1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include <linux/backing-dev.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
55 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
ext4_extent_block_csum(struct inode * inode,struct ext4_extent_header * eh)60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
ext4_extent_block_csum_verify(struct inode * inode,struct ext4_extent_header * eh)72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!ext4_has_metadata_csum(inode->i_sb))
78 return 1;
79
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
84 }
85
ext4_extent_block_csum_set(struct inode * inode,struct ext4_extent_header * eh)86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
88 {
89 struct ext4_extent_tail *et;
90
91 if (!ext4_has_metadata_csum(inode->i_sb))
92 return;
93
94 et = find_ext4_extent_tail(eh);
95 et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97
98 static int ext4_split_extent(handle_t *handle,
99 struct inode *inode,
100 struct ext4_ext_path **ppath,
101 struct ext4_map_blocks *map,
102 int split_flag,
103 int flags);
104
105 static int ext4_split_extent_at(handle_t *handle,
106 struct inode *inode,
107 struct ext4_ext_path **ppath,
108 ext4_lblk_t split,
109 int split_flag,
110 int flags);
111
112 static int ext4_find_delayed_extent(struct inode *inode,
113 struct extent_status *newes);
114
ext4_ext_truncate_extend_restart(handle_t * handle,struct inode * inode,int needed)115 static int ext4_ext_truncate_extend_restart(handle_t *handle,
116 struct inode *inode,
117 int needed)
118 {
119 int err;
120
121 if (!ext4_handle_valid(handle))
122 return 0;
123 if (handle->h_buffer_credits >= needed)
124 return 0;
125 /*
126 * If we need to extend the journal get a few extra blocks
127 * while we're at it for efficiency's sake.
128 */
129 needed += 3;
130 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
131 if (err <= 0)
132 return err;
133 err = ext4_truncate_restart_trans(handle, inode, needed);
134 if (err == 0)
135 err = -EAGAIN;
136
137 return err;
138 }
139
140 /*
141 * could return:
142 * - EROFS
143 * - ENOMEM
144 */
ext4_ext_get_access(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
146 struct ext4_ext_path *path)
147 {
148 if (path->p_bh) {
149 /* path points to block */
150 BUFFER_TRACE(path->p_bh, "get_write_access");
151 return ext4_journal_get_write_access(handle, path->p_bh);
152 }
153 /* path points to leaf/index in inode body */
154 /* we use in-core data, no need to protect them */
155 return 0;
156 }
157
158 /*
159 * could return:
160 * - EROFS
161 * - ENOMEM
162 * - EIO
163 */
__ext4_ext_dirty(const char * where,unsigned int line,handle_t * handle,struct inode * inode,struct ext4_ext_path * path)164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
165 struct inode *inode, struct ext4_ext_path *path)
166 {
167 int err;
168
169 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
170 if (path->p_bh) {
171 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
172 /* path points to block */
173 err = __ext4_handle_dirty_metadata(where, line, handle,
174 inode, path->p_bh);
175 } else {
176 /* path points to leaf/index in inode body */
177 err = ext4_mark_inode_dirty(handle, inode);
178 }
179 return err;
180 }
181
ext4_ext_find_goal(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
183 struct ext4_ext_path *path,
184 ext4_lblk_t block)
185 {
186 if (path) {
187 int depth = path->p_depth;
188 struct ext4_extent *ex;
189
190 /*
191 * Try to predict block placement assuming that we are
192 * filling in a file which will eventually be
193 * non-sparse --- i.e., in the case of libbfd writing
194 * an ELF object sections out-of-order but in a way
195 * the eventually results in a contiguous object or
196 * executable file, or some database extending a table
197 * space file. However, this is actually somewhat
198 * non-ideal if we are writing a sparse file such as
199 * qemu or KVM writing a raw image file that is going
200 * to stay fairly sparse, since it will end up
201 * fragmenting the file system's free space. Maybe we
202 * should have some hueristics or some way to allow
203 * userspace to pass a hint to file system,
204 * especially if the latter case turns out to be
205 * common.
206 */
207 ex = path[depth].p_ext;
208 if (ex) {
209 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
210 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
211
212 if (block > ext_block)
213 return ext_pblk + (block - ext_block);
214 else
215 return ext_pblk - (ext_block - block);
216 }
217
218 /* it looks like index is empty;
219 * try to find starting block from index itself */
220 if (path[depth].p_bh)
221 return path[depth].p_bh->b_blocknr;
222 }
223
224 /* OK. use inode's group */
225 return ext4_inode_to_goal_block(inode);
226 }
227
228 /*
229 * Allocation for a meta data block
230 */
231 static ext4_fsblk_t
ext4_ext_new_meta_block(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex,int * err,unsigned int flags)232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
233 struct ext4_ext_path *path,
234 struct ext4_extent *ex, int *err, unsigned int flags)
235 {
236 ext4_fsblk_t goal, newblock;
237
238 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
239 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
240 NULL, err);
241 return newblock;
242 }
243
ext4_ext_space_block(struct inode * inode,int check)244 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 {
246 int size;
247
248 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
249 / sizeof(struct ext4_extent);
250 #ifdef AGGRESSIVE_TEST
251 if (!check && size > 6)
252 size = 6;
253 #endif
254 return size;
255 }
256
ext4_ext_space_block_idx(struct inode * inode,int check)257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 {
259 int size;
260
261 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
262 / sizeof(struct ext4_extent_idx);
263 #ifdef AGGRESSIVE_TEST
264 if (!check && size > 5)
265 size = 5;
266 #endif
267 return size;
268 }
269
ext4_ext_space_root(struct inode * inode,int check)270 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 {
272 int size;
273
274 size = sizeof(EXT4_I(inode)->i_data);
275 size -= sizeof(struct ext4_extent_header);
276 size /= sizeof(struct ext4_extent);
277 #ifdef AGGRESSIVE_TEST
278 if (!check && size > 3)
279 size = 3;
280 #endif
281 return size;
282 }
283
ext4_ext_space_root_idx(struct inode * inode,int check)284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 {
286 int size;
287
288 size = sizeof(EXT4_I(inode)->i_data);
289 size -= sizeof(struct ext4_extent_header);
290 size /= sizeof(struct ext4_extent_idx);
291 #ifdef AGGRESSIVE_TEST
292 if (!check && size > 4)
293 size = 4;
294 #endif
295 return size;
296 }
297
298 static inline int
ext4_force_split_extent_at(handle_t * handle,struct inode * inode,struct ext4_ext_path ** ppath,ext4_lblk_t lblk,int nofail)299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
300 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
301 int nofail)
302 {
303 struct ext4_ext_path *path = *ppath;
304 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
305
306 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
307 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
308 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
309 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
310 }
311
312 /*
313 * Calculate the number of metadata blocks needed
314 * to allocate @blocks
315 * Worse case is one block per extent
316 */
ext4_ext_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
318 {
319 struct ext4_inode_info *ei = EXT4_I(inode);
320 int idxs;
321
322 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
323 / sizeof(struct ext4_extent_idx));
324
325 /*
326 * If the new delayed allocation block is contiguous with the
327 * previous da block, it can share index blocks with the
328 * previous block, so we only need to allocate a new index
329 * block every idxs leaf blocks. At ldxs**2 blocks, we need
330 * an additional index block, and at ldxs**3 blocks, yet
331 * another index blocks.
332 */
333 if (ei->i_da_metadata_calc_len &&
334 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
335 int num = 0;
336
337 if ((ei->i_da_metadata_calc_len % idxs) == 0)
338 num++;
339 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
340 num++;
341 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
342 num++;
343 ei->i_da_metadata_calc_len = 0;
344 } else
345 ei->i_da_metadata_calc_len++;
346 ei->i_da_metadata_calc_last_lblock++;
347 return num;
348 }
349
350 /*
351 * In the worst case we need a new set of index blocks at
352 * every level of the inode's extent tree.
353 */
354 ei->i_da_metadata_calc_len = 1;
355 ei->i_da_metadata_calc_last_lblock = lblock;
356 return ext_depth(inode) + 1;
357 }
358
359 static int
ext4_ext_max_entries(struct inode * inode,int depth)360 ext4_ext_max_entries(struct inode *inode, int depth)
361 {
362 int max;
363
364 if (depth == ext_depth(inode)) {
365 if (depth == 0)
366 max = ext4_ext_space_root(inode, 1);
367 else
368 max = ext4_ext_space_root_idx(inode, 1);
369 } else {
370 if (depth == 0)
371 max = ext4_ext_space_block(inode, 1);
372 else
373 max = ext4_ext_space_block_idx(inode, 1);
374 }
375
376 return max;
377 }
378
ext4_valid_extent(struct inode * inode,struct ext4_extent * ext)379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
380 {
381 ext4_fsblk_t block = ext4_ext_pblock(ext);
382 int len = ext4_ext_get_actual_len(ext);
383 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
384
385 /*
386 * We allow neither:
387 * - zero length
388 * - overflow/wrap-around
389 */
390 if (lblock + len <= lblock)
391 return 0;
392 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
393 }
394
ext4_valid_extent_idx(struct inode * inode,struct ext4_extent_idx * ext_idx)395 static int ext4_valid_extent_idx(struct inode *inode,
396 struct ext4_extent_idx *ext_idx)
397 {
398 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
399
400 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
401 }
402
ext4_valid_extent_entries(struct inode * inode,struct ext4_extent_header * eh,int depth)403 static int ext4_valid_extent_entries(struct inode *inode,
404 struct ext4_extent_header *eh,
405 int depth)
406 {
407 unsigned short entries;
408 if (eh->eh_entries == 0)
409 return 1;
410
411 entries = le16_to_cpu(eh->eh_entries);
412
413 if (depth == 0) {
414 /* leaf entries */
415 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
416 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
417 ext4_fsblk_t pblock = 0;
418 ext4_lblk_t lblock = 0;
419 ext4_lblk_t prev = 0;
420 int len = 0;
421 while (entries) {
422 if (!ext4_valid_extent(inode, ext))
423 return 0;
424
425 /* Check for overlapping extents */
426 lblock = le32_to_cpu(ext->ee_block);
427 len = ext4_ext_get_actual_len(ext);
428 if ((lblock <= prev) && prev) {
429 pblock = ext4_ext_pblock(ext);
430 es->s_last_error_block = cpu_to_le64(pblock);
431 return 0;
432 }
433 ext++;
434 entries--;
435 prev = lblock + len - 1;
436 }
437 } else {
438 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
439 while (entries) {
440 if (!ext4_valid_extent_idx(inode, ext_idx))
441 return 0;
442 ext_idx++;
443 entries--;
444 }
445 }
446 return 1;
447 }
448
__ext4_ext_check(const char * function,unsigned int line,struct inode * inode,struct ext4_extent_header * eh,int depth,ext4_fsblk_t pblk)449 static int __ext4_ext_check(const char *function, unsigned int line,
450 struct inode *inode, struct ext4_extent_header *eh,
451 int depth, ext4_fsblk_t pblk)
452 {
453 const char *error_msg;
454 int max = 0, err = -EFSCORRUPTED;
455
456 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
457 error_msg = "invalid magic";
458 goto corrupted;
459 }
460 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
461 error_msg = "unexpected eh_depth";
462 goto corrupted;
463 }
464 if (unlikely(eh->eh_max == 0)) {
465 error_msg = "invalid eh_max";
466 goto corrupted;
467 }
468 max = ext4_ext_max_entries(inode, depth);
469 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
470 error_msg = "too large eh_max";
471 goto corrupted;
472 }
473 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
474 error_msg = "invalid eh_entries";
475 goto corrupted;
476 }
477 if (!ext4_valid_extent_entries(inode, eh, depth)) {
478 error_msg = "invalid extent entries";
479 goto corrupted;
480 }
481 if (unlikely(depth > 32)) {
482 error_msg = "too large eh_depth";
483 goto corrupted;
484 }
485 /* Verify checksum on non-root extent tree nodes */
486 if (ext_depth(inode) != depth &&
487 !ext4_extent_block_csum_verify(inode, eh)) {
488 error_msg = "extent tree corrupted";
489 err = -EFSBADCRC;
490 goto corrupted;
491 }
492 return 0;
493
494 corrupted:
495 ext4_error_inode(inode, function, line, 0,
496 "pblk %llu bad header/extent: %s - magic %x, "
497 "entries %u, max %u(%u), depth %u(%u)",
498 (unsigned long long) pblk, error_msg,
499 le16_to_cpu(eh->eh_magic),
500 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
501 max, le16_to_cpu(eh->eh_depth), depth);
502 return err;
503 }
504
505 #define ext4_ext_check(inode, eh, depth, pblk) \
506 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
507
ext4_ext_check_inode(struct inode * inode)508 int ext4_ext_check_inode(struct inode *inode)
509 {
510 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
511 }
512
513 static struct buffer_head *
__read_extent_tree_block(const char * function,unsigned int line,struct inode * inode,ext4_fsblk_t pblk,int depth,int flags)514 __read_extent_tree_block(const char *function, unsigned int line,
515 struct inode *inode, ext4_fsblk_t pblk, int depth,
516 int flags)
517 {
518 struct buffer_head *bh;
519 int err;
520
521 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
522 if (unlikely(!bh))
523 return ERR_PTR(-ENOMEM);
524
525 if (!bh_uptodate_or_lock(bh)) {
526 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
527 err = bh_submit_read(bh);
528 if (err < 0)
529 goto errout;
530 }
531 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
532 return bh;
533 err = __ext4_ext_check(function, line, inode,
534 ext_block_hdr(bh), depth, pblk);
535 if (err)
536 goto errout;
537 set_buffer_verified(bh);
538 /*
539 * If this is a leaf block, cache all of its entries
540 */
541 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
542 struct ext4_extent_header *eh = ext_block_hdr(bh);
543 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
544 ext4_lblk_t prev = 0;
545 int i;
546
547 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
548 unsigned int status = EXTENT_STATUS_WRITTEN;
549 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
550 int len = ext4_ext_get_actual_len(ex);
551
552 if (prev && (prev != lblk))
553 ext4_es_cache_extent(inode, prev,
554 lblk - prev, ~0,
555 EXTENT_STATUS_HOLE);
556
557 if (ext4_ext_is_unwritten(ex))
558 status = EXTENT_STATUS_UNWRITTEN;
559 ext4_es_cache_extent(inode, lblk, len,
560 ext4_ext_pblock(ex), status);
561 prev = lblk + len;
562 }
563 }
564 return bh;
565 errout:
566 put_bh(bh);
567 return ERR_PTR(err);
568
569 }
570
571 #define read_extent_tree_block(inode, pblk, depth, flags) \
572 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
573 (depth), (flags))
574
575 /*
576 * This function is called to cache a file's extent information in the
577 * extent status tree
578 */
ext4_ext_precache(struct inode * inode)579 int ext4_ext_precache(struct inode *inode)
580 {
581 struct ext4_inode_info *ei = EXT4_I(inode);
582 struct ext4_ext_path *path = NULL;
583 struct buffer_head *bh;
584 int i = 0, depth, ret = 0;
585
586 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
587 return 0; /* not an extent-mapped inode */
588
589 down_read(&ei->i_data_sem);
590 depth = ext_depth(inode);
591
592 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
593 GFP_NOFS);
594 if (path == NULL) {
595 up_read(&ei->i_data_sem);
596 return -ENOMEM;
597 }
598
599 /* Don't cache anything if there are no external extent blocks */
600 if (depth == 0)
601 goto out;
602 path[0].p_hdr = ext_inode_hdr(inode);
603 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
604 if (ret)
605 goto out;
606 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
607 while (i >= 0) {
608 /*
609 * If this is a leaf block or we've reached the end of
610 * the index block, go up
611 */
612 if ((i == depth) ||
613 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
614 brelse(path[i].p_bh);
615 path[i].p_bh = NULL;
616 i--;
617 continue;
618 }
619 bh = read_extent_tree_block(inode,
620 ext4_idx_pblock(path[i].p_idx++),
621 depth - i - 1,
622 EXT4_EX_FORCE_CACHE);
623 if (IS_ERR(bh)) {
624 ret = PTR_ERR(bh);
625 break;
626 }
627 i++;
628 path[i].p_bh = bh;
629 path[i].p_hdr = ext_block_hdr(bh);
630 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
631 }
632 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
633 out:
634 up_read(&ei->i_data_sem);
635 ext4_ext_drop_refs(path);
636 kfree(path);
637 return ret;
638 }
639
640 #ifdef EXT_DEBUG
ext4_ext_show_path(struct inode * inode,struct ext4_ext_path * path)641 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
642 {
643 int k, l = path->p_depth;
644
645 ext_debug("path:");
646 for (k = 0; k <= l; k++, path++) {
647 if (path->p_idx) {
648 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
649 ext4_idx_pblock(path->p_idx));
650 } else if (path->p_ext) {
651 ext_debug(" %d:[%d]%d:%llu ",
652 le32_to_cpu(path->p_ext->ee_block),
653 ext4_ext_is_unwritten(path->p_ext),
654 ext4_ext_get_actual_len(path->p_ext),
655 ext4_ext_pblock(path->p_ext));
656 } else
657 ext_debug(" []");
658 }
659 ext_debug("\n");
660 }
661
ext4_ext_show_leaf(struct inode * inode,struct ext4_ext_path * path)662 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
663 {
664 int depth = ext_depth(inode);
665 struct ext4_extent_header *eh;
666 struct ext4_extent *ex;
667 int i;
668
669 if (!path)
670 return;
671
672 eh = path[depth].p_hdr;
673 ex = EXT_FIRST_EXTENT(eh);
674
675 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
676
677 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
678 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
679 ext4_ext_is_unwritten(ex),
680 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
681 }
682 ext_debug("\n");
683 }
684
ext4_ext_show_move(struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t newblock,int level)685 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
686 ext4_fsblk_t newblock, int level)
687 {
688 int depth = ext_depth(inode);
689 struct ext4_extent *ex;
690
691 if (depth != level) {
692 struct ext4_extent_idx *idx;
693 idx = path[level].p_idx;
694 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
695 ext_debug("%d: move %d:%llu in new index %llu\n", level,
696 le32_to_cpu(idx->ei_block),
697 ext4_idx_pblock(idx),
698 newblock);
699 idx++;
700 }
701
702 return;
703 }
704
705 ex = path[depth].p_ext;
706 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
707 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
708 le32_to_cpu(ex->ee_block),
709 ext4_ext_pblock(ex),
710 ext4_ext_is_unwritten(ex),
711 ext4_ext_get_actual_len(ex),
712 newblock);
713 ex++;
714 }
715 }
716
717 #else
718 #define ext4_ext_show_path(inode, path)
719 #define ext4_ext_show_leaf(inode, path)
720 #define ext4_ext_show_move(inode, path, newblock, level)
721 #endif
722
ext4_ext_drop_refs(struct ext4_ext_path * path)723 void ext4_ext_drop_refs(struct ext4_ext_path *path)
724 {
725 int depth, i;
726
727 if (!path)
728 return;
729 depth = path->p_depth;
730 for (i = 0; i <= depth; i++, path++)
731 if (path->p_bh) {
732 brelse(path->p_bh);
733 path->p_bh = NULL;
734 }
735 }
736
737 /*
738 * ext4_ext_binsearch_idx:
739 * binary search for the closest index of the given block
740 * the header must be checked before calling this
741 */
742 static void
ext4_ext_binsearch_idx(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)743 ext4_ext_binsearch_idx(struct inode *inode,
744 struct ext4_ext_path *path, ext4_lblk_t block)
745 {
746 struct ext4_extent_header *eh = path->p_hdr;
747 struct ext4_extent_idx *r, *l, *m;
748
749
750 ext_debug("binsearch for %u(idx): ", block);
751
752 l = EXT_FIRST_INDEX(eh) + 1;
753 r = EXT_LAST_INDEX(eh);
754 while (l <= r) {
755 m = l + (r - l) / 2;
756 if (block < le32_to_cpu(m->ei_block))
757 r = m - 1;
758 else
759 l = m + 1;
760 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
761 m, le32_to_cpu(m->ei_block),
762 r, le32_to_cpu(r->ei_block));
763 }
764
765 path->p_idx = l - 1;
766 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
767 ext4_idx_pblock(path->p_idx));
768
769 #ifdef CHECK_BINSEARCH
770 {
771 struct ext4_extent_idx *chix, *ix;
772 int k;
773
774 chix = ix = EXT_FIRST_INDEX(eh);
775 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
776 if (k != 0 &&
777 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
778 printk(KERN_DEBUG "k=%d, ix=0x%p, "
779 "first=0x%p\n", k,
780 ix, EXT_FIRST_INDEX(eh));
781 printk(KERN_DEBUG "%u <= %u\n",
782 le32_to_cpu(ix->ei_block),
783 le32_to_cpu(ix[-1].ei_block));
784 }
785 BUG_ON(k && le32_to_cpu(ix->ei_block)
786 <= le32_to_cpu(ix[-1].ei_block));
787 if (block < le32_to_cpu(ix->ei_block))
788 break;
789 chix = ix;
790 }
791 BUG_ON(chix != path->p_idx);
792 }
793 #endif
794
795 }
796
797 /*
798 * ext4_ext_binsearch:
799 * binary search for closest extent of the given block
800 * the header must be checked before calling this
801 */
802 static void
ext4_ext_binsearch(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)803 ext4_ext_binsearch(struct inode *inode,
804 struct ext4_ext_path *path, ext4_lblk_t block)
805 {
806 struct ext4_extent_header *eh = path->p_hdr;
807 struct ext4_extent *r, *l, *m;
808
809 if (eh->eh_entries == 0) {
810 /*
811 * this leaf is empty:
812 * we get such a leaf in split/add case
813 */
814 return;
815 }
816
817 ext_debug("binsearch for %u: ", block);
818
819 l = EXT_FIRST_EXTENT(eh) + 1;
820 r = EXT_LAST_EXTENT(eh);
821
822 while (l <= r) {
823 m = l + (r - l) / 2;
824 if (block < le32_to_cpu(m->ee_block))
825 r = m - 1;
826 else
827 l = m + 1;
828 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
829 m, le32_to_cpu(m->ee_block),
830 r, le32_to_cpu(r->ee_block));
831 }
832
833 path->p_ext = l - 1;
834 ext_debug(" -> %d:%llu:[%d]%d ",
835 le32_to_cpu(path->p_ext->ee_block),
836 ext4_ext_pblock(path->p_ext),
837 ext4_ext_is_unwritten(path->p_ext),
838 ext4_ext_get_actual_len(path->p_ext));
839
840 #ifdef CHECK_BINSEARCH
841 {
842 struct ext4_extent *chex, *ex;
843 int k;
844
845 chex = ex = EXT_FIRST_EXTENT(eh);
846 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
847 BUG_ON(k && le32_to_cpu(ex->ee_block)
848 <= le32_to_cpu(ex[-1].ee_block));
849 if (block < le32_to_cpu(ex->ee_block))
850 break;
851 chex = ex;
852 }
853 BUG_ON(chex != path->p_ext);
854 }
855 #endif
856
857 }
858
ext4_ext_tree_init(handle_t * handle,struct inode * inode)859 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
860 {
861 struct ext4_extent_header *eh;
862
863 eh = ext_inode_hdr(inode);
864 eh->eh_depth = 0;
865 eh->eh_entries = 0;
866 eh->eh_magic = EXT4_EXT_MAGIC;
867 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
868 ext4_mark_inode_dirty(handle, inode);
869 return 0;
870 }
871
872 struct ext4_ext_path *
ext4_find_extent(struct inode * inode,ext4_lblk_t block,struct ext4_ext_path ** orig_path,int flags)873 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
874 struct ext4_ext_path **orig_path, int flags)
875 {
876 struct ext4_extent_header *eh;
877 struct buffer_head *bh;
878 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
879 short int depth, i, ppos = 0;
880 int ret;
881
882 eh = ext_inode_hdr(inode);
883 depth = ext_depth(inode);
884
885 if (path) {
886 ext4_ext_drop_refs(path);
887 if (depth > path[0].p_maxdepth) {
888 kfree(path);
889 *orig_path = path = NULL;
890 }
891 }
892 if (!path) {
893 /* account possible depth increase */
894 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
895 GFP_NOFS);
896 if (unlikely(!path))
897 return ERR_PTR(-ENOMEM);
898 path[0].p_maxdepth = depth + 1;
899 }
900 path[0].p_hdr = eh;
901 path[0].p_bh = NULL;
902
903 i = depth;
904 /* walk through the tree */
905 while (i) {
906 ext_debug("depth %d: num %d, max %d\n",
907 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
908
909 ext4_ext_binsearch_idx(inode, path + ppos, block);
910 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
911 path[ppos].p_depth = i;
912 path[ppos].p_ext = NULL;
913
914 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
915 flags);
916 if (IS_ERR(bh)) {
917 ret = PTR_ERR(bh);
918 goto err;
919 }
920
921 eh = ext_block_hdr(bh);
922 ppos++;
923 path[ppos].p_bh = bh;
924 path[ppos].p_hdr = eh;
925 }
926
927 path[ppos].p_depth = i;
928 path[ppos].p_ext = NULL;
929 path[ppos].p_idx = NULL;
930
931 /* find extent */
932 ext4_ext_binsearch(inode, path + ppos, block);
933 /* if not an empty leaf */
934 if (path[ppos].p_ext)
935 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
936
937 ext4_ext_show_path(inode, path);
938
939 return path;
940
941 err:
942 ext4_ext_drop_refs(path);
943 kfree(path);
944 if (orig_path)
945 *orig_path = NULL;
946 return ERR_PTR(ret);
947 }
948
949 /*
950 * ext4_ext_insert_index:
951 * insert new index [@logical;@ptr] into the block at @curp;
952 * check where to insert: before @curp or after @curp
953 */
ext4_ext_insert_index(handle_t * handle,struct inode * inode,struct ext4_ext_path * curp,int logical,ext4_fsblk_t ptr)954 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
955 struct ext4_ext_path *curp,
956 int logical, ext4_fsblk_t ptr)
957 {
958 struct ext4_extent_idx *ix;
959 int len, err;
960
961 err = ext4_ext_get_access(handle, inode, curp);
962 if (err)
963 return err;
964
965 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
966 EXT4_ERROR_INODE(inode,
967 "logical %d == ei_block %d!",
968 logical, le32_to_cpu(curp->p_idx->ei_block));
969 return -EFSCORRUPTED;
970 }
971
972 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
973 >= le16_to_cpu(curp->p_hdr->eh_max))) {
974 EXT4_ERROR_INODE(inode,
975 "eh_entries %d >= eh_max %d!",
976 le16_to_cpu(curp->p_hdr->eh_entries),
977 le16_to_cpu(curp->p_hdr->eh_max));
978 return -EFSCORRUPTED;
979 }
980
981 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
982 /* insert after */
983 ext_debug("insert new index %d after: %llu\n", logical, ptr);
984 ix = curp->p_idx + 1;
985 } else {
986 /* insert before */
987 ext_debug("insert new index %d before: %llu\n", logical, ptr);
988 ix = curp->p_idx;
989 }
990
991 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
992 BUG_ON(len < 0);
993 if (len > 0) {
994 ext_debug("insert new index %d: "
995 "move %d indices from 0x%p to 0x%p\n",
996 logical, len, ix, ix + 1);
997 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
998 }
999
1000 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
1001 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
1002 return -EFSCORRUPTED;
1003 }
1004
1005 ix->ei_block = cpu_to_le32(logical);
1006 ext4_idx_store_pblock(ix, ptr);
1007 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1008
1009 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1010 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1011 return -EFSCORRUPTED;
1012 }
1013
1014 err = ext4_ext_dirty(handle, inode, curp);
1015 ext4_std_error(inode->i_sb, err);
1016
1017 return err;
1018 }
1019
1020 /*
1021 * ext4_ext_split:
1022 * inserts new subtree into the path, using free index entry
1023 * at depth @at:
1024 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1025 * - makes decision where to split
1026 * - moves remaining extents and index entries (right to the split point)
1027 * into the newly allocated blocks
1028 * - initializes subtree
1029 */
ext4_ext_split(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext,int at)1030 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1031 unsigned int flags,
1032 struct ext4_ext_path *path,
1033 struct ext4_extent *newext, int at)
1034 {
1035 struct buffer_head *bh = NULL;
1036 int depth = ext_depth(inode);
1037 struct ext4_extent_header *neh;
1038 struct ext4_extent_idx *fidx;
1039 int i = at, k, m, a;
1040 ext4_fsblk_t newblock, oldblock;
1041 __le32 border;
1042 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1043 int err = 0;
1044
1045 /* make decision: where to split? */
1046 /* FIXME: now decision is simplest: at current extent */
1047
1048 /* if current leaf will be split, then we should use
1049 * border from split point */
1050 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1051 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1052 return -EFSCORRUPTED;
1053 }
1054 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1055 border = path[depth].p_ext[1].ee_block;
1056 ext_debug("leaf will be split."
1057 " next leaf starts at %d\n",
1058 le32_to_cpu(border));
1059 } else {
1060 border = newext->ee_block;
1061 ext_debug("leaf will be added."
1062 " next leaf starts at %d\n",
1063 le32_to_cpu(border));
1064 }
1065
1066 /*
1067 * If error occurs, then we break processing
1068 * and mark filesystem read-only. index won't
1069 * be inserted and tree will be in consistent
1070 * state. Next mount will repair buffers too.
1071 */
1072
1073 /*
1074 * Get array to track all allocated blocks.
1075 * We need this to handle errors and free blocks
1076 * upon them.
1077 */
1078 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1079 if (!ablocks)
1080 return -ENOMEM;
1081
1082 /* allocate all needed blocks */
1083 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1084 for (a = 0; a < depth - at; a++) {
1085 newblock = ext4_ext_new_meta_block(handle, inode, path,
1086 newext, &err, flags);
1087 if (newblock == 0)
1088 goto cleanup;
1089 ablocks[a] = newblock;
1090 }
1091
1092 /* initialize new leaf */
1093 newblock = ablocks[--a];
1094 if (unlikely(newblock == 0)) {
1095 EXT4_ERROR_INODE(inode, "newblock == 0!");
1096 err = -EFSCORRUPTED;
1097 goto cleanup;
1098 }
1099 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1100 if (unlikely(!bh)) {
1101 err = -ENOMEM;
1102 goto cleanup;
1103 }
1104 lock_buffer(bh);
1105
1106 err = ext4_journal_get_create_access(handle, bh);
1107 if (err)
1108 goto cleanup;
1109
1110 neh = ext_block_hdr(bh);
1111 neh->eh_entries = 0;
1112 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1113 neh->eh_magic = EXT4_EXT_MAGIC;
1114 neh->eh_depth = 0;
1115
1116 /* move remainder of path[depth] to the new leaf */
1117 if (unlikely(path[depth].p_hdr->eh_entries !=
1118 path[depth].p_hdr->eh_max)) {
1119 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1120 path[depth].p_hdr->eh_entries,
1121 path[depth].p_hdr->eh_max);
1122 err = -EFSCORRUPTED;
1123 goto cleanup;
1124 }
1125 /* start copy from next extent */
1126 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1127 ext4_ext_show_move(inode, path, newblock, depth);
1128 if (m) {
1129 struct ext4_extent *ex;
1130 ex = EXT_FIRST_EXTENT(neh);
1131 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1132 le16_add_cpu(&neh->eh_entries, m);
1133 }
1134
1135 ext4_extent_block_csum_set(inode, neh);
1136 set_buffer_uptodate(bh);
1137 unlock_buffer(bh);
1138
1139 err = ext4_handle_dirty_metadata(handle, inode, bh);
1140 if (err)
1141 goto cleanup;
1142 brelse(bh);
1143 bh = NULL;
1144
1145 /* correct old leaf */
1146 if (m) {
1147 err = ext4_ext_get_access(handle, inode, path + depth);
1148 if (err)
1149 goto cleanup;
1150 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1151 err = ext4_ext_dirty(handle, inode, path + depth);
1152 if (err)
1153 goto cleanup;
1154
1155 }
1156
1157 /* create intermediate indexes */
1158 k = depth - at - 1;
1159 if (unlikely(k < 0)) {
1160 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1161 err = -EFSCORRUPTED;
1162 goto cleanup;
1163 }
1164 if (k)
1165 ext_debug("create %d intermediate indices\n", k);
1166 /* insert new index into current index block */
1167 /* current depth stored in i var */
1168 i = depth - 1;
1169 while (k--) {
1170 oldblock = newblock;
1171 newblock = ablocks[--a];
1172 bh = sb_getblk(inode->i_sb, newblock);
1173 if (unlikely(!bh)) {
1174 err = -ENOMEM;
1175 goto cleanup;
1176 }
1177 lock_buffer(bh);
1178
1179 err = ext4_journal_get_create_access(handle, bh);
1180 if (err)
1181 goto cleanup;
1182
1183 neh = ext_block_hdr(bh);
1184 neh->eh_entries = cpu_to_le16(1);
1185 neh->eh_magic = EXT4_EXT_MAGIC;
1186 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1187 neh->eh_depth = cpu_to_le16(depth - i);
1188 fidx = EXT_FIRST_INDEX(neh);
1189 fidx->ei_block = border;
1190 ext4_idx_store_pblock(fidx, oldblock);
1191
1192 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1193 i, newblock, le32_to_cpu(border), oldblock);
1194
1195 /* move remainder of path[i] to the new index block */
1196 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1197 EXT_LAST_INDEX(path[i].p_hdr))) {
1198 EXT4_ERROR_INODE(inode,
1199 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1200 le32_to_cpu(path[i].p_ext->ee_block));
1201 err = -EFSCORRUPTED;
1202 goto cleanup;
1203 }
1204 /* start copy indexes */
1205 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1206 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1207 EXT_MAX_INDEX(path[i].p_hdr));
1208 ext4_ext_show_move(inode, path, newblock, i);
1209 if (m) {
1210 memmove(++fidx, path[i].p_idx,
1211 sizeof(struct ext4_extent_idx) * m);
1212 le16_add_cpu(&neh->eh_entries, m);
1213 }
1214 ext4_extent_block_csum_set(inode, neh);
1215 set_buffer_uptodate(bh);
1216 unlock_buffer(bh);
1217
1218 err = ext4_handle_dirty_metadata(handle, inode, bh);
1219 if (err)
1220 goto cleanup;
1221 brelse(bh);
1222 bh = NULL;
1223
1224 /* correct old index */
1225 if (m) {
1226 err = ext4_ext_get_access(handle, inode, path + i);
1227 if (err)
1228 goto cleanup;
1229 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1230 err = ext4_ext_dirty(handle, inode, path + i);
1231 if (err)
1232 goto cleanup;
1233 }
1234
1235 i--;
1236 }
1237
1238 /* insert new index */
1239 err = ext4_ext_insert_index(handle, inode, path + at,
1240 le32_to_cpu(border), newblock);
1241
1242 cleanup:
1243 if (bh) {
1244 if (buffer_locked(bh))
1245 unlock_buffer(bh);
1246 brelse(bh);
1247 }
1248
1249 if (err) {
1250 /* free all allocated blocks in error case */
1251 for (i = 0; i < depth; i++) {
1252 if (!ablocks[i])
1253 continue;
1254 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1255 EXT4_FREE_BLOCKS_METADATA);
1256 }
1257 }
1258 kfree(ablocks);
1259
1260 return err;
1261 }
1262
1263 /*
1264 * ext4_ext_grow_indepth:
1265 * implements tree growing procedure:
1266 * - allocates new block
1267 * - moves top-level data (index block or leaf) into the new block
1268 * - initializes new top-level, creating index that points to the
1269 * just created block
1270 */
ext4_ext_grow_indepth(handle_t * handle,struct inode * inode,unsigned int flags)1271 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1272 unsigned int flags)
1273 {
1274 struct ext4_extent_header *neh;
1275 struct buffer_head *bh;
1276 ext4_fsblk_t newblock, goal = 0;
1277 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1278 int err = 0;
1279
1280 /* Try to prepend new index to old one */
1281 if (ext_depth(inode))
1282 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1283 if (goal > le32_to_cpu(es->s_first_data_block)) {
1284 flags |= EXT4_MB_HINT_TRY_GOAL;
1285 goal--;
1286 } else
1287 goal = ext4_inode_to_goal_block(inode);
1288 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1289 NULL, &err);
1290 if (newblock == 0)
1291 return err;
1292
1293 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1294 if (unlikely(!bh))
1295 return -ENOMEM;
1296 lock_buffer(bh);
1297
1298 err = ext4_journal_get_create_access(handle, bh);
1299 if (err) {
1300 unlock_buffer(bh);
1301 goto out;
1302 }
1303
1304 /* move top-level index/leaf into new block */
1305 memmove(bh->b_data, EXT4_I(inode)->i_data,
1306 sizeof(EXT4_I(inode)->i_data));
1307
1308 /* set size of new block */
1309 neh = ext_block_hdr(bh);
1310 /* old root could have indexes or leaves
1311 * so calculate e_max right way */
1312 if (ext_depth(inode))
1313 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1314 else
1315 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1316 neh->eh_magic = EXT4_EXT_MAGIC;
1317 ext4_extent_block_csum_set(inode, neh);
1318 set_buffer_uptodate(bh);
1319 unlock_buffer(bh);
1320
1321 err = ext4_handle_dirty_metadata(handle, inode, bh);
1322 if (err)
1323 goto out;
1324
1325 /* Update top-level index: num,max,pointer */
1326 neh = ext_inode_hdr(inode);
1327 neh->eh_entries = cpu_to_le16(1);
1328 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1329 if (neh->eh_depth == 0) {
1330 /* Root extent block becomes index block */
1331 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1332 EXT_FIRST_INDEX(neh)->ei_block =
1333 EXT_FIRST_EXTENT(neh)->ee_block;
1334 }
1335 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1336 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1337 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1338 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1339
1340 le16_add_cpu(&neh->eh_depth, 1);
1341 ext4_mark_inode_dirty(handle, inode);
1342 out:
1343 brelse(bh);
1344
1345 return err;
1346 }
1347
1348 /*
1349 * ext4_ext_create_new_leaf:
1350 * finds empty index and adds new leaf.
1351 * if no free index is found, then it requests in-depth growing.
1352 */
ext4_ext_create_new_leaf(handle_t * handle,struct inode * inode,unsigned int mb_flags,unsigned int gb_flags,struct ext4_ext_path ** ppath,struct ext4_extent * newext)1353 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1354 unsigned int mb_flags,
1355 unsigned int gb_flags,
1356 struct ext4_ext_path **ppath,
1357 struct ext4_extent *newext)
1358 {
1359 struct ext4_ext_path *path = *ppath;
1360 struct ext4_ext_path *curp;
1361 int depth, i, err = 0;
1362
1363 repeat:
1364 i = depth = ext_depth(inode);
1365
1366 /* walk up to the tree and look for free index entry */
1367 curp = path + depth;
1368 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1369 i--;
1370 curp--;
1371 }
1372
1373 /* we use already allocated block for index block,
1374 * so subsequent data blocks should be contiguous */
1375 if (EXT_HAS_FREE_INDEX(curp)) {
1376 /* if we found index with free entry, then use that
1377 * entry: create all needed subtree and add new leaf */
1378 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1379 if (err)
1380 goto out;
1381
1382 /* refill path */
1383 path = ext4_find_extent(inode,
1384 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1385 ppath, gb_flags);
1386 if (IS_ERR(path))
1387 err = PTR_ERR(path);
1388 } else {
1389 /* tree is full, time to grow in depth */
1390 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1391 if (err)
1392 goto out;
1393
1394 /* refill path */
1395 path = ext4_find_extent(inode,
1396 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1397 ppath, gb_flags);
1398 if (IS_ERR(path)) {
1399 err = PTR_ERR(path);
1400 goto out;
1401 }
1402
1403 /*
1404 * only first (depth 0 -> 1) produces free space;
1405 * in all other cases we have to split the grown tree
1406 */
1407 depth = ext_depth(inode);
1408 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1409 /* now we need to split */
1410 goto repeat;
1411 }
1412 }
1413
1414 out:
1415 return err;
1416 }
1417
1418 /*
1419 * search the closest allocated block to the left for *logical
1420 * and returns it at @logical + it's physical address at @phys
1421 * if *logical is the smallest allocated block, the function
1422 * returns 0 at @phys
1423 * return value contains 0 (success) or error code
1424 */
ext4_ext_search_left(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys)1425 static int ext4_ext_search_left(struct inode *inode,
1426 struct ext4_ext_path *path,
1427 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1428 {
1429 struct ext4_extent_idx *ix;
1430 struct ext4_extent *ex;
1431 int depth, ee_len;
1432
1433 if (unlikely(path == NULL)) {
1434 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1435 return -EFSCORRUPTED;
1436 }
1437 depth = path->p_depth;
1438 *phys = 0;
1439
1440 if (depth == 0 && path->p_ext == NULL)
1441 return 0;
1442
1443 /* usually extent in the path covers blocks smaller
1444 * then *logical, but it can be that extent is the
1445 * first one in the file */
1446
1447 ex = path[depth].p_ext;
1448 ee_len = ext4_ext_get_actual_len(ex);
1449 if (*logical < le32_to_cpu(ex->ee_block)) {
1450 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1451 EXT4_ERROR_INODE(inode,
1452 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1453 *logical, le32_to_cpu(ex->ee_block));
1454 return -EFSCORRUPTED;
1455 }
1456 while (--depth >= 0) {
1457 ix = path[depth].p_idx;
1458 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1459 EXT4_ERROR_INODE(inode,
1460 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1461 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1462 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1463 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1464 depth);
1465 return -EFSCORRUPTED;
1466 }
1467 }
1468 return 0;
1469 }
1470
1471 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1472 EXT4_ERROR_INODE(inode,
1473 "logical %d < ee_block %d + ee_len %d!",
1474 *logical, le32_to_cpu(ex->ee_block), ee_len);
1475 return -EFSCORRUPTED;
1476 }
1477
1478 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1479 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1480 return 0;
1481 }
1482
1483 /*
1484 * search the closest allocated block to the right for *logical
1485 * and returns it at @logical + it's physical address at @phys
1486 * if *logical is the largest allocated block, the function
1487 * returns 0 at @phys
1488 * return value contains 0 (success) or error code
1489 */
ext4_ext_search_right(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys,struct ext4_extent ** ret_ex)1490 static int ext4_ext_search_right(struct inode *inode,
1491 struct ext4_ext_path *path,
1492 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1493 struct ext4_extent **ret_ex)
1494 {
1495 struct buffer_head *bh = NULL;
1496 struct ext4_extent_header *eh;
1497 struct ext4_extent_idx *ix;
1498 struct ext4_extent *ex;
1499 ext4_fsblk_t block;
1500 int depth; /* Note, NOT eh_depth; depth from top of tree */
1501 int ee_len;
1502
1503 if (unlikely(path == NULL)) {
1504 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1505 return -EFSCORRUPTED;
1506 }
1507 depth = path->p_depth;
1508 *phys = 0;
1509
1510 if (depth == 0 && path->p_ext == NULL)
1511 return 0;
1512
1513 /* usually extent in the path covers blocks smaller
1514 * then *logical, but it can be that extent is the
1515 * first one in the file */
1516
1517 ex = path[depth].p_ext;
1518 ee_len = ext4_ext_get_actual_len(ex);
1519 if (*logical < le32_to_cpu(ex->ee_block)) {
1520 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1521 EXT4_ERROR_INODE(inode,
1522 "first_extent(path[%d].p_hdr) != ex",
1523 depth);
1524 return -EFSCORRUPTED;
1525 }
1526 while (--depth >= 0) {
1527 ix = path[depth].p_idx;
1528 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1529 EXT4_ERROR_INODE(inode,
1530 "ix != EXT_FIRST_INDEX *logical %d!",
1531 *logical);
1532 return -EFSCORRUPTED;
1533 }
1534 }
1535 goto found_extent;
1536 }
1537
1538 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1539 EXT4_ERROR_INODE(inode,
1540 "logical %d < ee_block %d + ee_len %d!",
1541 *logical, le32_to_cpu(ex->ee_block), ee_len);
1542 return -EFSCORRUPTED;
1543 }
1544
1545 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1546 /* next allocated block in this leaf */
1547 ex++;
1548 goto found_extent;
1549 }
1550
1551 /* go up and search for index to the right */
1552 while (--depth >= 0) {
1553 ix = path[depth].p_idx;
1554 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1555 goto got_index;
1556 }
1557
1558 /* we've gone up to the root and found no index to the right */
1559 return 0;
1560
1561 got_index:
1562 /* we've found index to the right, let's
1563 * follow it and find the closest allocated
1564 * block to the right */
1565 ix++;
1566 block = ext4_idx_pblock(ix);
1567 while (++depth < path->p_depth) {
1568 /* subtract from p_depth to get proper eh_depth */
1569 bh = read_extent_tree_block(inode, block,
1570 path->p_depth - depth, 0);
1571 if (IS_ERR(bh))
1572 return PTR_ERR(bh);
1573 eh = ext_block_hdr(bh);
1574 ix = EXT_FIRST_INDEX(eh);
1575 block = ext4_idx_pblock(ix);
1576 put_bh(bh);
1577 }
1578
1579 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1580 if (IS_ERR(bh))
1581 return PTR_ERR(bh);
1582 eh = ext_block_hdr(bh);
1583 ex = EXT_FIRST_EXTENT(eh);
1584 found_extent:
1585 *logical = le32_to_cpu(ex->ee_block);
1586 *phys = ext4_ext_pblock(ex);
1587 *ret_ex = ex;
1588 if (bh)
1589 put_bh(bh);
1590 return 0;
1591 }
1592
1593 /*
1594 * ext4_ext_next_allocated_block:
1595 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1596 * NOTE: it considers block number from index entry as
1597 * allocated block. Thus, index entries have to be consistent
1598 * with leaves.
1599 */
1600 ext4_lblk_t
ext4_ext_next_allocated_block(struct ext4_ext_path * path)1601 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1602 {
1603 int depth;
1604
1605 BUG_ON(path == NULL);
1606 depth = path->p_depth;
1607
1608 if (depth == 0 && path->p_ext == NULL)
1609 return EXT_MAX_BLOCKS;
1610
1611 while (depth >= 0) {
1612 if (depth == path->p_depth) {
1613 /* leaf */
1614 if (path[depth].p_ext &&
1615 path[depth].p_ext !=
1616 EXT_LAST_EXTENT(path[depth].p_hdr))
1617 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1618 } else {
1619 /* index */
1620 if (path[depth].p_idx !=
1621 EXT_LAST_INDEX(path[depth].p_hdr))
1622 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1623 }
1624 depth--;
1625 }
1626
1627 return EXT_MAX_BLOCKS;
1628 }
1629
1630 /*
1631 * ext4_ext_next_leaf_block:
1632 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1633 */
ext4_ext_next_leaf_block(struct ext4_ext_path * path)1634 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1635 {
1636 int depth;
1637
1638 BUG_ON(path == NULL);
1639 depth = path->p_depth;
1640
1641 /* zero-tree has no leaf blocks at all */
1642 if (depth == 0)
1643 return EXT_MAX_BLOCKS;
1644
1645 /* go to index block */
1646 depth--;
1647
1648 while (depth >= 0) {
1649 if (path[depth].p_idx !=
1650 EXT_LAST_INDEX(path[depth].p_hdr))
1651 return (ext4_lblk_t)
1652 le32_to_cpu(path[depth].p_idx[1].ei_block);
1653 depth--;
1654 }
1655
1656 return EXT_MAX_BLOCKS;
1657 }
1658
1659 /*
1660 * ext4_ext_correct_indexes:
1661 * if leaf gets modified and modified extent is first in the leaf,
1662 * then we have to correct all indexes above.
1663 * TODO: do we need to correct tree in all cases?
1664 */
ext4_ext_correct_indexes(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1665 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1666 struct ext4_ext_path *path)
1667 {
1668 struct ext4_extent_header *eh;
1669 int depth = ext_depth(inode);
1670 struct ext4_extent *ex;
1671 __le32 border;
1672 int k, err = 0;
1673
1674 eh = path[depth].p_hdr;
1675 ex = path[depth].p_ext;
1676
1677 if (unlikely(ex == NULL || eh == NULL)) {
1678 EXT4_ERROR_INODE(inode,
1679 "ex %p == NULL or eh %p == NULL", ex, eh);
1680 return -EFSCORRUPTED;
1681 }
1682
1683 if (depth == 0) {
1684 /* there is no tree at all */
1685 return 0;
1686 }
1687
1688 if (ex != EXT_FIRST_EXTENT(eh)) {
1689 /* we correct tree if first leaf got modified only */
1690 return 0;
1691 }
1692
1693 /*
1694 * TODO: we need correction if border is smaller than current one
1695 */
1696 k = depth - 1;
1697 border = path[depth].p_ext->ee_block;
1698 err = ext4_ext_get_access(handle, inode, path + k);
1699 if (err)
1700 return err;
1701 path[k].p_idx->ei_block = border;
1702 err = ext4_ext_dirty(handle, inode, path + k);
1703 if (err)
1704 return err;
1705
1706 while (k--) {
1707 /* change all left-side indexes */
1708 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1709 break;
1710 err = ext4_ext_get_access(handle, inode, path + k);
1711 if (err)
1712 break;
1713 path[k].p_idx->ei_block = border;
1714 err = ext4_ext_dirty(handle, inode, path + k);
1715 if (err)
1716 break;
1717 }
1718
1719 return err;
1720 }
1721
1722 int
ext4_can_extents_be_merged(struct inode * inode,struct ext4_extent * ex1,struct ext4_extent * ex2)1723 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1724 struct ext4_extent *ex2)
1725 {
1726 unsigned short ext1_ee_len, ext2_ee_len;
1727
1728 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1729 return 0;
1730
1731 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1732 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1733
1734 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1735 le32_to_cpu(ex2->ee_block))
1736 return 0;
1737
1738 /*
1739 * To allow future support for preallocated extents to be added
1740 * as an RO_COMPAT feature, refuse to merge to extents if
1741 * this can result in the top bit of ee_len being set.
1742 */
1743 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1744 return 0;
1745 /*
1746 * The check for IO to unwritten extent is somewhat racy as we
1747 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1748 * dropping i_data_sem. But reserved blocks should save us in that
1749 * case.
1750 */
1751 if (ext4_ext_is_unwritten(ex1) &&
1752 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1753 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1754 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1755 return 0;
1756 #ifdef AGGRESSIVE_TEST
1757 if (ext1_ee_len >= 4)
1758 return 0;
1759 #endif
1760
1761 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1762 return 1;
1763 return 0;
1764 }
1765
1766 /*
1767 * This function tries to merge the "ex" extent to the next extent in the tree.
1768 * It always tries to merge towards right. If you want to merge towards
1769 * left, pass "ex - 1" as argument instead of "ex".
1770 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1771 * 1 if they got merged.
1772 */
ext4_ext_try_to_merge_right(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1773 static int ext4_ext_try_to_merge_right(struct inode *inode,
1774 struct ext4_ext_path *path,
1775 struct ext4_extent *ex)
1776 {
1777 struct ext4_extent_header *eh;
1778 unsigned int depth, len;
1779 int merge_done = 0, unwritten;
1780
1781 depth = ext_depth(inode);
1782 BUG_ON(path[depth].p_hdr == NULL);
1783 eh = path[depth].p_hdr;
1784
1785 while (ex < EXT_LAST_EXTENT(eh)) {
1786 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1787 break;
1788 /* merge with next extent! */
1789 unwritten = ext4_ext_is_unwritten(ex);
1790 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1791 + ext4_ext_get_actual_len(ex + 1));
1792 if (unwritten)
1793 ext4_ext_mark_unwritten(ex);
1794
1795 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1796 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1797 * sizeof(struct ext4_extent);
1798 memmove(ex + 1, ex + 2, len);
1799 }
1800 le16_add_cpu(&eh->eh_entries, -1);
1801 merge_done = 1;
1802 WARN_ON(eh->eh_entries == 0);
1803 if (!eh->eh_entries)
1804 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1805 }
1806
1807 return merge_done;
1808 }
1809
1810 /*
1811 * This function does a very simple check to see if we can collapse
1812 * an extent tree with a single extent tree leaf block into the inode.
1813 */
ext4_ext_try_to_merge_up(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1814 static void ext4_ext_try_to_merge_up(handle_t *handle,
1815 struct inode *inode,
1816 struct ext4_ext_path *path)
1817 {
1818 size_t s;
1819 unsigned max_root = ext4_ext_space_root(inode, 0);
1820 ext4_fsblk_t blk;
1821
1822 if ((path[0].p_depth != 1) ||
1823 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1824 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1825 return;
1826
1827 /*
1828 * We need to modify the block allocation bitmap and the block
1829 * group descriptor to release the extent tree block. If we
1830 * can't get the journal credits, give up.
1831 */
1832 if (ext4_journal_extend(handle, 2))
1833 return;
1834
1835 /*
1836 * Copy the extent data up to the inode
1837 */
1838 blk = ext4_idx_pblock(path[0].p_idx);
1839 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1840 sizeof(struct ext4_extent_idx);
1841 s += sizeof(struct ext4_extent_header);
1842
1843 path[1].p_maxdepth = path[0].p_maxdepth;
1844 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1845 path[0].p_depth = 0;
1846 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1847 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1848 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1849
1850 brelse(path[1].p_bh);
1851 ext4_free_blocks(handle, inode, NULL, blk, 1,
1852 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1853 }
1854
1855 /*
1856 * This function tries to merge the @ex extent to neighbours in the tree.
1857 * return 1 if merge left else 0.
1858 */
ext4_ext_try_to_merge(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1859 static void ext4_ext_try_to_merge(handle_t *handle,
1860 struct inode *inode,
1861 struct ext4_ext_path *path,
1862 struct ext4_extent *ex) {
1863 struct ext4_extent_header *eh;
1864 unsigned int depth;
1865 int merge_done = 0;
1866
1867 depth = ext_depth(inode);
1868 BUG_ON(path[depth].p_hdr == NULL);
1869 eh = path[depth].p_hdr;
1870
1871 if (ex > EXT_FIRST_EXTENT(eh))
1872 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1873
1874 if (!merge_done)
1875 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1876
1877 ext4_ext_try_to_merge_up(handle, inode, path);
1878 }
1879
1880 /*
1881 * check if a portion of the "newext" extent overlaps with an
1882 * existing extent.
1883 *
1884 * If there is an overlap discovered, it updates the length of the newext
1885 * such that there will be no overlap, and then returns 1.
1886 * If there is no overlap found, it returns 0.
1887 */
ext4_ext_check_overlap(struct ext4_sb_info * sbi,struct inode * inode,struct ext4_extent * newext,struct ext4_ext_path * path)1888 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1889 struct inode *inode,
1890 struct ext4_extent *newext,
1891 struct ext4_ext_path *path)
1892 {
1893 ext4_lblk_t b1, b2;
1894 unsigned int depth, len1;
1895 unsigned int ret = 0;
1896
1897 b1 = le32_to_cpu(newext->ee_block);
1898 len1 = ext4_ext_get_actual_len(newext);
1899 depth = ext_depth(inode);
1900 if (!path[depth].p_ext)
1901 goto out;
1902 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1903
1904 /*
1905 * get the next allocated block if the extent in the path
1906 * is before the requested block(s)
1907 */
1908 if (b2 < b1) {
1909 b2 = ext4_ext_next_allocated_block(path);
1910 if (b2 == EXT_MAX_BLOCKS)
1911 goto out;
1912 b2 = EXT4_LBLK_CMASK(sbi, b2);
1913 }
1914
1915 /* check for wrap through zero on extent logical start block*/
1916 if (b1 + len1 < b1) {
1917 len1 = EXT_MAX_BLOCKS - b1;
1918 newext->ee_len = cpu_to_le16(len1);
1919 ret = 1;
1920 }
1921
1922 /* check for overlap */
1923 if (b1 + len1 > b2) {
1924 newext->ee_len = cpu_to_le16(b2 - b1);
1925 ret = 1;
1926 }
1927 out:
1928 return ret;
1929 }
1930
1931 /*
1932 * ext4_ext_insert_extent:
1933 * tries to merge requsted extent into the existing extent or
1934 * inserts requested extent as new one into the tree,
1935 * creating new leaf in the no-space case.
1936 */
ext4_ext_insert_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path ** ppath,struct ext4_extent * newext,int gb_flags)1937 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1938 struct ext4_ext_path **ppath,
1939 struct ext4_extent *newext, int gb_flags)
1940 {
1941 struct ext4_ext_path *path = *ppath;
1942 struct ext4_extent_header *eh;
1943 struct ext4_extent *ex, *fex;
1944 struct ext4_extent *nearex; /* nearest extent */
1945 struct ext4_ext_path *npath = NULL;
1946 int depth, len, err;
1947 ext4_lblk_t next;
1948 int mb_flags = 0, unwritten;
1949
1950 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1951 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1952 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1953 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1954 return -EFSCORRUPTED;
1955 }
1956 depth = ext_depth(inode);
1957 ex = path[depth].p_ext;
1958 eh = path[depth].p_hdr;
1959 if (unlikely(path[depth].p_hdr == NULL)) {
1960 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1961 return -EFSCORRUPTED;
1962 }
1963
1964 /* try to insert block into found extent and return */
1965 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1966
1967 /*
1968 * Try to see whether we should rather test the extent on
1969 * right from ex, or from the left of ex. This is because
1970 * ext4_find_extent() can return either extent on the
1971 * left, or on the right from the searched position. This
1972 * will make merging more effective.
1973 */
1974 if (ex < EXT_LAST_EXTENT(eh) &&
1975 (le32_to_cpu(ex->ee_block) +
1976 ext4_ext_get_actual_len(ex) <
1977 le32_to_cpu(newext->ee_block))) {
1978 ex += 1;
1979 goto prepend;
1980 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1981 (le32_to_cpu(newext->ee_block) +
1982 ext4_ext_get_actual_len(newext) <
1983 le32_to_cpu(ex->ee_block)))
1984 ex -= 1;
1985
1986 /* Try to append newex to the ex */
1987 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1988 ext_debug("append [%d]%d block to %u:[%d]%d"
1989 "(from %llu)\n",
1990 ext4_ext_is_unwritten(newext),
1991 ext4_ext_get_actual_len(newext),
1992 le32_to_cpu(ex->ee_block),
1993 ext4_ext_is_unwritten(ex),
1994 ext4_ext_get_actual_len(ex),
1995 ext4_ext_pblock(ex));
1996 err = ext4_ext_get_access(handle, inode,
1997 path + depth);
1998 if (err)
1999 return err;
2000 unwritten = ext4_ext_is_unwritten(ex);
2001 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2002 + ext4_ext_get_actual_len(newext));
2003 if (unwritten)
2004 ext4_ext_mark_unwritten(ex);
2005 eh = path[depth].p_hdr;
2006 nearex = ex;
2007 goto merge;
2008 }
2009
2010 prepend:
2011 /* Try to prepend newex to the ex */
2012 if (ext4_can_extents_be_merged(inode, newext, ex)) {
2013 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2014 "(from %llu)\n",
2015 le32_to_cpu(newext->ee_block),
2016 ext4_ext_is_unwritten(newext),
2017 ext4_ext_get_actual_len(newext),
2018 le32_to_cpu(ex->ee_block),
2019 ext4_ext_is_unwritten(ex),
2020 ext4_ext_get_actual_len(ex),
2021 ext4_ext_pblock(ex));
2022 err = ext4_ext_get_access(handle, inode,
2023 path + depth);
2024 if (err)
2025 return err;
2026
2027 unwritten = ext4_ext_is_unwritten(ex);
2028 ex->ee_block = newext->ee_block;
2029 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2030 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2031 + ext4_ext_get_actual_len(newext));
2032 if (unwritten)
2033 ext4_ext_mark_unwritten(ex);
2034 eh = path[depth].p_hdr;
2035 nearex = ex;
2036 goto merge;
2037 }
2038 }
2039
2040 depth = ext_depth(inode);
2041 eh = path[depth].p_hdr;
2042 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2043 goto has_space;
2044
2045 /* probably next leaf has space for us? */
2046 fex = EXT_LAST_EXTENT(eh);
2047 next = EXT_MAX_BLOCKS;
2048 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2049 next = ext4_ext_next_leaf_block(path);
2050 if (next != EXT_MAX_BLOCKS) {
2051 ext_debug("next leaf block - %u\n", next);
2052 BUG_ON(npath != NULL);
2053 npath = ext4_find_extent(inode, next, NULL, 0);
2054 if (IS_ERR(npath))
2055 return PTR_ERR(npath);
2056 BUG_ON(npath->p_depth != path->p_depth);
2057 eh = npath[depth].p_hdr;
2058 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2059 ext_debug("next leaf isn't full(%d)\n",
2060 le16_to_cpu(eh->eh_entries));
2061 path = npath;
2062 goto has_space;
2063 }
2064 ext_debug("next leaf has no free space(%d,%d)\n",
2065 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2066 }
2067
2068 /*
2069 * There is no free space in the found leaf.
2070 * We're gonna add a new leaf in the tree.
2071 */
2072 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2073 mb_flags |= EXT4_MB_USE_RESERVED;
2074 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2075 ppath, newext);
2076 if (err)
2077 goto cleanup;
2078 depth = ext_depth(inode);
2079 eh = path[depth].p_hdr;
2080
2081 has_space:
2082 nearex = path[depth].p_ext;
2083
2084 err = ext4_ext_get_access(handle, inode, path + depth);
2085 if (err)
2086 goto cleanup;
2087
2088 if (!nearex) {
2089 /* there is no extent in this leaf, create first one */
2090 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2091 le32_to_cpu(newext->ee_block),
2092 ext4_ext_pblock(newext),
2093 ext4_ext_is_unwritten(newext),
2094 ext4_ext_get_actual_len(newext));
2095 nearex = EXT_FIRST_EXTENT(eh);
2096 } else {
2097 if (le32_to_cpu(newext->ee_block)
2098 > le32_to_cpu(nearex->ee_block)) {
2099 /* Insert after */
2100 ext_debug("insert %u:%llu:[%d]%d before: "
2101 "nearest %p\n",
2102 le32_to_cpu(newext->ee_block),
2103 ext4_ext_pblock(newext),
2104 ext4_ext_is_unwritten(newext),
2105 ext4_ext_get_actual_len(newext),
2106 nearex);
2107 nearex++;
2108 } else {
2109 /* Insert before */
2110 BUG_ON(newext->ee_block == nearex->ee_block);
2111 ext_debug("insert %u:%llu:[%d]%d after: "
2112 "nearest %p\n",
2113 le32_to_cpu(newext->ee_block),
2114 ext4_ext_pblock(newext),
2115 ext4_ext_is_unwritten(newext),
2116 ext4_ext_get_actual_len(newext),
2117 nearex);
2118 }
2119 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2120 if (len > 0) {
2121 ext_debug("insert %u:%llu:[%d]%d: "
2122 "move %d extents from 0x%p to 0x%p\n",
2123 le32_to_cpu(newext->ee_block),
2124 ext4_ext_pblock(newext),
2125 ext4_ext_is_unwritten(newext),
2126 ext4_ext_get_actual_len(newext),
2127 len, nearex, nearex + 1);
2128 memmove(nearex + 1, nearex,
2129 len * sizeof(struct ext4_extent));
2130 }
2131 }
2132
2133 le16_add_cpu(&eh->eh_entries, 1);
2134 path[depth].p_ext = nearex;
2135 nearex->ee_block = newext->ee_block;
2136 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2137 nearex->ee_len = newext->ee_len;
2138
2139 merge:
2140 /* try to merge extents */
2141 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2142 ext4_ext_try_to_merge(handle, inode, path, nearex);
2143
2144
2145 /* time to correct all indexes above */
2146 err = ext4_ext_correct_indexes(handle, inode, path);
2147 if (err)
2148 goto cleanup;
2149
2150 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2151
2152 cleanup:
2153 ext4_ext_drop_refs(npath);
2154 kfree(npath);
2155 return err;
2156 }
2157
ext4_fill_fiemap_extents(struct inode * inode,ext4_lblk_t block,ext4_lblk_t num,struct fiemap_extent_info * fieinfo)2158 static int ext4_fill_fiemap_extents(struct inode *inode,
2159 ext4_lblk_t block, ext4_lblk_t num,
2160 struct fiemap_extent_info *fieinfo)
2161 {
2162 struct ext4_ext_path *path = NULL;
2163 struct ext4_extent *ex;
2164 struct extent_status es;
2165 ext4_lblk_t next, next_del, start = 0, end = 0;
2166 ext4_lblk_t last = block + num;
2167 int exists, depth = 0, err = 0;
2168 unsigned int flags = 0;
2169 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2170
2171 while (block < last && block != EXT_MAX_BLOCKS) {
2172 num = last - block;
2173 /* find extent for this block */
2174 down_read(&EXT4_I(inode)->i_data_sem);
2175
2176 path = ext4_find_extent(inode, block, &path, 0);
2177 if (IS_ERR(path)) {
2178 up_read(&EXT4_I(inode)->i_data_sem);
2179 err = PTR_ERR(path);
2180 path = NULL;
2181 break;
2182 }
2183
2184 depth = ext_depth(inode);
2185 if (unlikely(path[depth].p_hdr == NULL)) {
2186 up_read(&EXT4_I(inode)->i_data_sem);
2187 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2188 err = -EFSCORRUPTED;
2189 break;
2190 }
2191 ex = path[depth].p_ext;
2192 next = ext4_ext_next_allocated_block(path);
2193
2194 flags = 0;
2195 exists = 0;
2196 if (!ex) {
2197 /* there is no extent yet, so try to allocate
2198 * all requested space */
2199 start = block;
2200 end = block + num;
2201 } else if (le32_to_cpu(ex->ee_block) > block) {
2202 /* need to allocate space before found extent */
2203 start = block;
2204 end = le32_to_cpu(ex->ee_block);
2205 if (block + num < end)
2206 end = block + num;
2207 } else if (block >= le32_to_cpu(ex->ee_block)
2208 + ext4_ext_get_actual_len(ex)) {
2209 /* need to allocate space after found extent */
2210 start = block;
2211 end = block + num;
2212 if (end >= next)
2213 end = next;
2214 } else if (block >= le32_to_cpu(ex->ee_block)) {
2215 /*
2216 * some part of requested space is covered
2217 * by found extent
2218 */
2219 start = block;
2220 end = le32_to_cpu(ex->ee_block)
2221 + ext4_ext_get_actual_len(ex);
2222 if (block + num < end)
2223 end = block + num;
2224 exists = 1;
2225 } else {
2226 BUG();
2227 }
2228 BUG_ON(end <= start);
2229
2230 if (!exists) {
2231 es.es_lblk = start;
2232 es.es_len = end - start;
2233 es.es_pblk = 0;
2234 } else {
2235 es.es_lblk = le32_to_cpu(ex->ee_block);
2236 es.es_len = ext4_ext_get_actual_len(ex);
2237 es.es_pblk = ext4_ext_pblock(ex);
2238 if (ext4_ext_is_unwritten(ex))
2239 flags |= FIEMAP_EXTENT_UNWRITTEN;
2240 }
2241
2242 /*
2243 * Find delayed extent and update es accordingly. We call
2244 * it even in !exists case to find out whether es is the
2245 * last existing extent or not.
2246 */
2247 next_del = ext4_find_delayed_extent(inode, &es);
2248 if (!exists && next_del) {
2249 exists = 1;
2250 flags |= (FIEMAP_EXTENT_DELALLOC |
2251 FIEMAP_EXTENT_UNKNOWN);
2252 }
2253 up_read(&EXT4_I(inode)->i_data_sem);
2254
2255 if (unlikely(es.es_len == 0)) {
2256 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2257 err = -EFSCORRUPTED;
2258 break;
2259 }
2260
2261 /*
2262 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2263 * we need to check next == EXT_MAX_BLOCKS because it is
2264 * possible that an extent is with unwritten and delayed
2265 * status due to when an extent is delayed allocated and
2266 * is allocated by fallocate status tree will track both of
2267 * them in a extent.
2268 *
2269 * So we could return a unwritten and delayed extent, and
2270 * its block is equal to 'next'.
2271 */
2272 if (next == next_del && next == EXT_MAX_BLOCKS) {
2273 flags |= FIEMAP_EXTENT_LAST;
2274 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2275 next != EXT_MAX_BLOCKS)) {
2276 EXT4_ERROR_INODE(inode,
2277 "next extent == %u, next "
2278 "delalloc extent = %u",
2279 next, next_del);
2280 err = -EFSCORRUPTED;
2281 break;
2282 }
2283 }
2284
2285 if (exists) {
2286 err = fiemap_fill_next_extent(fieinfo,
2287 (__u64)es.es_lblk << blksize_bits,
2288 (__u64)es.es_pblk << blksize_bits,
2289 (__u64)es.es_len << blksize_bits,
2290 flags);
2291 if (err < 0)
2292 break;
2293 if (err == 1) {
2294 err = 0;
2295 break;
2296 }
2297 }
2298
2299 block = es.es_lblk + es.es_len;
2300 }
2301
2302 ext4_ext_drop_refs(path);
2303 kfree(path);
2304 return err;
2305 }
2306
2307 /*
2308 * ext4_ext_determine_hole - determine hole around given block
2309 * @inode: inode we lookup in
2310 * @path: path in extent tree to @lblk
2311 * @lblk: pointer to logical block around which we want to determine hole
2312 *
2313 * Determine hole length (and start if easily possible) around given logical
2314 * block. We don't try too hard to find the beginning of the hole but @path
2315 * actually points to extent before @lblk, we provide it.
2316 *
2317 * The function returns the length of a hole starting at @lblk. We update @lblk
2318 * to the beginning of the hole if we managed to find it.
2319 */
ext4_ext_determine_hole(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * lblk)2320 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2321 struct ext4_ext_path *path,
2322 ext4_lblk_t *lblk)
2323 {
2324 int depth = ext_depth(inode);
2325 struct ext4_extent *ex;
2326 ext4_lblk_t len;
2327
2328 ex = path[depth].p_ext;
2329 if (ex == NULL) {
2330 /* there is no extent yet, so gap is [0;-] */
2331 *lblk = 0;
2332 len = EXT_MAX_BLOCKS;
2333 } else if (*lblk < le32_to_cpu(ex->ee_block)) {
2334 len = le32_to_cpu(ex->ee_block) - *lblk;
2335 } else if (*lblk >= le32_to_cpu(ex->ee_block)
2336 + ext4_ext_get_actual_len(ex)) {
2337 ext4_lblk_t next;
2338
2339 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2340 next = ext4_ext_next_allocated_block(path);
2341 BUG_ON(next == *lblk);
2342 len = next - *lblk;
2343 } else {
2344 BUG();
2345 }
2346 return len;
2347 }
2348
2349 /*
2350 * ext4_ext_put_gap_in_cache:
2351 * calculate boundaries of the gap that the requested block fits into
2352 * and cache this gap
2353 */
2354 static void
ext4_ext_put_gap_in_cache(struct inode * inode,ext4_lblk_t hole_start,ext4_lblk_t hole_len)2355 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2356 ext4_lblk_t hole_len)
2357 {
2358 struct extent_status es;
2359
2360 ext4_es_find_delayed_extent_range(inode, hole_start,
2361 hole_start + hole_len - 1, &es);
2362 if (es.es_len) {
2363 /* There's delayed extent containing lblock? */
2364 if (es.es_lblk <= hole_start)
2365 return;
2366 hole_len = min(es.es_lblk - hole_start, hole_len);
2367 }
2368 ext_debug(" -> %u:%u\n", hole_start, hole_len);
2369 ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2370 EXTENT_STATUS_HOLE);
2371 }
2372
2373 /*
2374 * ext4_ext_rm_idx:
2375 * removes index from the index block.
2376 */
ext4_ext_rm_idx(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,int depth)2377 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2378 struct ext4_ext_path *path, int depth)
2379 {
2380 int err;
2381 ext4_fsblk_t leaf;
2382
2383 /* free index block */
2384 depth--;
2385 path = path + depth;
2386 leaf = ext4_idx_pblock(path->p_idx);
2387 if (unlikely(path->p_hdr->eh_entries == 0)) {
2388 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2389 return -EFSCORRUPTED;
2390 }
2391 err = ext4_ext_get_access(handle, inode, path);
2392 if (err)
2393 return err;
2394
2395 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2396 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2397 len *= sizeof(struct ext4_extent_idx);
2398 memmove(path->p_idx, path->p_idx + 1, len);
2399 }
2400
2401 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2402 err = ext4_ext_dirty(handle, inode, path);
2403 if (err)
2404 return err;
2405 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2406 trace_ext4_ext_rm_idx(inode, leaf);
2407
2408 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2409 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2410
2411 while (--depth >= 0) {
2412 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2413 break;
2414 path--;
2415 err = ext4_ext_get_access(handle, inode, path);
2416 if (err)
2417 break;
2418 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2419 err = ext4_ext_dirty(handle, inode, path);
2420 if (err)
2421 break;
2422 }
2423 return err;
2424 }
2425
2426 /*
2427 * ext4_ext_calc_credits_for_single_extent:
2428 * This routine returns max. credits that needed to insert an extent
2429 * to the extent tree.
2430 * When pass the actual path, the caller should calculate credits
2431 * under i_data_sem.
2432 */
ext4_ext_calc_credits_for_single_extent(struct inode * inode,int nrblocks,struct ext4_ext_path * path)2433 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2434 struct ext4_ext_path *path)
2435 {
2436 if (path) {
2437 int depth = ext_depth(inode);
2438 int ret = 0;
2439
2440 /* probably there is space in leaf? */
2441 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2442 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2443
2444 /*
2445 * There are some space in the leaf tree, no
2446 * need to account for leaf block credit
2447 *
2448 * bitmaps and block group descriptor blocks
2449 * and other metadata blocks still need to be
2450 * accounted.
2451 */
2452 /* 1 bitmap, 1 block group descriptor */
2453 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2454 return ret;
2455 }
2456 }
2457
2458 return ext4_chunk_trans_blocks(inode, nrblocks);
2459 }
2460
2461 /*
2462 * How many index/leaf blocks need to change/allocate to add @extents extents?
2463 *
2464 * If we add a single extent, then in the worse case, each tree level
2465 * index/leaf need to be changed in case of the tree split.
2466 *
2467 * If more extents are inserted, they could cause the whole tree split more
2468 * than once, but this is really rare.
2469 */
ext4_ext_index_trans_blocks(struct inode * inode,int extents)2470 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2471 {
2472 int index;
2473 int depth;
2474
2475 /* If we are converting the inline data, only one is needed here. */
2476 if (ext4_has_inline_data(inode))
2477 return 1;
2478
2479 depth = ext_depth(inode);
2480
2481 if (extents <= 1)
2482 index = depth * 2;
2483 else
2484 index = depth * 3;
2485
2486 return index;
2487 }
2488
get_default_free_blocks_flags(struct inode * inode)2489 static inline int get_default_free_blocks_flags(struct inode *inode)
2490 {
2491 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2492 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2493 else if (ext4_should_journal_data(inode))
2494 return EXT4_FREE_BLOCKS_FORGET;
2495 return 0;
2496 }
2497
ext4_remove_blocks(handle_t * handle,struct inode * inode,struct ext4_extent * ex,long long * partial_cluster,ext4_lblk_t from,ext4_lblk_t to)2498 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2499 struct ext4_extent *ex,
2500 long long *partial_cluster,
2501 ext4_lblk_t from, ext4_lblk_t to)
2502 {
2503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2504 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2505 ext4_fsblk_t pblk;
2506 int flags = get_default_free_blocks_flags(inode);
2507
2508 /*
2509 * For bigalloc file systems, we never free a partial cluster
2510 * at the beginning of the extent. Instead, we make a note
2511 * that we tried freeing the cluster, and check to see if we
2512 * need to free it on a subsequent call to ext4_remove_blocks,
2513 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2514 */
2515 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2516
2517 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2518 /*
2519 * If we have a partial cluster, and it's different from the
2520 * cluster of the last block, we need to explicitly free the
2521 * partial cluster here.
2522 */
2523 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2524 if (*partial_cluster > 0 &&
2525 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2526 ext4_free_blocks(handle, inode, NULL,
2527 EXT4_C2B(sbi, *partial_cluster),
2528 sbi->s_cluster_ratio, flags);
2529 *partial_cluster = 0;
2530 }
2531
2532 #ifdef EXTENTS_STATS
2533 {
2534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2535 spin_lock(&sbi->s_ext_stats_lock);
2536 sbi->s_ext_blocks += ee_len;
2537 sbi->s_ext_extents++;
2538 if (ee_len < sbi->s_ext_min)
2539 sbi->s_ext_min = ee_len;
2540 if (ee_len > sbi->s_ext_max)
2541 sbi->s_ext_max = ee_len;
2542 if (ext_depth(inode) > sbi->s_depth_max)
2543 sbi->s_depth_max = ext_depth(inode);
2544 spin_unlock(&sbi->s_ext_stats_lock);
2545 }
2546 #endif
2547 if (from >= le32_to_cpu(ex->ee_block)
2548 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2549 /* tail removal */
2550 ext4_lblk_t num;
2551 long long first_cluster;
2552
2553 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2554 pblk = ext4_ext_pblock(ex) + ee_len - num;
2555 /*
2556 * Usually we want to free partial cluster at the end of the
2557 * extent, except for the situation when the cluster is still
2558 * used by any other extent (partial_cluster is negative).
2559 */
2560 if (*partial_cluster < 0 &&
2561 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2562 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2563
2564 ext_debug("free last %u blocks starting %llu partial %lld\n",
2565 num, pblk, *partial_cluster);
2566 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2567 /*
2568 * If the block range to be freed didn't start at the
2569 * beginning of a cluster, and we removed the entire
2570 * extent and the cluster is not used by any other extent,
2571 * save the partial cluster here, since we might need to
2572 * delete if we determine that the truncate or punch hole
2573 * operation has removed all of the blocks in the cluster.
2574 * If that cluster is used by another extent, preserve its
2575 * negative value so it isn't freed later on.
2576 *
2577 * If the whole extent wasn't freed, we've reached the
2578 * start of the truncated/punched region and have finished
2579 * removing blocks. If there's a partial cluster here it's
2580 * shared with the remainder of the extent and is no longer
2581 * a candidate for removal.
2582 */
2583 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2584 first_cluster = (long long) EXT4_B2C(sbi, pblk);
2585 if (first_cluster != -*partial_cluster)
2586 *partial_cluster = first_cluster;
2587 } else {
2588 *partial_cluster = 0;
2589 }
2590 } else
2591 ext4_error(sbi->s_sb, "strange request: removal(2) "
2592 "%u-%u from %u:%u",
2593 from, to, le32_to_cpu(ex->ee_block), ee_len);
2594 return 0;
2595 }
2596
2597
2598 /*
2599 * ext4_ext_rm_leaf() Removes the extents associated with the
2600 * blocks appearing between "start" and "end". Both "start"
2601 * and "end" must appear in the same extent or EIO is returned.
2602 *
2603 * @handle: The journal handle
2604 * @inode: The files inode
2605 * @path: The path to the leaf
2606 * @partial_cluster: The cluster which we'll have to free if all extents
2607 * has been released from it. However, if this value is
2608 * negative, it's a cluster just to the right of the
2609 * punched region and it must not be freed.
2610 * @start: The first block to remove
2611 * @end: The last block to remove
2612 */
2613 static int
ext4_ext_rm_leaf(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,long long * partial_cluster,ext4_lblk_t start,ext4_lblk_t end)2614 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2615 struct ext4_ext_path *path,
2616 long long *partial_cluster,
2617 ext4_lblk_t start, ext4_lblk_t end)
2618 {
2619 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2620 int err = 0, correct_index = 0;
2621 int depth = ext_depth(inode), credits;
2622 struct ext4_extent_header *eh;
2623 ext4_lblk_t a, b;
2624 unsigned num;
2625 ext4_lblk_t ex_ee_block;
2626 unsigned short ex_ee_len;
2627 unsigned unwritten = 0;
2628 struct ext4_extent *ex;
2629 ext4_fsblk_t pblk;
2630
2631 /* the header must be checked already in ext4_ext_remove_space() */
2632 ext_debug("truncate since %u in leaf to %u\n", start, end);
2633 if (!path[depth].p_hdr)
2634 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2635 eh = path[depth].p_hdr;
2636 if (unlikely(path[depth].p_hdr == NULL)) {
2637 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2638 return -EFSCORRUPTED;
2639 }
2640 /* find where to start removing */
2641 ex = path[depth].p_ext;
2642 if (!ex)
2643 ex = EXT_LAST_EXTENT(eh);
2644
2645 ex_ee_block = le32_to_cpu(ex->ee_block);
2646 ex_ee_len = ext4_ext_get_actual_len(ex);
2647
2648 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2649
2650 while (ex >= EXT_FIRST_EXTENT(eh) &&
2651 ex_ee_block + ex_ee_len > start) {
2652
2653 if (ext4_ext_is_unwritten(ex))
2654 unwritten = 1;
2655 else
2656 unwritten = 0;
2657
2658 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2659 unwritten, ex_ee_len);
2660 path[depth].p_ext = ex;
2661
2662 a = ex_ee_block > start ? ex_ee_block : start;
2663 b = ex_ee_block+ex_ee_len - 1 < end ?
2664 ex_ee_block+ex_ee_len - 1 : end;
2665
2666 ext_debug(" border %u:%u\n", a, b);
2667
2668 /* If this extent is beyond the end of the hole, skip it */
2669 if (end < ex_ee_block) {
2670 /*
2671 * We're going to skip this extent and move to another,
2672 * so note that its first cluster is in use to avoid
2673 * freeing it when removing blocks. Eventually, the
2674 * right edge of the truncated/punched region will
2675 * be just to the left.
2676 */
2677 if (sbi->s_cluster_ratio > 1) {
2678 pblk = ext4_ext_pblock(ex);
2679 *partial_cluster =
2680 -(long long) EXT4_B2C(sbi, pblk);
2681 }
2682 ex--;
2683 ex_ee_block = le32_to_cpu(ex->ee_block);
2684 ex_ee_len = ext4_ext_get_actual_len(ex);
2685 continue;
2686 } else if (b != ex_ee_block + ex_ee_len - 1) {
2687 EXT4_ERROR_INODE(inode,
2688 "can not handle truncate %u:%u "
2689 "on extent %u:%u",
2690 start, end, ex_ee_block,
2691 ex_ee_block + ex_ee_len - 1);
2692 err = -EFSCORRUPTED;
2693 goto out;
2694 } else if (a != ex_ee_block) {
2695 /* remove tail of the extent */
2696 num = a - ex_ee_block;
2697 } else {
2698 /* remove whole extent: excellent! */
2699 num = 0;
2700 }
2701 /*
2702 * 3 for leaf, sb, and inode plus 2 (bmap and group
2703 * descriptor) for each block group; assume two block
2704 * groups plus ex_ee_len/blocks_per_block_group for
2705 * the worst case
2706 */
2707 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2708 if (ex == EXT_FIRST_EXTENT(eh)) {
2709 correct_index = 1;
2710 credits += (ext_depth(inode)) + 1;
2711 }
2712 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2713
2714 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2715 if (err)
2716 goto out;
2717
2718 err = ext4_ext_get_access(handle, inode, path + depth);
2719 if (err)
2720 goto out;
2721
2722 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2723 a, b);
2724 if (err)
2725 goto out;
2726
2727 if (num == 0)
2728 /* this extent is removed; mark slot entirely unused */
2729 ext4_ext_store_pblock(ex, 0);
2730
2731 ex->ee_len = cpu_to_le16(num);
2732 /*
2733 * Do not mark unwritten if all the blocks in the
2734 * extent have been removed.
2735 */
2736 if (unwritten && num)
2737 ext4_ext_mark_unwritten(ex);
2738 /*
2739 * If the extent was completely released,
2740 * we need to remove it from the leaf
2741 */
2742 if (num == 0) {
2743 if (end != EXT_MAX_BLOCKS - 1) {
2744 /*
2745 * For hole punching, we need to scoot all the
2746 * extents up when an extent is removed so that
2747 * we dont have blank extents in the middle
2748 */
2749 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2750 sizeof(struct ext4_extent));
2751
2752 /* Now get rid of the one at the end */
2753 memset(EXT_LAST_EXTENT(eh), 0,
2754 sizeof(struct ext4_extent));
2755 }
2756 le16_add_cpu(&eh->eh_entries, -1);
2757 }
2758
2759 err = ext4_ext_dirty(handle, inode, path + depth);
2760 if (err)
2761 goto out;
2762
2763 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2764 ext4_ext_pblock(ex));
2765 ex--;
2766 ex_ee_block = le32_to_cpu(ex->ee_block);
2767 ex_ee_len = ext4_ext_get_actual_len(ex);
2768 }
2769
2770 if (correct_index && eh->eh_entries)
2771 err = ext4_ext_correct_indexes(handle, inode, path);
2772
2773 /*
2774 * If there's a partial cluster and at least one extent remains in
2775 * the leaf, free the partial cluster if it isn't shared with the
2776 * current extent. If it is shared with the current extent
2777 * we zero partial_cluster because we've reached the start of the
2778 * truncated/punched region and we're done removing blocks.
2779 */
2780 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2781 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2782 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2783 ext4_free_blocks(handle, inode, NULL,
2784 EXT4_C2B(sbi, *partial_cluster),
2785 sbi->s_cluster_ratio,
2786 get_default_free_blocks_flags(inode));
2787 }
2788 *partial_cluster = 0;
2789 }
2790
2791 /* if this leaf is free, then we should
2792 * remove it from index block above */
2793 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2794 err = ext4_ext_rm_idx(handle, inode, path, depth);
2795
2796 out:
2797 return err;
2798 }
2799
2800 /*
2801 * ext4_ext_more_to_rm:
2802 * returns 1 if current index has to be freed (even partial)
2803 */
2804 static int
ext4_ext_more_to_rm(struct ext4_ext_path * path)2805 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2806 {
2807 BUG_ON(path->p_idx == NULL);
2808
2809 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2810 return 0;
2811
2812 /*
2813 * if truncate on deeper level happened, it wasn't partial,
2814 * so we have to consider current index for truncation
2815 */
2816 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2817 return 0;
2818 return 1;
2819 }
2820
ext4_ext_remove_space(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2821 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2822 ext4_lblk_t end)
2823 {
2824 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2825 int depth = ext_depth(inode);
2826 struct ext4_ext_path *path = NULL;
2827 long long partial_cluster = 0;
2828 handle_t *handle;
2829 int i = 0, err = 0;
2830
2831 ext_debug("truncate since %u to %u\n", start, end);
2832
2833 /* probably first extent we're gonna free will be last in block */
2834 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2835 if (IS_ERR(handle))
2836 return PTR_ERR(handle);
2837
2838 again:
2839 trace_ext4_ext_remove_space(inode, start, end, depth);
2840
2841 /*
2842 * Check if we are removing extents inside the extent tree. If that
2843 * is the case, we are going to punch a hole inside the extent tree
2844 * so we have to check whether we need to split the extent covering
2845 * the last block to remove so we can easily remove the part of it
2846 * in ext4_ext_rm_leaf().
2847 */
2848 if (end < EXT_MAX_BLOCKS - 1) {
2849 struct ext4_extent *ex;
2850 ext4_lblk_t ee_block, ex_end, lblk;
2851 ext4_fsblk_t pblk;
2852
2853 /* find extent for or closest extent to this block */
2854 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2855 if (IS_ERR(path)) {
2856 ext4_journal_stop(handle);
2857 return PTR_ERR(path);
2858 }
2859 depth = ext_depth(inode);
2860 /* Leaf not may not exist only if inode has no blocks at all */
2861 ex = path[depth].p_ext;
2862 if (!ex) {
2863 if (depth) {
2864 EXT4_ERROR_INODE(inode,
2865 "path[%d].p_hdr == NULL",
2866 depth);
2867 err = -EFSCORRUPTED;
2868 }
2869 goto out;
2870 }
2871
2872 ee_block = le32_to_cpu(ex->ee_block);
2873 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2874
2875 /*
2876 * See if the last block is inside the extent, if so split
2877 * the extent at 'end' block so we can easily remove the
2878 * tail of the first part of the split extent in
2879 * ext4_ext_rm_leaf().
2880 */
2881 if (end >= ee_block && end < ex_end) {
2882
2883 /*
2884 * If we're going to split the extent, note that
2885 * the cluster containing the block after 'end' is
2886 * in use to avoid freeing it when removing blocks.
2887 */
2888 if (sbi->s_cluster_ratio > 1) {
2889 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2890 partial_cluster =
2891 -(long long) EXT4_B2C(sbi, pblk);
2892 }
2893
2894 /*
2895 * Split the extent in two so that 'end' is the last
2896 * block in the first new extent. Also we should not
2897 * fail removing space due to ENOSPC so try to use
2898 * reserved block if that happens.
2899 */
2900 err = ext4_force_split_extent_at(handle, inode, &path,
2901 end + 1, 1);
2902 if (err < 0)
2903 goto out;
2904
2905 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2906 /*
2907 * If there's an extent to the right its first cluster
2908 * contains the immediate right boundary of the
2909 * truncated/punched region. Set partial_cluster to
2910 * its negative value so it won't be freed if shared
2911 * with the current extent. The end < ee_block case
2912 * is handled in ext4_ext_rm_leaf().
2913 */
2914 lblk = ex_end + 1;
2915 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2916 &ex);
2917 if (err)
2918 goto out;
2919 if (pblk)
2920 partial_cluster =
2921 -(long long) EXT4_B2C(sbi, pblk);
2922 }
2923 }
2924 /*
2925 * We start scanning from right side, freeing all the blocks
2926 * after i_size and walking into the tree depth-wise.
2927 */
2928 depth = ext_depth(inode);
2929 if (path) {
2930 int k = i = depth;
2931 while (--k > 0)
2932 path[k].p_block =
2933 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2934 } else {
2935 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2936 GFP_NOFS);
2937 if (path == NULL) {
2938 ext4_journal_stop(handle);
2939 return -ENOMEM;
2940 }
2941 path[0].p_maxdepth = path[0].p_depth = depth;
2942 path[0].p_hdr = ext_inode_hdr(inode);
2943 i = 0;
2944
2945 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2946 err = -EFSCORRUPTED;
2947 goto out;
2948 }
2949 }
2950 err = 0;
2951
2952 while (i >= 0 && err == 0) {
2953 if (i == depth) {
2954 /* this is leaf block */
2955 err = ext4_ext_rm_leaf(handle, inode, path,
2956 &partial_cluster, start,
2957 end);
2958 /* root level has p_bh == NULL, brelse() eats this */
2959 brelse(path[i].p_bh);
2960 path[i].p_bh = NULL;
2961 i--;
2962 continue;
2963 }
2964
2965 /* this is index block */
2966 if (!path[i].p_hdr) {
2967 ext_debug("initialize header\n");
2968 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2969 }
2970
2971 if (!path[i].p_idx) {
2972 /* this level hasn't been touched yet */
2973 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2974 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2975 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2976 path[i].p_hdr,
2977 le16_to_cpu(path[i].p_hdr->eh_entries));
2978 } else {
2979 /* we were already here, see at next index */
2980 path[i].p_idx--;
2981 }
2982
2983 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2984 i, EXT_FIRST_INDEX(path[i].p_hdr),
2985 path[i].p_idx);
2986 if (ext4_ext_more_to_rm(path + i)) {
2987 struct buffer_head *bh;
2988 /* go to the next level */
2989 ext_debug("move to level %d (block %llu)\n",
2990 i + 1, ext4_idx_pblock(path[i].p_idx));
2991 memset(path + i + 1, 0, sizeof(*path));
2992 bh = read_extent_tree_block(inode,
2993 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2994 EXT4_EX_NOCACHE);
2995 if (IS_ERR(bh)) {
2996 /* should we reset i_size? */
2997 err = PTR_ERR(bh);
2998 break;
2999 }
3000 /* Yield here to deal with large extent trees.
3001 * Should be a no-op if we did IO above. */
3002 cond_resched();
3003 if (WARN_ON(i + 1 > depth)) {
3004 err = -EFSCORRUPTED;
3005 break;
3006 }
3007 path[i + 1].p_bh = bh;
3008
3009 /* save actual number of indexes since this
3010 * number is changed at the next iteration */
3011 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3012 i++;
3013 } else {
3014 /* we finished processing this index, go up */
3015 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3016 /* index is empty, remove it;
3017 * handle must be already prepared by the
3018 * truncatei_leaf() */
3019 err = ext4_ext_rm_idx(handle, inode, path, i);
3020 }
3021 /* root level has p_bh == NULL, brelse() eats this */
3022 brelse(path[i].p_bh);
3023 path[i].p_bh = NULL;
3024 i--;
3025 ext_debug("return to level %d\n", i);
3026 }
3027 }
3028
3029 trace_ext4_ext_remove_space_done(inode, start, end, depth,
3030 partial_cluster, path->p_hdr->eh_entries);
3031
3032 /*
3033 * If we still have something in the partial cluster and we have removed
3034 * even the first extent, then we should free the blocks in the partial
3035 * cluster as well. (This code will only run when there are no leaves
3036 * to the immediate left of the truncated/punched region.)
3037 */
3038 if (partial_cluster > 0 && err == 0) {
3039 /* don't zero partial_cluster since it's not used afterwards */
3040 ext4_free_blocks(handle, inode, NULL,
3041 EXT4_C2B(sbi, partial_cluster),
3042 sbi->s_cluster_ratio,
3043 get_default_free_blocks_flags(inode));
3044 }
3045
3046 /* TODO: flexible tree reduction should be here */
3047 if (path->p_hdr->eh_entries == 0) {
3048 /*
3049 * truncate to zero freed all the tree,
3050 * so we need to correct eh_depth
3051 */
3052 err = ext4_ext_get_access(handle, inode, path);
3053 if (err == 0) {
3054 ext_inode_hdr(inode)->eh_depth = 0;
3055 ext_inode_hdr(inode)->eh_max =
3056 cpu_to_le16(ext4_ext_space_root(inode, 0));
3057 err = ext4_ext_dirty(handle, inode, path);
3058 }
3059 }
3060 out:
3061 ext4_ext_drop_refs(path);
3062 kfree(path);
3063 path = NULL;
3064 if (err == -EAGAIN)
3065 goto again;
3066 ext4_journal_stop(handle);
3067
3068 return err;
3069 }
3070
3071 /*
3072 * called at mount time
3073 */
ext4_ext_init(struct super_block * sb)3074 void ext4_ext_init(struct super_block *sb)
3075 {
3076 /*
3077 * possible initialization would be here
3078 */
3079
3080 if (ext4_has_feature_extents(sb)) {
3081 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3082 printk(KERN_INFO "EXT4-fs: file extents enabled"
3083 #ifdef AGGRESSIVE_TEST
3084 ", aggressive tests"
3085 #endif
3086 #ifdef CHECK_BINSEARCH
3087 ", check binsearch"
3088 #endif
3089 #ifdef EXTENTS_STATS
3090 ", stats"
3091 #endif
3092 "\n");
3093 #endif
3094 #ifdef EXTENTS_STATS
3095 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3096 EXT4_SB(sb)->s_ext_min = 1 << 30;
3097 EXT4_SB(sb)->s_ext_max = 0;
3098 #endif
3099 }
3100 }
3101
3102 /*
3103 * called at umount time
3104 */
ext4_ext_release(struct super_block * sb)3105 void ext4_ext_release(struct super_block *sb)
3106 {
3107 if (!ext4_has_feature_extents(sb))
3108 return;
3109
3110 #ifdef EXTENTS_STATS
3111 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3112 struct ext4_sb_info *sbi = EXT4_SB(sb);
3113 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3114 sbi->s_ext_blocks, sbi->s_ext_extents,
3115 sbi->s_ext_blocks / sbi->s_ext_extents);
3116 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3117 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3118 }
3119 #endif
3120 }
3121
ext4_zeroout_es(struct inode * inode,struct ext4_extent * ex)3122 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3123 {
3124 ext4_lblk_t ee_block;
3125 ext4_fsblk_t ee_pblock;
3126 unsigned int ee_len;
3127
3128 ee_block = le32_to_cpu(ex->ee_block);
3129 ee_len = ext4_ext_get_actual_len(ex);
3130 ee_pblock = ext4_ext_pblock(ex);
3131
3132 if (ee_len == 0)
3133 return 0;
3134
3135 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3136 EXTENT_STATUS_WRITTEN);
3137 }
3138
3139 /* FIXME!! we need to try to merge to left or right after zero-out */
ext4_ext_zeroout(struct inode * inode,struct ext4_extent * ex)3140 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3141 {
3142 ext4_fsblk_t ee_pblock;
3143 unsigned int ee_len;
3144
3145 ee_len = ext4_ext_get_actual_len(ex);
3146 ee_pblock = ext4_ext_pblock(ex);
3147 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3148 ee_len);
3149 }
3150
3151 /*
3152 * ext4_split_extent_at() splits an extent at given block.
3153 *
3154 * @handle: the journal handle
3155 * @inode: the file inode
3156 * @path: the path to the extent
3157 * @split: the logical block where the extent is splitted.
3158 * @split_flags: indicates if the extent could be zeroout if split fails, and
3159 * the states(init or unwritten) of new extents.
3160 * @flags: flags used to insert new extent to extent tree.
3161 *
3162 *
3163 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3164 * of which are deterimined by split_flag.
3165 *
3166 * There are two cases:
3167 * a> the extent are splitted into two extent.
3168 * b> split is not needed, and just mark the extent.
3169 *
3170 * return 0 on success.
3171 */
ext4_split_extent_at(handle_t * handle,struct inode * inode,struct ext4_ext_path ** ppath,ext4_lblk_t split,int split_flag,int flags)3172 static int ext4_split_extent_at(handle_t *handle,
3173 struct inode *inode,
3174 struct ext4_ext_path **ppath,
3175 ext4_lblk_t split,
3176 int split_flag,
3177 int flags)
3178 {
3179 struct ext4_ext_path *path = *ppath;
3180 ext4_fsblk_t newblock;
3181 ext4_lblk_t ee_block;
3182 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3183 struct ext4_extent *ex2 = NULL;
3184 unsigned int ee_len, depth;
3185 int err = 0;
3186
3187 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3188 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3189
3190 ext_debug("ext4_split_extents_at: inode %lu, logical"
3191 "block %llu\n", inode->i_ino, (unsigned long long)split);
3192
3193 ext4_ext_show_leaf(inode, path);
3194
3195 depth = ext_depth(inode);
3196 ex = path[depth].p_ext;
3197 ee_block = le32_to_cpu(ex->ee_block);
3198 ee_len = ext4_ext_get_actual_len(ex);
3199 newblock = split - ee_block + ext4_ext_pblock(ex);
3200
3201 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3202 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3203 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3204 EXT4_EXT_MARK_UNWRIT1 |
3205 EXT4_EXT_MARK_UNWRIT2));
3206
3207 err = ext4_ext_get_access(handle, inode, path + depth);
3208 if (err)
3209 goto out;
3210
3211 if (split == ee_block) {
3212 /*
3213 * case b: block @split is the block that the extent begins with
3214 * then we just change the state of the extent, and splitting
3215 * is not needed.
3216 */
3217 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3218 ext4_ext_mark_unwritten(ex);
3219 else
3220 ext4_ext_mark_initialized(ex);
3221
3222 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3223 ext4_ext_try_to_merge(handle, inode, path, ex);
3224
3225 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3226 goto out;
3227 }
3228
3229 /* case a */
3230 memcpy(&orig_ex, ex, sizeof(orig_ex));
3231 ex->ee_len = cpu_to_le16(split - ee_block);
3232 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3233 ext4_ext_mark_unwritten(ex);
3234
3235 /*
3236 * path may lead to new leaf, not to original leaf any more
3237 * after ext4_ext_insert_extent() returns,
3238 */
3239 err = ext4_ext_dirty(handle, inode, path + depth);
3240 if (err)
3241 goto fix_extent_len;
3242
3243 ex2 = &newex;
3244 ex2->ee_block = cpu_to_le32(split);
3245 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3246 ext4_ext_store_pblock(ex2, newblock);
3247 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3248 ext4_ext_mark_unwritten(ex2);
3249
3250 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3251 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3252 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3253 if (split_flag & EXT4_EXT_DATA_VALID1) {
3254 err = ext4_ext_zeroout(inode, ex2);
3255 zero_ex.ee_block = ex2->ee_block;
3256 zero_ex.ee_len = cpu_to_le16(
3257 ext4_ext_get_actual_len(ex2));
3258 ext4_ext_store_pblock(&zero_ex,
3259 ext4_ext_pblock(ex2));
3260 } else {
3261 err = ext4_ext_zeroout(inode, ex);
3262 zero_ex.ee_block = ex->ee_block;
3263 zero_ex.ee_len = cpu_to_le16(
3264 ext4_ext_get_actual_len(ex));
3265 ext4_ext_store_pblock(&zero_ex,
3266 ext4_ext_pblock(ex));
3267 }
3268 } else {
3269 err = ext4_ext_zeroout(inode, &orig_ex);
3270 zero_ex.ee_block = orig_ex.ee_block;
3271 zero_ex.ee_len = cpu_to_le16(
3272 ext4_ext_get_actual_len(&orig_ex));
3273 ext4_ext_store_pblock(&zero_ex,
3274 ext4_ext_pblock(&orig_ex));
3275 }
3276
3277 if (err)
3278 goto fix_extent_len;
3279 /* update the extent length and mark as initialized */
3280 ex->ee_len = cpu_to_le16(ee_len);
3281 ext4_ext_try_to_merge(handle, inode, path, ex);
3282 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3283 if (err)
3284 goto fix_extent_len;
3285
3286 /* update extent status tree */
3287 err = ext4_zeroout_es(inode, &zero_ex);
3288
3289 goto out;
3290 } else if (err)
3291 goto fix_extent_len;
3292
3293 out:
3294 ext4_ext_show_leaf(inode, path);
3295 return err;
3296
3297 fix_extent_len:
3298 ex->ee_len = orig_ex.ee_len;
3299 ext4_ext_dirty(handle, inode, path + path->p_depth);
3300 return err;
3301 }
3302
3303 /*
3304 * ext4_split_extents() splits an extent and mark extent which is covered
3305 * by @map as split_flags indicates
3306 *
3307 * It may result in splitting the extent into multiple extents (up to three)
3308 * There are three possibilities:
3309 * a> There is no split required
3310 * b> Splits in two extents: Split is happening at either end of the extent
3311 * c> Splits in three extents: Somone is splitting in middle of the extent
3312 *
3313 */
ext4_split_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path ** ppath,struct ext4_map_blocks * map,int split_flag,int flags)3314 static int ext4_split_extent(handle_t *handle,
3315 struct inode *inode,
3316 struct ext4_ext_path **ppath,
3317 struct ext4_map_blocks *map,
3318 int split_flag,
3319 int flags)
3320 {
3321 struct ext4_ext_path *path = *ppath;
3322 ext4_lblk_t ee_block;
3323 struct ext4_extent *ex;
3324 unsigned int ee_len, depth;
3325 int err = 0;
3326 int unwritten;
3327 int split_flag1, flags1;
3328 int allocated = map->m_len;
3329
3330 depth = ext_depth(inode);
3331 ex = path[depth].p_ext;
3332 ee_block = le32_to_cpu(ex->ee_block);
3333 ee_len = ext4_ext_get_actual_len(ex);
3334 unwritten = ext4_ext_is_unwritten(ex);
3335
3336 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3337 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3338 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3339 if (unwritten)
3340 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3341 EXT4_EXT_MARK_UNWRIT2;
3342 if (split_flag & EXT4_EXT_DATA_VALID2)
3343 split_flag1 |= EXT4_EXT_DATA_VALID1;
3344 err = ext4_split_extent_at(handle, inode, ppath,
3345 map->m_lblk + map->m_len, split_flag1, flags1);
3346 if (err)
3347 goto out;
3348 } else {
3349 allocated = ee_len - (map->m_lblk - ee_block);
3350 }
3351 /*
3352 * Update path is required because previous ext4_split_extent_at() may
3353 * result in split of original leaf or extent zeroout.
3354 */
3355 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3356 if (IS_ERR(path))
3357 return PTR_ERR(path);
3358 depth = ext_depth(inode);
3359 ex = path[depth].p_ext;
3360 if (!ex) {
3361 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3362 (unsigned long) map->m_lblk);
3363 return -EFSCORRUPTED;
3364 }
3365 unwritten = ext4_ext_is_unwritten(ex);
3366 split_flag1 = 0;
3367
3368 if (map->m_lblk >= ee_block) {
3369 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3370 if (unwritten) {
3371 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3372 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3373 EXT4_EXT_MARK_UNWRIT2);
3374 }
3375 err = ext4_split_extent_at(handle, inode, ppath,
3376 map->m_lblk, split_flag1, flags);
3377 if (err)
3378 goto out;
3379 }
3380
3381 ext4_ext_show_leaf(inode, path);
3382 out:
3383 return err ? err : allocated;
3384 }
3385
3386 /*
3387 * This function is called by ext4_ext_map_blocks() if someone tries to write
3388 * to an unwritten extent. It may result in splitting the unwritten
3389 * extent into multiple extents (up to three - one initialized and two
3390 * unwritten).
3391 * There are three possibilities:
3392 * a> There is no split required: Entire extent should be initialized
3393 * b> Splits in two extents: Write is happening at either end of the extent
3394 * c> Splits in three extents: Somone is writing in middle of the extent
3395 *
3396 * Pre-conditions:
3397 * - The extent pointed to by 'path' is unwritten.
3398 * - The extent pointed to by 'path' contains a superset
3399 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3400 *
3401 * Post-conditions on success:
3402 * - the returned value is the number of blocks beyond map->l_lblk
3403 * that are allocated and initialized.
3404 * It is guaranteed to be >= map->m_len.
3405 */
ext4_ext_convert_to_initialized(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path ** ppath,int flags)3406 static int ext4_ext_convert_to_initialized(handle_t *handle,
3407 struct inode *inode,
3408 struct ext4_map_blocks *map,
3409 struct ext4_ext_path **ppath,
3410 int flags)
3411 {
3412 struct ext4_ext_path *path = *ppath;
3413 struct ext4_sb_info *sbi;
3414 struct ext4_extent_header *eh;
3415 struct ext4_map_blocks split_map;
3416 struct ext4_extent zero_ex1, zero_ex2;
3417 struct ext4_extent *ex, *abut_ex;
3418 ext4_lblk_t ee_block, eof_block;
3419 unsigned int ee_len, depth, map_len = map->m_len;
3420 int allocated = 0, max_zeroout = 0;
3421 int err = 0;
3422 int split_flag = EXT4_EXT_DATA_VALID2;
3423
3424 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3425 "block %llu, max_blocks %u\n", inode->i_ino,
3426 (unsigned long long)map->m_lblk, map_len);
3427
3428 sbi = EXT4_SB(inode->i_sb);
3429 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3430 inode->i_sb->s_blocksize_bits;
3431 if (eof_block < map->m_lblk + map_len)
3432 eof_block = map->m_lblk + map_len;
3433
3434 depth = ext_depth(inode);
3435 eh = path[depth].p_hdr;
3436 ex = path[depth].p_ext;
3437 ee_block = le32_to_cpu(ex->ee_block);
3438 ee_len = ext4_ext_get_actual_len(ex);
3439 zero_ex1.ee_len = 0;
3440 zero_ex2.ee_len = 0;
3441
3442 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3443
3444 /* Pre-conditions */
3445 BUG_ON(!ext4_ext_is_unwritten(ex));
3446 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3447
3448 /*
3449 * Attempt to transfer newly initialized blocks from the currently
3450 * unwritten extent to its neighbor. This is much cheaper
3451 * than an insertion followed by a merge as those involve costly
3452 * memmove() calls. Transferring to the left is the common case in
3453 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3454 * followed by append writes.
3455 *
3456 * Limitations of the current logic:
3457 * - L1: we do not deal with writes covering the whole extent.
3458 * This would require removing the extent if the transfer
3459 * is possible.
3460 * - L2: we only attempt to merge with an extent stored in the
3461 * same extent tree node.
3462 */
3463 if ((map->m_lblk == ee_block) &&
3464 /* See if we can merge left */
3465 (map_len < ee_len) && /*L1*/
3466 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3467 ext4_lblk_t prev_lblk;
3468 ext4_fsblk_t prev_pblk, ee_pblk;
3469 unsigned int prev_len;
3470
3471 abut_ex = ex - 1;
3472 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3473 prev_len = ext4_ext_get_actual_len(abut_ex);
3474 prev_pblk = ext4_ext_pblock(abut_ex);
3475 ee_pblk = ext4_ext_pblock(ex);
3476
3477 /*
3478 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3479 * upon those conditions:
3480 * - C1: abut_ex is initialized,
3481 * - C2: abut_ex is logically abutting ex,
3482 * - C3: abut_ex is physically abutting ex,
3483 * - C4: abut_ex can receive the additional blocks without
3484 * overflowing the (initialized) length limit.
3485 */
3486 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3487 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3488 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3489 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3490 err = ext4_ext_get_access(handle, inode, path + depth);
3491 if (err)
3492 goto out;
3493
3494 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3495 map, ex, abut_ex);
3496
3497 /* Shift the start of ex by 'map_len' blocks */
3498 ex->ee_block = cpu_to_le32(ee_block + map_len);
3499 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3500 ex->ee_len = cpu_to_le16(ee_len - map_len);
3501 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3502
3503 /* Extend abut_ex by 'map_len' blocks */
3504 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3505
3506 /* Result: number of initialized blocks past m_lblk */
3507 allocated = map_len;
3508 }
3509 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3510 (map_len < ee_len) && /*L1*/
3511 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3512 /* See if we can merge right */
3513 ext4_lblk_t next_lblk;
3514 ext4_fsblk_t next_pblk, ee_pblk;
3515 unsigned int next_len;
3516
3517 abut_ex = ex + 1;
3518 next_lblk = le32_to_cpu(abut_ex->ee_block);
3519 next_len = ext4_ext_get_actual_len(abut_ex);
3520 next_pblk = ext4_ext_pblock(abut_ex);
3521 ee_pblk = ext4_ext_pblock(ex);
3522
3523 /*
3524 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3525 * upon those conditions:
3526 * - C1: abut_ex is initialized,
3527 * - C2: abut_ex is logically abutting ex,
3528 * - C3: abut_ex is physically abutting ex,
3529 * - C4: abut_ex can receive the additional blocks without
3530 * overflowing the (initialized) length limit.
3531 */
3532 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3533 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3534 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3535 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3536 err = ext4_ext_get_access(handle, inode, path + depth);
3537 if (err)
3538 goto out;
3539
3540 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3541 map, ex, abut_ex);
3542
3543 /* Shift the start of abut_ex by 'map_len' blocks */
3544 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3545 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3546 ex->ee_len = cpu_to_le16(ee_len - map_len);
3547 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3548
3549 /* Extend abut_ex by 'map_len' blocks */
3550 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3551
3552 /* Result: number of initialized blocks past m_lblk */
3553 allocated = map_len;
3554 }
3555 }
3556 if (allocated) {
3557 /* Mark the block containing both extents as dirty */
3558 ext4_ext_dirty(handle, inode, path + depth);
3559
3560 /* Update path to point to the right extent */
3561 path[depth].p_ext = abut_ex;
3562 goto out;
3563 } else
3564 allocated = ee_len - (map->m_lblk - ee_block);
3565
3566 WARN_ON(map->m_lblk < ee_block);
3567 /*
3568 * It is safe to convert extent to initialized via explicit
3569 * zeroout only if extent is fully inside i_size or new_size.
3570 */
3571 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3572
3573 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3574 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3575 (inode->i_sb->s_blocksize_bits - 10);
3576
3577 if (ext4_encrypted_inode(inode))
3578 max_zeroout = 0;
3579
3580 /*
3581 * five cases:
3582 * 1. split the extent into three extents.
3583 * 2. split the extent into two extents, zeroout the head of the first
3584 * extent.
3585 * 3. split the extent into two extents, zeroout the tail of the second
3586 * extent.
3587 * 4. split the extent into two extents with out zeroout.
3588 * 5. no splitting needed, just possibly zeroout the head and / or the
3589 * tail of the extent.
3590 */
3591 split_map.m_lblk = map->m_lblk;
3592 split_map.m_len = map->m_len;
3593
3594 if (max_zeroout && (allocated > split_map.m_len)) {
3595 if (allocated <= max_zeroout) {
3596 /* case 3 or 5 */
3597 zero_ex1.ee_block =
3598 cpu_to_le32(split_map.m_lblk +
3599 split_map.m_len);
3600 zero_ex1.ee_len =
3601 cpu_to_le16(allocated - split_map.m_len);
3602 ext4_ext_store_pblock(&zero_ex1,
3603 ext4_ext_pblock(ex) + split_map.m_lblk +
3604 split_map.m_len - ee_block);
3605 err = ext4_ext_zeroout(inode, &zero_ex1);
3606 if (err)
3607 goto out;
3608 split_map.m_len = allocated;
3609 }
3610 if (split_map.m_lblk - ee_block + split_map.m_len <
3611 max_zeroout) {
3612 /* case 2 or 5 */
3613 if (split_map.m_lblk != ee_block) {
3614 zero_ex2.ee_block = ex->ee_block;
3615 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3616 ee_block);
3617 ext4_ext_store_pblock(&zero_ex2,
3618 ext4_ext_pblock(ex));
3619 err = ext4_ext_zeroout(inode, &zero_ex2);
3620 if (err)
3621 goto out;
3622 }
3623
3624 split_map.m_len += split_map.m_lblk - ee_block;
3625 split_map.m_lblk = ee_block;
3626 allocated = map->m_len;
3627 }
3628 }
3629
3630 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3631 flags);
3632 if (err > 0)
3633 err = 0;
3634 out:
3635 /* If we have gotten a failure, don't zero out status tree */
3636 if (!err) {
3637 err = ext4_zeroout_es(inode, &zero_ex1);
3638 if (!err)
3639 err = ext4_zeroout_es(inode, &zero_ex2);
3640 }
3641 return err ? err : allocated;
3642 }
3643
3644 /*
3645 * This function is called by ext4_ext_map_blocks() from
3646 * ext4_get_blocks_dio_write() when DIO to write
3647 * to an unwritten extent.
3648 *
3649 * Writing to an unwritten extent may result in splitting the unwritten
3650 * extent into multiple initialized/unwritten extents (up to three)
3651 * There are three possibilities:
3652 * a> There is no split required: Entire extent should be unwritten
3653 * b> Splits in two extents: Write is happening at either end of the extent
3654 * c> Splits in three extents: Somone is writing in middle of the extent
3655 *
3656 * This works the same way in the case of initialized -> unwritten conversion.
3657 *
3658 * One of more index blocks maybe needed if the extent tree grow after
3659 * the unwritten extent split. To prevent ENOSPC occur at the IO
3660 * complete, we need to split the unwritten extent before DIO submit
3661 * the IO. The unwritten extent called at this time will be split
3662 * into three unwritten extent(at most). After IO complete, the part
3663 * being filled will be convert to initialized by the end_io callback function
3664 * via ext4_convert_unwritten_extents().
3665 *
3666 * Returns the size of unwritten extent to be written on success.
3667 */
ext4_split_convert_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path ** ppath,int flags)3668 static int ext4_split_convert_extents(handle_t *handle,
3669 struct inode *inode,
3670 struct ext4_map_blocks *map,
3671 struct ext4_ext_path **ppath,
3672 int flags)
3673 {
3674 struct ext4_ext_path *path = *ppath;
3675 ext4_lblk_t eof_block;
3676 ext4_lblk_t ee_block;
3677 struct ext4_extent *ex;
3678 unsigned int ee_len;
3679 int split_flag = 0, depth;
3680
3681 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3682 __func__, inode->i_ino,
3683 (unsigned long long)map->m_lblk, map->m_len);
3684
3685 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3686 inode->i_sb->s_blocksize_bits;
3687 if (eof_block < map->m_lblk + map->m_len)
3688 eof_block = map->m_lblk + map->m_len;
3689 /*
3690 * It is safe to convert extent to initialized via explicit
3691 * zeroout only if extent is fully insde i_size or new_size.
3692 */
3693 depth = ext_depth(inode);
3694 ex = path[depth].p_ext;
3695 ee_block = le32_to_cpu(ex->ee_block);
3696 ee_len = ext4_ext_get_actual_len(ex);
3697
3698 /* Convert to unwritten */
3699 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3700 split_flag |= EXT4_EXT_DATA_VALID1;
3701 /* Convert to initialized */
3702 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3703 split_flag |= ee_block + ee_len <= eof_block ?
3704 EXT4_EXT_MAY_ZEROOUT : 0;
3705 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3706 }
3707 flags |= EXT4_GET_BLOCKS_PRE_IO;
3708 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3709 }
3710
ext4_convert_unwritten_extents_endio(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path ** ppath)3711 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3712 struct inode *inode,
3713 struct ext4_map_blocks *map,
3714 struct ext4_ext_path **ppath)
3715 {
3716 struct ext4_ext_path *path = *ppath;
3717 struct ext4_extent *ex;
3718 ext4_lblk_t ee_block;
3719 unsigned int ee_len;
3720 int depth;
3721 int err = 0;
3722
3723 depth = ext_depth(inode);
3724 ex = path[depth].p_ext;
3725 ee_block = le32_to_cpu(ex->ee_block);
3726 ee_len = ext4_ext_get_actual_len(ex);
3727
3728 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3729 "block %llu, max_blocks %u\n", inode->i_ino,
3730 (unsigned long long)ee_block, ee_len);
3731
3732 /* If extent is larger than requested it is a clear sign that we still
3733 * have some extent state machine issues left. So extent_split is still
3734 * required.
3735 * TODO: Once all related issues will be fixed this situation should be
3736 * illegal.
3737 */
3738 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3739 #ifdef EXT4_DEBUG
3740 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3741 " len %u; IO logical block %llu, len %u",
3742 inode->i_ino, (unsigned long long)ee_block, ee_len,
3743 (unsigned long long)map->m_lblk, map->m_len);
3744 #endif
3745 err = ext4_split_convert_extents(handle, inode, map, ppath,
3746 EXT4_GET_BLOCKS_CONVERT);
3747 if (err < 0)
3748 return err;
3749 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3750 if (IS_ERR(path))
3751 return PTR_ERR(path);
3752 depth = ext_depth(inode);
3753 ex = path[depth].p_ext;
3754 }
3755
3756 err = ext4_ext_get_access(handle, inode, path + depth);
3757 if (err)
3758 goto out;
3759 /* first mark the extent as initialized */
3760 ext4_ext_mark_initialized(ex);
3761
3762 /* note: ext4_ext_correct_indexes() isn't needed here because
3763 * borders are not changed
3764 */
3765 ext4_ext_try_to_merge(handle, inode, path, ex);
3766
3767 /* Mark modified extent as dirty */
3768 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3769 out:
3770 ext4_ext_show_leaf(inode, path);
3771 return err;
3772 }
3773
unmap_underlying_metadata_blocks(struct block_device * bdev,sector_t block,int count)3774 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3775 sector_t block, int count)
3776 {
3777 int i;
3778 for (i = 0; i < count; i++)
3779 unmap_underlying_metadata(bdev, block + i);
3780 }
3781
3782 /*
3783 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3784 */
check_eofblocks_fl(handle_t * handle,struct inode * inode,ext4_lblk_t lblk,struct ext4_ext_path * path,unsigned int len)3785 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3786 ext4_lblk_t lblk,
3787 struct ext4_ext_path *path,
3788 unsigned int len)
3789 {
3790 int i, depth;
3791 struct ext4_extent_header *eh;
3792 struct ext4_extent *last_ex;
3793
3794 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3795 return 0;
3796
3797 depth = ext_depth(inode);
3798 eh = path[depth].p_hdr;
3799
3800 /*
3801 * We're going to remove EOFBLOCKS_FL entirely in future so we
3802 * do not care for this case anymore. Simply remove the flag
3803 * if there are no extents.
3804 */
3805 if (unlikely(!eh->eh_entries))
3806 goto out;
3807 last_ex = EXT_LAST_EXTENT(eh);
3808 /*
3809 * We should clear the EOFBLOCKS_FL flag if we are writing the
3810 * last block in the last extent in the file. We test this by
3811 * first checking to see if the caller to
3812 * ext4_ext_get_blocks() was interested in the last block (or
3813 * a block beyond the last block) in the current extent. If
3814 * this turns out to be false, we can bail out from this
3815 * function immediately.
3816 */
3817 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3818 ext4_ext_get_actual_len(last_ex))
3819 return 0;
3820 /*
3821 * If the caller does appear to be planning to write at or
3822 * beyond the end of the current extent, we then test to see
3823 * if the current extent is the last extent in the file, by
3824 * checking to make sure it was reached via the rightmost node
3825 * at each level of the tree.
3826 */
3827 for (i = depth-1; i >= 0; i--)
3828 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3829 return 0;
3830 out:
3831 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3832 return ext4_mark_inode_dirty(handle, inode);
3833 }
3834
3835 /**
3836 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3837 *
3838 * Return 1 if there is a delalloc block in the range, otherwise 0.
3839 */
ext4_find_delalloc_range(struct inode * inode,ext4_lblk_t lblk_start,ext4_lblk_t lblk_end)3840 int ext4_find_delalloc_range(struct inode *inode,
3841 ext4_lblk_t lblk_start,
3842 ext4_lblk_t lblk_end)
3843 {
3844 struct extent_status es;
3845
3846 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3847 if (es.es_len == 0)
3848 return 0; /* there is no delay extent in this tree */
3849 else if (es.es_lblk <= lblk_start &&
3850 lblk_start < es.es_lblk + es.es_len)
3851 return 1;
3852 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3853 return 1;
3854 else
3855 return 0;
3856 }
3857
ext4_find_delalloc_cluster(struct inode * inode,ext4_lblk_t lblk)3858 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3859 {
3860 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3861 ext4_lblk_t lblk_start, lblk_end;
3862 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3863 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3864
3865 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3866 }
3867
3868 /**
3869 * Determines how many complete clusters (out of those specified by the 'map')
3870 * are under delalloc and were reserved quota for.
3871 * This function is called when we are writing out the blocks that were
3872 * originally written with their allocation delayed, but then the space was
3873 * allocated using fallocate() before the delayed allocation could be resolved.
3874 * The cases to look for are:
3875 * ('=' indicated delayed allocated blocks
3876 * '-' indicates non-delayed allocated blocks)
3877 * (a) partial clusters towards beginning and/or end outside of allocated range
3878 * are not delalloc'ed.
3879 * Ex:
3880 * |----c---=|====c====|====c====|===-c----|
3881 * |++++++ allocated ++++++|
3882 * ==> 4 complete clusters in above example
3883 *
3884 * (b) partial cluster (outside of allocated range) towards either end is
3885 * marked for delayed allocation. In this case, we will exclude that
3886 * cluster.
3887 * Ex:
3888 * |----====c========|========c========|
3889 * |++++++ allocated ++++++|
3890 * ==> 1 complete clusters in above example
3891 *
3892 * Ex:
3893 * |================c================|
3894 * |++++++ allocated ++++++|
3895 * ==> 0 complete clusters in above example
3896 *
3897 * The ext4_da_update_reserve_space will be called only if we
3898 * determine here that there were some "entire" clusters that span
3899 * this 'allocated' range.
3900 * In the non-bigalloc case, this function will just end up returning num_blks
3901 * without ever calling ext4_find_delalloc_range.
3902 */
3903 static unsigned int
get_reserved_cluster_alloc(struct inode * inode,ext4_lblk_t lblk_start,unsigned int num_blks)3904 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3905 unsigned int num_blks)
3906 {
3907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3908 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3909 ext4_lblk_t lblk_from, lblk_to, c_offset;
3910 unsigned int allocated_clusters = 0;
3911
3912 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3913 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3914
3915 /* max possible clusters for this allocation */
3916 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3917
3918 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3919
3920 /* Check towards left side */
3921 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3922 if (c_offset) {
3923 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3924 lblk_to = lblk_from + c_offset - 1;
3925
3926 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3927 allocated_clusters--;
3928 }
3929
3930 /* Now check towards right. */
3931 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3932 if (allocated_clusters && c_offset) {
3933 lblk_from = lblk_start + num_blks;
3934 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3935
3936 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3937 allocated_clusters--;
3938 }
3939
3940 return allocated_clusters;
3941 }
3942
3943 static int
convert_initialized_extent(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path ** ppath,unsigned int allocated)3944 convert_initialized_extent(handle_t *handle, struct inode *inode,
3945 struct ext4_map_blocks *map,
3946 struct ext4_ext_path **ppath,
3947 unsigned int allocated)
3948 {
3949 struct ext4_ext_path *path = *ppath;
3950 struct ext4_extent *ex;
3951 ext4_lblk_t ee_block;
3952 unsigned int ee_len;
3953 int depth;
3954 int err = 0;
3955
3956 /*
3957 * Make sure that the extent is no bigger than we support with
3958 * unwritten extent
3959 */
3960 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3961 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3962
3963 depth = ext_depth(inode);
3964 ex = path[depth].p_ext;
3965 ee_block = le32_to_cpu(ex->ee_block);
3966 ee_len = ext4_ext_get_actual_len(ex);
3967
3968 ext_debug("%s: inode %lu, logical"
3969 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3970 (unsigned long long)ee_block, ee_len);
3971
3972 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3973 err = ext4_split_convert_extents(handle, inode, map, ppath,
3974 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3975 if (err < 0)
3976 return err;
3977 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3978 if (IS_ERR(path))
3979 return PTR_ERR(path);
3980 depth = ext_depth(inode);
3981 ex = path[depth].p_ext;
3982 if (!ex) {
3983 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3984 (unsigned long) map->m_lblk);
3985 return -EFSCORRUPTED;
3986 }
3987 }
3988
3989 err = ext4_ext_get_access(handle, inode, path + depth);
3990 if (err)
3991 return err;
3992 /* first mark the extent as unwritten */
3993 ext4_ext_mark_unwritten(ex);
3994
3995 /* note: ext4_ext_correct_indexes() isn't needed here because
3996 * borders are not changed
3997 */
3998 ext4_ext_try_to_merge(handle, inode, path, ex);
3999
4000 /* Mark modified extent as dirty */
4001 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
4002 if (err)
4003 return err;
4004 ext4_ext_show_leaf(inode, path);
4005
4006 ext4_update_inode_fsync_trans(handle, inode, 1);
4007 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
4008 if (err)
4009 return err;
4010 map->m_flags |= EXT4_MAP_UNWRITTEN;
4011 if (allocated > map->m_len)
4012 allocated = map->m_len;
4013 map->m_len = allocated;
4014 return allocated;
4015 }
4016
4017 static int
ext4_ext_handle_unwritten_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path ** ppath,int flags,unsigned int allocated,ext4_fsblk_t newblock)4018 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4019 struct ext4_map_blocks *map,
4020 struct ext4_ext_path **ppath, int flags,
4021 unsigned int allocated, ext4_fsblk_t newblock)
4022 {
4023 struct ext4_ext_path *path = *ppath;
4024 int ret = 0;
4025 int err = 0;
4026
4027 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4028 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4029 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4030 flags, allocated);
4031 ext4_ext_show_leaf(inode, path);
4032
4033 /*
4034 * When writing into unwritten space, we should not fail to
4035 * allocate metadata blocks for the new extent block if needed.
4036 */
4037 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4038
4039 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4040 allocated, newblock);
4041
4042 /* get_block() before submit the IO, split the extent */
4043 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4044 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4045 flags | EXT4_GET_BLOCKS_CONVERT);
4046 if (ret <= 0)
4047 goto out;
4048 map->m_flags |= EXT4_MAP_UNWRITTEN;
4049 goto out;
4050 }
4051 /* IO end_io complete, convert the filled extent to written */
4052 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4053 if (flags & EXT4_GET_BLOCKS_ZERO) {
4054 if (allocated > map->m_len)
4055 allocated = map->m_len;
4056 err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4057 allocated);
4058 if (err < 0)
4059 goto out2;
4060 }
4061 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4062 ppath);
4063 if (ret >= 0) {
4064 ext4_update_inode_fsync_trans(handle, inode, 1);
4065 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4066 path, map->m_len);
4067 } else
4068 err = ret;
4069 map->m_flags |= EXT4_MAP_MAPPED;
4070 map->m_pblk = newblock;
4071 if (allocated > map->m_len)
4072 allocated = map->m_len;
4073 map->m_len = allocated;
4074 goto out2;
4075 }
4076 /* buffered IO case */
4077 /*
4078 * repeat fallocate creation request
4079 * we already have an unwritten extent
4080 */
4081 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4082 map->m_flags |= EXT4_MAP_UNWRITTEN;
4083 goto map_out;
4084 }
4085
4086 /* buffered READ or buffered write_begin() lookup */
4087 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4088 /*
4089 * We have blocks reserved already. We
4090 * return allocated blocks so that delalloc
4091 * won't do block reservation for us. But
4092 * the buffer head will be unmapped so that
4093 * a read from the block returns 0s.
4094 */
4095 map->m_flags |= EXT4_MAP_UNWRITTEN;
4096 goto out1;
4097 }
4098
4099 /* buffered write, writepage time, convert*/
4100 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4101 if (ret >= 0)
4102 ext4_update_inode_fsync_trans(handle, inode, 1);
4103 out:
4104 if (ret <= 0) {
4105 err = ret;
4106 goto out2;
4107 } else
4108 allocated = ret;
4109 map->m_flags |= EXT4_MAP_NEW;
4110 /*
4111 * if we allocated more blocks than requested
4112 * we need to make sure we unmap the extra block
4113 * allocated. The actual needed block will get
4114 * unmapped later when we find the buffer_head marked
4115 * new.
4116 */
4117 if (allocated > map->m_len) {
4118 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4119 newblock + map->m_len,
4120 allocated - map->m_len);
4121 allocated = map->m_len;
4122 }
4123 map->m_len = allocated;
4124
4125 /*
4126 * If we have done fallocate with the offset that is already
4127 * delayed allocated, we would have block reservation
4128 * and quota reservation done in the delayed write path.
4129 * But fallocate would have already updated quota and block
4130 * count for this offset. So cancel these reservation
4131 */
4132 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4133 unsigned int reserved_clusters;
4134 reserved_clusters = get_reserved_cluster_alloc(inode,
4135 map->m_lblk, map->m_len);
4136 if (reserved_clusters)
4137 ext4_da_update_reserve_space(inode,
4138 reserved_clusters,
4139 0);
4140 }
4141
4142 map_out:
4143 map->m_flags |= EXT4_MAP_MAPPED;
4144 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4145 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4146 map->m_len);
4147 if (err < 0)
4148 goto out2;
4149 }
4150 out1:
4151 if (allocated > map->m_len)
4152 allocated = map->m_len;
4153 ext4_ext_show_leaf(inode, path);
4154 map->m_pblk = newblock;
4155 map->m_len = allocated;
4156 out2:
4157 return err ? err : allocated;
4158 }
4159
4160 /*
4161 * get_implied_cluster_alloc - check to see if the requested
4162 * allocation (in the map structure) overlaps with a cluster already
4163 * allocated in an extent.
4164 * @sb The filesystem superblock structure
4165 * @map The requested lblk->pblk mapping
4166 * @ex The extent structure which might contain an implied
4167 * cluster allocation
4168 *
4169 * This function is called by ext4_ext_map_blocks() after we failed to
4170 * find blocks that were already in the inode's extent tree. Hence,
4171 * we know that the beginning of the requested region cannot overlap
4172 * the extent from the inode's extent tree. There are three cases we
4173 * want to catch. The first is this case:
4174 *
4175 * |--- cluster # N--|
4176 * |--- extent ---| |---- requested region ---|
4177 * |==========|
4178 *
4179 * The second case that we need to test for is this one:
4180 *
4181 * |--------- cluster # N ----------------|
4182 * |--- requested region --| |------- extent ----|
4183 * |=======================|
4184 *
4185 * The third case is when the requested region lies between two extents
4186 * within the same cluster:
4187 * |------------- cluster # N-------------|
4188 * |----- ex -----| |---- ex_right ----|
4189 * |------ requested region ------|
4190 * |================|
4191 *
4192 * In each of the above cases, we need to set the map->m_pblk and
4193 * map->m_len so it corresponds to the return the extent labelled as
4194 * "|====|" from cluster #N, since it is already in use for data in
4195 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4196 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4197 * as a new "allocated" block region. Otherwise, we will return 0 and
4198 * ext4_ext_map_blocks() will then allocate one or more new clusters
4199 * by calling ext4_mb_new_blocks().
4200 */
get_implied_cluster_alloc(struct super_block * sb,struct ext4_map_blocks * map,struct ext4_extent * ex,struct ext4_ext_path * path)4201 static int get_implied_cluster_alloc(struct super_block *sb,
4202 struct ext4_map_blocks *map,
4203 struct ext4_extent *ex,
4204 struct ext4_ext_path *path)
4205 {
4206 struct ext4_sb_info *sbi = EXT4_SB(sb);
4207 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4208 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4209 ext4_lblk_t rr_cluster_start;
4210 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4211 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4212 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4213
4214 /* The extent passed in that we are trying to match */
4215 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4216 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4217
4218 /* The requested region passed into ext4_map_blocks() */
4219 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4220
4221 if ((rr_cluster_start == ex_cluster_end) ||
4222 (rr_cluster_start == ex_cluster_start)) {
4223 if (rr_cluster_start == ex_cluster_end)
4224 ee_start += ee_len - 1;
4225 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4226 map->m_len = min(map->m_len,
4227 (unsigned) sbi->s_cluster_ratio - c_offset);
4228 /*
4229 * Check for and handle this case:
4230 *
4231 * |--------- cluster # N-------------|
4232 * |------- extent ----|
4233 * |--- requested region ---|
4234 * |===========|
4235 */
4236
4237 if (map->m_lblk < ee_block)
4238 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4239
4240 /*
4241 * Check for the case where there is already another allocated
4242 * block to the right of 'ex' but before the end of the cluster.
4243 *
4244 * |------------- cluster # N-------------|
4245 * |----- ex -----| |---- ex_right ----|
4246 * |------ requested region ------|
4247 * |================|
4248 */
4249 if (map->m_lblk > ee_block) {
4250 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4251 map->m_len = min(map->m_len, next - map->m_lblk);
4252 }
4253
4254 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4255 return 1;
4256 }
4257
4258 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4259 return 0;
4260 }
4261
4262
4263 /*
4264 * Block allocation/map/preallocation routine for extents based files
4265 *
4266 *
4267 * Need to be called with
4268 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4269 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4270 *
4271 * return > 0, number of of blocks already mapped/allocated
4272 * if create == 0 and these are pre-allocated blocks
4273 * buffer head is unmapped
4274 * otherwise blocks are mapped
4275 *
4276 * return = 0, if plain look up failed (blocks have not been allocated)
4277 * buffer head is unmapped
4278 *
4279 * return < 0, error case.
4280 */
ext4_ext_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)4281 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4282 struct ext4_map_blocks *map, int flags)
4283 {
4284 struct ext4_ext_path *path = NULL;
4285 struct ext4_extent newex, *ex, *ex2;
4286 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4287 ext4_fsblk_t newblock = 0;
4288 int free_on_err = 0, err = 0, depth, ret;
4289 unsigned int allocated = 0, offset = 0;
4290 unsigned int allocated_clusters = 0;
4291 struct ext4_allocation_request ar;
4292 ext4_lblk_t cluster_offset;
4293 bool map_from_cluster = false;
4294
4295 ext_debug("blocks %u/%u requested for inode %lu\n",
4296 map->m_lblk, map->m_len, inode->i_ino);
4297 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4298
4299 /* find extent for this block */
4300 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4301 if (IS_ERR(path)) {
4302 err = PTR_ERR(path);
4303 path = NULL;
4304 goto out2;
4305 }
4306
4307 depth = ext_depth(inode);
4308
4309 /*
4310 * consistent leaf must not be empty;
4311 * this situation is possible, though, _during_ tree modification;
4312 * this is why assert can't be put in ext4_find_extent()
4313 */
4314 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4315 EXT4_ERROR_INODE(inode, "bad extent address "
4316 "lblock: %lu, depth: %d pblock %lld",
4317 (unsigned long) map->m_lblk, depth,
4318 path[depth].p_block);
4319 err = -EFSCORRUPTED;
4320 goto out2;
4321 }
4322
4323 ex = path[depth].p_ext;
4324 if (ex) {
4325 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4326 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4327 unsigned short ee_len;
4328
4329
4330 /*
4331 * unwritten extents are treated as holes, except that
4332 * we split out initialized portions during a write.
4333 */
4334 ee_len = ext4_ext_get_actual_len(ex);
4335
4336 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4337
4338 /* if found extent covers block, simply return it */
4339 if (in_range(map->m_lblk, ee_block, ee_len)) {
4340 newblock = map->m_lblk - ee_block + ee_start;
4341 /* number of remaining blocks in the extent */
4342 allocated = ee_len - (map->m_lblk - ee_block);
4343 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4344 ee_block, ee_len, newblock);
4345
4346 /*
4347 * If the extent is initialized check whether the
4348 * caller wants to convert it to unwritten.
4349 */
4350 if ((!ext4_ext_is_unwritten(ex)) &&
4351 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4352 allocated = convert_initialized_extent(
4353 handle, inode, map, &path,
4354 allocated);
4355 goto out2;
4356 } else if (!ext4_ext_is_unwritten(ex))
4357 goto out;
4358
4359 ret = ext4_ext_handle_unwritten_extents(
4360 handle, inode, map, &path, flags,
4361 allocated, newblock);
4362 if (ret < 0)
4363 err = ret;
4364 else
4365 allocated = ret;
4366 goto out2;
4367 }
4368 }
4369
4370 /*
4371 * requested block isn't allocated yet;
4372 * we couldn't try to create block if create flag is zero
4373 */
4374 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4375 ext4_lblk_t hole_start, hole_len;
4376
4377 hole_start = map->m_lblk;
4378 hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4379 /*
4380 * put just found gap into cache to speed up
4381 * subsequent requests
4382 */
4383 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4384
4385 /* Update hole_len to reflect hole size after map->m_lblk */
4386 if (hole_start != map->m_lblk)
4387 hole_len -= map->m_lblk - hole_start;
4388 map->m_pblk = 0;
4389 map->m_len = min_t(unsigned int, map->m_len, hole_len);
4390
4391 goto out2;
4392 }
4393
4394 /*
4395 * Okay, we need to do block allocation.
4396 */
4397 newex.ee_block = cpu_to_le32(map->m_lblk);
4398 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4399
4400 /*
4401 * If we are doing bigalloc, check to see if the extent returned
4402 * by ext4_find_extent() implies a cluster we can use.
4403 */
4404 if (cluster_offset && ex &&
4405 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4406 ar.len = allocated = map->m_len;
4407 newblock = map->m_pblk;
4408 map_from_cluster = true;
4409 goto got_allocated_blocks;
4410 }
4411
4412 /* find neighbour allocated blocks */
4413 ar.lleft = map->m_lblk;
4414 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4415 if (err)
4416 goto out2;
4417 ar.lright = map->m_lblk;
4418 ex2 = NULL;
4419 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4420 if (err)
4421 goto out2;
4422
4423 /* Check if the extent after searching to the right implies a
4424 * cluster we can use. */
4425 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4426 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4427 ar.len = allocated = map->m_len;
4428 newblock = map->m_pblk;
4429 map_from_cluster = true;
4430 goto got_allocated_blocks;
4431 }
4432
4433 /*
4434 * See if request is beyond maximum number of blocks we can have in
4435 * a single extent. For an initialized extent this limit is
4436 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4437 * EXT_UNWRITTEN_MAX_LEN.
4438 */
4439 if (map->m_len > EXT_INIT_MAX_LEN &&
4440 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4441 map->m_len = EXT_INIT_MAX_LEN;
4442 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4443 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4444 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4445
4446 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4447 newex.ee_len = cpu_to_le16(map->m_len);
4448 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4449 if (err)
4450 allocated = ext4_ext_get_actual_len(&newex);
4451 else
4452 allocated = map->m_len;
4453
4454 /* allocate new block */
4455 ar.inode = inode;
4456 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4457 ar.logical = map->m_lblk;
4458 /*
4459 * We calculate the offset from the beginning of the cluster
4460 * for the logical block number, since when we allocate a
4461 * physical cluster, the physical block should start at the
4462 * same offset from the beginning of the cluster. This is
4463 * needed so that future calls to get_implied_cluster_alloc()
4464 * work correctly.
4465 */
4466 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4467 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4468 ar.goal -= offset;
4469 ar.logical -= offset;
4470 if (S_ISREG(inode->i_mode))
4471 ar.flags = EXT4_MB_HINT_DATA;
4472 else
4473 /* disable in-core preallocation for non-regular files */
4474 ar.flags = 0;
4475 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4476 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4477 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4478 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4479 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4480 ar.flags |= EXT4_MB_USE_RESERVED;
4481 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4482 if (!newblock)
4483 goto out2;
4484 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4485 ar.goal, newblock, allocated);
4486 free_on_err = 1;
4487 allocated_clusters = ar.len;
4488 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4489 if (ar.len > allocated)
4490 ar.len = allocated;
4491
4492 got_allocated_blocks:
4493 /* try to insert new extent into found leaf and return */
4494 ext4_ext_store_pblock(&newex, newblock + offset);
4495 newex.ee_len = cpu_to_le16(ar.len);
4496 /* Mark unwritten */
4497 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4498 ext4_ext_mark_unwritten(&newex);
4499 map->m_flags |= EXT4_MAP_UNWRITTEN;
4500 }
4501
4502 err = 0;
4503 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4504 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4505 path, ar.len);
4506 if (!err)
4507 err = ext4_ext_insert_extent(handle, inode, &path,
4508 &newex, flags);
4509
4510 if (err && free_on_err) {
4511 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4512 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4513 /* free data blocks we just allocated */
4514 /* not a good idea to call discard here directly,
4515 * but otherwise we'd need to call it every free() */
4516 ext4_discard_preallocations(inode);
4517 ext4_free_blocks(handle, inode, NULL, newblock,
4518 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4519 goto out2;
4520 }
4521
4522 /* previous routine could use block we allocated */
4523 newblock = ext4_ext_pblock(&newex);
4524 allocated = ext4_ext_get_actual_len(&newex);
4525 if (allocated > map->m_len)
4526 allocated = map->m_len;
4527 map->m_flags |= EXT4_MAP_NEW;
4528
4529 /*
4530 * Update reserved blocks/metadata blocks after successful
4531 * block allocation which had been deferred till now.
4532 */
4533 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4534 unsigned int reserved_clusters;
4535 /*
4536 * Check how many clusters we had reserved this allocated range
4537 */
4538 reserved_clusters = get_reserved_cluster_alloc(inode,
4539 map->m_lblk, allocated);
4540 if (!map_from_cluster) {
4541 BUG_ON(allocated_clusters < reserved_clusters);
4542 if (reserved_clusters < allocated_clusters) {
4543 struct ext4_inode_info *ei = EXT4_I(inode);
4544 int reservation = allocated_clusters -
4545 reserved_clusters;
4546 /*
4547 * It seems we claimed few clusters outside of
4548 * the range of this allocation. We should give
4549 * it back to the reservation pool. This can
4550 * happen in the following case:
4551 *
4552 * * Suppose s_cluster_ratio is 4 (i.e., each
4553 * cluster has 4 blocks. Thus, the clusters
4554 * are [0-3],[4-7],[8-11]...
4555 * * First comes delayed allocation write for
4556 * logical blocks 10 & 11. Since there were no
4557 * previous delayed allocated blocks in the
4558 * range [8-11], we would reserve 1 cluster
4559 * for this write.
4560 * * Next comes write for logical blocks 3 to 8.
4561 * In this case, we will reserve 2 clusters
4562 * (for [0-3] and [4-7]; and not for [8-11] as
4563 * that range has a delayed allocated blocks.
4564 * Thus total reserved clusters now becomes 3.
4565 * * Now, during the delayed allocation writeout
4566 * time, we will first write blocks [3-8] and
4567 * allocate 3 clusters for writing these
4568 * blocks. Also, we would claim all these
4569 * three clusters above.
4570 * * Now when we come here to writeout the
4571 * blocks [10-11], we would expect to claim
4572 * the reservation of 1 cluster we had made
4573 * (and we would claim it since there are no
4574 * more delayed allocated blocks in the range
4575 * [8-11]. But our reserved cluster count had
4576 * already gone to 0.
4577 *
4578 * Thus, at the step 4 above when we determine
4579 * that there are still some unwritten delayed
4580 * allocated blocks outside of our current
4581 * block range, we should increment the
4582 * reserved clusters count so that when the
4583 * remaining blocks finally gets written, we
4584 * could claim them.
4585 */
4586 dquot_reserve_block(inode,
4587 EXT4_C2B(sbi, reservation));
4588 spin_lock(&ei->i_block_reservation_lock);
4589 ei->i_reserved_data_blocks += reservation;
4590 spin_unlock(&ei->i_block_reservation_lock);
4591 }
4592 /*
4593 * We will claim quota for all newly allocated blocks.
4594 * We're updating the reserved space *after* the
4595 * correction above so we do not accidentally free
4596 * all the metadata reservation because we might
4597 * actually need it later on.
4598 */
4599 ext4_da_update_reserve_space(inode, allocated_clusters,
4600 1);
4601 }
4602 }
4603
4604 /*
4605 * Cache the extent and update transaction to commit on fdatasync only
4606 * when it is _not_ an unwritten extent.
4607 */
4608 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4609 ext4_update_inode_fsync_trans(handle, inode, 1);
4610 else
4611 ext4_update_inode_fsync_trans(handle, inode, 0);
4612 out:
4613 if (allocated > map->m_len)
4614 allocated = map->m_len;
4615 ext4_ext_show_leaf(inode, path);
4616 map->m_flags |= EXT4_MAP_MAPPED;
4617 map->m_pblk = newblock;
4618 map->m_len = allocated;
4619 out2:
4620 ext4_ext_drop_refs(path);
4621 kfree(path);
4622
4623 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4624 err ? err : allocated);
4625 return err ? err : allocated;
4626 }
4627
ext4_ext_truncate(handle_t * handle,struct inode * inode)4628 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4629 {
4630 struct super_block *sb = inode->i_sb;
4631 ext4_lblk_t last_block;
4632 int err = 0;
4633
4634 /*
4635 * TODO: optimization is possible here.
4636 * Probably we need not scan at all,
4637 * because page truncation is enough.
4638 */
4639
4640 /* we have to know where to truncate from in crash case */
4641 EXT4_I(inode)->i_disksize = inode->i_size;
4642 ext4_mark_inode_dirty(handle, inode);
4643
4644 last_block = (inode->i_size + sb->s_blocksize - 1)
4645 >> EXT4_BLOCK_SIZE_BITS(sb);
4646 retry:
4647 err = ext4_es_remove_extent(inode, last_block,
4648 EXT_MAX_BLOCKS - last_block);
4649 if (err == -ENOMEM) {
4650 cond_resched();
4651 congestion_wait(BLK_RW_ASYNC, HZ/50);
4652 goto retry;
4653 }
4654 if (err) {
4655 ext4_std_error(inode->i_sb, err);
4656 return;
4657 }
4658 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4659 ext4_std_error(inode->i_sb, err);
4660 }
4661
ext4_alloc_file_blocks(struct file * file,ext4_lblk_t offset,ext4_lblk_t len,loff_t new_size,int flags,int mode)4662 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4663 ext4_lblk_t len, loff_t new_size,
4664 int flags, int mode)
4665 {
4666 struct inode *inode = file_inode(file);
4667 handle_t *handle;
4668 int ret = 0;
4669 int ret2 = 0;
4670 int retries = 0;
4671 int depth = 0;
4672 struct ext4_map_blocks map;
4673 unsigned int credits;
4674 loff_t epos;
4675
4676 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4677 map.m_lblk = offset;
4678 map.m_len = len;
4679 /*
4680 * Don't normalize the request if it can fit in one extent so
4681 * that it doesn't get unnecessarily split into multiple
4682 * extents.
4683 */
4684 if (len <= EXT_UNWRITTEN_MAX_LEN)
4685 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4686
4687 /*
4688 * credits to insert 1 extent into extent tree
4689 */
4690 credits = ext4_chunk_trans_blocks(inode, len);
4691 depth = ext_depth(inode);
4692
4693 retry:
4694 while (ret >= 0 && len) {
4695 /*
4696 * Recalculate credits when extent tree depth changes.
4697 */
4698 if (depth >= 0 && depth != ext_depth(inode)) {
4699 credits = ext4_chunk_trans_blocks(inode, len);
4700 depth = ext_depth(inode);
4701 }
4702
4703 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4704 credits);
4705 if (IS_ERR(handle)) {
4706 ret = PTR_ERR(handle);
4707 break;
4708 }
4709 ret = ext4_map_blocks(handle, inode, &map, flags);
4710 if (ret <= 0) {
4711 ext4_debug("inode #%lu: block %u: len %u: "
4712 "ext4_ext_map_blocks returned %d",
4713 inode->i_ino, map.m_lblk,
4714 map.m_len, ret);
4715 ext4_mark_inode_dirty(handle, inode);
4716 ret2 = ext4_journal_stop(handle);
4717 break;
4718 }
4719 map.m_lblk += ret;
4720 map.m_len = len = len - ret;
4721 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4722 inode->i_ctime = ext4_current_time(inode);
4723 if (new_size) {
4724 if (epos > new_size)
4725 epos = new_size;
4726 if (ext4_update_inode_size(inode, epos) & 0x1)
4727 inode->i_mtime = inode->i_ctime;
4728 } else {
4729 if (epos > inode->i_size)
4730 ext4_set_inode_flag(inode,
4731 EXT4_INODE_EOFBLOCKS);
4732 }
4733 ext4_mark_inode_dirty(handle, inode);
4734 ext4_update_inode_fsync_trans(handle, inode, 1);
4735 ret2 = ext4_journal_stop(handle);
4736 if (ret2)
4737 break;
4738 }
4739 if (ret == -ENOSPC &&
4740 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4741 ret = 0;
4742 goto retry;
4743 }
4744
4745 return ret > 0 ? ret2 : ret;
4746 }
4747
ext4_zero_range(struct file * file,loff_t offset,loff_t len,int mode)4748 static long ext4_zero_range(struct file *file, loff_t offset,
4749 loff_t len, int mode)
4750 {
4751 struct inode *inode = file_inode(file);
4752 handle_t *handle = NULL;
4753 unsigned int max_blocks;
4754 loff_t new_size = 0;
4755 int ret = 0;
4756 int flags;
4757 int credits;
4758 int partial_begin, partial_end;
4759 loff_t start, end;
4760 ext4_lblk_t lblk;
4761 unsigned int blkbits = inode->i_blkbits;
4762
4763 trace_ext4_zero_range(inode, offset, len, mode);
4764
4765 if (!S_ISREG(inode->i_mode))
4766 return -EINVAL;
4767
4768 /* Call ext4_force_commit to flush all data in case of data=journal. */
4769 if (ext4_should_journal_data(inode)) {
4770 ret = ext4_force_commit(inode->i_sb);
4771 if (ret)
4772 return ret;
4773 }
4774
4775 /*
4776 * Round up offset. This is not fallocate, we neet to zero out
4777 * blocks, so convert interior block aligned part of the range to
4778 * unwritten and possibly manually zero out unaligned parts of the
4779 * range.
4780 */
4781 start = round_up(offset, 1 << blkbits);
4782 end = round_down((offset + len), 1 << blkbits);
4783
4784 if (start < offset || end > offset + len)
4785 return -EINVAL;
4786 partial_begin = offset & ((1 << blkbits) - 1);
4787 partial_end = (offset + len) & ((1 << blkbits) - 1);
4788
4789 lblk = start >> blkbits;
4790 max_blocks = (end >> blkbits);
4791 if (max_blocks < lblk)
4792 max_blocks = 0;
4793 else
4794 max_blocks -= lblk;
4795
4796 inode_lock(inode);
4797
4798 /*
4799 * Indirect files do not support unwritten extnets
4800 */
4801 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4802 ret = -EOPNOTSUPP;
4803 goto out_mutex;
4804 }
4805
4806 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4807 (offset + len > i_size_read(inode) ||
4808 offset + len > EXT4_I(inode)->i_disksize)) {
4809 new_size = offset + len;
4810 ret = inode_newsize_ok(inode, new_size);
4811 if (ret)
4812 goto out_mutex;
4813 }
4814
4815 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4816 if (mode & FALLOC_FL_KEEP_SIZE)
4817 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4818
4819 /* Wait all existing dio workers, newcomers will block on i_mutex */
4820 ext4_inode_block_unlocked_dio(inode);
4821 inode_dio_wait(inode);
4822
4823 /* Preallocate the range including the unaligned edges */
4824 if (partial_begin || partial_end) {
4825 ret = ext4_alloc_file_blocks(file,
4826 round_down(offset, 1 << blkbits) >> blkbits,
4827 (round_up((offset + len), 1 << blkbits) -
4828 round_down(offset, 1 << blkbits)) >> blkbits,
4829 new_size, flags, mode);
4830 if (ret)
4831 goto out_dio;
4832
4833 }
4834
4835 /* Zero range excluding the unaligned edges */
4836 if (max_blocks > 0) {
4837 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4838 EXT4_EX_NOCACHE);
4839
4840 /*
4841 * Prevent page faults from reinstantiating pages we have
4842 * released from page cache.
4843 */
4844 down_write(&EXT4_I(inode)->i_mmap_sem);
4845 ret = ext4_update_disksize_before_punch(inode, offset, len);
4846 if (ret) {
4847 up_write(&EXT4_I(inode)->i_mmap_sem);
4848 goto out_dio;
4849 }
4850 /* Now release the pages and zero block aligned part of pages */
4851 truncate_pagecache_range(inode, start, end - 1);
4852 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4853
4854 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4855 flags, mode);
4856 up_write(&EXT4_I(inode)->i_mmap_sem);
4857 if (ret)
4858 goto out_dio;
4859 }
4860 if (!partial_begin && !partial_end)
4861 goto out_dio;
4862
4863 /*
4864 * In worst case we have to writeout two nonadjacent unwritten
4865 * blocks and update the inode
4866 */
4867 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4868 if (ext4_should_journal_data(inode))
4869 credits += 2;
4870 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4871 if (IS_ERR(handle)) {
4872 ret = PTR_ERR(handle);
4873 ext4_std_error(inode->i_sb, ret);
4874 goto out_dio;
4875 }
4876
4877 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4878 if (new_size) {
4879 ext4_update_inode_size(inode, new_size);
4880 } else {
4881 /*
4882 * Mark that we allocate beyond EOF so the subsequent truncate
4883 * can proceed even if the new size is the same as i_size.
4884 */
4885 if ((offset + len) > i_size_read(inode))
4886 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4887 }
4888 ext4_mark_inode_dirty(handle, inode);
4889
4890 /* Zero out partial block at the edges of the range */
4891 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4892 if (ret >= 0)
4893 ext4_update_inode_fsync_trans(handle, inode, 1);
4894
4895 if (file->f_flags & O_SYNC)
4896 ext4_handle_sync(handle);
4897
4898 ext4_journal_stop(handle);
4899 out_dio:
4900 ext4_inode_resume_unlocked_dio(inode);
4901 out_mutex:
4902 inode_unlock(inode);
4903 return ret;
4904 }
4905
4906 /*
4907 * preallocate space for a file. This implements ext4's fallocate file
4908 * operation, which gets called from sys_fallocate system call.
4909 * For block-mapped files, posix_fallocate should fall back to the method
4910 * of writing zeroes to the required new blocks (the same behavior which is
4911 * expected for file systems which do not support fallocate() system call).
4912 */
ext4_fallocate(struct file * file,int mode,loff_t offset,loff_t len)4913 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4914 {
4915 struct inode *inode = file_inode(file);
4916 loff_t new_size = 0;
4917 unsigned int max_blocks;
4918 int ret = 0;
4919 int flags;
4920 ext4_lblk_t lblk;
4921 unsigned int blkbits = inode->i_blkbits;
4922
4923 /*
4924 * Encrypted inodes can't handle collapse range or insert
4925 * range since we would need to re-encrypt blocks with a
4926 * different IV or XTS tweak (which are based on the logical
4927 * block number).
4928 *
4929 * XXX It's not clear why zero range isn't working, but we'll
4930 * leave it disabled for encrypted inodes for now. This is a
4931 * bug we should fix....
4932 */
4933 if (ext4_encrypted_inode(inode) &&
4934 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4935 FALLOC_FL_ZERO_RANGE)))
4936 return -EOPNOTSUPP;
4937
4938 /* Return error if mode is not supported */
4939 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4940 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4941 FALLOC_FL_INSERT_RANGE))
4942 return -EOPNOTSUPP;
4943
4944 if (mode & FALLOC_FL_PUNCH_HOLE)
4945 return ext4_punch_hole(inode, offset, len);
4946
4947 ret = ext4_convert_inline_data(inode);
4948 if (ret)
4949 return ret;
4950
4951 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4952 return ext4_collapse_range(inode, offset, len);
4953
4954 if (mode & FALLOC_FL_INSERT_RANGE)
4955 return ext4_insert_range(inode, offset, len);
4956
4957 if (mode & FALLOC_FL_ZERO_RANGE)
4958 return ext4_zero_range(file, offset, len, mode);
4959
4960 trace_ext4_fallocate_enter(inode, offset, len, mode);
4961 lblk = offset >> blkbits;
4962
4963 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4964 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4965 if (mode & FALLOC_FL_KEEP_SIZE)
4966 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4967
4968 inode_lock(inode);
4969
4970 /*
4971 * We only support preallocation for extent-based files only
4972 */
4973 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4974 ret = -EOPNOTSUPP;
4975 goto out;
4976 }
4977
4978 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4979 (offset + len > i_size_read(inode) ||
4980 offset + len > EXT4_I(inode)->i_disksize)) {
4981 new_size = offset + len;
4982 ret = inode_newsize_ok(inode, new_size);
4983 if (ret)
4984 goto out;
4985 }
4986
4987 /* Wait all existing dio workers, newcomers will block on i_mutex */
4988 ext4_inode_block_unlocked_dio(inode);
4989 inode_dio_wait(inode);
4990
4991 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4992 flags, mode);
4993 ext4_inode_resume_unlocked_dio(inode);
4994 if (ret)
4995 goto out;
4996
4997 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4998 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4999 EXT4_I(inode)->i_sync_tid);
5000 }
5001 out:
5002 inode_unlock(inode);
5003 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
5004 return ret;
5005 }
5006
5007 /*
5008 * This function convert a range of blocks to written extents
5009 * The caller of this function will pass the start offset and the size.
5010 * all unwritten extents within this range will be converted to
5011 * written extents.
5012 *
5013 * This function is called from the direct IO end io call back
5014 * function, to convert the fallocated extents after IO is completed.
5015 * Returns 0 on success.
5016 */
ext4_convert_unwritten_extents(handle_t * handle,struct inode * inode,loff_t offset,ssize_t len)5017 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5018 loff_t offset, ssize_t len)
5019 {
5020 unsigned int max_blocks;
5021 int ret = 0;
5022 int ret2 = 0;
5023 struct ext4_map_blocks map;
5024 unsigned int credits, blkbits = inode->i_blkbits;
5025
5026 map.m_lblk = offset >> blkbits;
5027 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5028
5029 /*
5030 * This is somewhat ugly but the idea is clear: When transaction is
5031 * reserved, everything goes into it. Otherwise we rather start several
5032 * smaller transactions for conversion of each extent separately.
5033 */
5034 if (handle) {
5035 handle = ext4_journal_start_reserved(handle,
5036 EXT4_HT_EXT_CONVERT);
5037 if (IS_ERR(handle))
5038 return PTR_ERR(handle);
5039 credits = 0;
5040 } else {
5041 /*
5042 * credits to insert 1 extent into extent tree
5043 */
5044 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5045 }
5046 while (ret >= 0 && ret < max_blocks) {
5047 map.m_lblk += ret;
5048 map.m_len = (max_blocks -= ret);
5049 if (credits) {
5050 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5051 credits);
5052 if (IS_ERR(handle)) {
5053 ret = PTR_ERR(handle);
5054 break;
5055 }
5056 }
5057 ret = ext4_map_blocks(handle, inode, &map,
5058 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5059 if (ret <= 0)
5060 ext4_warning(inode->i_sb,
5061 "inode #%lu: block %u: len %u: "
5062 "ext4_ext_map_blocks returned %d",
5063 inode->i_ino, map.m_lblk,
5064 map.m_len, ret);
5065 ext4_mark_inode_dirty(handle, inode);
5066 if (credits)
5067 ret2 = ext4_journal_stop(handle);
5068 if (ret <= 0 || ret2)
5069 break;
5070 }
5071 if (!credits)
5072 ret2 = ext4_journal_stop(handle);
5073 return ret > 0 ? ret2 : ret;
5074 }
5075
5076 /*
5077 * If newes is not existing extent (newes->ec_pblk equals zero) find
5078 * delayed extent at start of newes and update newes accordingly and
5079 * return start of the next delayed extent.
5080 *
5081 * If newes is existing extent (newes->ec_pblk is not equal zero)
5082 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5083 * extent found. Leave newes unmodified.
5084 */
ext4_find_delayed_extent(struct inode * inode,struct extent_status * newes)5085 static int ext4_find_delayed_extent(struct inode *inode,
5086 struct extent_status *newes)
5087 {
5088 struct extent_status es;
5089 ext4_lblk_t block, next_del;
5090
5091 if (newes->es_pblk == 0) {
5092 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5093 newes->es_lblk + newes->es_len - 1, &es);
5094
5095 /*
5096 * No extent in extent-tree contains block @newes->es_pblk,
5097 * then the block may stay in 1)a hole or 2)delayed-extent.
5098 */
5099 if (es.es_len == 0)
5100 /* A hole found. */
5101 return 0;
5102
5103 if (es.es_lblk > newes->es_lblk) {
5104 /* A hole found. */
5105 newes->es_len = min(es.es_lblk - newes->es_lblk,
5106 newes->es_len);
5107 return 0;
5108 }
5109
5110 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5111 }
5112
5113 block = newes->es_lblk + newes->es_len;
5114 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5115 if (es.es_len == 0)
5116 next_del = EXT_MAX_BLOCKS;
5117 else
5118 next_del = es.es_lblk;
5119
5120 return next_del;
5121 }
5122 /* fiemap flags we can handle specified here */
5123 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5124
ext4_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)5125 static int ext4_xattr_fiemap(struct inode *inode,
5126 struct fiemap_extent_info *fieinfo)
5127 {
5128 __u64 physical = 0;
5129 __u64 length;
5130 __u32 flags = FIEMAP_EXTENT_LAST;
5131 int blockbits = inode->i_sb->s_blocksize_bits;
5132 int error = 0;
5133
5134 /* in-inode? */
5135 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5136 struct ext4_iloc iloc;
5137 int offset; /* offset of xattr in inode */
5138
5139 error = ext4_get_inode_loc(inode, &iloc);
5140 if (error)
5141 return error;
5142 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5143 offset = EXT4_GOOD_OLD_INODE_SIZE +
5144 EXT4_I(inode)->i_extra_isize;
5145 physical += offset;
5146 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5147 flags |= FIEMAP_EXTENT_DATA_INLINE;
5148 brelse(iloc.bh);
5149 } else { /* external block */
5150 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5151 length = inode->i_sb->s_blocksize;
5152 }
5153
5154 if (physical)
5155 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5156 length, flags);
5157 return (error < 0 ? error : 0);
5158 }
5159
ext4_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)5160 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5161 __u64 start, __u64 len)
5162 {
5163 ext4_lblk_t start_blk;
5164 int error = 0;
5165
5166 if (ext4_has_inline_data(inode)) {
5167 int has_inline = 1;
5168
5169 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5170 start, len);
5171
5172 if (has_inline)
5173 return error;
5174 }
5175
5176 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5177 error = ext4_ext_precache(inode);
5178 if (error)
5179 return error;
5180 }
5181
5182 /* fallback to generic here if not in extents fmt */
5183 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5184 return generic_block_fiemap(inode, fieinfo, start, len,
5185 ext4_get_block);
5186
5187 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5188 return -EBADR;
5189
5190 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5191 error = ext4_xattr_fiemap(inode, fieinfo);
5192 } else {
5193 ext4_lblk_t len_blks;
5194 __u64 last_blk;
5195
5196 start_blk = start >> inode->i_sb->s_blocksize_bits;
5197 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5198 if (last_blk >= EXT_MAX_BLOCKS)
5199 last_blk = EXT_MAX_BLOCKS-1;
5200 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5201
5202 /*
5203 * Walk the extent tree gathering extent information
5204 * and pushing extents back to the user.
5205 */
5206 error = ext4_fill_fiemap_extents(inode, start_blk,
5207 len_blks, fieinfo);
5208 }
5209 return error;
5210 }
5211
5212 /*
5213 * ext4_access_path:
5214 * Function to access the path buffer for marking it dirty.
5215 * It also checks if there are sufficient credits left in the journal handle
5216 * to update path.
5217 */
5218 static int
ext4_access_path(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)5219 ext4_access_path(handle_t *handle, struct inode *inode,
5220 struct ext4_ext_path *path)
5221 {
5222 int credits, err;
5223
5224 if (!ext4_handle_valid(handle))
5225 return 0;
5226
5227 /*
5228 * Check if need to extend journal credits
5229 * 3 for leaf, sb, and inode plus 2 (bmap and group
5230 * descriptor) for each block group; assume two block
5231 * groups
5232 */
5233 if (handle->h_buffer_credits < 7) {
5234 credits = ext4_writepage_trans_blocks(inode);
5235 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5236 /* EAGAIN is success */
5237 if (err && err != -EAGAIN)
5238 return err;
5239 }
5240
5241 err = ext4_ext_get_access(handle, inode, path);
5242 return err;
5243 }
5244
5245 /*
5246 * ext4_ext_shift_path_extents:
5247 * Shift the extents of a path structure lying between path[depth].p_ext
5248 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5249 * if it is right shift or left shift operation.
5250 */
5251 static int
ext4_ext_shift_path_extents(struct ext4_ext_path * path,ext4_lblk_t shift,struct inode * inode,handle_t * handle,enum SHIFT_DIRECTION SHIFT)5252 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5253 struct inode *inode, handle_t *handle,
5254 enum SHIFT_DIRECTION SHIFT)
5255 {
5256 int depth, err = 0;
5257 struct ext4_extent *ex_start, *ex_last;
5258 bool update = 0;
5259 depth = path->p_depth;
5260
5261 while (depth >= 0) {
5262 if (depth == path->p_depth) {
5263 ex_start = path[depth].p_ext;
5264 if (!ex_start)
5265 return -EFSCORRUPTED;
5266
5267 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5268
5269 err = ext4_access_path(handle, inode, path + depth);
5270 if (err)
5271 goto out;
5272
5273 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5274 update = 1;
5275
5276 while (ex_start <= ex_last) {
5277 if (SHIFT == SHIFT_LEFT) {
5278 le32_add_cpu(&ex_start->ee_block,
5279 -shift);
5280 /* Try to merge to the left. */
5281 if ((ex_start >
5282 EXT_FIRST_EXTENT(path[depth].p_hdr))
5283 &&
5284 ext4_ext_try_to_merge_right(inode,
5285 path, ex_start - 1))
5286 ex_last--;
5287 else
5288 ex_start++;
5289 } else {
5290 le32_add_cpu(&ex_last->ee_block, shift);
5291 ext4_ext_try_to_merge_right(inode, path,
5292 ex_last);
5293 ex_last--;
5294 }
5295 }
5296 err = ext4_ext_dirty(handle, inode, path + depth);
5297 if (err)
5298 goto out;
5299
5300 if (--depth < 0 || !update)
5301 break;
5302 }
5303
5304 /* Update index too */
5305 err = ext4_access_path(handle, inode, path + depth);
5306 if (err)
5307 goto out;
5308
5309 if (SHIFT == SHIFT_LEFT)
5310 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5311 else
5312 le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5313 err = ext4_ext_dirty(handle, inode, path + depth);
5314 if (err)
5315 goto out;
5316
5317 /* we are done if current index is not a starting index */
5318 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5319 break;
5320
5321 depth--;
5322 }
5323
5324 out:
5325 return err;
5326 }
5327
5328 /*
5329 * ext4_ext_shift_extents:
5330 * All the extents which lies in the range from @start to the last allocated
5331 * block for the @inode are shifted either towards left or right (depending
5332 * upon @SHIFT) by @shift blocks.
5333 * On success, 0 is returned, error otherwise.
5334 */
5335 static int
ext4_ext_shift_extents(struct inode * inode,handle_t * handle,ext4_lblk_t start,ext4_lblk_t shift,enum SHIFT_DIRECTION SHIFT)5336 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5337 ext4_lblk_t start, ext4_lblk_t shift,
5338 enum SHIFT_DIRECTION SHIFT)
5339 {
5340 struct ext4_ext_path *path;
5341 int ret = 0, depth;
5342 struct ext4_extent *extent;
5343 ext4_lblk_t stop, *iterator, ex_start, ex_end;
5344
5345 /* Let path point to the last extent */
5346 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5347 EXT4_EX_NOCACHE);
5348 if (IS_ERR(path))
5349 return PTR_ERR(path);
5350
5351 depth = path->p_depth;
5352 extent = path[depth].p_ext;
5353 if (!extent)
5354 goto out;
5355
5356 stop = le32_to_cpu(extent->ee_block);
5357
5358 /*
5359 * In case of left shift, Don't start shifting extents until we make
5360 * sure the hole is big enough to accommodate the shift.
5361 */
5362 if (SHIFT == SHIFT_LEFT) {
5363 path = ext4_find_extent(inode, start - 1, &path,
5364 EXT4_EX_NOCACHE);
5365 if (IS_ERR(path))
5366 return PTR_ERR(path);
5367 depth = path->p_depth;
5368 extent = path[depth].p_ext;
5369 if (extent) {
5370 ex_start = le32_to_cpu(extent->ee_block);
5371 ex_end = le32_to_cpu(extent->ee_block) +
5372 ext4_ext_get_actual_len(extent);
5373 } else {
5374 ex_start = 0;
5375 ex_end = 0;
5376 }
5377
5378 if ((start == ex_start && shift > ex_start) ||
5379 (shift > start - ex_end)) {
5380 ext4_ext_drop_refs(path);
5381 kfree(path);
5382 return -EINVAL;
5383 }
5384 }
5385
5386 /*
5387 * In case of left shift, iterator points to start and it is increased
5388 * till we reach stop. In case of right shift, iterator points to stop
5389 * and it is decreased till we reach start.
5390 */
5391 if (SHIFT == SHIFT_LEFT)
5392 iterator = &start;
5393 else
5394 iterator = &stop;
5395
5396 /*
5397 * Its safe to start updating extents. Start and stop are unsigned, so
5398 * in case of right shift if extent with 0 block is reached, iterator
5399 * becomes NULL to indicate the end of the loop.
5400 */
5401 while (iterator && start <= stop) {
5402 path = ext4_find_extent(inode, *iterator, &path,
5403 EXT4_EX_NOCACHE);
5404 if (IS_ERR(path))
5405 return PTR_ERR(path);
5406 depth = path->p_depth;
5407 extent = path[depth].p_ext;
5408 if (!extent) {
5409 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5410 (unsigned long) *iterator);
5411 return -EFSCORRUPTED;
5412 }
5413 if (SHIFT == SHIFT_LEFT && *iterator >
5414 le32_to_cpu(extent->ee_block)) {
5415 /* Hole, move to the next extent */
5416 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5417 path[depth].p_ext++;
5418 } else {
5419 *iterator = ext4_ext_next_allocated_block(path);
5420 continue;
5421 }
5422 }
5423
5424 if (SHIFT == SHIFT_LEFT) {
5425 extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5426 *iterator = le32_to_cpu(extent->ee_block) +
5427 ext4_ext_get_actual_len(extent);
5428 } else {
5429 extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5430 if (le32_to_cpu(extent->ee_block) > 0)
5431 *iterator = le32_to_cpu(extent->ee_block) - 1;
5432 else
5433 /* Beginning is reached, end of the loop */
5434 iterator = NULL;
5435 /* Update path extent in case we need to stop */
5436 while (le32_to_cpu(extent->ee_block) < start)
5437 extent++;
5438 path[depth].p_ext = extent;
5439 }
5440 ret = ext4_ext_shift_path_extents(path, shift, inode,
5441 handle, SHIFT);
5442 if (ret)
5443 break;
5444 }
5445 out:
5446 ext4_ext_drop_refs(path);
5447 kfree(path);
5448 return ret;
5449 }
5450
5451 /*
5452 * ext4_collapse_range:
5453 * This implements the fallocate's collapse range functionality for ext4
5454 * Returns: 0 and non-zero on error.
5455 */
ext4_collapse_range(struct inode * inode,loff_t offset,loff_t len)5456 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5457 {
5458 struct super_block *sb = inode->i_sb;
5459 ext4_lblk_t punch_start, punch_stop;
5460 handle_t *handle;
5461 unsigned int credits;
5462 loff_t new_size, ioffset;
5463 int ret;
5464
5465 /*
5466 * We need to test this early because xfstests assumes that a
5467 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5468 * system does not support collapse range.
5469 */
5470 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5471 return -EOPNOTSUPP;
5472
5473 /* Collapse range works only on fs block size aligned offsets. */
5474 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5475 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5476 return -EINVAL;
5477
5478 if (!S_ISREG(inode->i_mode))
5479 return -EINVAL;
5480
5481 trace_ext4_collapse_range(inode, offset, len);
5482
5483 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5484 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5485
5486 /* Call ext4_force_commit to flush all data in case of data=journal. */
5487 if (ext4_should_journal_data(inode)) {
5488 ret = ext4_force_commit(inode->i_sb);
5489 if (ret)
5490 return ret;
5491 }
5492
5493 inode_lock(inode);
5494 /*
5495 * There is no need to overlap collapse range with EOF, in which case
5496 * it is effectively a truncate operation
5497 */
5498 if (offset + len >= i_size_read(inode)) {
5499 ret = -EINVAL;
5500 goto out_mutex;
5501 }
5502
5503 /* Currently just for extent based files */
5504 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5505 ret = -EOPNOTSUPP;
5506 goto out_mutex;
5507 }
5508
5509 /* Wait for existing dio to complete */
5510 ext4_inode_block_unlocked_dio(inode);
5511 inode_dio_wait(inode);
5512
5513 /*
5514 * Prevent page faults from reinstantiating pages we have released from
5515 * page cache.
5516 */
5517 down_write(&EXT4_I(inode)->i_mmap_sem);
5518 /*
5519 * Need to round down offset to be aligned with page size boundary
5520 * for page size > block size.
5521 */
5522 ioffset = round_down(offset, PAGE_SIZE);
5523 /*
5524 * Write tail of the last page before removed range since it will get
5525 * removed from the page cache below.
5526 */
5527 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5528 if (ret)
5529 goto out_mmap;
5530 /*
5531 * Write data that will be shifted to preserve them when discarding
5532 * page cache below. We are also protected from pages becoming dirty
5533 * by i_mmap_sem.
5534 */
5535 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5536 LLONG_MAX);
5537 if (ret)
5538 goto out_mmap;
5539 truncate_pagecache(inode, ioffset);
5540
5541 credits = ext4_writepage_trans_blocks(inode);
5542 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5543 if (IS_ERR(handle)) {
5544 ret = PTR_ERR(handle);
5545 goto out_mmap;
5546 }
5547
5548 down_write(&EXT4_I(inode)->i_data_sem);
5549 ext4_discard_preallocations(inode);
5550
5551 ret = ext4_es_remove_extent(inode, punch_start,
5552 EXT_MAX_BLOCKS - punch_start);
5553 if (ret) {
5554 up_write(&EXT4_I(inode)->i_data_sem);
5555 goto out_stop;
5556 }
5557
5558 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5559 if (ret) {
5560 up_write(&EXT4_I(inode)->i_data_sem);
5561 goto out_stop;
5562 }
5563 ext4_discard_preallocations(inode);
5564
5565 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5566 punch_stop - punch_start, SHIFT_LEFT);
5567 if (ret) {
5568 up_write(&EXT4_I(inode)->i_data_sem);
5569 goto out_stop;
5570 }
5571
5572 new_size = i_size_read(inode) - len;
5573 i_size_write(inode, new_size);
5574 EXT4_I(inode)->i_disksize = new_size;
5575
5576 up_write(&EXT4_I(inode)->i_data_sem);
5577 if (IS_SYNC(inode))
5578 ext4_handle_sync(handle);
5579 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5580 ext4_mark_inode_dirty(handle, inode);
5581 ext4_update_inode_fsync_trans(handle, inode, 1);
5582
5583 out_stop:
5584 ext4_journal_stop(handle);
5585 out_mmap:
5586 up_write(&EXT4_I(inode)->i_mmap_sem);
5587 ext4_inode_resume_unlocked_dio(inode);
5588 out_mutex:
5589 inode_unlock(inode);
5590 return ret;
5591 }
5592
5593 /*
5594 * ext4_insert_range:
5595 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5596 * The data blocks starting from @offset to the EOF are shifted by @len
5597 * towards right to create a hole in the @inode. Inode size is increased
5598 * by len bytes.
5599 * Returns 0 on success, error otherwise.
5600 */
ext4_insert_range(struct inode * inode,loff_t offset,loff_t len)5601 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5602 {
5603 struct super_block *sb = inode->i_sb;
5604 handle_t *handle;
5605 struct ext4_ext_path *path;
5606 struct ext4_extent *extent;
5607 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5608 unsigned int credits, ee_len;
5609 int ret = 0, depth, split_flag = 0;
5610 loff_t ioffset;
5611
5612 /*
5613 * We need to test this early because xfstests assumes that an
5614 * insert range of (0, 1) will return EOPNOTSUPP if the file
5615 * system does not support insert range.
5616 */
5617 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5618 return -EOPNOTSUPP;
5619
5620 /* Insert range works only on fs block size aligned offsets. */
5621 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5622 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5623 return -EINVAL;
5624
5625 if (!S_ISREG(inode->i_mode))
5626 return -EOPNOTSUPP;
5627
5628 trace_ext4_insert_range(inode, offset, len);
5629
5630 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5631 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5632
5633 /* Call ext4_force_commit to flush all data in case of data=journal */
5634 if (ext4_should_journal_data(inode)) {
5635 ret = ext4_force_commit(inode->i_sb);
5636 if (ret)
5637 return ret;
5638 }
5639
5640 inode_lock(inode);
5641 /* Currently just for extent based files */
5642 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5643 ret = -EOPNOTSUPP;
5644 goto out_mutex;
5645 }
5646
5647 /* Check for wrap through zero */
5648 if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5649 ret = -EFBIG;
5650 goto out_mutex;
5651 }
5652
5653 /* Offset should be less than i_size */
5654 if (offset >= i_size_read(inode)) {
5655 ret = -EINVAL;
5656 goto out_mutex;
5657 }
5658
5659 /* Wait for existing dio to complete */
5660 ext4_inode_block_unlocked_dio(inode);
5661 inode_dio_wait(inode);
5662
5663 /*
5664 * Prevent page faults from reinstantiating pages we have released from
5665 * page cache.
5666 */
5667 down_write(&EXT4_I(inode)->i_mmap_sem);
5668 /*
5669 * Need to round down to align start offset to page size boundary
5670 * for page size > block size.
5671 */
5672 ioffset = round_down(offset, PAGE_SIZE);
5673 /* Write out all dirty pages */
5674 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5675 LLONG_MAX);
5676 if (ret)
5677 goto out_mmap;
5678 truncate_pagecache(inode, ioffset);
5679
5680 credits = ext4_writepage_trans_blocks(inode);
5681 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5682 if (IS_ERR(handle)) {
5683 ret = PTR_ERR(handle);
5684 goto out_mmap;
5685 }
5686
5687 /* Expand file to avoid data loss if there is error while shifting */
5688 inode->i_size += len;
5689 EXT4_I(inode)->i_disksize += len;
5690 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5691 ret = ext4_mark_inode_dirty(handle, inode);
5692 if (ret)
5693 goto out_stop;
5694
5695 down_write(&EXT4_I(inode)->i_data_sem);
5696 ext4_discard_preallocations(inode);
5697
5698 path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5699 if (IS_ERR(path)) {
5700 up_write(&EXT4_I(inode)->i_data_sem);
5701 goto out_stop;
5702 }
5703
5704 depth = ext_depth(inode);
5705 extent = path[depth].p_ext;
5706 if (extent) {
5707 ee_start_lblk = le32_to_cpu(extent->ee_block);
5708 ee_len = ext4_ext_get_actual_len(extent);
5709
5710 /*
5711 * If offset_lblk is not the starting block of extent, split
5712 * the extent @offset_lblk
5713 */
5714 if ((offset_lblk > ee_start_lblk) &&
5715 (offset_lblk < (ee_start_lblk + ee_len))) {
5716 if (ext4_ext_is_unwritten(extent))
5717 split_flag = EXT4_EXT_MARK_UNWRIT1 |
5718 EXT4_EXT_MARK_UNWRIT2;
5719 ret = ext4_split_extent_at(handle, inode, &path,
5720 offset_lblk, split_flag,
5721 EXT4_EX_NOCACHE |
5722 EXT4_GET_BLOCKS_PRE_IO |
5723 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5724 }
5725
5726 ext4_ext_drop_refs(path);
5727 kfree(path);
5728 if (ret < 0) {
5729 up_write(&EXT4_I(inode)->i_data_sem);
5730 goto out_stop;
5731 }
5732 } else {
5733 ext4_ext_drop_refs(path);
5734 kfree(path);
5735 }
5736
5737 ret = ext4_es_remove_extent(inode, offset_lblk,
5738 EXT_MAX_BLOCKS - offset_lblk);
5739 if (ret) {
5740 up_write(&EXT4_I(inode)->i_data_sem);
5741 goto out_stop;
5742 }
5743
5744 /*
5745 * if offset_lblk lies in a hole which is at start of file, use
5746 * ee_start_lblk to shift extents
5747 */
5748 ret = ext4_ext_shift_extents(inode, handle,
5749 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5750 len_lblk, SHIFT_RIGHT);
5751
5752 up_write(&EXT4_I(inode)->i_data_sem);
5753 if (IS_SYNC(inode))
5754 ext4_handle_sync(handle);
5755 if (ret >= 0)
5756 ext4_update_inode_fsync_trans(handle, inode, 1);
5757
5758 out_stop:
5759 ext4_journal_stop(handle);
5760 out_mmap:
5761 up_write(&EXT4_I(inode)->i_mmap_sem);
5762 ext4_inode_resume_unlocked_dio(inode);
5763 out_mutex:
5764 inode_unlock(inode);
5765 return ret;
5766 }
5767
5768 /**
5769 * ext4_swap_extents - Swap extents between two inodes
5770 *
5771 * @inode1: First inode
5772 * @inode2: Second inode
5773 * @lblk1: Start block for first inode
5774 * @lblk2: Start block for second inode
5775 * @count: Number of blocks to swap
5776 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5777 * @erp: Pointer to save error value
5778 *
5779 * This helper routine does exactly what is promise "swap extents". All other
5780 * stuff such as page-cache locking consistency, bh mapping consistency or
5781 * extent's data copying must be performed by caller.
5782 * Locking:
5783 * i_mutex is held for both inodes
5784 * i_data_sem is locked for write for both inodes
5785 * Assumptions:
5786 * All pages from requested range are locked for both inodes
5787 */
5788 int
ext4_swap_extents(handle_t * handle,struct inode * inode1,struct inode * inode2,ext4_lblk_t lblk1,ext4_lblk_t lblk2,ext4_lblk_t count,int unwritten,int * erp)5789 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5790 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5791 ext4_lblk_t count, int unwritten, int *erp)
5792 {
5793 struct ext4_ext_path *path1 = NULL;
5794 struct ext4_ext_path *path2 = NULL;
5795 int replaced_count = 0;
5796
5797 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5798 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5799 BUG_ON(!inode_is_locked(inode1));
5800 BUG_ON(!inode_is_locked(inode2));
5801
5802 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5803 if (unlikely(*erp))
5804 return 0;
5805 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5806 if (unlikely(*erp))
5807 return 0;
5808
5809 while (count) {
5810 struct ext4_extent *ex1, *ex2, tmp_ex;
5811 ext4_lblk_t e1_blk, e2_blk;
5812 int e1_len, e2_len, len;
5813 int split = 0;
5814
5815 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5816 if (IS_ERR(path1)) {
5817 *erp = PTR_ERR(path1);
5818 path1 = NULL;
5819 finish:
5820 count = 0;
5821 goto repeat;
5822 }
5823 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5824 if (IS_ERR(path2)) {
5825 *erp = PTR_ERR(path2);
5826 path2 = NULL;
5827 goto finish;
5828 }
5829 ex1 = path1[path1->p_depth].p_ext;
5830 ex2 = path2[path2->p_depth].p_ext;
5831 /* Do we have somthing to swap ? */
5832 if (unlikely(!ex2 || !ex1))
5833 goto finish;
5834
5835 e1_blk = le32_to_cpu(ex1->ee_block);
5836 e2_blk = le32_to_cpu(ex2->ee_block);
5837 e1_len = ext4_ext_get_actual_len(ex1);
5838 e2_len = ext4_ext_get_actual_len(ex2);
5839
5840 /* Hole handling */
5841 if (!in_range(lblk1, e1_blk, e1_len) ||
5842 !in_range(lblk2, e2_blk, e2_len)) {
5843 ext4_lblk_t next1, next2;
5844
5845 /* if hole after extent, then go to next extent */
5846 next1 = ext4_ext_next_allocated_block(path1);
5847 next2 = ext4_ext_next_allocated_block(path2);
5848 /* If hole before extent, then shift to that extent */
5849 if (e1_blk > lblk1)
5850 next1 = e1_blk;
5851 if (e2_blk > lblk2)
5852 next2 = e1_blk;
5853 /* Do we have something to swap */
5854 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5855 goto finish;
5856 /* Move to the rightest boundary */
5857 len = next1 - lblk1;
5858 if (len < next2 - lblk2)
5859 len = next2 - lblk2;
5860 if (len > count)
5861 len = count;
5862 lblk1 += len;
5863 lblk2 += len;
5864 count -= len;
5865 goto repeat;
5866 }
5867
5868 /* Prepare left boundary */
5869 if (e1_blk < lblk1) {
5870 split = 1;
5871 *erp = ext4_force_split_extent_at(handle, inode1,
5872 &path1, lblk1, 0);
5873 if (unlikely(*erp))
5874 goto finish;
5875 }
5876 if (e2_blk < lblk2) {
5877 split = 1;
5878 *erp = ext4_force_split_extent_at(handle, inode2,
5879 &path2, lblk2, 0);
5880 if (unlikely(*erp))
5881 goto finish;
5882 }
5883 /* ext4_split_extent_at() may result in leaf extent split,
5884 * path must to be revalidated. */
5885 if (split)
5886 goto repeat;
5887
5888 /* Prepare right boundary */
5889 len = count;
5890 if (len > e1_blk + e1_len - lblk1)
5891 len = e1_blk + e1_len - lblk1;
5892 if (len > e2_blk + e2_len - lblk2)
5893 len = e2_blk + e2_len - lblk2;
5894
5895 if (len != e1_len) {
5896 split = 1;
5897 *erp = ext4_force_split_extent_at(handle, inode1,
5898 &path1, lblk1 + len, 0);
5899 if (unlikely(*erp))
5900 goto finish;
5901 }
5902 if (len != e2_len) {
5903 split = 1;
5904 *erp = ext4_force_split_extent_at(handle, inode2,
5905 &path2, lblk2 + len, 0);
5906 if (*erp)
5907 goto finish;
5908 }
5909 /* ext4_split_extent_at() may result in leaf extent split,
5910 * path must to be revalidated. */
5911 if (split)
5912 goto repeat;
5913
5914 BUG_ON(e2_len != e1_len);
5915 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5916 if (unlikely(*erp))
5917 goto finish;
5918 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5919 if (unlikely(*erp))
5920 goto finish;
5921
5922 /* Both extents are fully inside boundaries. Swap it now */
5923 tmp_ex = *ex1;
5924 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5925 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5926 ex1->ee_len = cpu_to_le16(e2_len);
5927 ex2->ee_len = cpu_to_le16(e1_len);
5928 if (unwritten)
5929 ext4_ext_mark_unwritten(ex2);
5930 if (ext4_ext_is_unwritten(&tmp_ex))
5931 ext4_ext_mark_unwritten(ex1);
5932
5933 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5934 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5935 *erp = ext4_ext_dirty(handle, inode2, path2 +
5936 path2->p_depth);
5937 if (unlikely(*erp))
5938 goto finish;
5939 *erp = ext4_ext_dirty(handle, inode1, path1 +
5940 path1->p_depth);
5941 /*
5942 * Looks scarry ah..? second inode already points to new blocks,
5943 * and it was successfully dirtied. But luckily error may happen
5944 * only due to journal error, so full transaction will be
5945 * aborted anyway.
5946 */
5947 if (unlikely(*erp))
5948 goto finish;
5949 lblk1 += len;
5950 lblk2 += len;
5951 replaced_count += len;
5952 count -= len;
5953
5954 repeat:
5955 ext4_ext_drop_refs(path1);
5956 kfree(path1);
5957 ext4_ext_drop_refs(path2);
5958 kfree(path2);
5959 path1 = path2 = NULL;
5960 }
5961 return replaced_count;
5962 }
5963