aac_fibhdr)));
1351 /*
1352 * Now send the Fib to the adapter
1353 */
1354 return aac_fib_send(ContainerCommand64,
1355 fib,
1356 fibsize,
1357 FsaNormal,
1358 0, 1,
1359 (fib_callback) io_callback,
1360 (void *) cmd);
1361 }
1362
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1363 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1364 {
1365 u16 fibsize;
1366 struct aac_write *writecmd;
1367 struct aac_dev *dev = fib->dev;
1368 long ret;
1369
1370 aac_fib_init(fib);
1371 writecmd = (struct aac_write *) fib_data(fib);
1372 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1373 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1374 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1375 writecmd->count = cpu_to_le32(count *
1376 dev->fsa_dev[scmd_id(cmd)].block_size);
1377 writecmd->sg.count = cpu_to_le32(1);
1378 /* ->stable is not used - it did mean which type of write */
1379
1380 ret = aac_build_sg(cmd, &writecmd->sg);
1381 if (ret < 0)
1382 return ret;
1383 fibsize = sizeof(struct aac_write) +
1384 ((le32_to_cpu(writecmd->sg.count) - 1) *
1385 sizeof (struct sgentry));
1386 BUG_ON (fibsize > (fib->dev->max_fib_size -
1387 sizeof(struct aac_fibhdr)));
1388 /*
1389 * Now send the Fib to the adapter
1390 */
1391 return aac_fib_send(ContainerCommand,
1392 fib,
1393 fibsize,
1394 FsaNormal,
1395 0, 1,
1396 (fib_callback) io_callback,
1397 (void *) cmd);
1398 }
1399
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1400 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1401 {
1402 struct aac_srb * srbcmd;
1403 u32 flag;
1404 u32 timeout;
1405
1406 aac_fib_init(fib);
1407 switch(cmd->sc_data_direction){
1408 case DMA_TO_DEVICE:
1409 flag = SRB_DataOut;
1410 break;
1411 case DMA_BIDIRECTIONAL:
1412 flag = SRB_DataIn | SRB_DataOut;
1413 break;
1414 case DMA_FROM_DEVICE:
1415 flag = SRB_DataIn;
1416 break;
1417 case DMA_NONE:
1418 default: /* shuts up some versions of gcc */
1419 flag = SRB_NoDataXfer;
1420 break;
1421 }
1422
1423 srbcmd = (struct aac_srb*) fib_data(fib);
1424 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1425 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1426 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1427 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1428 srbcmd->flags = cpu_to_le32(flag);
1429 timeout = cmd->request->timeout/HZ;
1430 if (timeout == 0)
1431 timeout = 1;
1432 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1433 srbcmd->retry_limit = 0; /* Obsolete parameter */
1434 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1435 return srbcmd;
1436 }
1437
1438 static void aac_srb_callback(void *context, struct fib * fibptr);
1439
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1440 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1441 {
1442 u16 fibsize;
1443 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1444 long ret;
1445
1446 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1447 if (ret < 0)
1448 return ret;
1449 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1450
1451 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1452 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1453 /*
1454 * Build Scatter/Gather list
1455 */
1456 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1457 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1458 sizeof (struct sgentry64));
1459 BUG_ON (fibsize > (fib->dev->max_fib_size -
1460 sizeof(struct aac_fibhdr)));
1461
1462 /*
1463 * Now send the Fib to the adapter
1464 */
1465 return aac_fib_send(ScsiPortCommand64, fib,
1466 fibsize, FsaNormal, 0, 1,
1467 (fib_callback) aac_srb_callback,
1468 (void *) cmd);
1469 }
1470
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1471 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1472 {
1473 u16 fibsize;
1474 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1475 long ret;
1476
1477 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1478 if (ret < 0)
1479 return ret;
1480 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1481
1482 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1483 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1484 /*
1485 * Build Scatter/Gather list
1486 */
1487 fibsize = sizeof (struct aac_srb) +
1488 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1489 sizeof (struct sgentry));
1490 BUG_ON (fibsize > (fib->dev->max_fib_size -
1491 sizeof(struct aac_fibhdr)));
1492
1493 /*
1494 * Now send the Fib to the adapter
1495 */
1496 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1497 (fib_callback) aac_srb_callback, (void *) cmd);
1498 }
1499
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1500 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1501 {
1502 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1503 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1504 return FAILED;
1505 return aac_scsi_32(fib, cmd);
1506 }
1507
aac_get_adapter_info(struct aac_dev * dev)1508 int aac_get_adapter_info(struct aac_dev* dev)
1509 {
1510 struct fib* fibptr;
1511 int rcode;
1512 u32 tmp;
1513 struct aac_adapter_info *info;
1514 struct aac_bus_info *command;
1515 struct aac_bus_info_response *bus_info;
1516
1517 if (!(fibptr = aac_fib_alloc(dev)))
1518 return -ENOMEM;
1519
1520 aac_fib_init(fibptr);
1521 info = (struct aac_adapter_info *) fib_data(fibptr);
1522 memset(info,0,sizeof(*info));
1523
1524 rcode = aac_fib_send(RequestAdapterInfo,
1525 fibptr,
1526 sizeof(*info),
1527 FsaNormal,
1528 -1, 1, /* First `interrupt' command uses special wait */
1529 NULL,
1530 NULL);
1531
1532 if (rcode < 0) {
1533 /* FIB should be freed only after
1534 * getting the response from the F/W */
1535 if (rcode != -ERESTARTSYS) {
1536 aac_fib_complete(fibptr);
1537 aac_fib_free(fibptr);
1538 }
1539 return rcode;
1540 }
1541 memcpy(&dev->adapter_info, info, sizeof(*info));
1542
1543 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1544 struct aac_supplement_adapter_info * sinfo;
1545
1546 aac_fib_init(fibptr);
1547
1548 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1549
1550 memset(sinfo,0,sizeof(*sinfo));
1551
1552 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1553 fibptr,
1554 sizeof(*sinfo),
1555 FsaNormal,
1556 1, 1,
1557 NULL,
1558 NULL);
1559
1560 if (rcode >= 0)
1561 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1562 if (rcode == -ERESTARTSYS) {
1563 fibptr = aac_fib_alloc(dev);
1564 if (!fibptr)
1565 return -ENOMEM;
1566 }
1567
1568 }
1569
1570
1571 /*
1572 * GetBusInfo
1573 */
1574
1575 aac_fib_init(fibptr);
1576
1577 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1578
1579 memset(bus_info, 0, sizeof(*bus_info));
1580
1581 command = (struct aac_bus_info *)bus_info;
1582
1583 command->Command = cpu_to_le32(VM_Ioctl);
1584 command->ObjType = cpu_to_le32(FT_DRIVE);
1585 command->MethodId = cpu_to_le32(1);
1586 command->CtlCmd = cpu_to_le32(GetBusInfo);
1587
1588 rcode = aac_fib_send(ContainerCommand,
1589 fibptr,
1590 sizeof (*bus_info),
1591 FsaNormal,
1592 1, 1,
1593 NULL, NULL);
1594
1595 /* reasoned default */
1596 dev->maximum_num_physicals = 16;
1597 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1598 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1599 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1600 }
1601
1602 if (!dev->in_reset) {
1603 char buffer[16];
1604 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1605 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1606 dev->name,
1607 dev->id,
1608 tmp>>24,
1609 (tmp>>16)&0xff,
1610 tmp&0xff,
1611 le32_to_cpu(dev->adapter_info.kernelbuild),
1612 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1613 dev->supplement_adapter_info.BuildDate);
1614 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1615 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1616 dev->name, dev->id,
1617 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1618 le32_to_cpu(dev->adapter_info.monitorbuild));
1619 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1620 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1621 dev->name, dev->id,
1622 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1623 le32_to_cpu(dev->adapter_info.biosbuild));
1624 buffer[0] = '\0';
1625 if (aac_get_serial_number(
1626 shost_to_class(dev->scsi_host_ptr), buffer))
1627 printk(KERN_INFO "%s%d: serial %s",
1628 dev->name, dev->id, buffer);
1629 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1630 printk(KERN_INFO "%s%d: TSID %.*s\n",
1631 dev->name, dev->id,
1632 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1633 dev->supplement_adapter_info.VpdInfo.Tsid);
1634 }
1635 if (!aac_check_reset || ((aac_check_reset == 1) &&
1636 (dev->supplement_adapter_info.SupportedOptions2 &
1637 AAC_OPTION_IGNORE_RESET))) {
1638 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1639 dev->name, dev->id);
1640 }
1641 }
1642
1643 dev->cache_protected = 0;
1644 dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1645 AAC_FEATURE_JBOD) != 0);
1646 dev->nondasd_support = 0;
1647 dev->raid_scsi_mode = 0;
1648 if(dev->adapter_info.options & AAC_OPT_NONDASD)
1649 dev->nondasd_support = 1;
1650
1651 /*
1652 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1653 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1654 * force nondasd support on. If we decide to allow the non-dasd flag
1655 * additional changes changes will have to be made to support
1656 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1657 * changed to support the new dev->raid_scsi_mode flag instead of
1658 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1659 * function aac_detect will have to be modified where it sets up the
1660 * max number of channels based on the aac->nondasd_support flag only.
1661 */
1662 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1663 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1664 dev->nondasd_support = 1;
1665 dev->raid_scsi_mode = 1;
1666 }
1667 if (dev->raid_scsi_mode != 0)
1668 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1669 dev->name, dev->id);
1670
1671 if (nondasd != -1)
1672 dev->nondasd_support = (nondasd!=0);
1673 if (dev->nondasd_support && !dev->in_reset)
1674 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1675
1676 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1677 dev->needs_dac = 1;
1678 dev->dac_support = 0;
1679 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1680 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1681 if (!dev->in_reset)
1682 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1683 dev->name, dev->id);
1684 dev->dac_support = 1;
1685 }
1686
1687 if(dacmode != -1) {
1688 dev->dac_support = (dacmode!=0);
1689 }
1690
1691 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1692 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
1693 & AAC_QUIRK_SCSI_32)) {
1694 dev->nondasd_support = 0;
1695 dev->jbod = 0;
1696 expose_physicals = 0;
1697 }
1698
1699 if(dev->dac_support != 0) {
1700 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1701 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1702 if (!dev->in_reset)
1703 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1704 dev->name, dev->id);
1705 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1706 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1707 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1708 dev->name, dev->id);
1709 dev->dac_support = 0;
1710 } else {
1711 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1712 dev->name, dev->id);
1713 rcode = -ENOMEM;
1714 }
1715 }
1716 /*
1717 * Deal with configuring for the individualized limits of each packet
1718 * interface.
1719 */
1720 dev->a_ops.adapter_scsi = (dev->dac_support)
1721 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1722 ? aac_scsi_32_64
1723 : aac_scsi_64)
1724 : aac_scsi_32;
1725 if (dev->raw_io_interface) {
1726 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1727 ? aac_bounds_64
1728 : aac_bounds_32;
1729 dev->a_ops.adapter_read = aac_read_raw_io;
1730 dev->a_ops.adapter_write = aac_write_raw_io;
1731 } else {
1732 dev->a_ops.adapter_bounds = aac_bounds_32;
1733 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1734 sizeof(struct aac_fibhdr) -
1735 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1736 sizeof(struct sgentry);
1737 if (dev->dac_support) {
1738 dev->a_ops.adapter_read = aac_read_block64;
1739 dev->a_ops.adapter_write = aac_write_block64;
1740 /*
1741 * 38 scatter gather elements
1742 */
1743 dev->scsi_host_ptr->sg_tablesize =
1744 (dev->max_fib_size -
1745 sizeof(struct aac_fibhdr) -
1746 sizeof(struct aac_write64) +
1747 sizeof(struct sgentry64)) /
1748 sizeof(struct sgentry64);
1749 } else {
1750 dev->a_ops.adapter_read = aac_read_block;
1751 dev->a_ops.adapter_write = aac_write_block;
1752 }
1753 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1754 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1755 /*
1756 * Worst case size that could cause sg overflow when
1757 * we break up SG elements that are larger than 64KB.
1758 * Would be nice if we could tell the SCSI layer what
1759 * the maximum SG element size can be. Worst case is
1760 * (sg_tablesize-1) 4KB elements with one 64KB
1761 * element.
1762 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1763 */
1764 dev->scsi_host_ptr->max_sectors =
1765 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1766 }
1767 }
1768 /* FIB should be freed only after getting the response from the F/W */
1769 if (rcode != -ERESTARTSYS) {
1770 aac_fib_complete(fibptr);
1771 aac_fib_free(fibptr);
1772 }
1773
1774 return rcode;
1775 }
1776
1777
io_callback(void * context,struct fib * fibptr)1778 static void io_callback(void *context, struct fib * fibptr)
1779 {
1780 struct aac_dev *dev;
1781 struct aac_read_reply *readreply;
1782 struct scsi_cmnd *scsicmd;
1783 u32 cid;
1784
1785 scsicmd = (struct scsi_cmnd *) context;
1786
1787 if (!aac_valid_context(scsicmd, fibptr))
1788 return;
1789
1790 dev = fibptr->dev;
1791 cid = scmd_id(scsicmd);
1792
1793 if (nblank(dprintk(x))) {
1794 u64 lba;
1795 switch (scsicmd->cmnd[0]) {
1796 case WRITE_6:
1797 case READ_6:
1798 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1799 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1800 break;
1801 case WRITE_16:
1802 case READ_16:
1803 lba = ((u64)scsicmd->cmnd[2] << 56) |
1804 ((u64)scsicmd->cmnd[3] << 48) |
1805 ((u64)scsicmd->cmnd[4] << 40) |
1806 ((u64)scsicmd->cmnd[5] << 32) |
1807 ((u64)scsicmd->cmnd[6] << 24) |
1808 (scsicmd->cmnd[7] << 16) |
1809 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1810 break;
1811 case WRITE_12:
1812 case READ_12:
1813 lba = ((u64)scsicmd->cmnd[2] << 24) |
1814 (scsicmd->cmnd[3] << 16) |
1815 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1816 break;
1817 default:
1818 lba = ((u64)scsicmd->cmnd[2] << 24) |
1819 (scsicmd->cmnd[3] << 16) |
1820 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1821 break;
1822 }
1823 printk(KERN_DEBUG
1824 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1825 smp_processor_id(), (unsigned long long)lba, jiffies);
1826 }
1827
1828 BUG_ON(fibptr == NULL);
1829
1830 scsi_dma_unmap(scsicmd);
1831
1832 readreply = (struct aac_read_reply *)fib_data(fibptr);
1833 switch (le32_to_cpu(readreply->status)) {
1834 case ST_OK:
1835 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1836 SAM_STAT_GOOD;
1837 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1838 break;
1839 case ST_NOT_READY:
1840 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1841 SAM_STAT_CHECK_CONDITION;
1842 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1843 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1844 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1845 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1846 SCSI_SENSE_BUFFERSIZE));
1847 break;
1848 default:
1849 #ifdef AAC_DETAILED_STATUS_INFO
1850 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1851 le32_to_cpu(readreply->status));
1852 #endif
1853 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1854 SAM_STAT_CHECK_CONDITION;
1855 set_sense(&dev->fsa_dev[cid].sense_data,
1856 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1857 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1858 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1859 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1860 SCSI_SENSE_BUFFERSIZE));
1861 break;
1862 }
1863 aac_fib_complete(fibptr);
1864
1865 scsicmd->scsi_done(scsicmd);
1866 }
1867
aac_read(struct scsi_cmnd * scsicmd)1868 static int aac_read(struct scsi_cmnd * scsicmd)
1869 {
1870 u64 lba;
1871 u32 count;
1872 int status;
1873 struct aac_dev *dev;
1874 struct fib * cmd_fibcontext;
1875 int cid;
1876
1877 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1878 /*
1879 * Get block address and transfer length
1880 */
1881 switch (scsicmd->cmnd[0]) {
1882 case READ_6:
1883 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1884
1885 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1886 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1887 count = scsicmd->cmnd[4];
1888
1889 if (count == 0)
1890 count = 256;
1891 break;
1892 case READ_16:
1893 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1894
1895 lba = ((u64)scsicmd->cmnd[2] << 56) |
1896 ((u64)scsicmd->cmnd[3] << 48) |
1897 ((u64)scsicmd->cmnd[4] << 40) |
1898 ((u64)scsicmd->cmnd[5] << 32) |
1899 ((u64)scsicmd->cmnd[6] << 24) |
1900 (scsicmd->cmnd[7] << 16) |
1901 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1902 count = (scsicmd->cmnd[10] << 24) |
1903 (scsicmd->cmnd[11] << 16) |
1904 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1905 break;
1906 case READ_12:
1907 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1908
1909 lba = ((u64)scsicmd->cmnd[2] << 24) |
1910 (scsicmd->cmnd[3] << 16) |
1911 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1912 count = (scsicmd->cmnd[6] << 24) |
1913 (scsicmd->cmnd[7] << 16) |
1914 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1915 break;
1916 default:
1917 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1918
1919 lba = ((u64)scsicmd->cmnd[2] << 24) |
1920 (scsicmd->cmnd[3] << 16) |
1921 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1922 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1923 break;
1924 }
1925
1926 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1927 cid = scmd_id(scsicmd);
1928 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1929 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1930 SAM_STAT_CHECK_CONDITION;
1931 set_sense(&dev->fsa_dev[cid].sense_data,
1932 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1933 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1934 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1935 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1936 SCSI_SENSE_BUFFERSIZE));
1937 scsicmd->scsi_done(scsicmd);
1938 return 1;
1939 }
1940
1941 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1942 smp_processor_id(), (unsigned long long)lba, jiffies));
1943 if (aac_adapter_bounds(dev,scsicmd,lba))
1944 return 0;
1945 /*
1946 * Alocate and initialize a Fib
1947 */
1948 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1949
1950 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1951
1952 /*
1953 * Check that the command queued to the controller
1954 */
1955 if (status == -EINPROGRESS) {
1956 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1957 return 0;
1958 }
1959
1960 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1961 /*
1962 * For some reason, the Fib didn't queue, return QUEUE_FULL
1963 */
1964 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1965 scsicmd->scsi_done(scsicmd);
1966 aac_fib_complete(cmd_fibcontext);
1967 aac_fib_free(cmd_fibcontext);
1968 return 0;
1969 }
1970
aac_write(struct scsi_cmnd * scsicmd)1971 static int aac_write(struct scsi_cmnd * scsicmd)
1972 {
1973 u64 lba;
1974 u32 count;
1975 int fua;
1976 int status;
1977 struct aac_dev *dev;
1978 struct fib * cmd_fibcontext;
1979 int cid;
1980
1981 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1982 /*
1983 * Get block address and transfer length
1984 */
1985 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1986 {
1987 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1988 count = scsicmd->cmnd[4];
1989 if (count == 0)
1990 count = 256;
1991 fua = 0;
1992 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1993 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1994
1995 lba = ((u64)scsicmd->cmnd[2] << 56) |
1996 ((u64)scsicmd->cmnd[3] << 48) |
1997 ((u64)scsicmd->cmnd[4] << 40) |
1998 ((u64)scsicmd->cmnd[5] << 32) |
1999 ((u64)scsicmd->cmnd[6] << 24) |
2000 (scsicmd->cmnd[7] << 16) |
2001 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2002 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2003 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2004 fua = scsicmd->cmnd[1] & 0x8;
2005 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2006 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2007
2008 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2009 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2010 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2011 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2012 fua = scsicmd->cmnd[1] & 0x8;
2013 } else {
2014 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2015 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2016 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2017 fua = scsicmd->cmnd[1] & 0x8;
2018 }
2019
2020 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2021 cid = scmd_id(scsicmd);
2022 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2023 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2024 SAM_STAT_CHECK_CONDITION;
2025 set_sense(&dev->fsa_dev[cid].sense_data,
2026 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2027 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2028 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2029 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2030 SCSI_SENSE_BUFFERSIZE));
2031 scsicmd->scsi_done(scsicmd);
2032 return 1;
2033 }
2034
2035 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2036 smp_processor_id(), (unsigned long long)lba, jiffies));
2037 if (aac_adapter_bounds(dev,scsicmd,lba))
2038 return 0;
2039 /*
2040 * Allocate and initialize a Fib then setup a BlockWrite command
2041 */
2042 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2043
2044 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2045
2046 /*
2047 * Check that the command queued to the controller
2048 */
2049 if (status == -EINPROGRESS) {
2050 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2051 return 0;
2052 }
2053
2054 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2055 /*
2056 * For some reason, the Fib didn't queue, return QUEUE_FULL
2057 */
2058 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2059 scsicmd->scsi_done(scsicmd);
2060
2061 aac_fib_complete(cmd_fibcontext);
2062 aac_fib_free(cmd_fibcontext);
2063 return 0;
2064 }
2065
synchronize_callback(void * context,struct fib * fibptr)2066 static void synchronize_callback(void *context, struct fib *fibptr)
2067 {
2068 struct aac_synchronize_reply *synchronizereply;
2069 struct scsi_cmnd *cmd;
2070
2071 cmd = context;
2072
2073 if (!aac_valid_context(cmd, fibptr))
2074 return;
2075
2076 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2077 smp_processor_id(), jiffies));
2078 BUG_ON(fibptr == NULL);
2079
2080
2081 synchronizereply = fib_data(fibptr);
2082 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2083 cmd->result = DID_OK << 16 |
2084 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2085 else {
2086 struct scsi_device *sdev = cmd->device;
2087 struct aac_dev *dev = fibptr->dev;
2088 u32 cid = sdev_id(sdev);
2089 printk(KERN_WARNING
2090 "synchronize_callback: synchronize failed, status = %d\n",
2091 le32_to_cpu(synchronizereply->status));
2092 cmd->result = DID_OK << 16 |
2093 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2094 set_sense(&dev->fsa_dev[cid].sense_data,
2095 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2096 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2097 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2098 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2099 SCSI_SENSE_BUFFERSIZE));
2100 }
2101
2102 aac_fib_complete(fibptr);
2103 aac_fib_free(fibptr);
2104 cmd->scsi_done(cmd);
2105 }
2106
aac_synchronize(struct scsi_cmnd * scsicmd)2107 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2108 {
2109 int status;
2110 struct fib *cmd_fibcontext;
2111 struct aac_synchronize *synchronizecmd;
2112 struct scsi_cmnd *cmd;
2113 struct scsi_device *sdev = scsicmd->device;
2114 int active = 0;
2115 struct aac_dev *aac;
2116 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2117 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2118 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2119 unsigned long flags;
2120
2121 /*
2122 * Wait for all outstanding queued commands to complete to this
2123 * specific target (block).
2124 */
2125 spin_lock_irqsave(&sdev->list_lock, flags);
2126 list_for_each_entry(cmd, &sdev->cmd_list, list)
2127 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2128 u64 cmnd_lba;
2129 u32 cmnd_count;
2130
2131 if (cmd->cmnd[0] == WRITE_6) {
2132 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2133 (cmd->cmnd[2] << 8) |
2134 cmd->cmnd[3];
2135 cmnd_count = cmd->cmnd[4];
2136 if (cmnd_count == 0)
2137 cmnd_count = 256;
2138 } else if (cmd->cmnd[0] == WRITE_16) {
2139 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2140 ((u64)cmd->cmnd[3] << 48) |
2141 ((u64)cmd->cmnd[4] << 40) |
2142 ((u64)cmd->cmnd[5] << 32) |
2143 ((u64)cmd->cmnd[6] << 24) |
2144 (cmd->cmnd[7] << 16) |
2145 (cmd->cmnd[8] << 8) |
2146 cmd->cmnd[9];
2147 cmnd_count = (cmd->cmnd[10] << 24) |
2148 (cmd->cmnd[11] << 16) |
2149 (cmd->cmnd[12] << 8) |
2150 cmd->cmnd[13];
2151 } else if (cmd->cmnd[0] == WRITE_12) {
2152 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2153 (cmd->cmnd[3] << 16) |
2154 (cmd->cmnd[4] << 8) |
2155 cmd->cmnd[5];
2156 cmnd_count = (cmd->cmnd[6] << 24) |
2157 (cmd->cmnd[7] << 16) |
2158 (cmd->cmnd[8] << 8) |
2159 cmd->cmnd[9];
2160 } else if (cmd->cmnd[0] == WRITE_10) {
2161 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2162 (cmd->cmnd[3] << 16) |
2163 (cmd->cmnd[4] << 8) |
2164 cmd->cmnd[5];
2165 cmnd_count = (cmd->cmnd[7] << 8) |
2166 cmd->cmnd[8];
2167 } else
2168 continue;
2169 if (((cmnd_lba + cmnd_count) < lba) ||
2170 (count && ((lba + count) < cmnd_lba)))
2171 continue;
2172 ++active;
2173 break;
2174 }
2175
2176 spin_unlock_irqrestore(&sdev->list_lock, flags);
2177
2178 /*
2179 * Yield the processor (requeue for later)
2180 */
2181 if (active)
2182 return SCSI_MLQUEUE_DEVICE_BUSY;
2183
2184 aac = (struct aac_dev *)sdev->host->hostdata;
2185 if (aac->in_reset)
2186 return SCSI_MLQUEUE_HOST_BUSY;
2187
2188 /*
2189 * Allocate and initialize a Fib
2190 */
2191 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2192 return SCSI_MLQUEUE_HOST_BUSY;
2193
2194 aac_fib_init(cmd_fibcontext);
2195
2196 synchronizecmd = fib_data(cmd_fibcontext);
2197 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2198 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2199 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2200 synchronizecmd->count =
2201 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2202
2203 /*
2204 * Now send the Fib to the adapter
2205 */
2206 status = aac_fib_send(ContainerCommand,
2207 cmd_fibcontext,
2208 sizeof(struct aac_synchronize),
2209 FsaNormal,
2210 0, 1,
2211 (fib_callback)synchronize_callback,
2212 (void *)scsicmd);
2213
2214 /*
2215 * Check that the command queued to the controller
2216 */
2217 if (status == -EINPROGRESS) {
2218 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2219 return 0;
2220 }
2221
2222 printk(KERN_WARNING
2223 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2224 aac_fib_complete(cmd_fibcontext);
2225 aac_fib_free(cmd_fibcontext);
2226 return SCSI_MLQUEUE_HOST_BUSY;
2227 }
2228
aac_start_stop_callback(void * context,struct fib * fibptr)2229 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2230 {
2231 struct scsi_cmnd *scsicmd = context;
2232
2233 if (!aac_valid_context(scsicmd, fibptr))
2234 return;
2235
2236 BUG_ON(fibptr == NULL);
2237
2238 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2239
2240 aac_fib_complete(fibptr);
2241 aac_fib_free(fibptr);
2242 scsicmd->scsi_done(scsicmd);
2243 }
2244
aac_start_stop(struct scsi_cmnd * scsicmd)2245 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2246 {
2247 int status;
2248 struct fib *cmd_fibcontext;
2249 struct aac_power_management *pmcmd;
2250 struct scsi_device *sdev = scsicmd->device;
2251 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2252
2253 if (!(aac->supplement_adapter_info.SupportedOptions2 &
2254 AAC_OPTION_POWER_MANAGEMENT)) {
2255 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2256 SAM_STAT_GOOD;
2257 scsicmd->scsi_done(scsicmd);
2258 return 0;
2259 }
2260
2261 if (aac->in_reset)
2262 return SCSI_MLQUEUE_HOST_BUSY;
2263
2264 /*
2265 * Allocate and initialize a Fib
2266 */
2267 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2268
2269 aac_fib_init(cmd_fibcontext);
2270
2271 pmcmd = fib_data(cmd_fibcontext);
2272 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2273 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2274 /* Eject bit ignored, not relevant */
2275 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2276 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2277 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2278 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2279 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2280
2281 /*
2282 * Now send the Fib to the adapter
2283 */
2284 status = aac_fib_send(ContainerCommand,
2285 cmd_fibcontext,
2286 sizeof(struct aac_power_management),
2287 FsaNormal,
2288 0, 1,
2289 (fib_callback)aac_start_stop_callback,
2290 (void *)scsicmd);
2291
2292 /*
2293 * Check that the command queued to the controller
2294 */
2295 if (status == -EINPROGRESS) {
2296 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2297 return 0;
2298 }
2299
2300 aac_fib_complete(cmd_fibcontext);
2301 aac_fib_free(cmd_fibcontext);
2302 return SCSI_MLQUEUE_HOST_BUSY;
2303 }
2304
2305 /**
2306 * aac_scsi_cmd() - Process SCSI command
2307 * @scsicmd: SCSI command block
2308 *
2309 * Emulate a SCSI command and queue the required request for the
2310 * aacraid firmware.
2311 */
2312
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2313 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2314 {
2315 u32 cid;
2316 struct Scsi_Host *host = scsicmd->device->host;
2317 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2318 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2319
2320 if (fsa_dev_ptr == NULL)
2321 return -1;
2322 /*
2323 * If the bus, id or lun is out of range, return fail
2324 * Test does not apply to ID 16, the pseudo id for the controller
2325 * itself.
2326 */
2327 cid = scmd_id(scsicmd);
2328 if (cid != host->this_id) {
2329 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2330 if((cid >= dev->maximum_num_containers) ||
2331 (scsicmd->device->lun != 0)) {
2332 scsicmd->result = DID_NO_CONNECT << 16;
2333 scsicmd->scsi_done(scsicmd);
2334 return 0;
2335 }
2336
2337 /*
2338 * If the target container doesn't exist, it may have
2339 * been newly created
2340 */
2341 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2342 (fsa_dev_ptr[cid].sense_data.sense_key ==
2343 NOT_READY)) {
2344 switch (scsicmd->cmnd[0]) {
2345 case SERVICE_ACTION_IN_16:
2346 if (!(dev->raw_io_interface) ||
2347 !(dev->raw_io_64) ||
2348 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2349 break;
2350 case INQUIRY:
2351 case READ_CAPACITY:
2352 case TEST_UNIT_READY:
2353 if (dev->in_reset)
2354 return -1;
2355 return _aac_probe_container(scsicmd,
2356 aac_probe_container_callback2);
2357 default:
2358 break;
2359 }
2360 }
2361 } else { /* check for physical non-dasd devices */
2362 if (dev->nondasd_support || expose_physicals ||
2363 dev->jbod) {
2364 if (dev->in_reset)
2365 return -1;
2366 return aac_send_srb_fib(scsicmd);
2367 } else {
2368 scsicmd->result = DID_NO_CONNECT << 16;
2369 scsicmd->scsi_done(scsicmd);
2370 return 0;
2371 }
2372 }
2373 }
2374 /*
2375 * else Command for the controller itself
2376 */
2377 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2378 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2379 {
2380 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2381 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2382 set_sense(&dev->fsa_dev[cid].sense_data,
2383 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2384 ASENCODE_INVALID_COMMAND, 0, 0);
2385 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2386 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2387 SCSI_SENSE_BUFFERSIZE));
2388 scsicmd->scsi_done(scsicmd);
2389 return 0;
2390 }
2391
2392
2393 /* Handle commands here that don't really require going out to the adapter */
2394 switch (scsicmd->cmnd[0]) {
2395 case INQUIRY:
2396 {
2397 struct inquiry_data inq_data;
2398
2399 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2400 memset(&inq_data, 0, sizeof (struct inquiry_data));
2401
2402 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2403 char *arr = (char *)&inq_data;
2404
2405 /* EVPD bit set */
2406 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2407 INQD_PDT_PROC : INQD_PDT_DA;
2408 if (scsicmd->cmnd[2] == 0) {
2409 /* supported vital product data pages */
2410 arr[3] = 3;
2411 arr[4] = 0x0;
2412 arr[5] = 0x80;
2413 arr[6] = 0x83;
2414 arr[1] = scsicmd->cmnd[2];
2415 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2416 sizeof(inq_data));
2417 scsicmd->result = DID_OK << 16 |
2418 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2419 } else if (scsicmd->cmnd[2] == 0x80) {
2420 /* unit serial number page */
2421 arr[3] = setinqserial(dev, &arr[4],
2422 scmd_id(scsicmd));
2423 arr[1] = scsicmd->cmnd[2];
2424 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2425 sizeof(inq_data));
2426 if (aac_wwn != 2)
2427 return aac_get_container_serial(
2428 scsicmd);
2429 scsicmd->result = DID_OK << 16 |
2430 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2431 } else if (scsicmd->cmnd[2] == 0x83) {
2432 /* vpd page 0x83 - Device Identification Page */
2433 char *sno = (char *)&inq_data;
2434 sno[3] = setinqserial(dev, &sno[4],
2435 scmd_id(scsicmd));
2436 if (aac_wwn != 2)
2437 return aac_get_container_serial(
2438 scsicmd);
2439 scsicmd->result = DID_OK << 16 |
2440 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2441 } else {
2442 /* vpd page not implemented */
2443 scsicmd->result = DID_OK << 16 |
2444 COMMAND_COMPLETE << 8 |
2445 SAM_STAT_CHECK_CONDITION;
2446 set_sense(&dev->fsa_dev[cid].sense_data,
2447 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2448 ASENCODE_NO_SENSE, 7, 2);
2449 memcpy(scsicmd->sense_buffer,
2450 &dev->fsa_dev[cid].sense_data,
2451 min_t(size_t,
2452 sizeof(dev->fsa_dev[cid].sense_data),
2453 SCSI_SENSE_BUFFERSIZE));
2454 }
2455 scsicmd->scsi_done(scsicmd);
2456 return 0;
2457 }
2458 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2459 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2460 inq_data.inqd_len = 31;
2461 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2462 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2463 /*
2464 * Set the Vendor, Product, and Revision Level
2465 * see: <vendor>.c i.e. aac.c
2466 */
2467 if (cid == host->this_id) {
2468 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2469 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2470 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2471 sizeof(inq_data));
2472 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2473 scsicmd->scsi_done(scsicmd);
2474 return 0;
2475 }
2476 if (dev->in_reset)
2477 return -1;
2478 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2479 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2480 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2481 return aac_get_container_name(scsicmd);
2482 }
2483 case SERVICE_ACTION_IN_16:
2484 if (!(dev->raw_io_interface) ||
2485 !(dev->raw_io_64) ||
2486 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2487 break;
2488 {
2489 u64 capacity;
2490 char cp[13];
2491 unsigned int alloc_len;
2492
2493 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2494 capacity = fsa_dev_ptr[cid].size - 1;
2495 cp[0] = (capacity >> 56) & 0xff;
2496 cp[1] = (capacity >> 48) & 0xff;
2497 cp[2] = (capacity >> 40) & 0xff;
2498 cp[3] = (capacity >> 32) & 0xff;
2499 cp[4] = (capacity >> 24) & 0xff;
2500 cp[5] = (capacity >> 16) & 0xff;
2501 cp[6] = (capacity >> 8) & 0xff;
2502 cp[7] = (capacity >> 0) & 0xff;
2503 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2504 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2505 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2506 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2507 cp[12] = 0;
2508
2509 alloc_len = ((scsicmd->cmnd[10] << 24)
2510 + (scsicmd->cmnd[11] << 16)
2511 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2512
2513 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2514 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2515 if (alloc_len < scsi_bufflen(scsicmd))
2516 scsi_set_resid(scsicmd,
2517 scsi_bufflen(scsicmd) - alloc_len);
2518
2519 /* Do not cache partition table for arrays */
2520 scsicmd->device->removable = 1;
2521
2522 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2523 scsicmd->scsi_done(scsicmd);
2524
2525 return 0;
2526 }
2527
2528 case READ_CAPACITY:
2529 {
2530 u32 capacity;
2531 char cp[8];
2532
2533 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2534 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2535 capacity = fsa_dev_ptr[cid].size - 1;
2536 else
2537 capacity = (u32)-1;
2538
2539 cp[0] = (capacity >> 24) & 0xff;
2540 cp[1] = (capacity >> 16) & 0xff;
2541 cp[2] = (capacity >> 8) & 0xff;
2542 cp[3] = (capacity >> 0) & 0xff;
2543 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2544 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2545 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2546 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
2547 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2548 /* Do not cache partition table for arrays */
2549 scsicmd->device->removable = 1;
2550 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2551 SAM_STAT_GOOD;
2552 scsicmd->scsi_done(scsicmd);
2553
2554 return 0;
2555 }
2556
2557 case MODE_SENSE:
2558 {
2559 int mode_buf_length = 4;
2560 u32 capacity;
2561 aac_modep_data mpd;
2562
2563 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2564 capacity = fsa_dev_ptr[cid].size - 1;
2565 else
2566 capacity = (u32)-1;
2567
2568 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2569 memset((char *)&mpd, 0, sizeof(aac_modep_data));
2570
2571 /* Mode data length */
2572 mpd.hd.data_length = sizeof(mpd.hd) - 1;
2573 /* Medium type - default */
2574 mpd.hd.med_type = 0;
2575 /* Device-specific param,
2576 bit 8: 0/1 = write enabled/protected
2577 bit 4: 0/1 = FUA enabled */
2578 mpd.hd.dev_par = 0;
2579
2580 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2581 mpd.hd.dev_par = 0x10;
2582 if (scsicmd->cmnd[1] & 0x8)
2583 mpd.hd.bd_length = 0; /* Block descriptor length */
2584 else {
2585 mpd.hd.bd_length = sizeof(mpd.bd);
2586 mpd.hd.data_length += mpd.hd.bd_length;
2587 mpd.bd.block_length[0] =
2588 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2589 mpd.bd.block_length[1] =
2590 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2591 mpd.bd.block_length[2] =
2592 fsa_dev_ptr[cid].block_size & 0xff;
2593
2594 mpd.mpc_buf[0] = scsicmd->cmnd[2];
2595 if (scsicmd->cmnd[2] == 0x1C) {
2596 /* page length */
2597 mpd.mpc_buf[1] = 0xa;
2598 /* Mode data length */
2599 mpd.hd.data_length = 23;
2600 } else {
2601 /* Mode data length */
2602 mpd.hd.data_length = 15;
2603 }
2604
2605 if (capacity > 0xffffff) {
2606 mpd.bd.block_count[0] = 0xff;
2607 mpd.bd.block_count[1] = 0xff;
2608 mpd.bd.block_count[2] = 0xff;
2609 } else {
2610 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
2611 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
2612 mpd.bd.block_count[2] = capacity & 0xff;
2613 }
2614 }
2615 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2616 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2617 mpd.hd.data_length += 3;
2618 mpd.mpc_buf[0] = 8;
2619 mpd.mpc_buf[1] = 1;
2620 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
2621 ? 0 : 0x04; /* WCE */
2622 mode_buf_length = sizeof(mpd);
2623 }
2624
2625 if (mode_buf_length > scsicmd->cmnd[4])
2626 mode_buf_length = scsicmd->cmnd[4];
2627 else
2628 mode_buf_length = sizeof(mpd);
2629 scsi_sg_copy_from_buffer(scsicmd,
2630 (char *)&mpd,
2631 mode_buf_length);
2632 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2633 scsicmd->scsi_done(scsicmd);
2634
2635 return 0;
2636 }
2637 case MODE_SENSE_10:
2638 {
2639 u32 capacity;
2640 int mode_buf_length = 8;
2641 aac_modep10_data mpd10;
2642
2643 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2644 capacity = fsa_dev_ptr[cid].size - 1;
2645 else
2646 capacity = (u32)-1;
2647
2648 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2649 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
2650 /* Mode data length (MSB) */
2651 mpd10.hd.data_length[0] = 0;
2652 /* Mode data length (LSB) */
2653 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
2654 /* Medium type - default */
2655 mpd10.hd.med_type = 0;
2656 /* Device-specific param,
2657 bit 8: 0/1 = write enabled/protected
2658 bit 4: 0/1 = FUA enabled */
2659 mpd10.hd.dev_par = 0;
2660
2661 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2662 mpd10.hd.dev_par = 0x10;
2663 mpd10.hd.rsrvd[0] = 0; /* reserved */
2664 mpd10.hd.rsrvd[1] = 0; /* reserved */
2665 if (scsicmd->cmnd[1] & 0x8) {
2666 /* Block descriptor length (MSB) */
2667 mpd10.hd.bd_length[0] = 0;
2668 /* Block descriptor length (LSB) */
2669 mpd10.hd.bd_length[1] = 0;
2670 } else {
2671 mpd10.hd.bd_length[0] = 0;
2672 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
2673
2674 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
2675
2676 mpd10.bd.block_length[0] =
2677 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2678 mpd10.bd.block_length[1] =
2679 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2680 mpd10.bd.block_length[2] =
2681 fsa_dev_ptr[cid].block_size & 0xff;
2682
2683 if (capacity > 0xffffff) {
2684 mpd10.bd.block_count[0] = 0xff;
2685 mpd10.bd.block_count[1] = 0xff;
2686 mpd10.bd.block_count[2] = 0xff;
2687 } else {
2688 mpd10.bd.block_count[0] =
2689 (capacity >> 16) & 0xff;
2690 mpd10.bd.block_count[1] =
2691 (capacity >> 8) & 0xff;
2692 mpd10.bd.block_count[2] =
2693 capacity & 0xff;
2694 }
2695 }
2696 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2697 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2698 mpd10.hd.data_length[1] += 3;
2699 mpd10.mpc_buf[0] = 8;
2700 mpd10.mpc_buf[1] = 1;
2701 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
2702 ? 0 : 0x04; /* WCE */
2703 mode_buf_length = sizeof(mpd10);
2704 if (mode_buf_length > scsicmd->cmnd[8])
2705 mode_buf_length = scsicmd->cmnd[8];
2706 }
2707 scsi_sg_copy_from_buffer(scsicmd,
2708 (char *)&mpd10,
2709 mode_buf_length);
2710
2711 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2712 scsicmd->scsi_done(scsicmd);
2713
2714 return 0;
2715 }
2716 case REQUEST_SENSE:
2717 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2718 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2719 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2720 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2721 scsicmd->scsi_done(scsicmd);
2722 return 0;
2723
2724 case ALLOW_MEDIUM_REMOVAL:
2725 dprintk((KERN_DEBUG "LOCK command.\n"));
2726 if (scsicmd->cmnd[4])
2727 fsa_dev_ptr[cid].locked = 1;
2728 else
2729 fsa_dev_ptr[cid].locked = 0;
2730
2731 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2732 scsicmd->scsi_done(scsicmd);
2733 return 0;
2734 /*
2735 * These commands are all No-Ops
2736 */
2737 case TEST_UNIT_READY:
2738 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2739 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2740 SAM_STAT_CHECK_CONDITION;
2741 set_sense(&dev->fsa_dev[cid].sense_data,
2742 NOT_READY, SENCODE_BECOMING_READY,
2743 ASENCODE_BECOMING_READY, 0, 0);
2744 memcpy(scsicmd->sense_buffer,
2745 &dev->fsa_dev[cid].sense_data,
2746 min_t(size_t,
2747 sizeof(dev->fsa_dev[cid].sense_data),
2748 SCSI_SENSE_BUFFERSIZE));
2749 scsicmd->scsi_done(scsicmd);
2750 return 0;
2751 }
2752 /* FALLTHRU */
2753 case RESERVE:
2754 case RELEASE:
2755 case REZERO_UNIT:
2756 case REASSIGN_BLOCKS:
2757 case SEEK_10:
2758 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2759 scsicmd->scsi_done(scsicmd);
2760 return 0;
2761
2762 case START_STOP:
2763 return aac_start_stop(scsicmd);
2764 }
2765
2766 switch (scsicmd->cmnd[0])
2767 {
2768 case READ_6:
2769 case READ_10:
2770 case READ_12:
2771 case READ_16:
2772 if (dev->in_reset)
2773 return -1;
2774 /*
2775 * Hack to keep track of ordinal number of the device that
2776 * corresponds to a container. Needed to convert
2777 * containers to /dev/sd device names
2778 */
2779
2780 if (scsicmd->request->rq_disk)
2781 strlcpy(fsa_dev_ptr[cid].devname,
2782 scsicmd->request->rq_disk->disk_name,
2783 min(sizeof(fsa_dev_ptr[cid].devname),
2784 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2785
2786 return aac_read(scsicmd);
2787
2788 case WRITE_6:
2789 case WRITE_10:
2790 case WRITE_12:
2791 case WRITE_16:
2792 if (dev->in_reset)
2793 return -1;
2794 return aac_write(scsicmd);
2795
2796 case SYNCHRONIZE_CACHE:
2797 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2798 scsicmd->result = DID_OK << 16 |
2799 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2800 scsicmd->scsi_done(scsicmd);
2801 return 0;
2802 }
2803 /* Issue FIB to tell Firmware to flush it's cache */
2804 if ((aac_cache & 6) != 2)
2805 return aac_synchronize(scsicmd);
2806 /* FALLTHRU */
2807 default:
2808 /*
2809 * Unhandled commands
2810 */
2811 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2812 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2813 set_sense(&dev->fsa_dev[cid].sense_data,
2814 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2815 ASENCODE_INVALID_COMMAND, 0, 0);
2816 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2817 min_t(size_t,
2818 sizeof(dev->fsa_dev[cid].sense_data),
2819 SCSI_SENSE_BUFFERSIZE));
2820 scsicmd->scsi_done(scsicmd);
2821 return 0;
2822 }
2823 }
2824
query_disk(struct aac_dev * dev,void __user * arg)2825 static int query_disk(struct aac_dev *dev, void __user *arg)
2826 {
2827 struct aac_query_disk qd;
2828 struct fsa_dev_info *fsa_dev_ptr;
2829
2830 fsa_dev_ptr = dev->fsa_dev;
2831 if (!fsa_dev_ptr)
2832 return -EBUSY;
2833 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2834 return -EFAULT;
2835 if (qd.cnum == -1)
2836 qd.cnum = qd.id;
2837 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2838 {
2839 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2840 return -EINVAL;
2841 qd.instance = dev->scsi_host_ptr->host_no;
2842 qd.bus = 0;
2843 qd.id = CONTAINER_TO_ID(qd.cnum);
2844 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2845 }
2846 else return -EINVAL;
2847
2848 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2849 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2850 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2851
2852 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2853 qd.unmapped = 1;
2854 else
2855 qd.unmapped = 0;
2856
2857 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2858 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2859
2860 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2861 return -EFAULT;
2862 return 0;
2863 }
2864
force_delete_disk(struct aac_dev * dev,void __user * arg)2865 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2866 {
2867 struct aac_delete_disk dd;
2868 struct fsa_dev_info *fsa_dev_ptr;
2869
2870 fsa_dev_ptr = dev->fsa_dev;
2871 if (!fsa_dev_ptr)
2872 return -EBUSY;
2873
2874 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2875 return -EFAULT;
2876
2877 if (dd.cnum >= dev->maximum_num_containers)
2878 return -EINVAL;
2879 /*
2880 * Mark this container as being deleted.
2881 */
2882 fsa_dev_ptr[dd.cnum].deleted = 1;
2883 /*
2884 * Mark the container as no longer valid
2885 */
2886 fsa_dev_ptr[dd.cnum].valid = 0;
2887 return 0;
2888 }
2889
delete_disk(struct aac_dev * dev,void __user * arg)2890 static int delete_disk(struct aac_dev *dev, void __user *arg)
2891 {
2892 struct aac_delete_disk dd;
2893 struct fsa_dev_info *fsa_dev_ptr;
2894
2895 fsa_dev_ptr = dev->fsa_dev;
2896 if (!fsa_dev_ptr)
2897 return -EBUSY;
2898
2899 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2900 return -EFAULT;
2901
2902 if (dd.cnum >= dev->maximum_num_containers)
2903 return -EINVAL;
2904 /*
2905 * If the container is locked, it can not be deleted by the API.
2906 */
2907 if (fsa_dev_ptr[dd.cnum].locked)
2908 return -EBUSY;
2909 else {
2910 /*
2911 * Mark the container as no longer being valid.
2912 */
2913 fsa_dev_ptr[dd.cnum].valid = 0;
2914 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2915 return 0;
2916 }
2917 }
2918
aac_dev_ioctl(struct aac_dev * dev,int cmd,void __user * arg)2919 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2920 {
2921 switch (cmd) {
2922 case FSACTL_QUERY_DISK:
2923 return query_disk(dev, arg);
2924 case FSACTL_DELETE_DISK:
2925 return delete_disk(dev, arg);
2926 case FSACTL_FORCE_DELETE_DISK:
2927 return force_delete_disk(dev, arg);
2928 case FSACTL_GET_CONTAINERS:
2929 return aac_get_containers(dev);
2930 default:
2931 return -ENOTTY;
2932 }
2933 }
2934
2935 /**
2936 *
2937 * aac_srb_callback
2938 * @context: the context set in the fib - here it is scsi cmd
2939 * @fibptr: pointer to the fib
2940 *
2941 * Handles the completion of a scsi command to a non dasd device
2942 *
2943 */
2944
aac_srb_callback(void * context,struct fib * fibptr)2945 static void aac_srb_callback(void *context, struct fib * fibptr)
2946 {
2947 struct aac_dev *dev;
2948 struct aac_srb_reply *srbreply;
2949 struct scsi_cmnd *scsicmd;
2950
2951 scsicmd = (struct scsi_cmnd *) context;
2952
2953 if (!aac_valid_context(scsicmd, fibptr))
2954 return;
2955
2956 BUG_ON(fibptr == NULL);
2957
2958 dev = fibptr->dev;
2959
2960 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2961
2962 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2963
2964 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
2965 /* fast response */
2966 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
2967 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
2968 } else {
2969 /*
2970 * Calculate resid for sg
2971 */
2972 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2973 - le32_to_cpu(srbreply->data_xfer_length));
2974 }
2975
2976
2977 scsi_dma_unmap(scsicmd);
2978
2979 /* expose physical device if expose_physicald flag is on */
2980 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2981 && expose_physicals > 0)
2982 aac_expose_phy_device(scsicmd);
2983
2984 /*
2985 * First check the fib status
2986 */
2987
2988 if (le32_to_cpu(srbreply->status) != ST_OK) {
2989 int len;
2990
2991 pr_warn("aac_srb_callback: srb failed, status = %d\n",
2992 le32_to_cpu(srbreply->status));
2993 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2994 SCSI_SENSE_BUFFERSIZE);
2995 scsicmd->result = DID_ERROR << 16
2996 | COMMAND_COMPLETE << 8
2997 | SAM_STAT_CHECK_CONDITION;
2998 memcpy(scsicmd->sense_buffer,
2999 srbreply->sense_data, len);
3000 }
3001
3002 /*
3003 * Next check the srb status
3004 */
3005 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3006 case SRB_STATUS_ERROR_RECOVERY:
3007 case SRB_STATUS_PENDING:
3008 case SRB_STATUS_SUCCESS:
3009 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3010 break;
3011 case SRB_STATUS_DATA_OVERRUN:
3012 switch (scsicmd->cmnd[0]) {
3013 case READ_6:
3014 case WRITE_6:
3015 case READ_10:
3016 case WRITE_10:
3017 case READ_12:
3018 case WRITE_12:
3019 case READ_16:
3020 case WRITE_16:
3021 if (le32_to_cpu(srbreply->data_xfer_length)
3022 < scsicmd->underflow)
3023 pr_warn("aacraid: SCSI CMD underflow\n");
3024 else
3025 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3026 scsicmd->result = DID_ERROR << 16
3027 | COMMAND_COMPLETE << 8;
3028 break;
3029 case INQUIRY:
3030 scsicmd->result = DID_OK << 16
3031 | COMMAND_COMPLETE << 8;
3032 break;
3033 default:
3034 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3035 break;
3036 }
3037 break;
3038 case SRB_STATUS_ABORTED:
3039 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3040 break;
3041 case SRB_STATUS_ABORT_FAILED:
3042 /*
3043 * Not sure about this one - but assuming the
3044 * hba was trying to abort for some reason
3045 */
3046 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3047 break;
3048 case SRB_STATUS_PARITY_ERROR:
3049 scsicmd->result = DID_PARITY << 16
3050 | MSG_PARITY_ERROR << 8;
3051 break;
3052 case SRB_STATUS_NO_DEVICE:
3053 case SRB_STATUS_INVALID_PATH_ID:
3054 case SRB_STATUS_INVALID_TARGET_ID:
3055 case SRB_STATUS_INVALID_LUN:
3056 case SRB_STATUS_SELECTION_TIMEOUT:
3057 scsicmd->result = DID_NO_CONNECT << 16
3058 | COMMAND_COMPLETE << 8;
3059 break;
3060
3061 case SRB_STATUS_COMMAND_TIMEOUT:
3062 case SRB_STATUS_TIMEOUT:
3063 scsicmd->result = DID_TIME_OUT << 16
3064 | COMMAND_COMPLETE << 8;
3065 break;
3066
3067 case SRB_STATUS_BUSY:
3068 scsicmd->result = DID_BUS_BUSY << 16
3069 | COMMAND_COMPLETE << 8;
3070 break;
3071
3072 case SRB_STATUS_BUS_RESET:
3073 scsicmd->result = DID_RESET << 16
3074 | COMMAND_COMPLETE << 8;
3075 break;
3076
3077 case SRB_STATUS_MESSAGE_REJECTED:
3078 scsicmd->result = DID_ERROR << 16
3079 | MESSAGE_REJECT << 8;
3080 break;
3081 case SRB_STATUS_REQUEST_FLUSHED:
3082 case SRB_STATUS_ERROR:
3083 case SRB_STATUS_INVALID_REQUEST:
3084 case SRB_STATUS_REQUEST_SENSE_FAILED:
3085 case SRB_STATUS_NO_HBA:
3086 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3087 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3088 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3089 case SRB_STATUS_DELAYED_RETRY:
3090 case SRB_STATUS_BAD_FUNCTION:
3091 case SRB_STATUS_NOT_STARTED:
3092 case SRB_STATUS_NOT_IN_USE:
3093 case SRB_STATUS_FORCE_ABORT:
3094 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3095 default:
3096 #ifdef AAC_DETAILED_STATUS_INFO
3097 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3098 le32_to_cpu(srbreply->srb_status) & 0x3F,
3099 aac_get_status_string(
3100 le32_to_cpu(srbreply->srb_status) & 0x3F),
3101 scsicmd->cmnd[0],
3102 le32_to_cpu(srbreply->scsi_status));
3103 #endif
3104 /*
3105 * When the CC bit is SET by the host in ATA pass thru CDB,
3106 * driver is supposed to return DID_OK
3107 *
3108 * When the CC bit is RESET by the host, driver should
3109 * return DID_ERROR
3110 */
3111 if ((scsicmd->cmnd[0] == ATA_12)
3112 || (scsicmd->cmnd[0] == ATA_16)) {
3113
3114 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3115 scsicmd->result = DID_OK << 16
3116 | COMMAND_COMPLETE << 8;
3117 break;
3118 } else {
3119 scsicmd->result = DID_ERROR << 16
3120 | COMMAND_COMPLETE << 8;
3121 break;
3122 }
3123 } else {
3124 scsicmd->result = DID_ERROR << 16
3125 | COMMAND_COMPLETE << 8;
3126 break;
3127 }
3128 }
3129 if (le32_to_cpu(srbreply->scsi_status)
3130 == SAM_STAT_CHECK_CONDITION) {
3131 int len;
3132
3133 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3134 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3135 SCSI_SENSE_BUFFERSIZE);
3136 #ifdef AAC_DETAILED_STATUS_INFO
3137 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3138 le32_to_cpu(srbreply->status), len);
3139 #endif
3140 memcpy(scsicmd->sense_buffer,
3141 srbreply->sense_data, len);
3142 }
3143
3144 /*
3145 * OR in the scsi status (already shifted up a bit)
3146 */
3147 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3148
3149 aac_fib_complete(fibptr);
3150 scsicmd->scsi_done(scsicmd);
3151 }
3152
3153 /**
3154 *
3155 * aac_send_scb_fib
3156 * @scsicmd: the scsi command block
3157 *
3158 * This routine will form a FIB and fill in the aac_srb from the
3159 * scsicmd passed in.
3160 */
3161
aac_send_srb_fib(struct scsi_cmnd * scsicmd)3162 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3163 {
3164 struct fib* cmd_fibcontext;
3165 struct aac_dev* dev;
3166 int status;
3167
3168 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3169 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3170 scsicmd->device->lun > 7) {
3171 scsicmd->result = DID_NO_CONNECT << 16;
3172 scsicmd->scsi_done(scsicmd);
3173 return 0;
3174 }
3175
3176 /*
3177 * Allocate and initialize a Fib then setup a BlockWrite command
3178 */
3179 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3180
3181 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3182
3183 /*
3184 * Check that the command queued to the controller
3185 */
3186 if (status == -EINPROGRESS) {
3187 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3188 return 0;
3189 }
3190
3191 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3192 aac_fib_complete(cmd_fibcontext);
3193 aac_fib_free(cmd_fibcontext);
3194
3195 return -1;
3196 }
3197
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)3198 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3199 {
3200 struct aac_dev *dev;
3201 unsigned long byte_count = 0;
3202 int nseg;
3203
3204 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3205 // Get rid of old data
3206 psg->count = 0;
3207 psg->sg[0].addr = 0;
3208 psg->sg[0].count = 0;
3209
3210 nseg = scsi_dma_map(scsicmd);
3211 if (nseg < 0)
3212 return nseg;
3213 if (nseg) {
3214 struct scatterlist *sg;
3215 int i;
3216
3217 psg->count = cpu_to_le32(nseg);
3218
3219 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3220 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3221 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3222 byte_count += sg_dma_len(sg);
3223 }
3224 /* hba wants the size to be exact */
3225 if (byte_count > scsi_bufflen(scsicmd)) {
3226 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3227 (byte_count - scsi_bufflen(scsicmd));
3228 psg->sg[i-1].count = cpu_to_le32(temp);
3229 byte_count = scsi_bufflen(scsicmd);
3230 }
3231 /* Check for command underflow */
3232 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3233 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3234 byte_count, scsicmd->underflow);
3235 }
3236 }
3237 return byte_count;
3238 }
3239
3240
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)3241 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3242 {
3243 struct aac_dev *dev;
3244 unsigned long byte_count = 0;
3245 u64 addr;
3246 int nseg;
3247
3248 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3249 // Get rid of old data
3250 psg->count = 0;
3251 psg->sg[0].addr[0] = 0;
3252 psg->sg[0].addr[1] = 0;
3253 psg->sg[0].count = 0;
3254
3255 nseg = scsi_dma_map(scsicmd);
3256 if (nseg < 0)
3257 return nseg;
3258 if (nseg) {
3259 struct scatterlist *sg;
3260 int i;
3261
3262 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3263 int count = sg_dma_len(sg);
3264 addr = sg_dma_address(sg);
3265 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3266 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3267 psg->sg[i].count = cpu_to_le32(count);
3268 byte_count += count;
3269 }
3270 psg->count = cpu_to_le32(nseg);
3271 /* hba wants the size to be exact */
3272 if (byte_count > scsi_bufflen(scsicmd)) {
3273 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3274 (byte_count - scsi_bufflen(scsicmd));
3275 psg->sg[i-1].count = cpu_to_le32(temp);
3276 byte_count = scsi_bufflen(scsicmd);
3277 }
3278 /* Check for command underflow */
3279 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3280 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3281 byte_count, scsicmd->underflow);
3282 }
3283 }
3284 return byte_count;
3285 }
3286
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)3287 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3288 {
3289 unsigned long byte_count = 0;
3290 int nseg;
3291
3292 // Get rid of old data
3293 psg->count = 0;
3294 psg->sg[0].next = 0;
3295 psg->sg[0].prev = 0;
3296 psg->sg[0].addr[0] = 0;
3297 psg->sg[0].addr[1] = 0;
3298 psg->sg[0].count = 0;
3299 psg->sg[0].flags = 0;
3300
3301 nseg = scsi_dma_map(scsicmd);
3302 if (nseg < 0)
3303 return nseg;
3304 if (nseg) {
3305 struct scatterlist *sg;
3306 int i;
3307
3308 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3309 int count = sg_dma_len(sg);
3310 u64 addr = sg_dma_address(sg);
3311 psg->sg[i].next = 0;
3312 psg->sg[i].prev = 0;
3313 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3314 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3315 psg->sg[i].count = cpu_to_le32(count);
3316 psg->sg[i].flags = 0;
3317 byte_count += count;
3318 }
3319 psg->count = cpu_to_le32(nseg);
3320 /* hba wants the size to be exact */
3321 if (byte_count > scsi_bufflen(scsicmd)) {
3322 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3323 (byte_count - scsi_bufflen(scsicmd));
3324 psg->sg[i-1].count = cpu_to_le32(temp);
3325 byte_count = scsi_bufflen(scsicmd);
3326 }
3327 /* Check for command underflow */
3328 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3329 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3330 byte_count, scsicmd->underflow);
3331 }
3332 }
3333 return byte_count;
3334 }
3335
aac_build_sgraw2(struct scsi_cmnd * scsicmd,struct aac_raw_io2 * rio2,int sg_max)3336 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3337 struct aac_raw_io2 *rio2, int sg_max)
3338 {
3339 unsigned long byte_count = 0;
3340 int nseg;
3341
3342 nseg = scsi_dma_map(scsicmd);
3343 if (nseg < 0)
3344 return nseg;
3345 if (nseg) {
3346 struct scatterlist *sg;
3347 int i, conformable = 0;
3348 u32 min_size = PAGE_SIZE, cur_size;
3349
3350 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3351 int count = sg_dma_len(sg);
3352 u64 addr = sg_dma_address(sg);
3353
3354 BUG_ON(i >= sg_max);
3355 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3356 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3357 cur_size = cpu_to_le32(count);
3358 rio2->sge[i].length = cur_size;
3359 rio2->sge[i].flags = 0;
3360 if (i == 0) {
3361 conformable = 1;
3362 rio2->sgeFirstSize = cur_size;
3363 } else if (i == 1) {
3364 rio2->sgeNominalSize = cur_size;
3365 min_size = cur_size;
3366 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3367 conformable = 0;
3368 if (cur_size < min_size)
3369 min_size = cur_size;
3370 }
3371 byte_count += count;
3372 }
3373
3374 /* hba wants the size to be exact */
3375 if (byte_count > scsi_bufflen(scsicmd)) {
3376 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3377 (byte_count - scsi_bufflen(scsicmd));
3378 rio2->sge[i-1].length = cpu_to_le32(temp);
3379 byte_count = scsi_bufflen(scsicmd);
3380 }
3381
3382 rio2->sgeCnt = cpu_to_le32(nseg);
3383 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3384 /* not conformable: evaluate required sg elements */
3385 if (!conformable) {
3386 int j, nseg_new = nseg, err_found;
3387 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3388 err_found = 0;
3389 nseg_new = 2;
3390 for (j = 1; j < nseg - 1; ++j) {
3391 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3392 err_found = 1;
3393 break;
3394 }
3395 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3396 }
3397 if (!err_found)
3398 break;
3399 }
3400 if (i > 0 && nseg_new <= sg_max)
3401 aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3402 } else
3403 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3404
3405 /* Check for command underflow */
3406 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3407 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3408 byte_count, scsicmd->underflow);
3409 }
3410 }
3411
3412 return byte_count;
3413 }
3414
aac_convert_sgraw2(struct aac_raw_io2 * rio2,int pages,int nseg,int nseg_new)3415 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3416 {
3417 struct sge_ieee1212 *sge;
3418 int i, j, pos;
3419 u32 addr_low;
3420
3421 if (aac_convert_sgl == 0)
3422 return 0;
3423
3424 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3425 if (sge == NULL)
3426 return -1;
3427
3428 for (i = 1, pos = 1; i < nseg-1; ++i) {
3429 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3430 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3431 sge[pos].addrLow = addr_low;
3432 sge[pos].addrHigh = rio2->sge[i].addrHigh;
3433 if (addr_low < rio2->sge[i].addrLow)
3434 sge[pos].addrHigh++;
3435 sge[pos].length = pages * PAGE_SIZE;
3436 sge[pos].flags = 0;
3437 pos++;
3438 }
3439 }
3440 sge[pos] = rio2->sge[nseg-1];
3441 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3442
3443 kfree(sge);
3444 rio2->sgeCnt = cpu_to_le32(nseg_new);
3445 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3446 rio2->sgeNominalSize = pages * PAGE_SIZE;
3447 return 0;
3448 }
3449
3450 #ifdef AAC_DETAILED_STATUS_INFO
3451
3452 struct aac_srb_status_info {
3453 u32 status;
3454 char *str;
3455 };
3456
3457
3458 static struct aac_srb_status_info srb_status_info[] = {
3459 { SRB_STATUS_PENDING, "Pending Status"},
3460 { SRB_STATUS_SUCCESS, "Success"},
3461 { SRB_STATUS_ABORTED, "Aborted Command"},
3462 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
3463 { SRB_STATUS_ERROR, "Error Event"},
3464 { SRB_STATUS_BUSY, "Device Busy"},
3465 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
3466 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
3467 { SRB_STATUS_NO_DEVICE, "No Device"},
3468 { SRB_STATUS_TIMEOUT, "Timeout"},
3469 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
3470 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
3471 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
3472 { SRB_STATUS_BUS_RESET, "Bus Reset"},
3473 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
3474 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
3475 { SRB_STATUS_NO_HBA, "No HBA"},
3476 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
3477 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
3478 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
3479 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
3480 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
3481 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
3482 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
3483 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
3484 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
3485 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
3486 { SRB_STATUS_NOT_STARTED, "Not Started"},
3487 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
3488 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
3489 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
3490 { 0xff, "Unknown Error"}
3491 };
3492
aac_get_status_string(u32 status)3493 char *aac_get_status_string(u32 status)
3494 {
3495 int i;
3496
3497 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3498 if (srb_status_info[i].status == status)
3499 return srb_status_info[i].str;
3500
3501 return "Bad Status Code";
3502 }
3503
3504 #endif
3505