• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
25 
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 #include <trace/events/ext4.h>
32 
33 /*
34  * ialloc.c contains the inodes allocation and deallocation routines
35  */
36 
37 /*
38  * The free inodes are managed by bitmaps.  A file system contains several
39  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
40  * block for inodes, N blocks for the inode table and data blocks.
41  *
42  * The file system contains group descriptors which are located after the
43  * super block.  Each descriptor contains the number of the bitmap block and
44  * the free blocks count in the block.
45  */
46 
47 /*
48  * To avoid calling the atomic setbit hundreds or thousands of times, we only
49  * need to use it within a single byte (to ensure we get endianness right).
50  * We can use memset for the rest of the bitmap as there are no other users.
51  */
ext4_mark_bitmap_end(int start_bit,int end_bit,char * bitmap)52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
53 {
54 	int i;
55 
56 	if (start_bit >= end_bit)
57 		return;
58 
59 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 		ext4_set_bit(i, bitmap);
62 	if (i < end_bit)
63 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
64 }
65 
ext4_end_bitmap_read(struct buffer_head * bh,int uptodate)66 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
67 {
68 	if (uptodate) {
69 		set_buffer_uptodate(bh);
70 		set_bitmap_uptodate(bh);
71 	}
72 	unlock_buffer(bh);
73 	put_bh(bh);
74 }
75 
ext4_validate_inode_bitmap(struct super_block * sb,struct ext4_group_desc * desc,ext4_group_t block_group,struct buffer_head * bh)76 static int ext4_validate_inode_bitmap(struct super_block *sb,
77 				      struct ext4_group_desc *desc,
78 				      ext4_group_t block_group,
79 				      struct buffer_head *bh)
80 {
81 	ext4_fsblk_t	blk;
82 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
83 	struct ext4_sb_info *sbi = EXT4_SB(sb);
84 
85 	if (buffer_verified(bh))
86 		return 0;
87 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
88 		return -EFSCORRUPTED;
89 
90 	ext4_lock_group(sb, block_group);
91 	blk = ext4_inode_bitmap(sb, desc);
92 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
93 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
94 		ext4_unlock_group(sb, block_group);
95 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
96 			   "inode_bitmap = %llu", block_group, blk);
97 		grp = ext4_get_group_info(sb, block_group);
98 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
99 			int count;
100 			count = ext4_free_inodes_count(sb, desc);
101 			percpu_counter_sub(&sbi->s_freeinodes_counter,
102 					   count);
103 		}
104 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
105 		return -EFSBADCRC;
106 	}
107 	set_buffer_verified(bh);
108 	ext4_unlock_group(sb, block_group);
109 	return 0;
110 }
111 
112 /*
113  * Read the inode allocation bitmap for a given block_group, reading
114  * into the specified slot in the superblock's bitmap cache.
115  *
116  * Return buffer_head of bitmap on success or NULL.
117  */
118 static struct buffer_head *
ext4_read_inode_bitmap(struct super_block * sb,ext4_group_t block_group)119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
120 {
121 	struct ext4_group_desc *desc;
122 	struct buffer_head *bh = NULL;
123 	ext4_fsblk_t bitmap_blk;
124 	int err;
125 
126 	desc = ext4_get_group_desc(sb, block_group, NULL);
127 	if (!desc)
128 		return ERR_PTR(-EFSCORRUPTED);
129 
130 	bitmap_blk = ext4_inode_bitmap(sb, desc);
131 	bh = sb_getblk(sb, bitmap_blk);
132 	if (unlikely(!bh)) {
133 		ext4_error(sb, "Cannot read inode bitmap - "
134 			    "block_group = %u, inode_bitmap = %llu",
135 			    block_group, bitmap_blk);
136 		return ERR_PTR(-EIO);
137 	}
138 	if (bitmap_uptodate(bh))
139 		goto verify;
140 
141 	lock_buffer(bh);
142 	if (bitmap_uptodate(bh)) {
143 		unlock_buffer(bh);
144 		goto verify;
145 	}
146 
147 	ext4_lock_group(sb, block_group);
148 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
149 		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
150 		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
151 				     sb->s_blocksize * 8, bh->b_data);
152 		set_bitmap_uptodate(bh);
153 		set_buffer_uptodate(bh);
154 		set_buffer_verified(bh);
155 		ext4_unlock_group(sb, block_group);
156 		unlock_buffer(bh);
157 		return bh;
158 	}
159 	ext4_unlock_group(sb, block_group);
160 
161 	if (buffer_uptodate(bh)) {
162 		/*
163 		 * if not uninit if bh is uptodate,
164 		 * bitmap is also uptodate
165 		 */
166 		set_bitmap_uptodate(bh);
167 		unlock_buffer(bh);
168 		goto verify;
169 	}
170 	/*
171 	 * submit the buffer_head for reading
172 	 */
173 	trace_ext4_load_inode_bitmap(sb, block_group);
174 	bh->b_end_io = ext4_end_bitmap_read;
175 	get_bh(bh);
176 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
177 	wait_on_buffer(bh);
178 	if (!buffer_uptodate(bh)) {
179 		put_bh(bh);
180 		ext4_error(sb, "Cannot read inode bitmap - "
181 			   "block_group = %u, inode_bitmap = %llu",
182 			   block_group, bitmap_blk);
183 		return ERR_PTR(-EIO);
184 	}
185 
186 verify:
187 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
188 	if (err)
189 		goto out;
190 	return bh;
191 out:
192 	put_bh(bh);
193 	return ERR_PTR(err);
194 }
195 
196 /*
197  * NOTE! When we get the inode, we're the only people
198  * that have access to it, and as such there are no
199  * race conditions we have to worry about. The inode
200  * is not on the hash-lists, and it cannot be reached
201  * through the filesystem because the directory entry
202  * has been deleted earlier.
203  *
204  * HOWEVER: we must make sure that we get no aliases,
205  * which means that we have to call "clear_inode()"
206  * _before_ we mark the inode not in use in the inode
207  * bitmaps. Otherwise a newly created file might use
208  * the same inode number (not actually the same pointer
209  * though), and then we'd have two inodes sharing the
210  * same inode number and space on the harddisk.
211  */
ext4_free_inode(handle_t * handle,struct inode * inode)212 void ext4_free_inode(handle_t *handle, struct inode *inode)
213 {
214 	struct super_block *sb = inode->i_sb;
215 	int is_directory;
216 	unsigned long ino;
217 	struct buffer_head *bitmap_bh = NULL;
218 	struct buffer_head *bh2;
219 	ext4_group_t block_group;
220 	unsigned long bit;
221 	struct ext4_group_desc *gdp;
222 	struct ext4_super_block *es;
223 	struct ext4_sb_info *sbi;
224 	int fatal = 0, err, count, cleared;
225 	struct ext4_group_info *grp;
226 
227 	if (!sb) {
228 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
229 		       "nonexistent device\n", __func__, __LINE__);
230 		return;
231 	}
232 	if (atomic_read(&inode->i_count) > 1) {
233 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
234 			 __func__, __LINE__, inode->i_ino,
235 			 atomic_read(&inode->i_count));
236 		return;
237 	}
238 	if (inode->i_nlink) {
239 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
240 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
241 		return;
242 	}
243 	sbi = EXT4_SB(sb);
244 
245 	ino = inode->i_ino;
246 	ext4_debug("freeing inode %lu\n", ino);
247 	trace_ext4_free_inode(inode);
248 
249 	/*
250 	 * Note: we must free any quota before locking the superblock,
251 	 * as writing the quota to disk may need the lock as well.
252 	 */
253 	dquot_initialize(inode);
254 	ext4_xattr_delete_inode(handle, inode);
255 	dquot_free_inode(inode);
256 	dquot_drop(inode);
257 
258 	is_directory = S_ISDIR(inode->i_mode);
259 
260 	/* Do this BEFORE marking the inode not in use or returning an error */
261 	ext4_clear_inode(inode);
262 
263 	es = EXT4_SB(sb)->s_es;
264 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
265 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
266 		goto error_return;
267 	}
268 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
269 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
270 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
271 	/* Don't bother if the inode bitmap is corrupt. */
272 	grp = ext4_get_group_info(sb, block_group);
273 	if (IS_ERR(bitmap_bh)) {
274 		fatal = PTR_ERR(bitmap_bh);
275 		bitmap_bh = NULL;
276 		goto error_return;
277 	}
278 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
279 		fatal = -EFSCORRUPTED;
280 		goto error_return;
281 	}
282 
283 	BUFFER_TRACE(bitmap_bh, "get_write_access");
284 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
285 	if (fatal)
286 		goto error_return;
287 
288 	fatal = -ESRCH;
289 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
290 	if (gdp) {
291 		BUFFER_TRACE(bh2, "get_write_access");
292 		fatal = ext4_journal_get_write_access(handle, bh2);
293 	}
294 	ext4_lock_group(sb, block_group);
295 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
296 	if (fatal || !cleared) {
297 		ext4_unlock_group(sb, block_group);
298 		goto out;
299 	}
300 
301 	count = ext4_free_inodes_count(sb, gdp) + 1;
302 	ext4_free_inodes_set(sb, gdp, count);
303 	if (is_directory) {
304 		count = ext4_used_dirs_count(sb, gdp) - 1;
305 		ext4_used_dirs_set(sb, gdp, count);
306 		percpu_counter_dec(&sbi->s_dirs_counter);
307 	}
308 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
309 				   EXT4_INODES_PER_GROUP(sb) / 8);
310 	ext4_group_desc_csum_set(sb, block_group, gdp);
311 	ext4_unlock_group(sb, block_group);
312 
313 	percpu_counter_inc(&sbi->s_freeinodes_counter);
314 	if (sbi->s_log_groups_per_flex) {
315 		ext4_group_t f = ext4_flex_group(sbi, block_group);
316 
317 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
318 		if (is_directory)
319 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
320 	}
321 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
322 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
323 out:
324 	if (cleared) {
325 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
326 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
327 		if (!fatal)
328 			fatal = err;
329 	} else {
330 		ext4_error(sb, "bit already cleared for inode %lu", ino);
331 		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
332 			int count;
333 			count = ext4_free_inodes_count(sb, gdp);
334 			percpu_counter_sub(&sbi->s_freeinodes_counter,
335 					   count);
336 		}
337 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
338 	}
339 
340 error_return:
341 	brelse(bitmap_bh);
342 	ext4_std_error(sb, fatal);
343 }
344 
345 struct orlov_stats {
346 	__u64 free_clusters;
347 	__u32 free_inodes;
348 	__u32 used_dirs;
349 };
350 
351 /*
352  * Helper function for Orlov's allocator; returns critical information
353  * for a particular block group or flex_bg.  If flex_size is 1, then g
354  * is a block group number; otherwise it is flex_bg number.
355  */
get_orlov_stats(struct super_block * sb,ext4_group_t g,int flex_size,struct orlov_stats * stats)356 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
357 			    int flex_size, struct orlov_stats *stats)
358 {
359 	struct ext4_group_desc *desc;
360 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
361 
362 	if (flex_size > 1) {
363 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
364 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
365 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
366 		return;
367 	}
368 
369 	desc = ext4_get_group_desc(sb, g, NULL);
370 	if (desc) {
371 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
372 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
373 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
374 	} else {
375 		stats->free_inodes = 0;
376 		stats->free_clusters = 0;
377 		stats->used_dirs = 0;
378 	}
379 }
380 
381 /*
382  * Orlov's allocator for directories.
383  *
384  * We always try to spread first-level directories.
385  *
386  * If there are blockgroups with both free inodes and free blocks counts
387  * not worse than average we return one with smallest directory count.
388  * Otherwise we simply return a random group.
389  *
390  * For the rest rules look so:
391  *
392  * It's OK to put directory into a group unless
393  * it has too many directories already (max_dirs) or
394  * it has too few free inodes left (min_inodes) or
395  * it has too few free blocks left (min_blocks) or
396  * Parent's group is preferred, if it doesn't satisfy these
397  * conditions we search cyclically through the rest. If none
398  * of the groups look good we just look for a group with more
399  * free inodes than average (starting at parent's group).
400  */
401 
find_group_orlov(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode,const struct qstr * qstr)402 static int find_group_orlov(struct super_block *sb, struct inode *parent,
403 			    ext4_group_t *group, umode_t mode,
404 			    const struct qstr *qstr)
405 {
406 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
407 	struct ext4_sb_info *sbi = EXT4_SB(sb);
408 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
409 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
410 	unsigned int freei, avefreei, grp_free;
411 	ext4_fsblk_t freeb, avefreec;
412 	unsigned int ndirs;
413 	int max_dirs, min_inodes;
414 	ext4_grpblk_t min_clusters;
415 	ext4_group_t i, grp, g, ngroups;
416 	struct ext4_group_desc *desc;
417 	struct orlov_stats stats;
418 	int flex_size = ext4_flex_bg_size(sbi);
419 	struct dx_hash_info hinfo;
420 
421 	ngroups = real_ngroups;
422 	if (flex_size > 1) {
423 		ngroups = (real_ngroups + flex_size - 1) >>
424 			sbi->s_log_groups_per_flex;
425 		parent_group >>= sbi->s_log_groups_per_flex;
426 	}
427 
428 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
429 	avefreei = freei / ngroups;
430 	freeb = EXT4_C2B(sbi,
431 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
432 	avefreec = freeb;
433 	do_div(avefreec, ngroups);
434 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
435 
436 	if (S_ISDIR(mode) &&
437 	    ((parent == d_inode(sb->s_root)) ||
438 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
439 		int best_ndir = inodes_per_group;
440 		int ret = -1;
441 
442 		if (qstr) {
443 			hinfo.hash_version = DX_HASH_HALF_MD4;
444 			hinfo.seed = sbi->s_hash_seed;
445 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
446 			grp = hinfo.hash;
447 		} else
448 			grp = prandom_u32();
449 		parent_group = (unsigned)grp % ngroups;
450 		for (i = 0; i < ngroups; i++) {
451 			g = (parent_group + i) % ngroups;
452 			get_orlov_stats(sb, g, flex_size, &stats);
453 			if (!stats.free_inodes)
454 				continue;
455 			if (stats.used_dirs >= best_ndir)
456 				continue;
457 			if (stats.free_inodes < avefreei)
458 				continue;
459 			if (stats.free_clusters < avefreec)
460 				continue;
461 			grp = g;
462 			ret = 0;
463 			best_ndir = stats.used_dirs;
464 		}
465 		if (ret)
466 			goto fallback;
467 	found_flex_bg:
468 		if (flex_size == 1) {
469 			*group = grp;
470 			return 0;
471 		}
472 
473 		/*
474 		 * We pack inodes at the beginning of the flexgroup's
475 		 * inode tables.  Block allocation decisions will do
476 		 * something similar, although regular files will
477 		 * start at 2nd block group of the flexgroup.  See
478 		 * ext4_ext_find_goal() and ext4_find_near().
479 		 */
480 		grp *= flex_size;
481 		for (i = 0; i < flex_size; i++) {
482 			if (grp+i >= real_ngroups)
483 				break;
484 			desc = ext4_get_group_desc(sb, grp+i, NULL);
485 			if (desc && ext4_free_inodes_count(sb, desc)) {
486 				*group = grp+i;
487 				return 0;
488 			}
489 		}
490 		goto fallback;
491 	}
492 
493 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
494 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
495 	if (min_inodes < 1)
496 		min_inodes = 1;
497 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
498 
499 	/*
500 	 * Start looking in the flex group where we last allocated an
501 	 * inode for this parent directory
502 	 */
503 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
504 		parent_group = EXT4_I(parent)->i_last_alloc_group;
505 		if (flex_size > 1)
506 			parent_group >>= sbi->s_log_groups_per_flex;
507 	}
508 
509 	for (i = 0; i < ngroups; i++) {
510 		grp = (parent_group + i) % ngroups;
511 		get_orlov_stats(sb, grp, flex_size, &stats);
512 		if (stats.used_dirs >= max_dirs)
513 			continue;
514 		if (stats.free_inodes < min_inodes)
515 			continue;
516 		if (stats.free_clusters < min_clusters)
517 			continue;
518 		goto found_flex_bg;
519 	}
520 
521 fallback:
522 	ngroups = real_ngroups;
523 	avefreei = freei / ngroups;
524 fallback_retry:
525 	parent_group = EXT4_I(parent)->i_block_group;
526 	for (i = 0; i < ngroups; i++) {
527 		grp = (parent_group + i) % ngroups;
528 		desc = ext4_get_group_desc(sb, grp, NULL);
529 		if (desc) {
530 			grp_free = ext4_free_inodes_count(sb, desc);
531 			if (grp_free && grp_free >= avefreei) {
532 				*group = grp;
533 				return 0;
534 			}
535 		}
536 	}
537 
538 	if (avefreei) {
539 		/*
540 		 * The free-inodes counter is approximate, and for really small
541 		 * filesystems the above test can fail to find any blockgroups
542 		 */
543 		avefreei = 0;
544 		goto fallback_retry;
545 	}
546 
547 	return -1;
548 }
549 
find_group_other(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode)550 static int find_group_other(struct super_block *sb, struct inode *parent,
551 			    ext4_group_t *group, umode_t mode)
552 {
553 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
554 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
555 	struct ext4_group_desc *desc;
556 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
557 
558 	/*
559 	 * Try to place the inode is the same flex group as its
560 	 * parent.  If we can't find space, use the Orlov algorithm to
561 	 * find another flex group, and store that information in the
562 	 * parent directory's inode information so that use that flex
563 	 * group for future allocations.
564 	 */
565 	if (flex_size > 1) {
566 		int retry = 0;
567 
568 	try_again:
569 		parent_group &= ~(flex_size-1);
570 		last = parent_group + flex_size;
571 		if (last > ngroups)
572 			last = ngroups;
573 		for  (i = parent_group; i < last; i++) {
574 			desc = ext4_get_group_desc(sb, i, NULL);
575 			if (desc && ext4_free_inodes_count(sb, desc)) {
576 				*group = i;
577 				return 0;
578 			}
579 		}
580 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
581 			retry = 1;
582 			parent_group = EXT4_I(parent)->i_last_alloc_group;
583 			goto try_again;
584 		}
585 		/*
586 		 * If this didn't work, use the Orlov search algorithm
587 		 * to find a new flex group; we pass in the mode to
588 		 * avoid the topdir algorithms.
589 		 */
590 		*group = parent_group + flex_size;
591 		if (*group > ngroups)
592 			*group = 0;
593 		return find_group_orlov(sb, parent, group, mode, NULL);
594 	}
595 
596 	/*
597 	 * Try to place the inode in its parent directory
598 	 */
599 	*group = parent_group;
600 	desc = ext4_get_group_desc(sb, *group, NULL);
601 	if (desc && ext4_free_inodes_count(sb, desc) &&
602 	    ext4_free_group_clusters(sb, desc))
603 		return 0;
604 
605 	/*
606 	 * We're going to place this inode in a different blockgroup from its
607 	 * parent.  We want to cause files in a common directory to all land in
608 	 * the same blockgroup.  But we want files which are in a different
609 	 * directory which shares a blockgroup with our parent to land in a
610 	 * different blockgroup.
611 	 *
612 	 * So add our directory's i_ino into the starting point for the hash.
613 	 */
614 	*group = (*group + parent->i_ino) % ngroups;
615 
616 	/*
617 	 * Use a quadratic hash to find a group with a free inode and some free
618 	 * blocks.
619 	 */
620 	for (i = 1; i < ngroups; i <<= 1) {
621 		*group += i;
622 		if (*group >= ngroups)
623 			*group -= ngroups;
624 		desc = ext4_get_group_desc(sb, *group, NULL);
625 		if (desc && ext4_free_inodes_count(sb, desc) &&
626 		    ext4_free_group_clusters(sb, desc))
627 			return 0;
628 	}
629 
630 	/*
631 	 * That failed: try linear search for a free inode, even if that group
632 	 * has no free blocks.
633 	 */
634 	*group = parent_group;
635 	for (i = 0; i < ngroups; i++) {
636 		if (++*group >= ngroups)
637 			*group = 0;
638 		desc = ext4_get_group_desc(sb, *group, NULL);
639 		if (desc && ext4_free_inodes_count(sb, desc))
640 			return 0;
641 	}
642 
643 	return -1;
644 }
645 
646 /*
647  * In no journal mode, if an inode has recently been deleted, we want
648  * to avoid reusing it until we're reasonably sure the inode table
649  * block has been written back to disk.  (Yes, these values are
650  * somewhat arbitrary...)
651  */
652 #define RECENTCY_MIN	5
653 #define RECENTCY_DIRTY	30
654 
recently_deleted(struct super_block * sb,ext4_group_t group,int ino)655 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
656 {
657 	struct ext4_group_desc	*gdp;
658 	struct ext4_inode	*raw_inode;
659 	struct buffer_head	*bh;
660 	unsigned long		dtime, now;
661 	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
662 	int	offset, ret = 0, recentcy = RECENTCY_MIN;
663 
664 	gdp = ext4_get_group_desc(sb, group, NULL);
665 	if (unlikely(!gdp))
666 		return 0;
667 
668 	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
669 		       (ino / inodes_per_block));
670 	if (unlikely(!bh) || !buffer_uptodate(bh))
671 		/*
672 		 * If the block is not in the buffer cache, then it
673 		 * must have been written out.
674 		 */
675 		goto out;
676 
677 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
678 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
679 	dtime = le32_to_cpu(raw_inode->i_dtime);
680 	now = get_seconds();
681 	if (buffer_dirty(bh))
682 		recentcy += RECENTCY_DIRTY;
683 
684 	if (dtime && (dtime < now) && (now < dtime + recentcy))
685 		ret = 1;
686 out:
687 	brelse(bh);
688 	return ret;
689 }
690 
691 /*
692  * There are two policies for allocating an inode.  If the new inode is
693  * a directory, then a forward search is made for a block group with both
694  * free space and a low directory-to-inode ratio; if that fails, then of
695  * the groups with above-average free space, that group with the fewest
696  * directories already is chosen.
697  *
698  * For other inodes, search forward from the parent directory's block
699  * group to find a free inode.
700  */
__ext4_new_inode(handle_t * handle,struct inode * dir,umode_t mode,const struct qstr * qstr,__u32 goal,uid_t * owner,int handle_type,unsigned int line_no,int nblocks)701 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
702 			       umode_t mode, const struct qstr *qstr,
703 			       __u32 goal, uid_t *owner, int handle_type,
704 			       unsigned int line_no, int nblocks)
705 {
706 	struct super_block *sb;
707 	struct buffer_head *inode_bitmap_bh = NULL;
708 	struct buffer_head *group_desc_bh;
709 	ext4_group_t ngroups, group = 0;
710 	unsigned long ino = 0;
711 	struct inode *inode;
712 	struct ext4_group_desc *gdp = NULL;
713 	struct ext4_inode_info *ei;
714 	struct ext4_sb_info *sbi;
715 	int ret2, err;
716 	struct inode *ret;
717 	ext4_group_t i;
718 	ext4_group_t flex_group;
719 	struct ext4_group_info *grp;
720 	int encrypt = 0;
721 
722 	/* Cannot create files in a deleted directory */
723 	if (!dir || !dir->i_nlink)
724 		return ERR_PTR(-EPERM);
725 
726 	if ((ext4_encrypted_inode(dir) ||
727 	     DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
728 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
729 		err = fscrypt_get_encryption_info(dir);
730 		if (err)
731 			return ERR_PTR(err);
732 		if (!fscrypt_has_encryption_key(dir))
733 			return ERR_PTR(-ENOKEY);
734 		if (!handle)
735 			nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
736 		encrypt = 1;
737 	}
738 
739 	sb = dir->i_sb;
740 	ngroups = ext4_get_groups_count(sb);
741 	trace_ext4_request_inode(dir, mode);
742 	inode = new_inode(sb);
743 	if (!inode)
744 		return ERR_PTR(-ENOMEM);
745 	ei = EXT4_I(inode);
746 	sbi = EXT4_SB(sb);
747 
748 	/*
749 	 * Initialize owners and quota early so that we don't have to account
750 	 * for quota initialization worst case in standard inode creating
751 	 * transaction
752 	 */
753 	if (owner) {
754 		inode->i_mode = mode;
755 		i_uid_write(inode, owner[0]);
756 		i_gid_write(inode, owner[1]);
757 	} else if (test_opt(sb, GRPID)) {
758 		inode->i_mode = mode;
759 		inode->i_uid = current_fsuid();
760 		inode->i_gid = dir->i_gid;
761 	} else
762 		inode_init_owner(inode, dir, mode);
763 
764 	if (ext4_has_feature_project(sb) &&
765 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
766 		ei->i_projid = EXT4_I(dir)->i_projid;
767 	else
768 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
769 
770 	err = dquot_initialize(inode);
771 	if (err)
772 		goto out;
773 
774 	if (!goal)
775 		goal = sbi->s_inode_goal;
776 
777 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
778 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
779 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
780 		ret2 = 0;
781 		goto got_group;
782 	}
783 
784 	if (S_ISDIR(mode))
785 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
786 	else
787 		ret2 = find_group_other(sb, dir, &group, mode);
788 
789 got_group:
790 	EXT4_I(dir)->i_last_alloc_group = group;
791 	err = -ENOSPC;
792 	if (ret2 == -1)
793 		goto out;
794 
795 	/*
796 	 * Normally we will only go through one pass of this loop,
797 	 * unless we get unlucky and it turns out the group we selected
798 	 * had its last inode grabbed by someone else.
799 	 */
800 	for (i = 0; i < ngroups; i++, ino = 0) {
801 		err = -EIO;
802 
803 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
804 		if (!gdp)
805 			goto out;
806 
807 		/*
808 		 * Check free inodes count before loading bitmap.
809 		 */
810 		if (ext4_free_inodes_count(sb, gdp) == 0) {
811 			if (++group == ngroups)
812 				group = 0;
813 			continue;
814 		}
815 
816 		grp = ext4_get_group_info(sb, group);
817 		/* Skip groups with already-known suspicious inode tables */
818 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
819 			if (++group == ngroups)
820 				group = 0;
821 			continue;
822 		}
823 
824 		brelse(inode_bitmap_bh);
825 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
826 		/* Skip groups with suspicious inode tables */
827 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
828 		    IS_ERR(inode_bitmap_bh)) {
829 			inode_bitmap_bh = NULL;
830 			if (++group == ngroups)
831 				group = 0;
832 			continue;
833 		}
834 
835 repeat_in_this_group:
836 		ino = ext4_find_next_zero_bit((unsigned long *)
837 					      inode_bitmap_bh->b_data,
838 					      EXT4_INODES_PER_GROUP(sb), ino);
839 		if (ino >= EXT4_INODES_PER_GROUP(sb))
840 			goto next_group;
841 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
842 			ext4_error(sb, "reserved inode found cleared - "
843 				   "inode=%lu", ino + 1);
844 			continue;
845 		}
846 		if ((EXT4_SB(sb)->s_journal == NULL) &&
847 		    recently_deleted(sb, group, ino)) {
848 			ino++;
849 			goto next_inode;
850 		}
851 		if (!handle) {
852 			BUG_ON(nblocks <= 0);
853 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
854 							 handle_type, nblocks,
855 							 0);
856 			if (IS_ERR(handle)) {
857 				err = PTR_ERR(handle);
858 				ext4_std_error(sb, err);
859 				goto out;
860 			}
861 		}
862 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
863 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
864 		if (err) {
865 			ext4_std_error(sb, err);
866 			goto out;
867 		}
868 		ext4_lock_group(sb, group);
869 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
870 		ext4_unlock_group(sb, group);
871 		ino++;		/* the inode bitmap is zero-based */
872 		if (!ret2)
873 			goto got; /* we grabbed the inode! */
874 next_inode:
875 		if (ino < EXT4_INODES_PER_GROUP(sb))
876 			goto repeat_in_this_group;
877 next_group:
878 		if (++group == ngroups)
879 			group = 0;
880 	}
881 	err = -ENOSPC;
882 	goto out;
883 
884 got:
885 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
886 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
887 	if (err) {
888 		ext4_std_error(sb, err);
889 		goto out;
890 	}
891 
892 	BUFFER_TRACE(group_desc_bh, "get_write_access");
893 	err = ext4_journal_get_write_access(handle, group_desc_bh);
894 	if (err) {
895 		ext4_std_error(sb, err);
896 		goto out;
897 	}
898 
899 	/* We may have to initialize the block bitmap if it isn't already */
900 	if (ext4_has_group_desc_csum(sb) &&
901 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
902 		struct buffer_head *block_bitmap_bh;
903 
904 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
905 		if (IS_ERR(block_bitmap_bh)) {
906 			err = PTR_ERR(block_bitmap_bh);
907 			goto out;
908 		}
909 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
910 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
911 		if (err) {
912 			brelse(block_bitmap_bh);
913 			ext4_std_error(sb, err);
914 			goto out;
915 		}
916 
917 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
918 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
919 
920 		/* recheck and clear flag under lock if we still need to */
921 		ext4_lock_group(sb, group);
922 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
923 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
924 			ext4_free_group_clusters_set(sb, gdp,
925 				ext4_free_clusters_after_init(sb, group, gdp));
926 			ext4_block_bitmap_csum_set(sb, group, gdp,
927 						   block_bitmap_bh);
928 			ext4_group_desc_csum_set(sb, group, gdp);
929 		}
930 		ext4_unlock_group(sb, group);
931 		brelse(block_bitmap_bh);
932 
933 		if (err) {
934 			ext4_std_error(sb, err);
935 			goto out;
936 		}
937 	}
938 
939 	/* Update the relevant bg descriptor fields */
940 	if (ext4_has_group_desc_csum(sb)) {
941 		int free;
942 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
943 
944 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
945 		ext4_lock_group(sb, group); /* while we modify the bg desc */
946 		free = EXT4_INODES_PER_GROUP(sb) -
947 			ext4_itable_unused_count(sb, gdp);
948 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
949 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
950 			free = 0;
951 		}
952 		/*
953 		 * Check the relative inode number against the last used
954 		 * relative inode number in this group. if it is greater
955 		 * we need to update the bg_itable_unused count
956 		 */
957 		if (ino > free)
958 			ext4_itable_unused_set(sb, gdp,
959 					(EXT4_INODES_PER_GROUP(sb) - ino));
960 		up_read(&grp->alloc_sem);
961 	} else {
962 		ext4_lock_group(sb, group);
963 	}
964 
965 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
966 	if (S_ISDIR(mode)) {
967 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
968 		if (sbi->s_log_groups_per_flex) {
969 			ext4_group_t f = ext4_flex_group(sbi, group);
970 
971 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
972 		}
973 	}
974 	if (ext4_has_group_desc_csum(sb)) {
975 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
976 					   EXT4_INODES_PER_GROUP(sb) / 8);
977 		ext4_group_desc_csum_set(sb, group, gdp);
978 	}
979 	ext4_unlock_group(sb, group);
980 
981 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
982 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
983 	if (err) {
984 		ext4_std_error(sb, err);
985 		goto out;
986 	}
987 
988 	percpu_counter_dec(&sbi->s_freeinodes_counter);
989 	if (S_ISDIR(mode))
990 		percpu_counter_inc(&sbi->s_dirs_counter);
991 
992 	if (sbi->s_log_groups_per_flex) {
993 		flex_group = ext4_flex_group(sbi, group);
994 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
995 	}
996 
997 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
998 	/* This is the optimal IO size (for stat), not the fs block size */
999 	inode->i_blocks = 0;
1000 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1001 						       ext4_current_time(inode);
1002 
1003 	memset(ei->i_data, 0, sizeof(ei->i_data));
1004 	ei->i_dir_start_lookup = 0;
1005 	ei->i_disksize = 0;
1006 
1007 	/* Don't inherit extent flag from directory, amongst others. */
1008 	ei->i_flags =
1009 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1010 	ei->i_file_acl = 0;
1011 	ei->i_dtime = 0;
1012 	ei->i_block_group = group;
1013 	ei->i_last_alloc_group = ~0;
1014 
1015 	ext4_set_inode_flags(inode);
1016 	if (IS_DIRSYNC(inode))
1017 		ext4_handle_sync(handle);
1018 	if (insert_inode_locked(inode) < 0) {
1019 		/*
1020 		 * Likely a bitmap corruption causing inode to be allocated
1021 		 * twice.
1022 		 */
1023 		err = -EIO;
1024 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1025 			   inode->i_ino);
1026 		goto out;
1027 	}
1028 	spin_lock(&sbi->s_next_gen_lock);
1029 	inode->i_generation = sbi->s_next_generation++;
1030 	spin_unlock(&sbi->s_next_gen_lock);
1031 
1032 	/* Precompute checksum seed for inode metadata */
1033 	if (ext4_has_metadata_csum(sb)) {
1034 		__u32 csum;
1035 		__le32 inum = cpu_to_le32(inode->i_ino);
1036 		__le32 gen = cpu_to_le32(inode->i_generation);
1037 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1038 				   sizeof(inum));
1039 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1040 					      sizeof(gen));
1041 	}
1042 
1043 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1044 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1045 
1046 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1047 	ei->i_inline_off = 0;
1048 	if (ext4_has_feature_inline_data(sb))
1049 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1050 	ret = inode;
1051 	err = dquot_alloc_inode(inode);
1052 	if (err)
1053 		goto fail_drop;
1054 
1055 	/*
1056 	 * Since the encryption xattr will always be unique, create it first so
1057 	 * that it's less likely to end up in an external xattr block and
1058 	 * prevent its deduplication.
1059 	 */
1060 	if (encrypt) {
1061 		err = fscrypt_inherit_context(dir, inode, handle, true);
1062 		if (err)
1063 			goto fail_free_drop;
1064 	}
1065 
1066 	err = ext4_init_acl(handle, inode, dir);
1067 	if (err)
1068 		goto fail_free_drop;
1069 
1070 	err = ext4_init_security(handle, inode, dir, qstr);
1071 	if (err)
1072 		goto fail_free_drop;
1073 
1074 	if (ext4_has_feature_extents(sb)) {
1075 		/* set extent flag only for directory, file and normal symlink*/
1076 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1077 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1078 			ext4_ext_tree_init(handle, inode);
1079 		}
1080 	}
1081 
1082 	if (ext4_handle_valid(handle)) {
1083 		ei->i_sync_tid = handle->h_transaction->t_tid;
1084 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1085 	}
1086 
1087 	err = ext4_mark_inode_dirty(handle, inode);
1088 	if (err) {
1089 		ext4_std_error(sb, err);
1090 		goto fail_free_drop;
1091 	}
1092 
1093 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1094 	trace_ext4_allocate_inode(inode, dir, mode);
1095 	brelse(inode_bitmap_bh);
1096 	return ret;
1097 
1098 fail_free_drop:
1099 	dquot_free_inode(inode);
1100 fail_drop:
1101 	clear_nlink(inode);
1102 	unlock_new_inode(inode);
1103 out:
1104 	dquot_drop(inode);
1105 	inode->i_flags |= S_NOQUOTA;
1106 	iput(inode);
1107 	brelse(inode_bitmap_bh);
1108 	return ERR_PTR(err);
1109 }
1110 
1111 /* Verify that we are loading a valid orphan from disk */
ext4_orphan_get(struct super_block * sb,unsigned long ino)1112 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1113 {
1114 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1115 	ext4_group_t block_group;
1116 	int bit;
1117 	struct buffer_head *bitmap_bh = NULL;
1118 	struct inode *inode = NULL;
1119 	int err = -EFSCORRUPTED;
1120 
1121 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1122 		goto bad_orphan;
1123 
1124 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1125 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1126 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1127 	if (IS_ERR(bitmap_bh)) {
1128 		ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1129 			   ino, PTR_ERR(bitmap_bh));
1130 		return (struct inode *) bitmap_bh;
1131 	}
1132 
1133 	/* Having the inode bit set should be a 100% indicator that this
1134 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1135 	 * inodes that were being truncated, so we can't check i_nlink==0.
1136 	 */
1137 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1138 		goto bad_orphan;
1139 
1140 	inode = ext4_iget(sb, ino);
1141 	if (IS_ERR(inode)) {
1142 		err = PTR_ERR(inode);
1143 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1144 			   ino, err);
1145 		return inode;
1146 	}
1147 
1148 	/*
1149 	 * If the orphans has i_nlinks > 0 then it should be able to
1150 	 * be truncated, otherwise it won't be removed from the orphan
1151 	 * list during processing and an infinite loop will result.
1152 	 * Similarly, it must not be a bad inode.
1153 	 */
1154 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1155 	    is_bad_inode(inode))
1156 		goto bad_orphan;
1157 
1158 	if (NEXT_ORPHAN(inode) > max_ino)
1159 		goto bad_orphan;
1160 	brelse(bitmap_bh);
1161 	return inode;
1162 
1163 bad_orphan:
1164 	ext4_error(sb, "bad orphan inode %lu", ino);
1165 	if (bitmap_bh)
1166 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1167 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1168 		       ext4_test_bit(bit, bitmap_bh->b_data));
1169 	if (inode) {
1170 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1171 		       is_bad_inode(inode));
1172 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1173 		       NEXT_ORPHAN(inode));
1174 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1175 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1176 		/* Avoid freeing blocks if we got a bad deleted inode */
1177 		if (inode->i_nlink == 0)
1178 			inode->i_blocks = 0;
1179 		iput(inode);
1180 	}
1181 	brelse(bitmap_bh);
1182 	return ERR_PTR(err);
1183 }
1184 
ext4_count_free_inodes(struct super_block * sb)1185 unsigned long ext4_count_free_inodes(struct super_block *sb)
1186 {
1187 	unsigned long desc_count;
1188 	struct ext4_group_desc *gdp;
1189 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1190 #ifdef EXT4FS_DEBUG
1191 	struct ext4_super_block *es;
1192 	unsigned long bitmap_count, x;
1193 	struct buffer_head *bitmap_bh = NULL;
1194 
1195 	es = EXT4_SB(sb)->s_es;
1196 	desc_count = 0;
1197 	bitmap_count = 0;
1198 	gdp = NULL;
1199 	for (i = 0; i < ngroups; i++) {
1200 		gdp = ext4_get_group_desc(sb, i, NULL);
1201 		if (!gdp)
1202 			continue;
1203 		desc_count += ext4_free_inodes_count(sb, gdp);
1204 		brelse(bitmap_bh);
1205 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1206 		if (IS_ERR(bitmap_bh)) {
1207 			bitmap_bh = NULL;
1208 			continue;
1209 		}
1210 
1211 		x = ext4_count_free(bitmap_bh->b_data,
1212 				    EXT4_INODES_PER_GROUP(sb) / 8);
1213 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1214 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1215 		bitmap_count += x;
1216 	}
1217 	brelse(bitmap_bh);
1218 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1219 	       "stored = %u, computed = %lu, %lu\n",
1220 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1221 	return desc_count;
1222 #else
1223 	desc_count = 0;
1224 	for (i = 0; i < ngroups; i++) {
1225 		gdp = ext4_get_group_desc(sb, i, NULL);
1226 		if (!gdp)
1227 			continue;
1228 		desc_count += ext4_free_inodes_count(sb, gdp);
1229 		cond_resched();
1230 	}
1231 	return desc_count;
1232 #endif
1233 }
1234 
1235 /* Called at mount-time, super-block is locked */
ext4_count_dirs(struct super_block * sb)1236 unsigned long ext4_count_dirs(struct super_block * sb)
1237 {
1238 	unsigned long count = 0;
1239 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1240 
1241 	for (i = 0; i < ngroups; i++) {
1242 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1243 		if (!gdp)
1244 			continue;
1245 		count += ext4_used_dirs_count(sb, gdp);
1246 	}
1247 	return count;
1248 }
1249 
1250 /*
1251  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1252  * inode table. Must be called without any spinlock held. The only place
1253  * where it is called from on active part of filesystem is ext4lazyinit
1254  * thread, so we do not need any special locks, however we have to prevent
1255  * inode allocation from the current group, so we take alloc_sem lock, to
1256  * block ext4_new_inode() until we are finished.
1257  */
ext4_init_inode_table(struct super_block * sb,ext4_group_t group,int barrier)1258 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1259 				 int barrier)
1260 {
1261 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1262 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1263 	struct ext4_group_desc *gdp = NULL;
1264 	struct buffer_head *group_desc_bh;
1265 	handle_t *handle;
1266 	ext4_fsblk_t blk;
1267 	int num, ret = 0, used_blks = 0;
1268 
1269 	/* This should not happen, but just to be sure check this */
1270 	if (sb->s_flags & MS_RDONLY) {
1271 		ret = 1;
1272 		goto out;
1273 	}
1274 
1275 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1276 	if (!gdp)
1277 		goto out;
1278 
1279 	/*
1280 	 * We do not need to lock this, because we are the only one
1281 	 * handling this flag.
1282 	 */
1283 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1284 		goto out;
1285 
1286 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1287 	if (IS_ERR(handle)) {
1288 		ret = PTR_ERR(handle);
1289 		goto out;
1290 	}
1291 
1292 	down_write(&grp->alloc_sem);
1293 	/*
1294 	 * If inode bitmap was already initialized there may be some
1295 	 * used inodes so we need to skip blocks with used inodes in
1296 	 * inode table.
1297 	 */
1298 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1299 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1300 			    ext4_itable_unused_count(sb, gdp)),
1301 			    sbi->s_inodes_per_block);
1302 
1303 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1304 		ext4_error(sb, "Something is wrong with group %u: "
1305 			   "used itable blocks: %d; "
1306 			   "itable unused count: %u",
1307 			   group, used_blks,
1308 			   ext4_itable_unused_count(sb, gdp));
1309 		ret = 1;
1310 		goto err_out;
1311 	}
1312 
1313 	blk = ext4_inode_table(sb, gdp) + used_blks;
1314 	num = sbi->s_itb_per_group - used_blks;
1315 
1316 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1317 	ret = ext4_journal_get_write_access(handle,
1318 					    group_desc_bh);
1319 	if (ret)
1320 		goto err_out;
1321 
1322 	/*
1323 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1324 	 * flag anyway, because obviously, when it is full it does not need
1325 	 * further zeroing.
1326 	 */
1327 	if (unlikely(num == 0))
1328 		goto skip_zeroout;
1329 
1330 	ext4_debug("going to zero out inode table in group %d\n",
1331 		   group);
1332 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1333 	if (ret < 0)
1334 		goto err_out;
1335 	if (barrier)
1336 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1337 
1338 skip_zeroout:
1339 	ext4_lock_group(sb, group);
1340 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1341 	ext4_group_desc_csum_set(sb, group, gdp);
1342 	ext4_unlock_group(sb, group);
1343 
1344 	BUFFER_TRACE(group_desc_bh,
1345 		     "call ext4_handle_dirty_metadata");
1346 	ret = ext4_handle_dirty_metadata(handle, NULL,
1347 					 group_desc_bh);
1348 
1349 err_out:
1350 	up_write(&grp->alloc_sem);
1351 	ext4_journal_stop(handle);
1352 out:
1353 	return ret;
1354 }
1355