• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59 
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 			     unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 					struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 				   struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 		       const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81 static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 					    unsigned int journal_inum);
83 
84 /*
85  * Lock ordering
86  *
87  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88  * i_mmap_rwsem (inode->i_mmap_rwsem)!
89  *
90  * page fault path:
91  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92  *   page lock -> i_data_sem (rw)
93  *
94  * buffered write path:
95  * sb_start_write -> i_mutex -> mmap_sem
96  * sb_start_write -> i_mutex -> transaction start -> page lock ->
97  *   i_data_sem (rw)
98  *
99  * truncate:
100  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101  *   i_mmap_rwsem (w) -> page lock
102  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103  *   transaction start -> i_data_sem (rw)
104  *
105  * direct IO:
106  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108  *   transaction start -> i_data_sem (rw)
109  *
110  * writepages:
111  * transaction start -> page lock(s) -> i_data_sem (rw)
112  */
113 
114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115 static struct file_system_type ext2_fs_type = {
116 	.owner		= THIS_MODULE,
117 	.name		= "ext2",
118 	.mount		= ext4_mount,
119 	.kill_sb	= kill_block_super,
120 	.fs_flags	= FS_REQUIRES_DEV,
121 };
122 MODULE_ALIAS_FS("ext2");
123 MODULE_ALIAS("ext2");
124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125 #else
126 #define IS_EXT2_SB(sb) (0)
127 #endif
128 
129 
130 static struct file_system_type ext3_fs_type = {
131 	.owner		= THIS_MODULE,
132 	.name		= "ext3",
133 	.mount		= ext4_mount,
134 	.kill_sb	= kill_block_super,
135 	.fs_flags	= FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("ext3");
138 MODULE_ALIAS("ext3");
139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)141 static int ext4_verify_csum_type(struct super_block *sb,
142 				 struct ext4_super_block *es)
143 {
144 	if (!ext4_has_feature_metadata_csum(sb))
145 		return 1;
146 
147 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148 }
149 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)150 static __le32 ext4_superblock_csum(struct super_block *sb,
151 				   struct ext4_super_block *es)
152 {
153 	struct ext4_sb_info *sbi = EXT4_SB(sb);
154 	int offset = offsetof(struct ext4_super_block, s_checksum);
155 	__u32 csum;
156 
157 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158 
159 	return cpu_to_le32(csum);
160 }
161 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)162 static int ext4_superblock_csum_verify(struct super_block *sb,
163 				       struct ext4_super_block *es)
164 {
165 	if (!ext4_has_metadata_csum(sb))
166 		return 1;
167 
168 	return es->s_checksum == ext4_superblock_csum(sb, es);
169 }
170 
ext4_superblock_csum_set(struct super_block * sb)171 void ext4_superblock_csum_set(struct super_block *sb)
172 {
173 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174 
175 	if (!ext4_has_metadata_csum(sb))
176 		return;
177 
178 	es->s_checksum = ext4_superblock_csum(sb, es);
179 }
180 
ext4_kvmalloc(size_t size,gfp_t flags)181 void *ext4_kvmalloc(size_t size, gfp_t flags)
182 {
183 	void *ret;
184 
185 	ret = kmalloc(size, flags | __GFP_NOWARN);
186 	if (!ret)
187 		ret = __vmalloc(size, flags, PAGE_KERNEL);
188 	return ret;
189 }
190 
ext4_kvzalloc(size_t size,gfp_t flags)191 void *ext4_kvzalloc(size_t size, gfp_t flags)
192 {
193 	void *ret;
194 
195 	ret = kzalloc(size, flags | __GFP_NOWARN);
196 	if (!ret)
197 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 	return ret;
199 }
200 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 			       struct ext4_group_desc *bg)
203 {
204 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207 }
208 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 			       struct ext4_group_desc *bg)
211 {
212 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215 }
216 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)217 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 			      struct ext4_group_desc *bg)
219 {
220 	return le32_to_cpu(bg->bg_inode_table_lo) |
221 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223 }
224 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)225 __u32 ext4_free_group_clusters(struct super_block *sb,
226 			       struct ext4_group_desc *bg)
227 {
228 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231 }
232 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)233 __u32 ext4_free_inodes_count(struct super_block *sb,
234 			      struct ext4_group_desc *bg)
235 {
236 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239 }
240 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)241 __u32 ext4_used_dirs_count(struct super_block *sb,
242 			      struct ext4_group_desc *bg)
243 {
244 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247 }
248 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)249 __u32 ext4_itable_unused_count(struct super_block *sb,
250 			      struct ext4_group_desc *bg)
251 {
252 	return le16_to_cpu(bg->bg_itable_unused_lo) |
253 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255 }
256 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)257 void ext4_block_bitmap_set(struct super_block *sb,
258 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
259 {
260 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263 }
264 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)265 void ext4_inode_bitmap_set(struct super_block *sb,
266 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
267 {
268 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
269 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271 }
272 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)273 void ext4_inode_table_set(struct super_block *sb,
274 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
275 {
276 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279 }
280 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)281 void ext4_free_group_clusters_set(struct super_block *sb,
282 				  struct ext4_group_desc *bg, __u32 count)
283 {
284 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287 }
288 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)289 void ext4_free_inodes_set(struct super_block *sb,
290 			  struct ext4_group_desc *bg, __u32 count)
291 {
292 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295 }
296 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)297 void ext4_used_dirs_set(struct super_block *sb,
298 			  struct ext4_group_desc *bg, __u32 count)
299 {
300 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303 }
304 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)305 void ext4_itable_unused_set(struct super_block *sb,
306 			  struct ext4_group_desc *bg, __u32 count)
307 {
308 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311 }
312 
313 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)314 static void __save_error_info(struct super_block *sb, const char *func,
315 			    unsigned int line)
316 {
317 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318 
319 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 	if (bdev_read_only(sb->s_bdev))
321 		return;
322 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 	es->s_last_error_time = cpu_to_le32(get_seconds());
324 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 	es->s_last_error_line = cpu_to_le32(line);
326 	if (!es->s_first_error_time) {
327 		es->s_first_error_time = es->s_last_error_time;
328 		strncpy(es->s_first_error_func, func,
329 			sizeof(es->s_first_error_func));
330 		es->s_first_error_line = cpu_to_le32(line);
331 		es->s_first_error_ino = es->s_last_error_ino;
332 		es->s_first_error_block = es->s_last_error_block;
333 	}
334 	/*
335 	 * Start the daily error reporting function if it hasn't been
336 	 * started already
337 	 */
338 	if (!es->s_error_count)
339 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 	le32_add_cpu(&es->s_error_count, 1);
341 }
342 
save_error_info(struct super_block * sb,const char * func,unsigned int line)343 static void save_error_info(struct super_block *sb, const char *func,
344 			    unsigned int line)
345 {
346 	__save_error_info(sb, func, line);
347 	ext4_commit_super(sb, 1);
348 }
349 
350 /*
351  * The del_gendisk() function uninitializes the disk-specific data
352  * structures, including the bdi structure, without telling anyone
353  * else.  Once this happens, any attempt to call mark_buffer_dirty()
354  * (for example, by ext4_commit_super), will cause a kernel OOPS.
355  * This is a kludge to prevent these oops until we can put in a proper
356  * hook in del_gendisk() to inform the VFS and file system layers.
357  */
block_device_ejected(struct super_block * sb)358 static int block_device_ejected(struct super_block *sb)
359 {
360 	struct inode *bd_inode = sb->s_bdev->bd_inode;
361 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362 
363 	return bdi->dev == NULL;
364 }
365 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367 {
368 	struct super_block		*sb = journal->j_private;
369 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
370 	int				error = is_journal_aborted(journal);
371 	struct ext4_journal_cb_entry	*jce;
372 
373 	BUG_ON(txn->t_state == T_FINISHED);
374 	spin_lock(&sbi->s_md_lock);
375 	while (!list_empty(&txn->t_private_list)) {
376 		jce = list_entry(txn->t_private_list.next,
377 				 struct ext4_journal_cb_entry, jce_list);
378 		list_del_init(&jce->jce_list);
379 		spin_unlock(&sbi->s_md_lock);
380 		jce->jce_func(sb, jce, error);
381 		spin_lock(&sbi->s_md_lock);
382 	}
383 	spin_unlock(&sbi->s_md_lock);
384 }
385 
386 /* Deal with the reporting of failure conditions on a filesystem such as
387  * inconsistencies detected or read IO failures.
388  *
389  * On ext2, we can store the error state of the filesystem in the
390  * superblock.  That is not possible on ext4, because we may have other
391  * write ordering constraints on the superblock which prevent us from
392  * writing it out straight away; and given that the journal is about to
393  * be aborted, we can't rely on the current, or future, transactions to
394  * write out the superblock safely.
395  *
396  * We'll just use the jbd2_journal_abort() error code to record an error in
397  * the journal instead.  On recovery, the journal will complain about
398  * that error until we've noted it down and cleared it.
399  */
400 
ext4_handle_error(struct super_block * sb)401 static void ext4_handle_error(struct super_block *sb)
402 {
403 	if (sb->s_flags & MS_RDONLY)
404 		return;
405 
406 	if (!test_opt(sb, ERRORS_CONT)) {
407 		journal_t *journal = EXT4_SB(sb)->s_journal;
408 
409 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 		if (journal)
411 			jbd2_journal_abort(journal, -EIO);
412 	}
413 	if (test_opt(sb, ERRORS_RO)) {
414 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 		/*
416 		 * Make sure updated value of ->s_mount_flags will be visible
417 		 * before ->s_flags update
418 		 */
419 		smp_wmb();
420 		sb->s_flags |= MS_RDONLY;
421 	}
422 	if (test_opt(sb, ERRORS_PANIC)) {
423 		if (EXT4_SB(sb)->s_journal &&
424 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 			return;
426 		panic("EXT4-fs (device %s): panic forced after error\n",
427 			sb->s_id);
428 	}
429 }
430 
431 #define ext4_error_ratelimit(sb)					\
432 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
433 			     "EXT4-fs error")
434 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)435 void __ext4_error(struct super_block *sb, const char *function,
436 		  unsigned int line, const char *fmt, ...)
437 {
438 	struct va_format vaf;
439 	va_list args;
440 
441 	if (ext4_error_ratelimit(sb)) {
442 		va_start(args, fmt);
443 		vaf.fmt = fmt;
444 		vaf.va = &args;
445 		printk(KERN_CRIT
446 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 		       sb->s_id, function, line, current->comm, &vaf);
448 		va_end(args);
449 	}
450 	save_error_info(sb, function, line);
451 	ext4_handle_error(sb);
452 }
453 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)454 void __ext4_error_inode(struct inode *inode, const char *function,
455 			unsigned int line, ext4_fsblk_t block,
456 			const char *fmt, ...)
457 {
458 	va_list args;
459 	struct va_format vaf;
460 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461 
462 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 	es->s_last_error_block = cpu_to_le64(block);
464 	if (ext4_error_ratelimit(inode->i_sb)) {
465 		va_start(args, fmt);
466 		vaf.fmt = fmt;
467 		vaf.va = &args;
468 		if (block)
469 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 			       "inode #%lu: block %llu: comm %s: %pV\n",
471 			       inode->i_sb->s_id, function, line, inode->i_ino,
472 			       block, current->comm, &vaf);
473 		else
474 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 			       "inode #%lu: comm %s: %pV\n",
476 			       inode->i_sb->s_id, function, line, inode->i_ino,
477 			       current->comm, &vaf);
478 		va_end(args);
479 	}
480 	save_error_info(inode->i_sb, function, line);
481 	ext4_handle_error(inode->i_sb);
482 }
483 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)484 void __ext4_error_file(struct file *file, const char *function,
485 		       unsigned int line, ext4_fsblk_t block,
486 		       const char *fmt, ...)
487 {
488 	va_list args;
489 	struct va_format vaf;
490 	struct ext4_super_block *es;
491 	struct inode *inode = file_inode(file);
492 	char pathname[80], *path;
493 
494 	es = EXT4_SB(inode->i_sb)->s_es;
495 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 	if (ext4_error_ratelimit(inode->i_sb)) {
497 		path = file_path(file, pathname, sizeof(pathname));
498 		if (IS_ERR(path))
499 			path = "(unknown)";
500 		va_start(args, fmt);
501 		vaf.fmt = fmt;
502 		vaf.va = &args;
503 		if (block)
504 			printk(KERN_CRIT
505 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 			       "block %llu: comm %s: path %s: %pV\n",
507 			       inode->i_sb->s_id, function, line, inode->i_ino,
508 			       block, current->comm, path, &vaf);
509 		else
510 			printk(KERN_CRIT
511 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 			       "comm %s: path %s: %pV\n",
513 			       inode->i_sb->s_id, function, line, inode->i_ino,
514 			       current->comm, path, &vaf);
515 		va_end(args);
516 	}
517 	save_error_info(inode->i_sb, function, line);
518 	ext4_handle_error(inode->i_sb);
519 }
520 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])521 const char *ext4_decode_error(struct super_block *sb, int errno,
522 			      char nbuf[16])
523 {
524 	char *errstr = NULL;
525 
526 	switch (errno) {
527 	case -EFSCORRUPTED:
528 		errstr = "Corrupt filesystem";
529 		break;
530 	case -EFSBADCRC:
531 		errstr = "Filesystem failed CRC";
532 		break;
533 	case -EIO:
534 		errstr = "IO failure";
535 		break;
536 	case -ENOMEM:
537 		errstr = "Out of memory";
538 		break;
539 	case -EROFS:
540 		if (!sb || (EXT4_SB(sb)->s_journal &&
541 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 			errstr = "Journal has aborted";
543 		else
544 			errstr = "Readonly filesystem";
545 		break;
546 	default:
547 		/* If the caller passed in an extra buffer for unknown
548 		 * errors, textualise them now.  Else we just return
549 		 * NULL. */
550 		if (nbuf) {
551 			/* Check for truncated error codes... */
552 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 				errstr = nbuf;
554 		}
555 		break;
556 	}
557 
558 	return errstr;
559 }
560 
561 /* __ext4_std_error decodes expected errors from journaling functions
562  * automatically and invokes the appropriate error response.  */
563 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)564 void __ext4_std_error(struct super_block *sb, const char *function,
565 		      unsigned int line, int errno)
566 {
567 	char nbuf[16];
568 	const char *errstr;
569 
570 	/* Special case: if the error is EROFS, and we're not already
571 	 * inside a transaction, then there's really no point in logging
572 	 * an error. */
573 	if (errno == -EROFS && journal_current_handle() == NULL &&
574 	    (sb->s_flags & MS_RDONLY))
575 		return;
576 
577 	if (ext4_error_ratelimit(sb)) {
578 		errstr = ext4_decode_error(sb, errno, nbuf);
579 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 		       sb->s_id, function, line, errstr);
581 	}
582 
583 	save_error_info(sb, function, line);
584 	ext4_handle_error(sb);
585 }
586 
587 /*
588  * ext4_abort is a much stronger failure handler than ext4_error.  The
589  * abort function may be used to deal with unrecoverable failures such
590  * as journal IO errors or ENOMEM at a critical moment in log management.
591  *
592  * We unconditionally force the filesystem into an ABORT|READONLY state,
593  * unless the error response on the fs has been set to panic in which
594  * case we take the easy way out and panic immediately.
595  */
596 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)597 void __ext4_abort(struct super_block *sb, const char *function,
598 		unsigned int line, const char *fmt, ...)
599 {
600 	struct va_format vaf;
601 	va_list args;
602 
603 	save_error_info(sb, function, line);
604 	va_start(args, fmt);
605 	vaf.fmt = fmt;
606 	vaf.va = &args;
607 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 	       sb->s_id, function, line, &vaf);
609 	va_end(args);
610 
611 	if ((sb->s_flags & MS_RDONLY) == 0) {
612 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 		/*
615 		 * Make sure updated value of ->s_mount_flags will be visible
616 		 * before ->s_flags update
617 		 */
618 		smp_wmb();
619 		sb->s_flags |= MS_RDONLY;
620 		if (EXT4_SB(sb)->s_journal)
621 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 		save_error_info(sb, function, line);
623 	}
624 	if (test_opt(sb, ERRORS_PANIC)) {
625 		if (EXT4_SB(sb)->s_journal &&
626 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 			return;
628 		panic("EXT4-fs panic from previous error\n");
629 	}
630 }
631 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)632 void __ext4_msg(struct super_block *sb,
633 		const char *prefix, const char *fmt, ...)
634 {
635 	struct va_format vaf;
636 	va_list args;
637 
638 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 		return;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 	va_end(args);
646 }
647 
648 #define ext4_warning_ratelimit(sb)					\
649 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
650 			     "EXT4-fs warning")
651 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)652 void __ext4_warning(struct super_block *sb, const char *function,
653 		    unsigned int line, const char *fmt, ...)
654 {
655 	struct va_format vaf;
656 	va_list args;
657 
658 	if (!ext4_warning_ratelimit(sb))
659 		return;
660 
661 	va_start(args, fmt);
662 	vaf.fmt = fmt;
663 	vaf.va = &args;
664 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 	       sb->s_id, function, line, &vaf);
666 	va_end(args);
667 }
668 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)669 void __ext4_warning_inode(const struct inode *inode, const char *function,
670 			  unsigned int line, const char *fmt, ...)
671 {
672 	struct va_format vaf;
673 	va_list args;
674 
675 	if (!ext4_warning_ratelimit(inode->i_sb))
676 		return;
677 
678 	va_start(args, fmt);
679 	vaf.fmt = fmt;
680 	vaf.va = &args;
681 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 	       function, line, inode->i_ino, current->comm, &vaf);
684 	va_end(args);
685 }
686 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)687 void __ext4_grp_locked_error(const char *function, unsigned int line,
688 			     struct super_block *sb, ext4_group_t grp,
689 			     unsigned long ino, ext4_fsblk_t block,
690 			     const char *fmt, ...)
691 __releases(bitlock)
692 __acquires(bitlock)
693 {
694 	struct va_format vaf;
695 	va_list args;
696 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697 
698 	es->s_last_error_ino = cpu_to_le32(ino);
699 	es->s_last_error_block = cpu_to_le64(block);
700 	__save_error_info(sb, function, line);
701 
702 	if (ext4_error_ratelimit(sb)) {
703 		va_start(args, fmt);
704 		vaf.fmt = fmt;
705 		vaf.va = &args;
706 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 		       sb->s_id, function, line, grp);
708 		if (ino)
709 			printk(KERN_CONT "inode %lu: ", ino);
710 		if (block)
711 			printk(KERN_CONT "block %llu:",
712 			       (unsigned long long) block);
713 		printk(KERN_CONT "%pV\n", &vaf);
714 		va_end(args);
715 	}
716 
717 	if (test_opt(sb, ERRORS_CONT)) {
718 		ext4_commit_super(sb, 0);
719 		return;
720 	}
721 
722 	ext4_unlock_group(sb, grp);
723 	ext4_commit_super(sb, 1);
724 	ext4_handle_error(sb);
725 	/*
726 	 * We only get here in the ERRORS_RO case; relocking the group
727 	 * may be dangerous, but nothing bad will happen since the
728 	 * filesystem will have already been marked read/only and the
729 	 * journal has been aborted.  We return 1 as a hint to callers
730 	 * who might what to use the return value from
731 	 * ext4_grp_locked_error() to distinguish between the
732 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
733 	 * aggressively from the ext4 function in question, with a
734 	 * more appropriate error code.
735 	 */
736 	ext4_lock_group(sb, grp);
737 	return;
738 }
739 
ext4_update_dynamic_rev(struct super_block * sb)740 void ext4_update_dynamic_rev(struct super_block *sb)
741 {
742 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
743 
744 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
745 		return;
746 
747 	ext4_warning(sb,
748 		     "updating to rev %d because of new feature flag, "
749 		     "running e2fsck is recommended",
750 		     EXT4_DYNAMIC_REV);
751 
752 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
753 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
754 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
755 	/* leave es->s_feature_*compat flags alone */
756 	/* es->s_uuid will be set by e2fsck if empty */
757 
758 	/*
759 	 * The rest of the superblock fields should be zero, and if not it
760 	 * means they are likely already in use, so leave them alone.  We
761 	 * can leave it up to e2fsck to clean up any inconsistencies there.
762 	 */
763 }
764 
765 /*
766  * Open the external journal device
767  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)768 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
769 {
770 	struct block_device *bdev;
771 	char b[BDEVNAME_SIZE];
772 
773 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
774 	if (IS_ERR(bdev))
775 		goto fail;
776 	return bdev;
777 
778 fail:
779 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
780 			__bdevname(dev, b), PTR_ERR(bdev));
781 	return NULL;
782 }
783 
784 /*
785  * Release the journal device
786  */
ext4_blkdev_put(struct block_device * bdev)787 static void ext4_blkdev_put(struct block_device *bdev)
788 {
789 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
790 }
791 
ext4_blkdev_remove(struct ext4_sb_info * sbi)792 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
793 {
794 	struct block_device *bdev;
795 	bdev = sbi->journal_bdev;
796 	if (bdev) {
797 		ext4_blkdev_put(bdev);
798 		sbi->journal_bdev = NULL;
799 	}
800 }
801 
orphan_list_entry(struct list_head * l)802 static inline struct inode *orphan_list_entry(struct list_head *l)
803 {
804 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
805 }
806 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)807 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
808 {
809 	struct list_head *l;
810 
811 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
812 		 le32_to_cpu(sbi->s_es->s_last_orphan));
813 
814 	printk(KERN_ERR "sb_info orphan list:\n");
815 	list_for_each(l, &sbi->s_orphan) {
816 		struct inode *inode = orphan_list_entry(l);
817 		printk(KERN_ERR "  "
818 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
819 		       inode->i_sb->s_id, inode->i_ino, inode,
820 		       inode->i_mode, inode->i_nlink,
821 		       NEXT_ORPHAN(inode));
822 	}
823 }
824 
ext4_put_super(struct super_block * sb)825 static void ext4_put_super(struct super_block *sb)
826 {
827 	struct ext4_sb_info *sbi = EXT4_SB(sb);
828 	struct ext4_super_block *es = sbi->s_es;
829 	int aborted = 0;
830 	int i, err;
831 
832 	ext4_unregister_li_request(sb);
833 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
834 
835 	flush_workqueue(sbi->rsv_conversion_wq);
836 	destroy_workqueue(sbi->rsv_conversion_wq);
837 
838 	if (sbi->s_journal) {
839 		aborted = is_journal_aborted(sbi->s_journal);
840 		err = jbd2_journal_destroy(sbi->s_journal);
841 		sbi->s_journal = NULL;
842 		if ((err < 0) && !aborted)
843 			ext4_abort(sb, "Couldn't clean up the journal");
844 	}
845 
846 	ext4_unregister_sysfs(sb);
847 	ext4_es_unregister_shrinker(sbi);
848 	del_timer_sync(&sbi->s_err_report);
849 	ext4_release_system_zone(sb);
850 	ext4_mb_release(sb);
851 	ext4_ext_release(sb);
852 
853 	if (!(sb->s_flags & MS_RDONLY) && !aborted) {
854 		ext4_clear_feature_journal_needs_recovery(sb);
855 		es->s_state = cpu_to_le16(sbi->s_mount_state);
856 	}
857 	if (!(sb->s_flags & MS_RDONLY))
858 		ext4_commit_super(sb, 1);
859 
860 	for (i = 0; i < sbi->s_gdb_count; i++)
861 		brelse(sbi->s_group_desc[i]);
862 	kvfree(sbi->s_group_desc);
863 	kvfree(sbi->s_flex_groups);
864 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
865 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
866 	percpu_counter_destroy(&sbi->s_dirs_counter);
867 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
868 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
869 	brelse(sbi->s_sbh);
870 #ifdef CONFIG_QUOTA
871 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
872 		kfree(sbi->s_qf_names[i]);
873 #endif
874 
875 	/* Debugging code just in case the in-memory inode orphan list
876 	 * isn't empty.  The on-disk one can be non-empty if we've
877 	 * detected an error and taken the fs readonly, but the
878 	 * in-memory list had better be clean by this point. */
879 	if (!list_empty(&sbi->s_orphan))
880 		dump_orphan_list(sb, sbi);
881 	J_ASSERT(list_empty(&sbi->s_orphan));
882 
883 	sync_blockdev(sb->s_bdev);
884 	invalidate_bdev(sb->s_bdev);
885 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
886 		/*
887 		 * Invalidate the journal device's buffers.  We don't want them
888 		 * floating about in memory - the physical journal device may
889 		 * hotswapped, and it breaks the `ro-after' testing code.
890 		 */
891 		sync_blockdev(sbi->journal_bdev);
892 		invalidate_bdev(sbi->journal_bdev);
893 		ext4_blkdev_remove(sbi);
894 	}
895 	if (sbi->s_mb_cache) {
896 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
897 		sbi->s_mb_cache = NULL;
898 	}
899 	if (sbi->s_mmp_tsk)
900 		kthread_stop(sbi->s_mmp_tsk);
901 	sb->s_fs_info = NULL;
902 	/*
903 	 * Now that we are completely done shutting down the
904 	 * superblock, we need to actually destroy the kobject.
905 	 */
906 	kobject_put(&sbi->s_kobj);
907 	wait_for_completion(&sbi->s_kobj_unregister);
908 	if (sbi->s_chksum_driver)
909 		crypto_free_shash(sbi->s_chksum_driver);
910 	kfree(sbi->s_blockgroup_lock);
911 	kfree(sbi);
912 }
913 
914 static struct kmem_cache *ext4_inode_cachep;
915 
916 /*
917  * Called inside transaction, so use GFP_NOFS
918  */
ext4_alloc_inode(struct super_block * sb)919 static struct inode *ext4_alloc_inode(struct super_block *sb)
920 {
921 	struct ext4_inode_info *ei;
922 
923 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
924 	if (!ei)
925 		return NULL;
926 
927 	ei->vfs_inode.i_version = 1;
928 	spin_lock_init(&ei->i_raw_lock);
929 	INIT_LIST_HEAD(&ei->i_prealloc_list);
930 	spin_lock_init(&ei->i_prealloc_lock);
931 	ext4_es_init_tree(&ei->i_es_tree);
932 	rwlock_init(&ei->i_es_lock);
933 	INIT_LIST_HEAD(&ei->i_es_list);
934 	ei->i_es_all_nr = 0;
935 	ei->i_es_shk_nr = 0;
936 	ei->i_es_shrink_lblk = 0;
937 	ei->i_reserved_data_blocks = 0;
938 	ei->i_reserved_meta_blocks = 0;
939 	ei->i_allocated_meta_blocks = 0;
940 	ei->i_da_metadata_calc_len = 0;
941 	ei->i_da_metadata_calc_last_lblock = 0;
942 	spin_lock_init(&(ei->i_block_reservation_lock));
943 #ifdef CONFIG_QUOTA
944 	ei->i_reserved_quota = 0;
945 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
946 #endif
947 	ei->jinode = NULL;
948 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
949 	spin_lock_init(&ei->i_completed_io_lock);
950 	ei->i_sync_tid = 0;
951 	ei->i_datasync_tid = 0;
952 	atomic_set(&ei->i_unwritten, 0);
953 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
954 	return &ei->vfs_inode;
955 }
956 
ext4_drop_inode(struct inode * inode)957 static int ext4_drop_inode(struct inode *inode)
958 {
959 	int drop = generic_drop_inode(inode);
960 
961 	trace_ext4_drop_inode(inode, drop);
962 	return drop;
963 }
964 
ext4_i_callback(struct rcu_head * head)965 static void ext4_i_callback(struct rcu_head *head)
966 {
967 	struct inode *inode = container_of(head, struct inode, i_rcu);
968 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
969 }
970 
ext4_destroy_inode(struct inode * inode)971 static void ext4_destroy_inode(struct inode *inode)
972 {
973 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
974 		ext4_msg(inode->i_sb, KERN_ERR,
975 			 "Inode %lu (%p): orphan list check failed!",
976 			 inode->i_ino, EXT4_I(inode));
977 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
978 				EXT4_I(inode), sizeof(struct ext4_inode_info),
979 				true);
980 		dump_stack();
981 	}
982 	call_rcu(&inode->i_rcu, ext4_i_callback);
983 }
984 
init_once(void * foo)985 static void init_once(void *foo)
986 {
987 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
988 
989 	INIT_LIST_HEAD(&ei->i_orphan);
990 	init_rwsem(&ei->xattr_sem);
991 	init_rwsem(&ei->i_data_sem);
992 	init_rwsem(&ei->i_mmap_sem);
993 	inode_init_once(&ei->vfs_inode);
994 }
995 
init_inodecache(void)996 static int __init init_inodecache(void)
997 {
998 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
999 					     sizeof(struct ext4_inode_info),
1000 					     0, (SLAB_RECLAIM_ACCOUNT|
1001 						SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1002 					     init_once);
1003 	if (ext4_inode_cachep == NULL)
1004 		return -ENOMEM;
1005 	return 0;
1006 }
1007 
destroy_inodecache(void)1008 static void destroy_inodecache(void)
1009 {
1010 	/*
1011 	 * Make sure all delayed rcu free inodes are flushed before we
1012 	 * destroy cache.
1013 	 */
1014 	rcu_barrier();
1015 	kmem_cache_destroy(ext4_inode_cachep);
1016 }
1017 
ext4_clear_inode(struct inode * inode)1018 void ext4_clear_inode(struct inode *inode)
1019 {
1020 	invalidate_inode_buffers(inode);
1021 	clear_inode(inode);
1022 	dquot_drop(inode);
1023 	ext4_discard_preallocations(inode);
1024 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1025 	if (EXT4_I(inode)->jinode) {
1026 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1027 					       EXT4_I(inode)->jinode);
1028 		jbd2_free_inode(EXT4_I(inode)->jinode);
1029 		EXT4_I(inode)->jinode = NULL;
1030 	}
1031 	fscrypt_put_encryption_info(inode);
1032 }
1033 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1034 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1035 					u64 ino, u32 generation)
1036 {
1037 	struct inode *inode;
1038 
1039 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1040 		return ERR_PTR(-ESTALE);
1041 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1042 		return ERR_PTR(-ESTALE);
1043 
1044 	/* iget isn't really right if the inode is currently unallocated!!
1045 	 *
1046 	 * ext4_read_inode will return a bad_inode if the inode had been
1047 	 * deleted, so we should be safe.
1048 	 *
1049 	 * Currently we don't know the generation for parent directory, so
1050 	 * a generation of 0 means "accept any"
1051 	 */
1052 	inode = ext4_iget_normal(sb, ino);
1053 	if (IS_ERR(inode))
1054 		return ERR_CAST(inode);
1055 	if (generation && inode->i_generation != generation) {
1056 		iput(inode);
1057 		return ERR_PTR(-ESTALE);
1058 	}
1059 
1060 	return inode;
1061 }
1062 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1063 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1064 					int fh_len, int fh_type)
1065 {
1066 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1067 				    ext4_nfs_get_inode);
1068 }
1069 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1070 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1071 					int fh_len, int fh_type)
1072 {
1073 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1074 				    ext4_nfs_get_inode);
1075 }
1076 
1077 /*
1078  * Try to release metadata pages (indirect blocks, directories) which are
1079  * mapped via the block device.  Since these pages could have journal heads
1080  * which would prevent try_to_free_buffers() from freeing them, we must use
1081  * jbd2 layer's try_to_free_buffers() function to release them.
1082  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1083 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1084 				 gfp_t wait)
1085 {
1086 	journal_t *journal = EXT4_SB(sb)->s_journal;
1087 
1088 	WARN_ON(PageChecked(page));
1089 	if (!page_has_buffers(page))
1090 		return 0;
1091 	if (journal)
1092 		return jbd2_journal_try_to_free_buffers(journal, page,
1093 						wait & ~__GFP_DIRECT_RECLAIM);
1094 	return try_to_free_buffers(page);
1095 }
1096 
1097 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1098 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1099 {
1100 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1101 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1102 }
1103 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1104 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1105 							void *fs_data)
1106 {
1107 	handle_t *handle = fs_data;
1108 	int res, res2, retries = 0;
1109 
1110 	res = ext4_convert_inline_data(inode);
1111 	if (res)
1112 		return res;
1113 
1114 	/*
1115 	 * If a journal handle was specified, then the encryption context is
1116 	 * being set on a new inode via inheritance and is part of a larger
1117 	 * transaction to create the inode.  Otherwise the encryption context is
1118 	 * being set on an existing inode in its own transaction.  Only in the
1119 	 * latter case should the "retry on ENOSPC" logic be used.
1120 	 */
1121 
1122 	if (handle) {
1123 		res = ext4_xattr_set_handle(handle, inode,
1124 					    EXT4_XATTR_INDEX_ENCRYPTION,
1125 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1126 					    ctx, len, 0);
1127 		if (!res) {
1128 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1129 			ext4_clear_inode_state(inode,
1130 					EXT4_STATE_MAY_INLINE_DATA);
1131 			/*
1132 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1133 			 * S_DAX may be disabled
1134 			 */
1135 			ext4_set_inode_flags(inode);
1136 		}
1137 		return res;
1138 	}
1139 
1140 	res = dquot_initialize(inode);
1141 	if (res)
1142 		return res;
1143 retry:
1144 	handle = ext4_journal_start(inode, EXT4_HT_MISC,
1145 			ext4_jbd2_credits_xattr(inode));
1146 	if (IS_ERR(handle))
1147 		return PTR_ERR(handle);
1148 
1149 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1150 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1151 				    ctx, len, 0);
1152 	if (!res) {
1153 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1154 		/*
1155 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1156 		 * S_DAX may be disabled
1157 		 */
1158 		ext4_set_inode_flags(inode);
1159 		res = ext4_mark_inode_dirty(handle, inode);
1160 		if (res)
1161 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1162 	}
1163 	res2 = ext4_journal_stop(handle);
1164 
1165 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1166 		goto retry;
1167 	if (!res)
1168 		res = res2;
1169 	return res;
1170 }
1171 
ext4_dummy_context(struct inode * inode)1172 static bool ext4_dummy_context(struct inode *inode)
1173 {
1174 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1175 }
1176 
ext4_max_namelen(struct inode * inode)1177 static unsigned ext4_max_namelen(struct inode *inode)
1178 {
1179 	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1180 		EXT4_NAME_LEN;
1181 }
1182 
1183 static const struct fscrypt_operations ext4_cryptops = {
1184 	.key_prefix		= "ext4:",
1185 	.get_context		= ext4_get_context,
1186 	.set_context		= ext4_set_context,
1187 	.dummy_context		= ext4_dummy_context,
1188 	.empty_dir		= ext4_empty_dir,
1189 	.max_namelen		= ext4_max_namelen,
1190 };
1191 #endif
1192 
1193 #ifdef CONFIG_QUOTA
1194 static char *quotatypes[] = INITQFNAMES;
1195 #define QTYPE2NAME(t) (quotatypes[t])
1196 
1197 static int ext4_write_dquot(struct dquot *dquot);
1198 static int ext4_acquire_dquot(struct dquot *dquot);
1199 static int ext4_release_dquot(struct dquot *dquot);
1200 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1201 static int ext4_write_info(struct super_block *sb, int type);
1202 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1203 			 struct path *path);
1204 static int ext4_quota_off(struct super_block *sb, int type);
1205 static int ext4_quota_on_mount(struct super_block *sb, int type);
1206 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1207 			       size_t len, loff_t off);
1208 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1209 				const char *data, size_t len, loff_t off);
1210 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1211 			     unsigned int flags);
1212 static int ext4_enable_quotas(struct super_block *sb);
1213 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1214 
ext4_get_dquots(struct inode * inode)1215 static struct dquot **ext4_get_dquots(struct inode *inode)
1216 {
1217 	return EXT4_I(inode)->i_dquot;
1218 }
1219 
1220 static const struct dquot_operations ext4_quota_operations = {
1221 	.get_reserved_space = ext4_get_reserved_space,
1222 	.write_dquot	= ext4_write_dquot,
1223 	.acquire_dquot	= ext4_acquire_dquot,
1224 	.release_dquot	= ext4_release_dquot,
1225 	.mark_dirty	= ext4_mark_dquot_dirty,
1226 	.write_info	= ext4_write_info,
1227 	.alloc_dquot	= dquot_alloc,
1228 	.destroy_dquot	= dquot_destroy,
1229 	.get_projid	= ext4_get_projid,
1230 	.get_next_id	= ext4_get_next_id,
1231 };
1232 
1233 static const struct quotactl_ops ext4_qctl_operations = {
1234 	.quota_on	= ext4_quota_on,
1235 	.quota_off	= ext4_quota_off,
1236 	.quota_sync	= dquot_quota_sync,
1237 	.get_state	= dquot_get_state,
1238 	.set_info	= dquot_set_dqinfo,
1239 	.get_dqblk	= dquot_get_dqblk,
1240 	.set_dqblk	= dquot_set_dqblk,
1241 	.get_nextdqblk	= dquot_get_next_dqblk,
1242 };
1243 #endif
1244 
1245 static const struct super_operations ext4_sops = {
1246 	.alloc_inode	= ext4_alloc_inode,
1247 	.destroy_inode	= ext4_destroy_inode,
1248 	.write_inode	= ext4_write_inode,
1249 	.dirty_inode	= ext4_dirty_inode,
1250 	.drop_inode	= ext4_drop_inode,
1251 	.evict_inode	= ext4_evict_inode,
1252 	.put_super	= ext4_put_super,
1253 	.sync_fs	= ext4_sync_fs,
1254 	.freeze_fs	= ext4_freeze,
1255 	.unfreeze_fs	= ext4_unfreeze,
1256 	.statfs		= ext4_statfs,
1257 	.remount_fs	= ext4_remount,
1258 	.show_options	= ext4_show_options,
1259 #ifdef CONFIG_QUOTA
1260 	.quota_read	= ext4_quota_read,
1261 	.quota_write	= ext4_quota_write,
1262 	.get_dquots	= ext4_get_dquots,
1263 #endif
1264 	.bdev_try_to_free_page = bdev_try_to_free_page,
1265 };
1266 
1267 static const struct export_operations ext4_export_ops = {
1268 	.fh_to_dentry = ext4_fh_to_dentry,
1269 	.fh_to_parent = ext4_fh_to_parent,
1270 	.get_parent = ext4_get_parent,
1271 };
1272 
1273 enum {
1274 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1275 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1276 	Opt_nouid32, Opt_debug, Opt_removed,
1277 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1278 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1279 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1280 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1281 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1282 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1283 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1284 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1285 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1286 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1287 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1288 	Opt_lazytime, Opt_nolazytime,
1289 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1290 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1291 	Opt_dioread_nolock, Opt_dioread_lock,
1292 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1293 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1294 };
1295 
1296 static const match_table_t tokens = {
1297 	{Opt_bsd_df, "bsddf"},
1298 	{Opt_minix_df, "minixdf"},
1299 	{Opt_grpid, "grpid"},
1300 	{Opt_grpid, "bsdgroups"},
1301 	{Opt_nogrpid, "nogrpid"},
1302 	{Opt_nogrpid, "sysvgroups"},
1303 	{Opt_resgid, "resgid=%u"},
1304 	{Opt_resuid, "resuid=%u"},
1305 	{Opt_sb, "sb=%u"},
1306 	{Opt_err_cont, "errors=continue"},
1307 	{Opt_err_panic, "errors=panic"},
1308 	{Opt_err_ro, "errors=remount-ro"},
1309 	{Opt_nouid32, "nouid32"},
1310 	{Opt_debug, "debug"},
1311 	{Opt_removed, "oldalloc"},
1312 	{Opt_removed, "orlov"},
1313 	{Opt_user_xattr, "user_xattr"},
1314 	{Opt_nouser_xattr, "nouser_xattr"},
1315 	{Opt_acl, "acl"},
1316 	{Opt_noacl, "noacl"},
1317 	{Opt_noload, "norecovery"},
1318 	{Opt_noload, "noload"},
1319 	{Opt_removed, "nobh"},
1320 	{Opt_removed, "bh"},
1321 	{Opt_commit, "commit=%u"},
1322 	{Opt_min_batch_time, "min_batch_time=%u"},
1323 	{Opt_max_batch_time, "max_batch_time=%u"},
1324 	{Opt_journal_dev, "journal_dev=%u"},
1325 	{Opt_journal_path, "journal_path=%s"},
1326 	{Opt_journal_checksum, "journal_checksum"},
1327 	{Opt_nojournal_checksum, "nojournal_checksum"},
1328 	{Opt_journal_async_commit, "journal_async_commit"},
1329 	{Opt_abort, "abort"},
1330 	{Opt_data_journal, "data=journal"},
1331 	{Opt_data_ordered, "data=ordered"},
1332 	{Opt_data_writeback, "data=writeback"},
1333 	{Opt_data_err_abort, "data_err=abort"},
1334 	{Opt_data_err_ignore, "data_err=ignore"},
1335 	{Opt_offusrjquota, "usrjquota="},
1336 	{Opt_usrjquota, "usrjquota=%s"},
1337 	{Opt_offgrpjquota, "grpjquota="},
1338 	{Opt_grpjquota, "grpjquota=%s"},
1339 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1340 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1341 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1342 	{Opt_grpquota, "grpquota"},
1343 	{Opt_noquota, "noquota"},
1344 	{Opt_quota, "quota"},
1345 	{Opt_usrquota, "usrquota"},
1346 	{Opt_prjquota, "prjquota"},
1347 	{Opt_barrier, "barrier=%u"},
1348 	{Opt_barrier, "barrier"},
1349 	{Opt_nobarrier, "nobarrier"},
1350 	{Opt_i_version, "i_version"},
1351 	{Opt_dax, "dax"},
1352 	{Opt_stripe, "stripe=%u"},
1353 	{Opt_delalloc, "delalloc"},
1354 	{Opt_lazytime, "lazytime"},
1355 	{Opt_nolazytime, "nolazytime"},
1356 	{Opt_nodelalloc, "nodelalloc"},
1357 	{Opt_removed, "mblk_io_submit"},
1358 	{Opt_removed, "nomblk_io_submit"},
1359 	{Opt_block_validity, "block_validity"},
1360 	{Opt_noblock_validity, "noblock_validity"},
1361 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1362 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1363 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1364 	{Opt_auto_da_alloc, "auto_da_alloc"},
1365 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1366 	{Opt_dioread_nolock, "dioread_nolock"},
1367 	{Opt_dioread_lock, "dioread_lock"},
1368 	{Opt_discard, "discard"},
1369 	{Opt_nodiscard, "nodiscard"},
1370 	{Opt_init_itable, "init_itable=%u"},
1371 	{Opt_init_itable, "init_itable"},
1372 	{Opt_noinit_itable, "noinit_itable"},
1373 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1374 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1375 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1376 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1377 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1378 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1379 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1380 	{Opt_err, NULL},
1381 };
1382 
get_sb_block(void ** data)1383 static ext4_fsblk_t get_sb_block(void **data)
1384 {
1385 	ext4_fsblk_t	sb_block;
1386 	char		*options = (char *) *data;
1387 
1388 	if (!options || strncmp(options, "sb=", 3) != 0)
1389 		return 1;	/* Default location */
1390 
1391 	options += 3;
1392 	/* TODO: use simple_strtoll with >32bit ext4 */
1393 	sb_block = simple_strtoul(options, &options, 0);
1394 	if (*options && *options != ',') {
1395 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1396 		       (char *) *data);
1397 		return 1;
1398 	}
1399 	if (*options == ',')
1400 		options++;
1401 	*data = (void *) options;
1402 
1403 	return sb_block;
1404 }
1405 
1406 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1407 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1408 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1409 
1410 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1411 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1412 {
1413 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1414 	char *qname;
1415 	int ret = -1;
1416 
1417 	if (sb_any_quota_loaded(sb) &&
1418 		!sbi->s_qf_names[qtype]) {
1419 		ext4_msg(sb, KERN_ERR,
1420 			"Cannot change journaled "
1421 			"quota options when quota turned on");
1422 		return -1;
1423 	}
1424 	if (ext4_has_feature_quota(sb)) {
1425 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1426 			 "ignored when QUOTA feature is enabled");
1427 		return 1;
1428 	}
1429 	qname = match_strdup(args);
1430 	if (!qname) {
1431 		ext4_msg(sb, KERN_ERR,
1432 			"Not enough memory for storing quotafile name");
1433 		return -1;
1434 	}
1435 	if (sbi->s_qf_names[qtype]) {
1436 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1437 			ret = 1;
1438 		else
1439 			ext4_msg(sb, KERN_ERR,
1440 				 "%s quota file already specified",
1441 				 QTYPE2NAME(qtype));
1442 		goto errout;
1443 	}
1444 	if (strchr(qname, '/')) {
1445 		ext4_msg(sb, KERN_ERR,
1446 			"quotafile must be on filesystem root");
1447 		goto errout;
1448 	}
1449 	sbi->s_qf_names[qtype] = qname;
1450 	set_opt(sb, QUOTA);
1451 	return 1;
1452 errout:
1453 	kfree(qname);
1454 	return ret;
1455 }
1456 
clear_qf_name(struct super_block * sb,int qtype)1457 static int clear_qf_name(struct super_block *sb, int qtype)
1458 {
1459 
1460 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 
1462 	if (sb_any_quota_loaded(sb) &&
1463 		sbi->s_qf_names[qtype]) {
1464 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1465 			" when quota turned on");
1466 		return -1;
1467 	}
1468 	kfree(sbi->s_qf_names[qtype]);
1469 	sbi->s_qf_names[qtype] = NULL;
1470 	return 1;
1471 }
1472 #endif
1473 
1474 #define MOPT_SET	0x0001
1475 #define MOPT_CLEAR	0x0002
1476 #define MOPT_NOSUPPORT	0x0004
1477 #define MOPT_EXPLICIT	0x0008
1478 #define MOPT_CLEAR_ERR	0x0010
1479 #define MOPT_GTE0	0x0020
1480 #ifdef CONFIG_QUOTA
1481 #define MOPT_Q		0
1482 #define MOPT_QFMT	0x0040
1483 #else
1484 #define MOPT_Q		MOPT_NOSUPPORT
1485 #define MOPT_QFMT	MOPT_NOSUPPORT
1486 #endif
1487 #define MOPT_DATAJ	0x0080
1488 #define MOPT_NO_EXT2	0x0100
1489 #define MOPT_NO_EXT3	0x0200
1490 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1491 #define MOPT_STRING	0x0400
1492 
1493 static const struct mount_opts {
1494 	int	token;
1495 	int	mount_opt;
1496 	int	flags;
1497 } ext4_mount_opts[] = {
1498 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1499 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1500 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1501 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1502 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1503 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1504 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1505 	 MOPT_EXT4_ONLY | MOPT_SET},
1506 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1507 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1508 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1509 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1510 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1511 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1512 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1513 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1514 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1515 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1516 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1517 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1518 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1519 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1520 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1521 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1522 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1523 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1524 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1525 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1526 	 MOPT_NO_EXT2},
1527 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1528 	 MOPT_NO_EXT2},
1529 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1530 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1531 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1532 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1533 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1534 	{Opt_commit, 0, MOPT_GTE0},
1535 	{Opt_max_batch_time, 0, MOPT_GTE0},
1536 	{Opt_min_batch_time, 0, MOPT_GTE0},
1537 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1538 	{Opt_init_itable, 0, MOPT_GTE0},
1539 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1540 	{Opt_stripe, 0, MOPT_GTE0},
1541 	{Opt_resuid, 0, MOPT_GTE0},
1542 	{Opt_resgid, 0, MOPT_GTE0},
1543 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1544 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1545 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1546 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1547 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1548 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1549 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1550 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1551 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1552 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1553 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1554 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1555 #else
1556 	{Opt_acl, 0, MOPT_NOSUPPORT},
1557 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1558 #endif
1559 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1560 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1561 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1562 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1563 							MOPT_SET | MOPT_Q},
1564 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1565 							MOPT_SET | MOPT_Q},
1566 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1567 							MOPT_SET | MOPT_Q},
1568 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1569 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1570 							MOPT_CLEAR | MOPT_Q},
1571 	{Opt_usrjquota, 0, MOPT_Q},
1572 	{Opt_grpjquota, 0, MOPT_Q},
1573 	{Opt_offusrjquota, 0, MOPT_Q},
1574 	{Opt_offgrpjquota, 0, MOPT_Q},
1575 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1576 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1577 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1578 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1579 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1580 	{Opt_err, 0, 0}
1581 };
1582 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1583 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1584 			    substring_t *args, unsigned long *journal_devnum,
1585 			    unsigned int *journal_ioprio, int is_remount)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1588 	const struct mount_opts *m;
1589 	kuid_t uid;
1590 	kgid_t gid;
1591 	int arg = 0;
1592 
1593 #ifdef CONFIG_QUOTA
1594 	if (token == Opt_usrjquota)
1595 		return set_qf_name(sb, USRQUOTA, &args[0]);
1596 	else if (token == Opt_grpjquota)
1597 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1598 	else if (token == Opt_offusrjquota)
1599 		return clear_qf_name(sb, USRQUOTA);
1600 	else if (token == Opt_offgrpjquota)
1601 		return clear_qf_name(sb, GRPQUOTA);
1602 #endif
1603 	switch (token) {
1604 	case Opt_noacl:
1605 	case Opt_nouser_xattr:
1606 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1607 		break;
1608 	case Opt_sb:
1609 		return 1;	/* handled by get_sb_block() */
1610 	case Opt_removed:
1611 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1612 		return 1;
1613 	case Opt_abort:
1614 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1615 		return 1;
1616 	case Opt_i_version:
1617 		sb->s_flags |= MS_I_VERSION;
1618 		return 1;
1619 	case Opt_lazytime:
1620 		sb->s_flags |= MS_LAZYTIME;
1621 		return 1;
1622 	case Opt_nolazytime:
1623 		sb->s_flags &= ~MS_LAZYTIME;
1624 		return 1;
1625 	}
1626 
1627 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1628 		if (token == m->token)
1629 			break;
1630 
1631 	if (m->token == Opt_err) {
1632 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1633 			 "or missing value", opt);
1634 		return -1;
1635 	}
1636 
1637 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1638 		ext4_msg(sb, KERN_ERR,
1639 			 "Mount option \"%s\" incompatible with ext2", opt);
1640 		return -1;
1641 	}
1642 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1643 		ext4_msg(sb, KERN_ERR,
1644 			 "Mount option \"%s\" incompatible with ext3", opt);
1645 		return -1;
1646 	}
1647 
1648 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1649 		return -1;
1650 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1651 		return -1;
1652 	if (m->flags & MOPT_EXPLICIT) {
1653 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1654 			set_opt2(sb, EXPLICIT_DELALLOC);
1655 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1656 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1657 		} else
1658 			return -1;
1659 	}
1660 	if (m->flags & MOPT_CLEAR_ERR)
1661 		clear_opt(sb, ERRORS_MASK);
1662 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1663 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1664 			 "options when quota turned on");
1665 		return -1;
1666 	}
1667 
1668 	if (m->flags & MOPT_NOSUPPORT) {
1669 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1670 	} else if (token == Opt_commit) {
1671 		if (arg == 0)
1672 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1673 		sbi->s_commit_interval = HZ * arg;
1674 	} else if (token == Opt_max_batch_time) {
1675 		sbi->s_max_batch_time = arg;
1676 	} else if (token == Opt_min_batch_time) {
1677 		sbi->s_min_batch_time = arg;
1678 	} else if (token == Opt_inode_readahead_blks) {
1679 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1680 			ext4_msg(sb, KERN_ERR,
1681 				 "EXT4-fs: inode_readahead_blks must be "
1682 				 "0 or a power of 2 smaller than 2^31");
1683 			return -1;
1684 		}
1685 		sbi->s_inode_readahead_blks = arg;
1686 	} else if (token == Opt_init_itable) {
1687 		set_opt(sb, INIT_INODE_TABLE);
1688 		if (!args->from)
1689 			arg = EXT4_DEF_LI_WAIT_MULT;
1690 		sbi->s_li_wait_mult = arg;
1691 	} else if (token == Opt_max_dir_size_kb) {
1692 		sbi->s_max_dir_size_kb = arg;
1693 	} else if (token == Opt_stripe) {
1694 		sbi->s_stripe = arg;
1695 	} else if (token == Opt_resuid) {
1696 		uid = make_kuid(current_user_ns(), arg);
1697 		if (!uid_valid(uid)) {
1698 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1699 			return -1;
1700 		}
1701 		sbi->s_resuid = uid;
1702 	} else if (token == Opt_resgid) {
1703 		gid = make_kgid(current_user_ns(), arg);
1704 		if (!gid_valid(gid)) {
1705 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1706 			return -1;
1707 		}
1708 		sbi->s_resgid = gid;
1709 	} else if (token == Opt_journal_dev) {
1710 		if (is_remount) {
1711 			ext4_msg(sb, KERN_ERR,
1712 				 "Cannot specify journal on remount");
1713 			return -1;
1714 		}
1715 		*journal_devnum = arg;
1716 	} else if (token == Opt_journal_path) {
1717 		char *journal_path;
1718 		struct inode *journal_inode;
1719 		struct path path;
1720 		int error;
1721 
1722 		if (is_remount) {
1723 			ext4_msg(sb, KERN_ERR,
1724 				 "Cannot specify journal on remount");
1725 			return -1;
1726 		}
1727 		journal_path = match_strdup(&args[0]);
1728 		if (!journal_path) {
1729 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1730 				"journal device string");
1731 			return -1;
1732 		}
1733 
1734 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1735 		if (error) {
1736 			ext4_msg(sb, KERN_ERR, "error: could not find "
1737 				"journal device path: error %d", error);
1738 			kfree(journal_path);
1739 			return -1;
1740 		}
1741 
1742 		journal_inode = d_inode(path.dentry);
1743 		if (!S_ISBLK(journal_inode->i_mode)) {
1744 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1745 				"is not a block device", journal_path);
1746 			path_put(&path);
1747 			kfree(journal_path);
1748 			return -1;
1749 		}
1750 
1751 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1752 		path_put(&path);
1753 		kfree(journal_path);
1754 	} else if (token == Opt_journal_ioprio) {
1755 		if (arg > 7) {
1756 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1757 				 " (must be 0-7)");
1758 			return -1;
1759 		}
1760 		*journal_ioprio =
1761 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1762 	} else if (token == Opt_test_dummy_encryption) {
1763 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1764 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1765 		ext4_msg(sb, KERN_WARNING,
1766 			 "Test dummy encryption mode enabled");
1767 #else
1768 		ext4_msg(sb, KERN_WARNING,
1769 			 "Test dummy encryption mount option ignored");
1770 #endif
1771 	} else if (m->flags & MOPT_DATAJ) {
1772 		if (is_remount) {
1773 			if (!sbi->s_journal)
1774 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1775 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1776 				ext4_msg(sb, KERN_ERR,
1777 					 "Cannot change data mode on remount");
1778 				return -1;
1779 			}
1780 		} else {
1781 			clear_opt(sb, DATA_FLAGS);
1782 			sbi->s_mount_opt |= m->mount_opt;
1783 		}
1784 #ifdef CONFIG_QUOTA
1785 	} else if (m->flags & MOPT_QFMT) {
1786 		if (sb_any_quota_loaded(sb) &&
1787 		    sbi->s_jquota_fmt != m->mount_opt) {
1788 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1789 				 "quota options when quota turned on");
1790 			return -1;
1791 		}
1792 		if (ext4_has_feature_quota(sb)) {
1793 			ext4_msg(sb, KERN_INFO,
1794 				 "Quota format mount options ignored "
1795 				 "when QUOTA feature is enabled");
1796 			return 1;
1797 		}
1798 		sbi->s_jquota_fmt = m->mount_opt;
1799 #endif
1800 	} else if (token == Opt_dax) {
1801 #ifdef CONFIG_FS_DAX
1802 		ext4_msg(sb, KERN_WARNING,
1803 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1804 			sbi->s_mount_opt |= m->mount_opt;
1805 #else
1806 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1807 		return -1;
1808 #endif
1809 	} else if (token == Opt_data_err_abort) {
1810 		sbi->s_mount_opt |= m->mount_opt;
1811 	} else if (token == Opt_data_err_ignore) {
1812 		sbi->s_mount_opt &= ~m->mount_opt;
1813 	} else {
1814 		if (!args->from)
1815 			arg = 1;
1816 		if (m->flags & MOPT_CLEAR)
1817 			arg = !arg;
1818 		else if (unlikely(!(m->flags & MOPT_SET))) {
1819 			ext4_msg(sb, KERN_WARNING,
1820 				 "buggy handling of option %s", opt);
1821 			WARN_ON(1);
1822 			return -1;
1823 		}
1824 		if (arg != 0)
1825 			sbi->s_mount_opt |= m->mount_opt;
1826 		else
1827 			sbi->s_mount_opt &= ~m->mount_opt;
1828 	}
1829 	return 1;
1830 }
1831 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1832 static int parse_options(char *options, struct super_block *sb,
1833 			 unsigned long *journal_devnum,
1834 			 unsigned int *journal_ioprio,
1835 			 int is_remount)
1836 {
1837 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1838 	char *p;
1839 	substring_t args[MAX_OPT_ARGS];
1840 	int token;
1841 
1842 	if (!options)
1843 		return 1;
1844 
1845 	while ((p = strsep(&options, ",")) != NULL) {
1846 		if (!*p)
1847 			continue;
1848 		/*
1849 		 * Initialize args struct so we know whether arg was
1850 		 * found; some options take optional arguments.
1851 		 */
1852 		args[0].to = args[0].from = NULL;
1853 		token = match_token(p, tokens, args);
1854 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1855 				     journal_ioprio, is_remount) < 0)
1856 			return 0;
1857 	}
1858 #ifdef CONFIG_QUOTA
1859 	/*
1860 	 * We do the test below only for project quotas. 'usrquota' and
1861 	 * 'grpquota' mount options are allowed even without quota feature
1862 	 * to support legacy quotas in quota files.
1863 	 */
1864 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1865 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1866 			 "Cannot enable project quota enforcement.");
1867 		return 0;
1868 	}
1869 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1870 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1871 			clear_opt(sb, USRQUOTA);
1872 
1873 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1874 			clear_opt(sb, GRPQUOTA);
1875 
1876 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1877 			ext4_msg(sb, KERN_ERR, "old and new quota "
1878 					"format mixing");
1879 			return 0;
1880 		}
1881 
1882 		if (!sbi->s_jquota_fmt) {
1883 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1884 					"not specified");
1885 			return 0;
1886 		}
1887 	}
1888 #endif
1889 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1890 		int blocksize =
1891 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1892 
1893 		if (blocksize < PAGE_SIZE) {
1894 			ext4_msg(sb, KERN_ERR, "can't mount with "
1895 				 "dioread_nolock if block size != PAGE_SIZE");
1896 			return 0;
1897 		}
1898 	}
1899 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1900 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1901 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1902 			 "in data=ordered mode");
1903 		return 0;
1904 	}
1905 	return 1;
1906 }
1907 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1908 static inline void ext4_show_quota_options(struct seq_file *seq,
1909 					   struct super_block *sb)
1910 {
1911 #if defined(CONFIG_QUOTA)
1912 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1913 
1914 	if (sbi->s_jquota_fmt) {
1915 		char *fmtname = "";
1916 
1917 		switch (sbi->s_jquota_fmt) {
1918 		case QFMT_VFS_OLD:
1919 			fmtname = "vfsold";
1920 			break;
1921 		case QFMT_VFS_V0:
1922 			fmtname = "vfsv0";
1923 			break;
1924 		case QFMT_VFS_V1:
1925 			fmtname = "vfsv1";
1926 			break;
1927 		}
1928 		seq_printf(seq, ",jqfmt=%s", fmtname);
1929 	}
1930 
1931 	if (sbi->s_qf_names[USRQUOTA])
1932 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1933 
1934 	if (sbi->s_qf_names[GRPQUOTA])
1935 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1936 #endif
1937 }
1938 
token2str(int token)1939 static const char *token2str(int token)
1940 {
1941 	const struct match_token *t;
1942 
1943 	for (t = tokens; t->token != Opt_err; t++)
1944 		if (t->token == token && !strchr(t->pattern, '='))
1945 			break;
1946 	return t->pattern;
1947 }
1948 
1949 /*
1950  * Show an option if
1951  *  - it's set to a non-default value OR
1952  *  - if the per-sb default is different from the global default
1953  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1954 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1955 			      int nodefs)
1956 {
1957 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1958 	struct ext4_super_block *es = sbi->s_es;
1959 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1960 	const struct mount_opts *m;
1961 	char sep = nodefs ? '\n' : ',';
1962 
1963 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1964 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1965 
1966 	if (sbi->s_sb_block != 1)
1967 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1968 
1969 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1970 		int want_set = m->flags & MOPT_SET;
1971 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1972 		    (m->flags & MOPT_CLEAR_ERR))
1973 			continue;
1974 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1975 			continue; /* skip if same as the default */
1976 		if ((want_set &&
1977 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1978 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1979 			continue; /* select Opt_noFoo vs Opt_Foo */
1980 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1981 	}
1982 
1983 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1984 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1985 		SEQ_OPTS_PRINT("resuid=%u",
1986 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1987 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1988 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1989 		SEQ_OPTS_PRINT("resgid=%u",
1990 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1991 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1992 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1993 		SEQ_OPTS_PUTS("errors=remount-ro");
1994 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1995 		SEQ_OPTS_PUTS("errors=continue");
1996 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1997 		SEQ_OPTS_PUTS("errors=panic");
1998 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1999 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2000 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2001 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2002 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2003 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2004 	if (sb->s_flags & MS_I_VERSION)
2005 		SEQ_OPTS_PUTS("i_version");
2006 	if (nodefs || sbi->s_stripe)
2007 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2008 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2009 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2010 			SEQ_OPTS_PUTS("data=journal");
2011 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2012 			SEQ_OPTS_PUTS("data=ordered");
2013 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2014 			SEQ_OPTS_PUTS("data=writeback");
2015 	}
2016 	if (nodefs ||
2017 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2018 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2019 			       sbi->s_inode_readahead_blks);
2020 
2021 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2022 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2023 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2024 	if (nodefs || sbi->s_max_dir_size_kb)
2025 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2026 	if (test_opt(sb, DATA_ERR_ABORT))
2027 		SEQ_OPTS_PUTS("data_err=abort");
2028 
2029 	ext4_show_quota_options(seq, sb);
2030 	return 0;
2031 }
2032 
ext4_show_options(struct seq_file * seq,struct dentry * root)2033 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2034 {
2035 	return _ext4_show_options(seq, root->d_sb, 0);
2036 }
2037 
ext4_seq_options_show(struct seq_file * seq,void * offset)2038 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2039 {
2040 	struct super_block *sb = seq->private;
2041 	int rc;
2042 
2043 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2044 	rc = _ext4_show_options(seq, sb, 1);
2045 	seq_puts(seq, "\n");
2046 	return rc;
2047 }
2048 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2049 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2050 			    int read_only)
2051 {
2052 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 	int res = 0;
2054 
2055 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2056 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2057 			 "forcing read-only mode");
2058 		res = MS_RDONLY;
2059 	}
2060 	if (read_only)
2061 		goto done;
2062 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2063 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2064 			 "running e2fsck is recommended");
2065 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2066 		ext4_msg(sb, KERN_WARNING,
2067 			 "warning: mounting fs with errors, "
2068 			 "running e2fsck is recommended");
2069 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2070 		 le16_to_cpu(es->s_mnt_count) >=
2071 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2072 		ext4_msg(sb, KERN_WARNING,
2073 			 "warning: maximal mount count reached, "
2074 			 "running e2fsck is recommended");
2075 	else if (le32_to_cpu(es->s_checkinterval) &&
2076 		(le32_to_cpu(es->s_lastcheck) +
2077 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2078 		ext4_msg(sb, KERN_WARNING,
2079 			 "warning: checktime reached, "
2080 			 "running e2fsck is recommended");
2081 	if (!sbi->s_journal)
2082 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2083 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2084 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2085 	le16_add_cpu(&es->s_mnt_count, 1);
2086 	es->s_mtime = cpu_to_le32(get_seconds());
2087 	ext4_update_dynamic_rev(sb);
2088 	if (sbi->s_journal)
2089 		ext4_set_feature_journal_needs_recovery(sb);
2090 
2091 	ext4_commit_super(sb, 1);
2092 done:
2093 	if (test_opt(sb, DEBUG))
2094 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2095 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2096 			sb->s_blocksize,
2097 			sbi->s_groups_count,
2098 			EXT4_BLOCKS_PER_GROUP(sb),
2099 			EXT4_INODES_PER_GROUP(sb),
2100 			sbi->s_mount_opt, sbi->s_mount_opt2);
2101 
2102 	cleancache_init_fs(sb);
2103 	return res;
2104 }
2105 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2106 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2107 {
2108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2109 	struct flex_groups *new_groups;
2110 	int size;
2111 
2112 	if (!sbi->s_log_groups_per_flex)
2113 		return 0;
2114 
2115 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2116 	if (size <= sbi->s_flex_groups_allocated)
2117 		return 0;
2118 
2119 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2120 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2121 	if (!new_groups) {
2122 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2123 			 size / (int) sizeof(struct flex_groups));
2124 		return -ENOMEM;
2125 	}
2126 
2127 	if (sbi->s_flex_groups) {
2128 		memcpy(new_groups, sbi->s_flex_groups,
2129 		       (sbi->s_flex_groups_allocated *
2130 			sizeof(struct flex_groups)));
2131 		kvfree(sbi->s_flex_groups);
2132 	}
2133 	sbi->s_flex_groups = new_groups;
2134 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2135 	return 0;
2136 }
2137 
ext4_fill_flex_info(struct super_block * sb)2138 static int ext4_fill_flex_info(struct super_block *sb)
2139 {
2140 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2141 	struct ext4_group_desc *gdp = NULL;
2142 	ext4_group_t flex_group;
2143 	int i, err;
2144 
2145 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2146 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2147 		sbi->s_log_groups_per_flex = 0;
2148 		return 1;
2149 	}
2150 
2151 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2152 	if (err)
2153 		goto failed;
2154 
2155 	for (i = 0; i < sbi->s_groups_count; i++) {
2156 		gdp = ext4_get_group_desc(sb, i, NULL);
2157 
2158 		flex_group = ext4_flex_group(sbi, i);
2159 		atomic_add(ext4_free_inodes_count(sb, gdp),
2160 			   &sbi->s_flex_groups[flex_group].free_inodes);
2161 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2162 			     &sbi->s_flex_groups[flex_group].free_clusters);
2163 		atomic_add(ext4_used_dirs_count(sb, gdp),
2164 			   &sbi->s_flex_groups[flex_group].used_dirs);
2165 	}
2166 
2167 	return 1;
2168 failed:
2169 	return 0;
2170 }
2171 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2172 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2173 				   struct ext4_group_desc *gdp)
2174 {
2175 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2176 	__u16 crc = 0;
2177 	__le32 le_group = cpu_to_le32(block_group);
2178 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2179 
2180 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2181 		/* Use new metadata_csum algorithm */
2182 		__u32 csum32;
2183 		__u16 dummy_csum = 0;
2184 
2185 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2186 				     sizeof(le_group));
2187 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2188 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2189 				     sizeof(dummy_csum));
2190 		offset += sizeof(dummy_csum);
2191 		if (offset < sbi->s_desc_size)
2192 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2193 					     sbi->s_desc_size - offset);
2194 
2195 		crc = csum32 & 0xFFFF;
2196 		goto out;
2197 	}
2198 
2199 	/* old crc16 code */
2200 	if (!ext4_has_feature_gdt_csum(sb))
2201 		return 0;
2202 
2203 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2204 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2205 	crc = crc16(crc, (__u8 *)gdp, offset);
2206 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2207 	/* for checksum of struct ext4_group_desc do the rest...*/
2208 	if (ext4_has_feature_64bit(sb) &&
2209 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2210 		crc = crc16(crc, (__u8 *)gdp + offset,
2211 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2212 				offset);
2213 
2214 out:
2215 	return cpu_to_le16(crc);
2216 }
2217 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2218 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2219 				struct ext4_group_desc *gdp)
2220 {
2221 	if (ext4_has_group_desc_csum(sb) &&
2222 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2223 		return 0;
2224 
2225 	return 1;
2226 }
2227 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2228 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2229 			      struct ext4_group_desc *gdp)
2230 {
2231 	if (!ext4_has_group_desc_csum(sb))
2232 		return;
2233 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2234 }
2235 
2236 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2237 static int ext4_check_descriptors(struct super_block *sb,
2238 				  ext4_fsblk_t sb_block,
2239 				  ext4_group_t *first_not_zeroed)
2240 {
2241 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2242 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2243 	ext4_fsblk_t last_block;
2244 	ext4_fsblk_t block_bitmap;
2245 	ext4_fsblk_t inode_bitmap;
2246 	ext4_fsblk_t inode_table;
2247 	int flexbg_flag = 0;
2248 	ext4_group_t i, grp = sbi->s_groups_count;
2249 
2250 	if (ext4_has_feature_flex_bg(sb))
2251 		flexbg_flag = 1;
2252 
2253 	ext4_debug("Checking group descriptors");
2254 
2255 	for (i = 0; i < sbi->s_groups_count; i++) {
2256 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2257 
2258 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2259 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2260 		else
2261 			last_block = first_block +
2262 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2263 
2264 		if ((grp == sbi->s_groups_count) &&
2265 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2266 			grp = i;
2267 
2268 		block_bitmap = ext4_block_bitmap(sb, gdp);
2269 		if (block_bitmap == sb_block) {
2270 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2271 				 "Block bitmap for group %u overlaps "
2272 				 "superblock", i);
2273 			if (!(sb->s_flags & MS_RDONLY))
2274 				return 0;
2275 		}
2276 		if (block_bitmap < first_block || block_bitmap > last_block) {
2277 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2278 			       "Block bitmap for group %u not in group "
2279 			       "(block %llu)!", i, block_bitmap);
2280 			return 0;
2281 		}
2282 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2283 		if (inode_bitmap == sb_block) {
2284 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2285 				 "Inode bitmap for group %u overlaps "
2286 				 "superblock", i);
2287 			if (!(sb->s_flags & MS_RDONLY))
2288 				return 0;
2289 		}
2290 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2291 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2292 			       "Inode bitmap for group %u not in group "
2293 			       "(block %llu)!", i, inode_bitmap);
2294 			return 0;
2295 		}
2296 		inode_table = ext4_inode_table(sb, gdp);
2297 		if (inode_table == sb_block) {
2298 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2299 				 "Inode table for group %u overlaps "
2300 				 "superblock", i);
2301 			if (!(sb->s_flags & MS_RDONLY))
2302 				return 0;
2303 		}
2304 		if (inode_table < first_block ||
2305 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2306 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2307 			       "Inode table for group %u not in group "
2308 			       "(block %llu)!", i, inode_table);
2309 			return 0;
2310 		}
2311 		ext4_lock_group(sb, i);
2312 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2313 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2314 				 "Checksum for group %u failed (%u!=%u)",
2315 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2316 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2317 			if (!(sb->s_flags & MS_RDONLY)) {
2318 				ext4_unlock_group(sb, i);
2319 				return 0;
2320 			}
2321 		}
2322 		ext4_unlock_group(sb, i);
2323 		if (!flexbg_flag)
2324 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2325 	}
2326 	if (NULL != first_not_zeroed)
2327 		*first_not_zeroed = grp;
2328 	return 1;
2329 }
2330 
2331 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2332  * the superblock) which were deleted from all directories, but held open by
2333  * a process at the time of a crash.  We walk the list and try to delete these
2334  * inodes at recovery time (only with a read-write filesystem).
2335  *
2336  * In order to keep the orphan inode chain consistent during traversal (in
2337  * case of crash during recovery), we link each inode into the superblock
2338  * orphan list_head and handle it the same way as an inode deletion during
2339  * normal operation (which journals the operations for us).
2340  *
2341  * We only do an iget() and an iput() on each inode, which is very safe if we
2342  * accidentally point at an in-use or already deleted inode.  The worst that
2343  * can happen in this case is that we get a "bit already cleared" message from
2344  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2345  * e2fsck was run on this filesystem, and it must have already done the orphan
2346  * inode cleanup for us, so we can safely abort without any further action.
2347  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2348 static void ext4_orphan_cleanup(struct super_block *sb,
2349 				struct ext4_super_block *es)
2350 {
2351 	unsigned int s_flags = sb->s_flags;
2352 	int nr_orphans = 0, nr_truncates = 0;
2353 #ifdef CONFIG_QUOTA
2354 	int quota_update = 0;
2355 	int i;
2356 #endif
2357 	if (!es->s_last_orphan) {
2358 		jbd_debug(4, "no orphan inodes to clean up\n");
2359 		return;
2360 	}
2361 
2362 	if (bdev_read_only(sb->s_bdev)) {
2363 		ext4_msg(sb, KERN_ERR, "write access "
2364 			"unavailable, skipping orphan cleanup");
2365 		return;
2366 	}
2367 
2368 	/* Check if feature set would not allow a r/w mount */
2369 	if (!ext4_feature_set_ok(sb, 0)) {
2370 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2371 			 "unknown ROCOMPAT features");
2372 		return;
2373 	}
2374 
2375 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2376 		/* don't clear list on RO mount w/ errors */
2377 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2378 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2379 				  "clearing orphan list.\n");
2380 			es->s_last_orphan = 0;
2381 		}
2382 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2383 		return;
2384 	}
2385 
2386 	if (s_flags & MS_RDONLY) {
2387 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2388 		sb->s_flags &= ~MS_RDONLY;
2389 	}
2390 #ifdef CONFIG_QUOTA
2391 	/* Needed for iput() to work correctly and not trash data */
2392 	sb->s_flags |= MS_ACTIVE;
2393 
2394 	/*
2395 	 * Turn on quotas which were not enabled for read-only mounts if
2396 	 * filesystem has quota feature, so that they are updated correctly.
2397 	 */
2398 	if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2399 		int ret = ext4_enable_quotas(sb);
2400 
2401 		if (!ret)
2402 			quota_update = 1;
2403 		else
2404 			ext4_msg(sb, KERN_ERR,
2405 				"Cannot turn on quotas: error %d", ret);
2406 	}
2407 
2408 	/* Turn on journaled quotas used for old sytle */
2409 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2410 		if (EXT4_SB(sb)->s_qf_names[i]) {
2411 			int ret = ext4_quota_on_mount(sb, i);
2412 
2413 			if (!ret)
2414 				quota_update = 1;
2415 			else
2416 				ext4_msg(sb, KERN_ERR,
2417 					"Cannot turn on journaled "
2418 					"quota: type %d: error %d", i, ret);
2419 		}
2420 	}
2421 #endif
2422 
2423 	while (es->s_last_orphan) {
2424 		struct inode *inode;
2425 
2426 		/*
2427 		 * We may have encountered an error during cleanup; if
2428 		 * so, skip the rest.
2429 		 */
2430 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2431 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2432 			es->s_last_orphan = 0;
2433 			break;
2434 		}
2435 
2436 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2437 		if (IS_ERR(inode)) {
2438 			es->s_last_orphan = 0;
2439 			break;
2440 		}
2441 
2442 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2443 		dquot_initialize(inode);
2444 		if (inode->i_nlink) {
2445 			if (test_opt(sb, DEBUG))
2446 				ext4_msg(sb, KERN_DEBUG,
2447 					"%s: truncating inode %lu to %lld bytes",
2448 					__func__, inode->i_ino, inode->i_size);
2449 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2450 				  inode->i_ino, inode->i_size);
2451 			inode_lock(inode);
2452 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2453 			ext4_truncate(inode);
2454 			inode_unlock(inode);
2455 			nr_truncates++;
2456 		} else {
2457 			if (test_opt(sb, DEBUG))
2458 				ext4_msg(sb, KERN_DEBUG,
2459 					"%s: deleting unreferenced inode %lu",
2460 					__func__, inode->i_ino);
2461 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2462 				  inode->i_ino);
2463 			nr_orphans++;
2464 		}
2465 		iput(inode);  /* The delete magic happens here! */
2466 	}
2467 
2468 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2469 
2470 	if (nr_orphans)
2471 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2472 		       PLURAL(nr_orphans));
2473 	if (nr_truncates)
2474 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2475 		       PLURAL(nr_truncates));
2476 #ifdef CONFIG_QUOTA
2477 	/* Turn off quotas if they were enabled for orphan cleanup */
2478 	if (quota_update) {
2479 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2480 			if (sb_dqopt(sb)->files[i])
2481 				dquot_quota_off(sb, i);
2482 		}
2483 	}
2484 #endif
2485 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2486 }
2487 
2488 /*
2489  * Maximal extent format file size.
2490  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2491  * extent format containers, within a sector_t, and within i_blocks
2492  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2493  * so that won't be a limiting factor.
2494  *
2495  * However there is other limiting factor. We do store extents in the form
2496  * of starting block and length, hence the resulting length of the extent
2497  * covering maximum file size must fit into on-disk format containers as
2498  * well. Given that length is always by 1 unit bigger than max unit (because
2499  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2500  *
2501  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2502  */
ext4_max_size(int blkbits,int has_huge_files)2503 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2504 {
2505 	loff_t res;
2506 	loff_t upper_limit = MAX_LFS_FILESIZE;
2507 
2508 	/* small i_blocks in vfs inode? */
2509 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2510 		/*
2511 		 * CONFIG_LBDAF is not enabled implies the inode
2512 		 * i_block represent total blocks in 512 bytes
2513 		 * 32 == size of vfs inode i_blocks * 8
2514 		 */
2515 		upper_limit = (1LL << 32) - 1;
2516 
2517 		/* total blocks in file system block size */
2518 		upper_limit >>= (blkbits - 9);
2519 		upper_limit <<= blkbits;
2520 	}
2521 
2522 	/*
2523 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2524 	 * by one fs block, so ee_len can cover the extent of maximum file
2525 	 * size
2526 	 */
2527 	res = (1LL << 32) - 1;
2528 	res <<= blkbits;
2529 
2530 	/* Sanity check against vm- & vfs- imposed limits */
2531 	if (res > upper_limit)
2532 		res = upper_limit;
2533 
2534 	return res;
2535 }
2536 
2537 /*
2538  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2539  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2540  * We need to be 1 filesystem block less than the 2^48 sector limit.
2541  */
ext4_max_bitmap_size(int bits,int has_huge_files)2542 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2543 {
2544 	loff_t res = EXT4_NDIR_BLOCKS;
2545 	int meta_blocks;
2546 	loff_t upper_limit;
2547 	/* This is calculated to be the largest file size for a dense, block
2548 	 * mapped file such that the file's total number of 512-byte sectors,
2549 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2550 	 *
2551 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2552 	 * number of 512-byte sectors of the file.
2553 	 */
2554 
2555 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2556 		/*
2557 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2558 		 * the inode i_block field represents total file blocks in
2559 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2560 		 */
2561 		upper_limit = (1LL << 32) - 1;
2562 
2563 		/* total blocks in file system block size */
2564 		upper_limit >>= (bits - 9);
2565 
2566 	} else {
2567 		/*
2568 		 * We use 48 bit ext4_inode i_blocks
2569 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2570 		 * represent total number of blocks in
2571 		 * file system block size
2572 		 */
2573 		upper_limit = (1LL << 48) - 1;
2574 
2575 	}
2576 
2577 	/* indirect blocks */
2578 	meta_blocks = 1;
2579 	/* double indirect blocks */
2580 	meta_blocks += 1 + (1LL << (bits-2));
2581 	/* tripple indirect blocks */
2582 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2583 
2584 	upper_limit -= meta_blocks;
2585 	upper_limit <<= bits;
2586 
2587 	res += 1LL << (bits-2);
2588 	res += 1LL << (2*(bits-2));
2589 	res += 1LL << (3*(bits-2));
2590 	res <<= bits;
2591 	if (res > upper_limit)
2592 		res = upper_limit;
2593 
2594 	if (res > MAX_LFS_FILESIZE)
2595 		res = MAX_LFS_FILESIZE;
2596 
2597 	return res;
2598 }
2599 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2600 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2601 				   ext4_fsblk_t logical_sb_block, int nr)
2602 {
2603 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2604 	ext4_group_t bg, first_meta_bg;
2605 	int has_super = 0;
2606 
2607 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2608 
2609 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2610 		return logical_sb_block + nr + 1;
2611 	bg = sbi->s_desc_per_block * nr;
2612 	if (ext4_bg_has_super(sb, bg))
2613 		has_super = 1;
2614 
2615 	/*
2616 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2617 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2618 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2619 	 * compensate.
2620 	 */
2621 	if (sb->s_blocksize == 1024 && nr == 0 &&
2622 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2623 		has_super++;
2624 
2625 	return (has_super + ext4_group_first_block_no(sb, bg));
2626 }
2627 
2628 /**
2629  * ext4_get_stripe_size: Get the stripe size.
2630  * @sbi: In memory super block info
2631  *
2632  * If we have specified it via mount option, then
2633  * use the mount option value. If the value specified at mount time is
2634  * greater than the blocks per group use the super block value.
2635  * If the super block value is greater than blocks per group return 0.
2636  * Allocator needs it be less than blocks per group.
2637  *
2638  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2639 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2640 {
2641 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2642 	unsigned long stripe_width =
2643 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2644 	int ret;
2645 
2646 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2647 		ret = sbi->s_stripe;
2648 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2649 		ret = stripe_width;
2650 	else if (stride && stride <= sbi->s_blocks_per_group)
2651 		ret = stride;
2652 	else
2653 		ret = 0;
2654 
2655 	/*
2656 	 * If the stripe width is 1, this makes no sense and
2657 	 * we set it to 0 to turn off stripe handling code.
2658 	 */
2659 	if (ret <= 1)
2660 		ret = 0;
2661 
2662 	return ret;
2663 }
2664 
2665 /*
2666  * Check whether this filesystem can be mounted based on
2667  * the features present and the RDONLY/RDWR mount requested.
2668  * Returns 1 if this filesystem can be mounted as requested,
2669  * 0 if it cannot be.
2670  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2671 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2672 {
2673 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2674 		ext4_msg(sb, KERN_ERR,
2675 			"Couldn't mount because of "
2676 			"unsupported optional features (%x)",
2677 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2678 			~EXT4_FEATURE_INCOMPAT_SUPP));
2679 		return 0;
2680 	}
2681 
2682 	if (readonly)
2683 		return 1;
2684 
2685 	if (ext4_has_feature_readonly(sb)) {
2686 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2687 		sb->s_flags |= MS_RDONLY;
2688 		return 1;
2689 	}
2690 
2691 	/* Check that feature set is OK for a read-write mount */
2692 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2693 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2694 			 "unsupported optional features (%x)",
2695 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2696 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2697 		return 0;
2698 	}
2699 	/*
2700 	 * Large file size enabled file system can only be mounted
2701 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2702 	 */
2703 	if (ext4_has_feature_huge_file(sb)) {
2704 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2705 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2706 				 "cannot be mounted RDWR without "
2707 				 "CONFIG_LBDAF");
2708 			return 0;
2709 		}
2710 	}
2711 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2712 		ext4_msg(sb, KERN_ERR,
2713 			 "Can't support bigalloc feature without "
2714 			 "extents feature\n");
2715 		return 0;
2716 	}
2717 
2718 #ifndef CONFIG_QUOTA
2719 	if (ext4_has_feature_quota(sb) && !readonly) {
2720 		ext4_msg(sb, KERN_ERR,
2721 			 "Filesystem with quota feature cannot be mounted RDWR "
2722 			 "without CONFIG_QUOTA");
2723 		return 0;
2724 	}
2725 	if (ext4_has_feature_project(sb) && !readonly) {
2726 		ext4_msg(sb, KERN_ERR,
2727 			 "Filesystem with project quota feature cannot be mounted RDWR "
2728 			 "without CONFIG_QUOTA");
2729 		return 0;
2730 	}
2731 #endif  /* CONFIG_QUOTA */
2732 	return 1;
2733 }
2734 
2735 /*
2736  * This function is called once a day if we have errors logged
2737  * on the file system
2738  */
print_daily_error_info(unsigned long arg)2739 static void print_daily_error_info(unsigned long arg)
2740 {
2741 	struct super_block *sb = (struct super_block *) arg;
2742 	struct ext4_sb_info *sbi;
2743 	struct ext4_super_block *es;
2744 
2745 	sbi = EXT4_SB(sb);
2746 	es = sbi->s_es;
2747 
2748 	if (es->s_error_count)
2749 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2750 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2751 			 le32_to_cpu(es->s_error_count));
2752 	if (es->s_first_error_time) {
2753 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2754 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2755 		       (int) sizeof(es->s_first_error_func),
2756 		       es->s_first_error_func,
2757 		       le32_to_cpu(es->s_first_error_line));
2758 		if (es->s_first_error_ino)
2759 			printk(KERN_CONT ": inode %u",
2760 			       le32_to_cpu(es->s_first_error_ino));
2761 		if (es->s_first_error_block)
2762 			printk(KERN_CONT ": block %llu", (unsigned long long)
2763 			       le64_to_cpu(es->s_first_error_block));
2764 		printk(KERN_CONT "\n");
2765 	}
2766 	if (es->s_last_error_time) {
2767 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2768 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2769 		       (int) sizeof(es->s_last_error_func),
2770 		       es->s_last_error_func,
2771 		       le32_to_cpu(es->s_last_error_line));
2772 		if (es->s_last_error_ino)
2773 			printk(KERN_CONT ": inode %u",
2774 			       le32_to_cpu(es->s_last_error_ino));
2775 		if (es->s_last_error_block)
2776 			printk(KERN_CONT ": block %llu", (unsigned long long)
2777 			       le64_to_cpu(es->s_last_error_block));
2778 		printk(KERN_CONT "\n");
2779 	}
2780 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2781 }
2782 
2783 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2784 static int ext4_run_li_request(struct ext4_li_request *elr)
2785 {
2786 	struct ext4_group_desc *gdp = NULL;
2787 	ext4_group_t group, ngroups;
2788 	struct super_block *sb;
2789 	unsigned long timeout = 0;
2790 	int ret = 0;
2791 
2792 	sb = elr->lr_super;
2793 	ngroups = EXT4_SB(sb)->s_groups_count;
2794 
2795 	for (group = elr->lr_next_group; group < ngroups; group++) {
2796 		gdp = ext4_get_group_desc(sb, group, NULL);
2797 		if (!gdp) {
2798 			ret = 1;
2799 			break;
2800 		}
2801 
2802 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2803 			break;
2804 	}
2805 
2806 	if (group >= ngroups)
2807 		ret = 1;
2808 
2809 	if (!ret) {
2810 		timeout = jiffies;
2811 		ret = ext4_init_inode_table(sb, group,
2812 					    elr->lr_timeout ? 0 : 1);
2813 		if (elr->lr_timeout == 0) {
2814 			timeout = (jiffies - timeout) *
2815 				  elr->lr_sbi->s_li_wait_mult;
2816 			elr->lr_timeout = timeout;
2817 		}
2818 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2819 		elr->lr_next_group = group + 1;
2820 	}
2821 	return ret;
2822 }
2823 
2824 /*
2825  * Remove lr_request from the list_request and free the
2826  * request structure. Should be called with li_list_mtx held
2827  */
ext4_remove_li_request(struct ext4_li_request * elr)2828 static void ext4_remove_li_request(struct ext4_li_request *elr)
2829 {
2830 	struct ext4_sb_info *sbi;
2831 
2832 	if (!elr)
2833 		return;
2834 
2835 	sbi = elr->lr_sbi;
2836 
2837 	list_del(&elr->lr_request);
2838 	sbi->s_li_request = NULL;
2839 	kfree(elr);
2840 }
2841 
ext4_unregister_li_request(struct super_block * sb)2842 static void ext4_unregister_li_request(struct super_block *sb)
2843 {
2844 	mutex_lock(&ext4_li_mtx);
2845 	if (!ext4_li_info) {
2846 		mutex_unlock(&ext4_li_mtx);
2847 		return;
2848 	}
2849 
2850 	mutex_lock(&ext4_li_info->li_list_mtx);
2851 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2852 	mutex_unlock(&ext4_li_info->li_list_mtx);
2853 	mutex_unlock(&ext4_li_mtx);
2854 }
2855 
2856 static struct task_struct *ext4_lazyinit_task;
2857 
2858 /*
2859  * This is the function where ext4lazyinit thread lives. It walks
2860  * through the request list searching for next scheduled filesystem.
2861  * When such a fs is found, run the lazy initialization request
2862  * (ext4_rn_li_request) and keep track of the time spend in this
2863  * function. Based on that time we compute next schedule time of
2864  * the request. When walking through the list is complete, compute
2865  * next waking time and put itself into sleep.
2866  */
ext4_lazyinit_thread(void * arg)2867 static int ext4_lazyinit_thread(void *arg)
2868 {
2869 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2870 	struct list_head *pos, *n;
2871 	struct ext4_li_request *elr;
2872 	unsigned long next_wakeup, cur;
2873 
2874 	BUG_ON(NULL == eli);
2875 
2876 cont_thread:
2877 	while (true) {
2878 		next_wakeup = MAX_JIFFY_OFFSET;
2879 
2880 		mutex_lock(&eli->li_list_mtx);
2881 		if (list_empty(&eli->li_request_list)) {
2882 			mutex_unlock(&eli->li_list_mtx);
2883 			goto exit_thread;
2884 		}
2885 		list_for_each_safe(pos, n, &eli->li_request_list) {
2886 			int err = 0;
2887 			int progress = 0;
2888 			elr = list_entry(pos, struct ext4_li_request,
2889 					 lr_request);
2890 
2891 			if (time_before(jiffies, elr->lr_next_sched)) {
2892 				if (time_before(elr->lr_next_sched, next_wakeup))
2893 					next_wakeup = elr->lr_next_sched;
2894 				continue;
2895 			}
2896 			if (down_read_trylock(&elr->lr_super->s_umount)) {
2897 				if (sb_start_write_trylock(elr->lr_super)) {
2898 					progress = 1;
2899 					/*
2900 					 * We hold sb->s_umount, sb can not
2901 					 * be removed from the list, it is
2902 					 * now safe to drop li_list_mtx
2903 					 */
2904 					mutex_unlock(&eli->li_list_mtx);
2905 					err = ext4_run_li_request(elr);
2906 					sb_end_write(elr->lr_super);
2907 					mutex_lock(&eli->li_list_mtx);
2908 					n = pos->next;
2909 				}
2910 				up_read((&elr->lr_super->s_umount));
2911 			}
2912 			/* error, remove the lazy_init job */
2913 			if (err) {
2914 				ext4_remove_li_request(elr);
2915 				continue;
2916 			}
2917 			if (!progress) {
2918 				elr->lr_next_sched = jiffies +
2919 					(prandom_u32()
2920 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2921 			}
2922 			if (time_before(elr->lr_next_sched, next_wakeup))
2923 				next_wakeup = elr->lr_next_sched;
2924 		}
2925 		mutex_unlock(&eli->li_list_mtx);
2926 
2927 		try_to_freeze();
2928 
2929 		cur = jiffies;
2930 		if ((time_after_eq(cur, next_wakeup)) ||
2931 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2932 			cond_resched();
2933 			continue;
2934 		}
2935 
2936 		schedule_timeout_interruptible(next_wakeup - cur);
2937 
2938 		if (kthread_should_stop()) {
2939 			ext4_clear_request_list();
2940 			goto exit_thread;
2941 		}
2942 	}
2943 
2944 exit_thread:
2945 	/*
2946 	 * It looks like the request list is empty, but we need
2947 	 * to check it under the li_list_mtx lock, to prevent any
2948 	 * additions into it, and of course we should lock ext4_li_mtx
2949 	 * to atomically free the list and ext4_li_info, because at
2950 	 * this point another ext4 filesystem could be registering
2951 	 * new one.
2952 	 */
2953 	mutex_lock(&ext4_li_mtx);
2954 	mutex_lock(&eli->li_list_mtx);
2955 	if (!list_empty(&eli->li_request_list)) {
2956 		mutex_unlock(&eli->li_list_mtx);
2957 		mutex_unlock(&ext4_li_mtx);
2958 		goto cont_thread;
2959 	}
2960 	mutex_unlock(&eli->li_list_mtx);
2961 	kfree(ext4_li_info);
2962 	ext4_li_info = NULL;
2963 	mutex_unlock(&ext4_li_mtx);
2964 
2965 	return 0;
2966 }
2967 
ext4_clear_request_list(void)2968 static void ext4_clear_request_list(void)
2969 {
2970 	struct list_head *pos, *n;
2971 	struct ext4_li_request *elr;
2972 
2973 	mutex_lock(&ext4_li_info->li_list_mtx);
2974 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2975 		elr = list_entry(pos, struct ext4_li_request,
2976 				 lr_request);
2977 		ext4_remove_li_request(elr);
2978 	}
2979 	mutex_unlock(&ext4_li_info->li_list_mtx);
2980 }
2981 
ext4_run_lazyinit_thread(void)2982 static int ext4_run_lazyinit_thread(void)
2983 {
2984 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2985 					 ext4_li_info, "ext4lazyinit");
2986 	if (IS_ERR(ext4_lazyinit_task)) {
2987 		int err = PTR_ERR(ext4_lazyinit_task);
2988 		ext4_clear_request_list();
2989 		kfree(ext4_li_info);
2990 		ext4_li_info = NULL;
2991 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2992 				 "initialization thread\n",
2993 				 err);
2994 		return err;
2995 	}
2996 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2997 	return 0;
2998 }
2999 
3000 /*
3001  * Check whether it make sense to run itable init. thread or not.
3002  * If there is at least one uninitialized inode table, return
3003  * corresponding group number, else the loop goes through all
3004  * groups and return total number of groups.
3005  */
ext4_has_uninit_itable(struct super_block * sb)3006 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3007 {
3008 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3009 	struct ext4_group_desc *gdp = NULL;
3010 
3011 	for (group = 0; group < ngroups; group++) {
3012 		gdp = ext4_get_group_desc(sb, group, NULL);
3013 		if (!gdp)
3014 			continue;
3015 
3016 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3017 			break;
3018 	}
3019 
3020 	return group;
3021 }
3022 
ext4_li_info_new(void)3023 static int ext4_li_info_new(void)
3024 {
3025 	struct ext4_lazy_init *eli = NULL;
3026 
3027 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3028 	if (!eli)
3029 		return -ENOMEM;
3030 
3031 	INIT_LIST_HEAD(&eli->li_request_list);
3032 	mutex_init(&eli->li_list_mtx);
3033 
3034 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3035 
3036 	ext4_li_info = eli;
3037 
3038 	return 0;
3039 }
3040 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3041 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3042 					    ext4_group_t start)
3043 {
3044 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3045 	struct ext4_li_request *elr;
3046 
3047 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3048 	if (!elr)
3049 		return NULL;
3050 
3051 	elr->lr_super = sb;
3052 	elr->lr_sbi = sbi;
3053 	elr->lr_next_group = start;
3054 
3055 	/*
3056 	 * Randomize first schedule time of the request to
3057 	 * spread the inode table initialization requests
3058 	 * better.
3059 	 */
3060 	elr->lr_next_sched = jiffies + (prandom_u32() %
3061 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3062 	return elr;
3063 }
3064 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3065 int ext4_register_li_request(struct super_block *sb,
3066 			     ext4_group_t first_not_zeroed)
3067 {
3068 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3069 	struct ext4_li_request *elr = NULL;
3070 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3071 	int ret = 0;
3072 
3073 	mutex_lock(&ext4_li_mtx);
3074 	if (sbi->s_li_request != NULL) {
3075 		/*
3076 		 * Reset timeout so it can be computed again, because
3077 		 * s_li_wait_mult might have changed.
3078 		 */
3079 		sbi->s_li_request->lr_timeout = 0;
3080 		goto out;
3081 	}
3082 
3083 	if (first_not_zeroed == ngroups ||
3084 	    (sb->s_flags & MS_RDONLY) ||
3085 	    !test_opt(sb, INIT_INODE_TABLE))
3086 		goto out;
3087 
3088 	elr = ext4_li_request_new(sb, first_not_zeroed);
3089 	if (!elr) {
3090 		ret = -ENOMEM;
3091 		goto out;
3092 	}
3093 
3094 	if (NULL == ext4_li_info) {
3095 		ret = ext4_li_info_new();
3096 		if (ret)
3097 			goto out;
3098 	}
3099 
3100 	mutex_lock(&ext4_li_info->li_list_mtx);
3101 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3102 	mutex_unlock(&ext4_li_info->li_list_mtx);
3103 
3104 	sbi->s_li_request = elr;
3105 	/*
3106 	 * set elr to NULL here since it has been inserted to
3107 	 * the request_list and the removal and free of it is
3108 	 * handled by ext4_clear_request_list from now on.
3109 	 */
3110 	elr = NULL;
3111 
3112 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3113 		ret = ext4_run_lazyinit_thread();
3114 		if (ret)
3115 			goto out;
3116 	}
3117 out:
3118 	mutex_unlock(&ext4_li_mtx);
3119 	if (ret)
3120 		kfree(elr);
3121 	return ret;
3122 }
3123 
3124 /*
3125  * We do not need to lock anything since this is called on
3126  * module unload.
3127  */
ext4_destroy_lazyinit_thread(void)3128 static void ext4_destroy_lazyinit_thread(void)
3129 {
3130 	/*
3131 	 * If thread exited earlier
3132 	 * there's nothing to be done.
3133 	 */
3134 	if (!ext4_li_info || !ext4_lazyinit_task)
3135 		return;
3136 
3137 	kthread_stop(ext4_lazyinit_task);
3138 }
3139 
set_journal_csum_feature_set(struct super_block * sb)3140 static int set_journal_csum_feature_set(struct super_block *sb)
3141 {
3142 	int ret = 1;
3143 	int compat, incompat;
3144 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3145 
3146 	if (ext4_has_metadata_csum(sb)) {
3147 		/* journal checksum v3 */
3148 		compat = 0;
3149 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3150 	} else {
3151 		/* journal checksum v1 */
3152 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3153 		incompat = 0;
3154 	}
3155 
3156 	jbd2_journal_clear_features(sbi->s_journal,
3157 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3158 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3159 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3160 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3161 		ret = jbd2_journal_set_features(sbi->s_journal,
3162 				compat, 0,
3163 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3164 				incompat);
3165 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3166 		ret = jbd2_journal_set_features(sbi->s_journal,
3167 				compat, 0,
3168 				incompat);
3169 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3170 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3171 	} else {
3172 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3173 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3174 	}
3175 
3176 	return ret;
3177 }
3178 
3179 /*
3180  * Note: calculating the overhead so we can be compatible with
3181  * historical BSD practice is quite difficult in the face of
3182  * clusters/bigalloc.  This is because multiple metadata blocks from
3183  * different block group can end up in the same allocation cluster.
3184  * Calculating the exact overhead in the face of clustered allocation
3185  * requires either O(all block bitmaps) in memory or O(number of block
3186  * groups**2) in time.  We will still calculate the superblock for
3187  * older file systems --- and if we come across with a bigalloc file
3188  * system with zero in s_overhead_clusters the estimate will be close to
3189  * correct especially for very large cluster sizes --- but for newer
3190  * file systems, it's better to calculate this figure once at mkfs
3191  * time, and store it in the superblock.  If the superblock value is
3192  * present (even for non-bigalloc file systems), we will use it.
3193  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3194 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3195 			  char *buf)
3196 {
3197 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3198 	struct ext4_group_desc	*gdp;
3199 	ext4_fsblk_t		first_block, last_block, b;
3200 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3201 	int			s, j, count = 0;
3202 
3203 	if (!ext4_has_feature_bigalloc(sb))
3204 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3205 			sbi->s_itb_per_group + 2);
3206 
3207 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3208 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3209 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3210 	for (i = 0; i < ngroups; i++) {
3211 		gdp = ext4_get_group_desc(sb, i, NULL);
3212 		b = ext4_block_bitmap(sb, gdp);
3213 		if (b >= first_block && b <= last_block) {
3214 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3215 			count++;
3216 		}
3217 		b = ext4_inode_bitmap(sb, gdp);
3218 		if (b >= first_block && b <= last_block) {
3219 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3220 			count++;
3221 		}
3222 		b = ext4_inode_table(sb, gdp);
3223 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3224 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3225 				int c = EXT4_B2C(sbi, b - first_block);
3226 				ext4_set_bit(c, buf);
3227 				count++;
3228 			}
3229 		if (i != grp)
3230 			continue;
3231 		s = 0;
3232 		if (ext4_bg_has_super(sb, grp)) {
3233 			ext4_set_bit(s++, buf);
3234 			count++;
3235 		}
3236 		j = ext4_bg_num_gdb(sb, grp);
3237 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3238 			ext4_error(sb, "Invalid number of block group "
3239 				   "descriptor blocks: %d", j);
3240 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3241 		}
3242 		count += j;
3243 		for (; j > 0; j--)
3244 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3245 	}
3246 	if (!count)
3247 		return 0;
3248 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3249 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3250 }
3251 
3252 /*
3253  * Compute the overhead and stash it in sbi->s_overhead
3254  */
ext4_calculate_overhead(struct super_block * sb)3255 int ext4_calculate_overhead(struct super_block *sb)
3256 {
3257 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3258 	struct ext4_super_block *es = sbi->s_es;
3259 	struct inode *j_inode;
3260 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3261 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3262 	ext4_fsblk_t overhead = 0;
3263 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3264 
3265 	if (!buf)
3266 		return -ENOMEM;
3267 
3268 	/*
3269 	 * Compute the overhead (FS structures).  This is constant
3270 	 * for a given filesystem unless the number of block groups
3271 	 * changes so we cache the previous value until it does.
3272 	 */
3273 
3274 	/*
3275 	 * All of the blocks before first_data_block are overhead
3276 	 */
3277 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3278 
3279 	/*
3280 	 * Add the overhead found in each block group
3281 	 */
3282 	for (i = 0; i < ngroups; i++) {
3283 		int blks;
3284 
3285 		blks = count_overhead(sb, i, buf);
3286 		overhead += blks;
3287 		if (blks)
3288 			memset(buf, 0, PAGE_SIZE);
3289 		cond_resched();
3290 	}
3291 
3292 	/*
3293 	 * Add the internal journal blocks whether the journal has been
3294 	 * loaded or not
3295 	 */
3296 	if (sbi->s_journal && !sbi->journal_bdev)
3297 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3298 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3299 		j_inode = ext4_get_journal_inode(sb, j_inum);
3300 		if (j_inode) {
3301 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3302 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3303 			iput(j_inode);
3304 		} else {
3305 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3306 		}
3307 	}
3308 	sbi->s_overhead = overhead;
3309 	smp_wmb();
3310 	free_page((unsigned long) buf);
3311 	return 0;
3312 }
3313 
ext4_set_resv_clusters(struct super_block * sb)3314 static void ext4_set_resv_clusters(struct super_block *sb)
3315 {
3316 	ext4_fsblk_t resv_clusters;
3317 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3318 
3319 	/*
3320 	 * There's no need to reserve anything when we aren't using extents.
3321 	 * The space estimates are exact, there are no unwritten extents,
3322 	 * hole punching doesn't need new metadata... This is needed especially
3323 	 * to keep ext2/3 backward compatibility.
3324 	 */
3325 	if (!ext4_has_feature_extents(sb))
3326 		return;
3327 	/*
3328 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3329 	 * This should cover the situations where we can not afford to run
3330 	 * out of space like for example punch hole, or converting
3331 	 * unwritten extents in delalloc path. In most cases such
3332 	 * allocation would require 1, or 2 blocks, higher numbers are
3333 	 * very rare.
3334 	 */
3335 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3336 			 sbi->s_cluster_bits);
3337 
3338 	do_div(resv_clusters, 50);
3339 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3340 
3341 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3342 }
3343 
ext4_fill_super(struct super_block * sb,void * data,int silent)3344 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3345 {
3346 	char *orig_data = kstrdup(data, GFP_KERNEL);
3347 	struct buffer_head *bh;
3348 	struct ext4_super_block *es = NULL;
3349 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3350 	ext4_fsblk_t block;
3351 	ext4_fsblk_t sb_block = get_sb_block(&data);
3352 	ext4_fsblk_t logical_sb_block;
3353 	unsigned long offset = 0;
3354 	unsigned long journal_devnum = 0;
3355 	unsigned long def_mount_opts;
3356 	struct inode *root;
3357 	const char *descr;
3358 	int ret = -ENOMEM;
3359 	int blocksize, clustersize;
3360 	unsigned int db_count;
3361 	unsigned int i;
3362 	int needs_recovery, has_huge_files, has_bigalloc;
3363 	__u64 blocks_count;
3364 	int err = 0;
3365 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3366 	ext4_group_t first_not_zeroed;
3367 
3368 	if ((data && !orig_data) || !sbi)
3369 		goto out_free_base;
3370 
3371 	sbi->s_blockgroup_lock =
3372 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3373 	if (!sbi->s_blockgroup_lock)
3374 		goto out_free_base;
3375 
3376 	sb->s_fs_info = sbi;
3377 	sbi->s_sb = sb;
3378 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3379 	sbi->s_sb_block = sb_block;
3380 	if (sb->s_bdev->bd_part)
3381 		sbi->s_sectors_written_start =
3382 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3383 
3384 	/* Cleanup superblock name */
3385 	strreplace(sb->s_id, '/', '!');
3386 
3387 	/* -EINVAL is default */
3388 	ret = -EINVAL;
3389 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3390 	if (!blocksize) {
3391 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3392 		goto out_fail;
3393 	}
3394 
3395 	/*
3396 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3397 	 * block sizes.  We need to calculate the offset from buffer start.
3398 	 */
3399 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3400 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3401 		offset = do_div(logical_sb_block, blocksize);
3402 	} else {
3403 		logical_sb_block = sb_block;
3404 	}
3405 
3406 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3407 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3408 		goto out_fail;
3409 	}
3410 	/*
3411 	 * Note: s_es must be initialized as soon as possible because
3412 	 *       some ext4 macro-instructions depend on its value
3413 	 */
3414 	es = (struct ext4_super_block *) (bh->b_data + offset);
3415 	sbi->s_es = es;
3416 	sb->s_magic = le16_to_cpu(es->s_magic);
3417 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3418 		goto cantfind_ext4;
3419 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3420 
3421 	/* Warn if metadata_csum and gdt_csum are both set. */
3422 	if (ext4_has_feature_metadata_csum(sb) &&
3423 	    ext4_has_feature_gdt_csum(sb))
3424 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3425 			     "redundant flags; please run fsck.");
3426 
3427 	/* Check for a known checksum algorithm */
3428 	if (!ext4_verify_csum_type(sb, es)) {
3429 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3430 			 "unknown checksum algorithm.");
3431 		silent = 1;
3432 		goto cantfind_ext4;
3433 	}
3434 
3435 	/* Load the checksum driver */
3436 	if (ext4_has_feature_metadata_csum(sb)) {
3437 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3438 		if (IS_ERR(sbi->s_chksum_driver)) {
3439 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3440 			ret = PTR_ERR(sbi->s_chksum_driver);
3441 			sbi->s_chksum_driver = NULL;
3442 			goto failed_mount;
3443 		}
3444 	}
3445 
3446 	/* Check superblock checksum */
3447 	if (!ext4_superblock_csum_verify(sb, es)) {
3448 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3449 			 "invalid superblock checksum.  Run e2fsck?");
3450 		silent = 1;
3451 		ret = -EFSBADCRC;
3452 		goto cantfind_ext4;
3453 	}
3454 
3455 	/* Precompute checksum seed for all metadata */
3456 	if (ext4_has_feature_csum_seed(sb))
3457 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3458 	else if (ext4_has_metadata_csum(sb))
3459 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3460 					       sizeof(es->s_uuid));
3461 
3462 	/* Set defaults before we parse the mount options */
3463 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3464 	set_opt(sb, INIT_INODE_TABLE);
3465 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3466 		set_opt(sb, DEBUG);
3467 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3468 		set_opt(sb, GRPID);
3469 	if (def_mount_opts & EXT4_DEFM_UID16)
3470 		set_opt(sb, NO_UID32);
3471 	/* xattr user namespace & acls are now defaulted on */
3472 	set_opt(sb, XATTR_USER);
3473 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3474 	set_opt(sb, POSIX_ACL);
3475 #endif
3476 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3477 	if (ext4_has_metadata_csum(sb))
3478 		set_opt(sb, JOURNAL_CHECKSUM);
3479 
3480 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3481 		set_opt(sb, JOURNAL_DATA);
3482 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3483 		set_opt(sb, ORDERED_DATA);
3484 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3485 		set_opt(sb, WRITEBACK_DATA);
3486 
3487 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3488 		set_opt(sb, ERRORS_PANIC);
3489 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3490 		set_opt(sb, ERRORS_CONT);
3491 	else
3492 		set_opt(sb, ERRORS_RO);
3493 	/* block_validity enabled by default; disable with noblock_validity */
3494 	set_opt(sb, BLOCK_VALIDITY);
3495 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3496 		set_opt(sb, DISCARD);
3497 
3498 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3499 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3500 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3501 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3502 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3503 
3504 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3505 		set_opt(sb, BARRIER);
3506 
3507 	/*
3508 	 * enable delayed allocation by default
3509 	 * Use -o nodelalloc to turn it off
3510 	 */
3511 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3512 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3513 		set_opt(sb, DELALLOC);
3514 
3515 	/*
3516 	 * set default s_li_wait_mult for lazyinit, for the case there is
3517 	 * no mount option specified.
3518 	 */
3519 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3520 
3521 	if (sbi->s_es->s_mount_opts[0]) {
3522 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3523 					      sizeof(sbi->s_es->s_mount_opts),
3524 					      GFP_KERNEL);
3525 		if (!s_mount_opts)
3526 			goto failed_mount;
3527 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3528 				   &journal_ioprio, 0)) {
3529 			ext4_msg(sb, KERN_WARNING,
3530 				 "failed to parse options in superblock: %s",
3531 				 s_mount_opts);
3532 		}
3533 		kfree(s_mount_opts);
3534 	}
3535 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3536 	if (!parse_options((char *) data, sb, &journal_devnum,
3537 			   &journal_ioprio, 0))
3538 		goto failed_mount;
3539 
3540 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3541 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3542 			    "with data=journal disables delayed "
3543 			    "allocation and O_DIRECT support!\n");
3544 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3545 			ext4_msg(sb, KERN_ERR, "can't mount with "
3546 				 "both data=journal and delalloc");
3547 			goto failed_mount;
3548 		}
3549 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3550 			ext4_msg(sb, KERN_ERR, "can't mount with "
3551 				 "both data=journal and dioread_nolock");
3552 			goto failed_mount;
3553 		}
3554 		if (test_opt(sb, DAX)) {
3555 			ext4_msg(sb, KERN_ERR, "can't mount with "
3556 				 "both data=journal and dax");
3557 			goto failed_mount;
3558 		}
3559 		if (ext4_has_feature_encrypt(sb)) {
3560 			ext4_msg(sb, KERN_WARNING,
3561 				 "encrypted files will use data=ordered "
3562 				 "instead of data journaling mode");
3563 		}
3564 		if (test_opt(sb, DELALLOC))
3565 			clear_opt(sb, DELALLOC);
3566 	} else {
3567 		sb->s_iflags |= SB_I_CGROUPWB;
3568 	}
3569 
3570 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3571 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3572 
3573 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3574 	    (ext4_has_compat_features(sb) ||
3575 	     ext4_has_ro_compat_features(sb) ||
3576 	     ext4_has_incompat_features(sb)))
3577 		ext4_msg(sb, KERN_WARNING,
3578 		       "feature flags set on rev 0 fs, "
3579 		       "running e2fsck is recommended");
3580 
3581 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3582 		set_opt2(sb, HURD_COMPAT);
3583 		if (ext4_has_feature_64bit(sb)) {
3584 			ext4_msg(sb, KERN_ERR,
3585 				 "The Hurd can't support 64-bit file systems");
3586 			goto failed_mount;
3587 		}
3588 	}
3589 
3590 	if (IS_EXT2_SB(sb)) {
3591 		if (ext2_feature_set_ok(sb))
3592 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3593 				 "using the ext4 subsystem");
3594 		else {
3595 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3596 				 "to feature incompatibilities");
3597 			goto failed_mount;
3598 		}
3599 	}
3600 
3601 	if (IS_EXT3_SB(sb)) {
3602 		if (ext3_feature_set_ok(sb))
3603 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3604 				 "using the ext4 subsystem");
3605 		else {
3606 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3607 				 "to feature incompatibilities");
3608 			goto failed_mount;
3609 		}
3610 	}
3611 
3612 	/*
3613 	 * Check feature flags regardless of the revision level, since we
3614 	 * previously didn't change the revision level when setting the flags,
3615 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3616 	 */
3617 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3618 		goto failed_mount;
3619 
3620 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3621 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3622 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3623 		ext4_msg(sb, KERN_ERR,
3624 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3625 			 blocksize, le32_to_cpu(es->s_log_block_size));
3626 		goto failed_mount;
3627 	}
3628 	if (le32_to_cpu(es->s_log_block_size) >
3629 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3630 		ext4_msg(sb, KERN_ERR,
3631 			 "Invalid log block size: %u",
3632 			 le32_to_cpu(es->s_log_block_size));
3633 		goto failed_mount;
3634 	}
3635 
3636 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3637 		ext4_msg(sb, KERN_ERR,
3638 			 "Number of reserved GDT blocks insanely large: %d",
3639 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3640 		goto failed_mount;
3641 	}
3642 
3643 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3644 		err = bdev_dax_supported(sb, blocksize);
3645 		if (err)
3646 			goto failed_mount;
3647 	}
3648 
3649 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3650 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3651 			 es->s_encryption_level);
3652 		goto failed_mount;
3653 	}
3654 
3655 	if (sb->s_blocksize != blocksize) {
3656 		/* Validate the filesystem blocksize */
3657 		if (!sb_set_blocksize(sb, blocksize)) {
3658 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3659 					blocksize);
3660 			goto failed_mount;
3661 		}
3662 
3663 		brelse(bh);
3664 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3665 		offset = do_div(logical_sb_block, blocksize);
3666 		bh = sb_bread_unmovable(sb, logical_sb_block);
3667 		if (!bh) {
3668 			ext4_msg(sb, KERN_ERR,
3669 			       "Can't read superblock on 2nd try");
3670 			goto failed_mount;
3671 		}
3672 		es = (struct ext4_super_block *)(bh->b_data + offset);
3673 		sbi->s_es = es;
3674 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3675 			ext4_msg(sb, KERN_ERR,
3676 			       "Magic mismatch, very weird!");
3677 			goto failed_mount;
3678 		}
3679 	}
3680 
3681 	has_huge_files = ext4_has_feature_huge_file(sb);
3682 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3683 						      has_huge_files);
3684 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3685 
3686 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3687 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3688 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3689 	} else {
3690 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3691 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3692 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3693 		    (!is_power_of_2(sbi->s_inode_size)) ||
3694 		    (sbi->s_inode_size > blocksize)) {
3695 			ext4_msg(sb, KERN_ERR,
3696 			       "unsupported inode size: %d",
3697 			       sbi->s_inode_size);
3698 			goto failed_mount;
3699 		}
3700 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3701 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3702 	}
3703 
3704 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3705 	if (ext4_has_feature_64bit(sb)) {
3706 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3707 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3708 		    !is_power_of_2(sbi->s_desc_size)) {
3709 			ext4_msg(sb, KERN_ERR,
3710 			       "unsupported descriptor size %lu",
3711 			       sbi->s_desc_size);
3712 			goto failed_mount;
3713 		}
3714 	} else
3715 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3716 
3717 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3718 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3719 
3720 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3721 	if (sbi->s_inodes_per_block == 0)
3722 		goto cantfind_ext4;
3723 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3724 	    sbi->s_inodes_per_group > blocksize * 8) {
3725 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3726 			 sbi->s_blocks_per_group);
3727 		goto failed_mount;
3728 	}
3729 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3730 					sbi->s_inodes_per_block;
3731 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3732 	sbi->s_sbh = bh;
3733 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3734 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3735 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3736 
3737 	for (i = 0; i < 4; i++)
3738 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3739 	sbi->s_def_hash_version = es->s_def_hash_version;
3740 	if (ext4_has_feature_dir_index(sb)) {
3741 		i = le32_to_cpu(es->s_flags);
3742 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3743 			sbi->s_hash_unsigned = 3;
3744 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3745 #ifdef __CHAR_UNSIGNED__
3746 			if (!(sb->s_flags & MS_RDONLY))
3747 				es->s_flags |=
3748 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3749 			sbi->s_hash_unsigned = 3;
3750 #else
3751 			if (!(sb->s_flags & MS_RDONLY))
3752 				es->s_flags |=
3753 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3754 #endif
3755 		}
3756 	}
3757 
3758 	/* Handle clustersize */
3759 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3760 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3761 	if (has_bigalloc) {
3762 		if (clustersize < blocksize) {
3763 			ext4_msg(sb, KERN_ERR,
3764 				 "cluster size (%d) smaller than "
3765 				 "block size (%d)", clustersize, blocksize);
3766 			goto failed_mount;
3767 		}
3768 		if (le32_to_cpu(es->s_log_cluster_size) >
3769 		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3770 			ext4_msg(sb, KERN_ERR,
3771 				 "Invalid log cluster size: %u",
3772 				 le32_to_cpu(es->s_log_cluster_size));
3773 			goto failed_mount;
3774 		}
3775 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3776 			le32_to_cpu(es->s_log_block_size);
3777 		sbi->s_clusters_per_group =
3778 			le32_to_cpu(es->s_clusters_per_group);
3779 		if (sbi->s_clusters_per_group > blocksize * 8) {
3780 			ext4_msg(sb, KERN_ERR,
3781 				 "#clusters per group too big: %lu",
3782 				 sbi->s_clusters_per_group);
3783 			goto failed_mount;
3784 		}
3785 		if (sbi->s_blocks_per_group !=
3786 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3787 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3788 				 "clusters per group (%lu) inconsistent",
3789 				 sbi->s_blocks_per_group,
3790 				 sbi->s_clusters_per_group);
3791 			goto failed_mount;
3792 		}
3793 	} else {
3794 		if (clustersize != blocksize) {
3795 			ext4_warning(sb, "fragment/cluster size (%d) != "
3796 				     "block size (%d)", clustersize,
3797 				     blocksize);
3798 			clustersize = blocksize;
3799 		}
3800 		if (sbi->s_blocks_per_group > blocksize * 8) {
3801 			ext4_msg(sb, KERN_ERR,
3802 				 "#blocks per group too big: %lu",
3803 				 sbi->s_blocks_per_group);
3804 			goto failed_mount;
3805 		}
3806 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3807 		sbi->s_cluster_bits = 0;
3808 	}
3809 	sbi->s_cluster_ratio = clustersize / blocksize;
3810 
3811 	/* Do we have standard group size of clustersize * 8 blocks ? */
3812 	if (sbi->s_blocks_per_group == clustersize << 3)
3813 		set_opt2(sb, STD_GROUP_SIZE);
3814 
3815 	/*
3816 	 * Test whether we have more sectors than will fit in sector_t,
3817 	 * and whether the max offset is addressable by the page cache.
3818 	 */
3819 	err = generic_check_addressable(sb->s_blocksize_bits,
3820 					ext4_blocks_count(es));
3821 	if (err) {
3822 		ext4_msg(sb, KERN_ERR, "filesystem"
3823 			 " too large to mount safely on this system");
3824 		if (sizeof(sector_t) < 8)
3825 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3826 		goto failed_mount;
3827 	}
3828 
3829 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3830 		goto cantfind_ext4;
3831 
3832 	/* check blocks count against device size */
3833 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3834 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3835 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3836 		       "exceeds size of device (%llu blocks)",
3837 		       ext4_blocks_count(es), blocks_count);
3838 		goto failed_mount;
3839 	}
3840 
3841 	/*
3842 	 * It makes no sense for the first data block to be beyond the end
3843 	 * of the filesystem.
3844 	 */
3845 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3846 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3847 			 "block %u is beyond end of filesystem (%llu)",
3848 			 le32_to_cpu(es->s_first_data_block),
3849 			 ext4_blocks_count(es));
3850 		goto failed_mount;
3851 	}
3852 	blocks_count = (ext4_blocks_count(es) -
3853 			le32_to_cpu(es->s_first_data_block) +
3854 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3855 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3856 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3857 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3858 		       "(block count %llu, first data block %u, "
3859 		       "blocks per group %lu)", sbi->s_groups_count,
3860 		       ext4_blocks_count(es),
3861 		       le32_to_cpu(es->s_first_data_block),
3862 		       EXT4_BLOCKS_PER_GROUP(sb));
3863 		goto failed_mount;
3864 	}
3865 	sbi->s_groups_count = blocks_count;
3866 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3867 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3868 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3869 		   EXT4_DESC_PER_BLOCK(sb);
3870 	if (ext4_has_feature_meta_bg(sb)) {
3871 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3872 			ext4_msg(sb, KERN_WARNING,
3873 				 "first meta block group too large: %u "
3874 				 "(group descriptor block count %u)",
3875 				 le32_to_cpu(es->s_first_meta_bg), db_count);
3876 			goto failed_mount;
3877 		}
3878 	}
3879 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3880 					  sizeof(struct buffer_head *),
3881 					  GFP_KERNEL);
3882 	if (sbi->s_group_desc == NULL) {
3883 		ext4_msg(sb, KERN_ERR, "not enough memory");
3884 		ret = -ENOMEM;
3885 		goto failed_mount;
3886 	}
3887 
3888 	bgl_lock_init(sbi->s_blockgroup_lock);
3889 
3890 	for (i = 0; i < db_count; i++) {
3891 		block = descriptor_loc(sb, logical_sb_block, i);
3892 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3893 		if (!sbi->s_group_desc[i]) {
3894 			ext4_msg(sb, KERN_ERR,
3895 			       "can't read group descriptor %d", i);
3896 			db_count = i;
3897 			goto failed_mount2;
3898 		}
3899 	}
3900 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3901 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3902 		ret = -EFSCORRUPTED;
3903 		goto failed_mount2;
3904 	}
3905 
3906 	sbi->s_gdb_count = db_count;
3907 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3908 	spin_lock_init(&sbi->s_next_gen_lock);
3909 
3910 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3911 		(unsigned long) sb);
3912 
3913 	/* Register extent status tree shrinker */
3914 	if (ext4_es_register_shrinker(sbi))
3915 		goto failed_mount3;
3916 
3917 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3918 	sbi->s_extent_max_zeroout_kb = 32;
3919 
3920 	/*
3921 	 * set up enough so that it can read an inode
3922 	 */
3923 	sb->s_op = &ext4_sops;
3924 	sb->s_export_op = &ext4_export_ops;
3925 	sb->s_xattr = ext4_xattr_handlers;
3926 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3927 	sb->s_cop = &ext4_cryptops;
3928 #endif
3929 #ifdef CONFIG_QUOTA
3930 	sb->dq_op = &ext4_quota_operations;
3931 	if (ext4_has_feature_quota(sb))
3932 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3933 	else
3934 		sb->s_qcop = &ext4_qctl_operations;
3935 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3936 #endif
3937 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3938 
3939 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3940 	mutex_init(&sbi->s_orphan_lock);
3941 
3942 	sb->s_root = NULL;
3943 
3944 	needs_recovery = (es->s_last_orphan != 0 ||
3945 			  ext4_has_feature_journal_needs_recovery(sb));
3946 
3947 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3948 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3949 			goto failed_mount3a;
3950 
3951 	/*
3952 	 * The first inode we look at is the journal inode.  Don't try
3953 	 * root first: it may be modified in the journal!
3954 	 */
3955 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3956 		err = ext4_load_journal(sb, es, journal_devnum);
3957 		if (err)
3958 			goto failed_mount3a;
3959 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3960 		   ext4_has_feature_journal_needs_recovery(sb)) {
3961 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3962 		       "suppressed and not mounted read-only");
3963 		goto failed_mount_wq;
3964 	} else {
3965 		/* Nojournal mode, all journal mount options are illegal */
3966 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3967 			ext4_msg(sb, KERN_ERR, "can't mount with "
3968 				 "journal_checksum, fs mounted w/o journal");
3969 			goto failed_mount_wq;
3970 		}
3971 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3972 			ext4_msg(sb, KERN_ERR, "can't mount with "
3973 				 "journal_async_commit, fs mounted w/o journal");
3974 			goto failed_mount_wq;
3975 		}
3976 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3977 			ext4_msg(sb, KERN_ERR, "can't mount with "
3978 				 "commit=%lu, fs mounted w/o journal",
3979 				 sbi->s_commit_interval / HZ);
3980 			goto failed_mount_wq;
3981 		}
3982 		if (EXT4_MOUNT_DATA_FLAGS &
3983 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3984 			ext4_msg(sb, KERN_ERR, "can't mount with "
3985 				 "data=, fs mounted w/o journal");
3986 			goto failed_mount_wq;
3987 		}
3988 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3989 		clear_opt(sb, JOURNAL_CHECKSUM);
3990 		clear_opt(sb, DATA_FLAGS);
3991 		sbi->s_journal = NULL;
3992 		needs_recovery = 0;
3993 		goto no_journal;
3994 	}
3995 
3996 	if (ext4_has_feature_64bit(sb) &&
3997 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3998 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3999 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4000 		goto failed_mount_wq;
4001 	}
4002 
4003 	if (!set_journal_csum_feature_set(sb)) {
4004 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4005 			 "feature set");
4006 		goto failed_mount_wq;
4007 	}
4008 
4009 	/* We have now updated the journal if required, so we can
4010 	 * validate the data journaling mode. */
4011 	switch (test_opt(sb, DATA_FLAGS)) {
4012 	case 0:
4013 		/* No mode set, assume a default based on the journal
4014 		 * capabilities: ORDERED_DATA if the journal can
4015 		 * cope, else JOURNAL_DATA
4016 		 */
4017 		if (jbd2_journal_check_available_features
4018 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4019 			set_opt(sb, ORDERED_DATA);
4020 		else
4021 			set_opt(sb, JOURNAL_DATA);
4022 		break;
4023 
4024 	case EXT4_MOUNT_ORDERED_DATA:
4025 	case EXT4_MOUNT_WRITEBACK_DATA:
4026 		if (!jbd2_journal_check_available_features
4027 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4028 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4029 			       "requested data journaling mode");
4030 			goto failed_mount_wq;
4031 		}
4032 	default:
4033 		break;
4034 	}
4035 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4036 
4037 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4038 
4039 no_journal:
4040 	sbi->s_mb_cache = ext4_xattr_create_cache();
4041 	if (!sbi->s_mb_cache) {
4042 		ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4043 		goto failed_mount_wq;
4044 	}
4045 
4046 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4047 	    (blocksize != PAGE_SIZE)) {
4048 		ext4_msg(sb, KERN_ERR,
4049 			 "Unsupported blocksize for fs encryption");
4050 		goto failed_mount_wq;
4051 	}
4052 
4053 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4054 	    !ext4_has_feature_encrypt(sb)) {
4055 		ext4_set_feature_encrypt(sb);
4056 		ext4_commit_super(sb, 1);
4057 	}
4058 
4059 	/*
4060 	 * Get the # of file system overhead blocks from the
4061 	 * superblock if present.
4062 	 */
4063 	if (es->s_overhead_clusters)
4064 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4065 	else {
4066 		err = ext4_calculate_overhead(sb);
4067 		if (err)
4068 			goto failed_mount_wq;
4069 	}
4070 
4071 	/*
4072 	 * The maximum number of concurrent works can be high and
4073 	 * concurrency isn't really necessary.  Limit it to 1.
4074 	 */
4075 	EXT4_SB(sb)->rsv_conversion_wq =
4076 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4077 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4078 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4079 		ret = -ENOMEM;
4080 		goto failed_mount4;
4081 	}
4082 
4083 	/*
4084 	 * The jbd2_journal_load will have done any necessary log recovery,
4085 	 * so we can safely mount the rest of the filesystem now.
4086 	 */
4087 
4088 	root = ext4_iget(sb, EXT4_ROOT_INO);
4089 	if (IS_ERR(root)) {
4090 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4091 		ret = PTR_ERR(root);
4092 		root = NULL;
4093 		goto failed_mount4;
4094 	}
4095 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4096 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4097 		iput(root);
4098 		goto failed_mount4;
4099 	}
4100 	sb->s_root = d_make_root(root);
4101 	if (!sb->s_root) {
4102 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4103 		ret = -ENOMEM;
4104 		goto failed_mount4;
4105 	}
4106 
4107 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4108 		sb->s_flags |= MS_RDONLY;
4109 
4110 	/* determine the minimum size of new large inodes, if present */
4111 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4112 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4113 						     EXT4_GOOD_OLD_INODE_SIZE;
4114 		if (ext4_has_feature_extra_isize(sb)) {
4115 			if (sbi->s_want_extra_isize <
4116 			    le16_to_cpu(es->s_want_extra_isize))
4117 				sbi->s_want_extra_isize =
4118 					le16_to_cpu(es->s_want_extra_isize);
4119 			if (sbi->s_want_extra_isize <
4120 			    le16_to_cpu(es->s_min_extra_isize))
4121 				sbi->s_want_extra_isize =
4122 					le16_to_cpu(es->s_min_extra_isize);
4123 		}
4124 	}
4125 	/* Check if enough inode space is available */
4126 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4127 							sbi->s_inode_size) {
4128 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4129 						       EXT4_GOOD_OLD_INODE_SIZE;
4130 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4131 			 "available");
4132 	}
4133 
4134 	ext4_set_resv_clusters(sb);
4135 
4136 	err = ext4_setup_system_zone(sb);
4137 	if (err) {
4138 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4139 			 "zone (%d)", err);
4140 		goto failed_mount4a;
4141 	}
4142 
4143 	ext4_ext_init(sb);
4144 	err = ext4_mb_init(sb);
4145 	if (err) {
4146 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4147 			 err);
4148 		goto failed_mount5;
4149 	}
4150 
4151 	block = ext4_count_free_clusters(sb);
4152 	ext4_free_blocks_count_set(sbi->s_es,
4153 				   EXT4_C2B(sbi, block));
4154 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4155 				  GFP_KERNEL);
4156 	if (!err) {
4157 		unsigned long freei = ext4_count_free_inodes(sb);
4158 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4159 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4160 					  GFP_KERNEL);
4161 	}
4162 	if (!err)
4163 		err = percpu_counter_init(&sbi->s_dirs_counter,
4164 					  ext4_count_dirs(sb), GFP_KERNEL);
4165 	if (!err)
4166 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4167 					  GFP_KERNEL);
4168 	if (!err)
4169 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4170 
4171 	if (err) {
4172 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4173 		goto failed_mount6;
4174 	}
4175 
4176 	if (ext4_has_feature_flex_bg(sb))
4177 		if (!ext4_fill_flex_info(sb)) {
4178 			ext4_msg(sb, KERN_ERR,
4179 			       "unable to initialize "
4180 			       "flex_bg meta info!");
4181 			goto failed_mount6;
4182 		}
4183 
4184 	err = ext4_register_li_request(sb, first_not_zeroed);
4185 	if (err)
4186 		goto failed_mount6;
4187 
4188 	err = ext4_register_sysfs(sb);
4189 	if (err)
4190 		goto failed_mount7;
4191 
4192 #ifdef CONFIG_QUOTA
4193 	/* Enable quota usage during mount. */
4194 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4195 		err = ext4_enable_quotas(sb);
4196 		if (err)
4197 			goto failed_mount8;
4198 	}
4199 #endif  /* CONFIG_QUOTA */
4200 
4201 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4202 	ext4_orphan_cleanup(sb, es);
4203 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4204 	if (needs_recovery) {
4205 		ext4_msg(sb, KERN_INFO, "recovery complete");
4206 		ext4_mark_recovery_complete(sb, es);
4207 	}
4208 	if (EXT4_SB(sb)->s_journal) {
4209 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4210 			descr = " journalled data mode";
4211 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4212 			descr = " ordered data mode";
4213 		else
4214 			descr = " writeback data mode";
4215 	} else
4216 		descr = "out journal";
4217 
4218 	if (test_opt(sb, DISCARD)) {
4219 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4220 		if (!blk_queue_discard(q))
4221 			ext4_msg(sb, KERN_WARNING,
4222 				 "mounting with \"discard\" option, but "
4223 				 "the device does not support discard");
4224 	}
4225 
4226 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4227 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4228 			 "Opts: %.*s%s%s", descr,
4229 			 (int) sizeof(sbi->s_es->s_mount_opts),
4230 			 sbi->s_es->s_mount_opts,
4231 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4232 
4233 	if (es->s_error_count)
4234 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4235 
4236 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4237 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4238 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4239 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4240 
4241 	kfree(orig_data);
4242 	return 0;
4243 
4244 cantfind_ext4:
4245 	if (!silent)
4246 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4247 	goto failed_mount;
4248 
4249 #ifdef CONFIG_QUOTA
4250 failed_mount8:
4251 	ext4_unregister_sysfs(sb);
4252 #endif
4253 failed_mount7:
4254 	ext4_unregister_li_request(sb);
4255 failed_mount6:
4256 	ext4_mb_release(sb);
4257 	if (sbi->s_flex_groups)
4258 		kvfree(sbi->s_flex_groups);
4259 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4260 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4261 	percpu_counter_destroy(&sbi->s_dirs_counter);
4262 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4263 failed_mount5:
4264 	ext4_ext_release(sb);
4265 	ext4_release_system_zone(sb);
4266 failed_mount4a:
4267 	dput(sb->s_root);
4268 	sb->s_root = NULL;
4269 failed_mount4:
4270 	ext4_msg(sb, KERN_ERR, "mount failed");
4271 	if (EXT4_SB(sb)->rsv_conversion_wq)
4272 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4273 failed_mount_wq:
4274 	if (sbi->s_mb_cache) {
4275 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
4276 		sbi->s_mb_cache = NULL;
4277 	}
4278 	if (sbi->s_journal) {
4279 		jbd2_journal_destroy(sbi->s_journal);
4280 		sbi->s_journal = NULL;
4281 	}
4282 failed_mount3a:
4283 	ext4_es_unregister_shrinker(sbi);
4284 failed_mount3:
4285 	del_timer_sync(&sbi->s_err_report);
4286 	if (sbi->s_mmp_tsk)
4287 		kthread_stop(sbi->s_mmp_tsk);
4288 failed_mount2:
4289 	for (i = 0; i < db_count; i++)
4290 		brelse(sbi->s_group_desc[i]);
4291 	kvfree(sbi->s_group_desc);
4292 failed_mount:
4293 	if (sbi->s_chksum_driver)
4294 		crypto_free_shash(sbi->s_chksum_driver);
4295 #ifdef CONFIG_QUOTA
4296 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4297 		kfree(sbi->s_qf_names[i]);
4298 #endif
4299 	ext4_blkdev_remove(sbi);
4300 	brelse(bh);
4301 out_fail:
4302 	sb->s_fs_info = NULL;
4303 	kfree(sbi->s_blockgroup_lock);
4304 out_free_base:
4305 	kfree(sbi);
4306 	kfree(orig_data);
4307 	return err ? err : ret;
4308 }
4309 
4310 /*
4311  * Setup any per-fs journal parameters now.  We'll do this both on
4312  * initial mount, once the journal has been initialised but before we've
4313  * done any recovery; and again on any subsequent remount.
4314  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4315 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4316 {
4317 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4318 
4319 	journal->j_commit_interval = sbi->s_commit_interval;
4320 	journal->j_min_batch_time = sbi->s_min_batch_time;
4321 	journal->j_max_batch_time = sbi->s_max_batch_time;
4322 
4323 	write_lock(&journal->j_state_lock);
4324 	if (test_opt(sb, BARRIER))
4325 		journal->j_flags |= JBD2_BARRIER;
4326 	else
4327 		journal->j_flags &= ~JBD2_BARRIER;
4328 	if (test_opt(sb, DATA_ERR_ABORT))
4329 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4330 	else
4331 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4332 	write_unlock(&journal->j_state_lock);
4333 }
4334 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4335 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4336 					     unsigned int journal_inum)
4337 {
4338 	struct inode *journal_inode;
4339 
4340 	/*
4341 	 * Test for the existence of a valid inode on disk.  Bad things
4342 	 * happen if we iget() an unused inode, as the subsequent iput()
4343 	 * will try to delete it.
4344 	 */
4345 	journal_inode = ext4_iget(sb, journal_inum);
4346 	if (IS_ERR(journal_inode)) {
4347 		ext4_msg(sb, KERN_ERR, "no journal found");
4348 		return NULL;
4349 	}
4350 	if (!journal_inode->i_nlink) {
4351 		make_bad_inode(journal_inode);
4352 		iput(journal_inode);
4353 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4354 		return NULL;
4355 	}
4356 
4357 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4358 		  journal_inode, journal_inode->i_size);
4359 	if (!S_ISREG(journal_inode->i_mode)) {
4360 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4361 		iput(journal_inode);
4362 		return NULL;
4363 	}
4364 	return journal_inode;
4365 }
4366 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4367 static journal_t *ext4_get_journal(struct super_block *sb,
4368 				   unsigned int journal_inum)
4369 {
4370 	struct inode *journal_inode;
4371 	journal_t *journal;
4372 
4373 	BUG_ON(!ext4_has_feature_journal(sb));
4374 
4375 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4376 	if (!journal_inode)
4377 		return NULL;
4378 
4379 	journal = jbd2_journal_init_inode(journal_inode);
4380 	if (!journal) {
4381 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4382 		iput(journal_inode);
4383 		return NULL;
4384 	}
4385 	journal->j_private = sb;
4386 	ext4_init_journal_params(sb, journal);
4387 	return journal;
4388 }
4389 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4390 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4391 				       dev_t j_dev)
4392 {
4393 	struct buffer_head *bh;
4394 	journal_t *journal;
4395 	ext4_fsblk_t start;
4396 	ext4_fsblk_t len;
4397 	int hblock, blocksize;
4398 	ext4_fsblk_t sb_block;
4399 	unsigned long offset;
4400 	struct ext4_super_block *es;
4401 	struct block_device *bdev;
4402 
4403 	BUG_ON(!ext4_has_feature_journal(sb));
4404 
4405 	bdev = ext4_blkdev_get(j_dev, sb);
4406 	if (bdev == NULL)
4407 		return NULL;
4408 
4409 	blocksize = sb->s_blocksize;
4410 	hblock = bdev_logical_block_size(bdev);
4411 	if (blocksize < hblock) {
4412 		ext4_msg(sb, KERN_ERR,
4413 			"blocksize too small for journal device");
4414 		goto out_bdev;
4415 	}
4416 
4417 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4418 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4419 	set_blocksize(bdev, blocksize);
4420 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4421 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4422 		       "external journal");
4423 		goto out_bdev;
4424 	}
4425 
4426 	es = (struct ext4_super_block *) (bh->b_data + offset);
4427 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4428 	    !(le32_to_cpu(es->s_feature_incompat) &
4429 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4430 		ext4_msg(sb, KERN_ERR, "external journal has "
4431 					"bad superblock");
4432 		brelse(bh);
4433 		goto out_bdev;
4434 	}
4435 
4436 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4437 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4438 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4439 		ext4_msg(sb, KERN_ERR, "external journal has "
4440 				       "corrupt superblock");
4441 		brelse(bh);
4442 		goto out_bdev;
4443 	}
4444 
4445 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4446 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4447 		brelse(bh);
4448 		goto out_bdev;
4449 	}
4450 
4451 	len = ext4_blocks_count(es);
4452 	start = sb_block + 1;
4453 	brelse(bh);	/* we're done with the superblock */
4454 
4455 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4456 					start, len, blocksize);
4457 	if (!journal) {
4458 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4459 		goto out_bdev;
4460 	}
4461 	journal->j_private = sb;
4462 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4463 	wait_on_buffer(journal->j_sb_buffer);
4464 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4465 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4466 		goto out_journal;
4467 	}
4468 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4469 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4470 					"user (unsupported) - %d",
4471 			be32_to_cpu(journal->j_superblock->s_nr_users));
4472 		goto out_journal;
4473 	}
4474 	EXT4_SB(sb)->journal_bdev = bdev;
4475 	ext4_init_journal_params(sb, journal);
4476 	return journal;
4477 
4478 out_journal:
4479 	jbd2_journal_destroy(journal);
4480 out_bdev:
4481 	ext4_blkdev_put(bdev);
4482 	return NULL;
4483 }
4484 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4485 static int ext4_load_journal(struct super_block *sb,
4486 			     struct ext4_super_block *es,
4487 			     unsigned long journal_devnum)
4488 {
4489 	journal_t *journal;
4490 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4491 	dev_t journal_dev;
4492 	int err = 0;
4493 	int really_read_only;
4494 
4495 	BUG_ON(!ext4_has_feature_journal(sb));
4496 
4497 	if (journal_devnum &&
4498 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4499 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4500 			"numbers have changed");
4501 		journal_dev = new_decode_dev(journal_devnum);
4502 	} else
4503 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4504 
4505 	really_read_only = bdev_read_only(sb->s_bdev);
4506 
4507 	/*
4508 	 * Are we loading a blank journal or performing recovery after a
4509 	 * crash?  For recovery, we need to check in advance whether we
4510 	 * can get read-write access to the device.
4511 	 */
4512 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4513 		if (sb->s_flags & MS_RDONLY) {
4514 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4515 					"required on readonly filesystem");
4516 			if (really_read_only) {
4517 				ext4_msg(sb, KERN_ERR, "write access "
4518 					"unavailable, cannot proceed");
4519 				return -EROFS;
4520 			}
4521 			ext4_msg(sb, KERN_INFO, "write access will "
4522 			       "be enabled during recovery");
4523 		}
4524 	}
4525 
4526 	if (journal_inum && journal_dev) {
4527 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4528 		       "and inode journals!");
4529 		return -EINVAL;
4530 	}
4531 
4532 	if (journal_inum) {
4533 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4534 			return -EINVAL;
4535 	} else {
4536 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4537 			return -EINVAL;
4538 	}
4539 
4540 	if (!(journal->j_flags & JBD2_BARRIER))
4541 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4542 
4543 	if (!ext4_has_feature_journal_needs_recovery(sb))
4544 		err = jbd2_journal_wipe(journal, !really_read_only);
4545 	if (!err) {
4546 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4547 		if (save)
4548 			memcpy(save, ((char *) es) +
4549 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4550 		err = jbd2_journal_load(journal);
4551 		if (save)
4552 			memcpy(((char *) es) + EXT4_S_ERR_START,
4553 			       save, EXT4_S_ERR_LEN);
4554 		kfree(save);
4555 	}
4556 
4557 	if (err) {
4558 		ext4_msg(sb, KERN_ERR, "error loading journal");
4559 		jbd2_journal_destroy(journal);
4560 		return err;
4561 	}
4562 
4563 	EXT4_SB(sb)->s_journal = journal;
4564 	ext4_clear_journal_err(sb, es);
4565 
4566 	if (!really_read_only && journal_devnum &&
4567 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4568 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4569 
4570 		/* Make sure we flush the recovery flag to disk. */
4571 		ext4_commit_super(sb, 1);
4572 	}
4573 
4574 	return 0;
4575 }
4576 
ext4_commit_super(struct super_block * sb,int sync)4577 static int ext4_commit_super(struct super_block *sb, int sync)
4578 {
4579 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4580 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4581 	int error = 0;
4582 
4583 	if (!sbh || block_device_ejected(sb))
4584 		return error;
4585 	/*
4586 	 * If the file system is mounted read-only, don't update the
4587 	 * superblock write time.  This avoids updating the superblock
4588 	 * write time when we are mounting the root file system
4589 	 * read/only but we need to replay the journal; at that point,
4590 	 * for people who are east of GMT and who make their clock
4591 	 * tick in localtime for Windows bug-for-bug compatibility,
4592 	 * the clock is set in the future, and this will cause e2fsck
4593 	 * to complain and force a full file system check.
4594 	 */
4595 	if (!(sb->s_flags & MS_RDONLY))
4596 		es->s_wtime = cpu_to_le32(get_seconds());
4597 	if (sb->s_bdev->bd_part)
4598 		es->s_kbytes_written =
4599 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4600 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4601 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4602 	else
4603 		es->s_kbytes_written =
4604 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4605 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4606 		ext4_free_blocks_count_set(es,
4607 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4608 				&EXT4_SB(sb)->s_freeclusters_counter)));
4609 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4610 		es->s_free_inodes_count =
4611 			cpu_to_le32(percpu_counter_sum_positive(
4612 				&EXT4_SB(sb)->s_freeinodes_counter));
4613 	BUFFER_TRACE(sbh, "marking dirty");
4614 	ext4_superblock_csum_set(sb);
4615 	if (sync)
4616 		lock_buffer(sbh);
4617 	if (buffer_write_io_error(sbh)) {
4618 		/*
4619 		 * Oh, dear.  A previous attempt to write the
4620 		 * superblock failed.  This could happen because the
4621 		 * USB device was yanked out.  Or it could happen to
4622 		 * be a transient write error and maybe the block will
4623 		 * be remapped.  Nothing we can do but to retry the
4624 		 * write and hope for the best.
4625 		 */
4626 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4627 		       "superblock detected");
4628 		clear_buffer_write_io_error(sbh);
4629 		set_buffer_uptodate(sbh);
4630 	}
4631 	mark_buffer_dirty(sbh);
4632 	if (sync) {
4633 		unlock_buffer(sbh);
4634 		error = __sync_dirty_buffer(sbh,
4635 			test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4636 		if (error)
4637 			return error;
4638 
4639 		error = buffer_write_io_error(sbh);
4640 		if (error) {
4641 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4642 			       "superblock");
4643 			clear_buffer_write_io_error(sbh);
4644 			set_buffer_uptodate(sbh);
4645 		}
4646 	}
4647 	return error;
4648 }
4649 
4650 /*
4651  * Have we just finished recovery?  If so, and if we are mounting (or
4652  * remounting) the filesystem readonly, then we will end up with a
4653  * consistent fs on disk.  Record that fact.
4654  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4655 static void ext4_mark_recovery_complete(struct super_block *sb,
4656 					struct ext4_super_block *es)
4657 {
4658 	journal_t *journal = EXT4_SB(sb)->s_journal;
4659 
4660 	if (!ext4_has_feature_journal(sb)) {
4661 		BUG_ON(journal != NULL);
4662 		return;
4663 	}
4664 	jbd2_journal_lock_updates(journal);
4665 	if (jbd2_journal_flush(journal) < 0)
4666 		goto out;
4667 
4668 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4669 	    sb->s_flags & MS_RDONLY) {
4670 		ext4_clear_feature_journal_needs_recovery(sb);
4671 		ext4_commit_super(sb, 1);
4672 	}
4673 
4674 out:
4675 	jbd2_journal_unlock_updates(journal);
4676 }
4677 
4678 /*
4679  * If we are mounting (or read-write remounting) a filesystem whose journal
4680  * has recorded an error from a previous lifetime, move that error to the
4681  * main filesystem now.
4682  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4683 static void ext4_clear_journal_err(struct super_block *sb,
4684 				   struct ext4_super_block *es)
4685 {
4686 	journal_t *journal;
4687 	int j_errno;
4688 	const char *errstr;
4689 
4690 	BUG_ON(!ext4_has_feature_journal(sb));
4691 
4692 	journal = EXT4_SB(sb)->s_journal;
4693 
4694 	/*
4695 	 * Now check for any error status which may have been recorded in the
4696 	 * journal by a prior ext4_error() or ext4_abort()
4697 	 */
4698 
4699 	j_errno = jbd2_journal_errno(journal);
4700 	if (j_errno) {
4701 		char nbuf[16];
4702 
4703 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4704 		ext4_warning(sb, "Filesystem error recorded "
4705 			     "from previous mount: %s", errstr);
4706 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4707 
4708 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4709 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4710 		ext4_commit_super(sb, 1);
4711 
4712 		jbd2_journal_clear_err(journal);
4713 		jbd2_journal_update_sb_errno(journal);
4714 	}
4715 }
4716 
4717 /*
4718  * Force the running and committing transactions to commit,
4719  * and wait on the commit.
4720  */
ext4_force_commit(struct super_block * sb)4721 int ext4_force_commit(struct super_block *sb)
4722 {
4723 	journal_t *journal;
4724 
4725 	if (sb->s_flags & MS_RDONLY)
4726 		return 0;
4727 
4728 	journal = EXT4_SB(sb)->s_journal;
4729 	return ext4_journal_force_commit(journal);
4730 }
4731 
ext4_sync_fs(struct super_block * sb,int wait)4732 static int ext4_sync_fs(struct super_block *sb, int wait)
4733 {
4734 	int ret = 0;
4735 	tid_t target;
4736 	bool needs_barrier = false;
4737 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4738 
4739 	trace_ext4_sync_fs(sb, wait);
4740 	flush_workqueue(sbi->rsv_conversion_wq);
4741 	/*
4742 	 * Writeback quota in non-journalled quota case - journalled quota has
4743 	 * no dirty dquots
4744 	 */
4745 	dquot_writeback_dquots(sb, -1);
4746 	/*
4747 	 * Data writeback is possible w/o journal transaction, so barrier must
4748 	 * being sent at the end of the function. But we can skip it if
4749 	 * transaction_commit will do it for us.
4750 	 */
4751 	if (sbi->s_journal) {
4752 		target = jbd2_get_latest_transaction(sbi->s_journal);
4753 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4754 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4755 			needs_barrier = true;
4756 
4757 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4758 			if (wait)
4759 				ret = jbd2_log_wait_commit(sbi->s_journal,
4760 							   target);
4761 		}
4762 	} else if (wait && test_opt(sb, BARRIER))
4763 		needs_barrier = true;
4764 	if (needs_barrier) {
4765 		int err;
4766 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4767 		if (!ret)
4768 			ret = err;
4769 	}
4770 
4771 	return ret;
4772 }
4773 
4774 /*
4775  * LVM calls this function before a (read-only) snapshot is created.  This
4776  * gives us a chance to flush the journal completely and mark the fs clean.
4777  *
4778  * Note that only this function cannot bring a filesystem to be in a clean
4779  * state independently. It relies on upper layer to stop all data & metadata
4780  * modifications.
4781  */
ext4_freeze(struct super_block * sb)4782 static int ext4_freeze(struct super_block *sb)
4783 {
4784 	int error = 0;
4785 	journal_t *journal;
4786 
4787 	if (sb->s_flags & MS_RDONLY)
4788 		return 0;
4789 
4790 	journal = EXT4_SB(sb)->s_journal;
4791 
4792 	if (journal) {
4793 		/* Now we set up the journal barrier. */
4794 		jbd2_journal_lock_updates(journal);
4795 
4796 		/*
4797 		 * Don't clear the needs_recovery flag if we failed to
4798 		 * flush the journal.
4799 		 */
4800 		error = jbd2_journal_flush(journal);
4801 		if (error < 0)
4802 			goto out;
4803 
4804 		/* Journal blocked and flushed, clear needs_recovery flag. */
4805 		ext4_clear_feature_journal_needs_recovery(sb);
4806 	}
4807 
4808 	error = ext4_commit_super(sb, 1);
4809 out:
4810 	if (journal)
4811 		/* we rely on upper layer to stop further updates */
4812 		jbd2_journal_unlock_updates(journal);
4813 	return error;
4814 }
4815 
4816 /*
4817  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4818  * flag here, even though the filesystem is not technically dirty yet.
4819  */
ext4_unfreeze(struct super_block * sb)4820 static int ext4_unfreeze(struct super_block *sb)
4821 {
4822 	if (sb->s_flags & MS_RDONLY)
4823 		return 0;
4824 
4825 	if (EXT4_SB(sb)->s_journal) {
4826 		/* Reset the needs_recovery flag before the fs is unlocked. */
4827 		ext4_set_feature_journal_needs_recovery(sb);
4828 	}
4829 
4830 	ext4_commit_super(sb, 1);
4831 	return 0;
4832 }
4833 
4834 /*
4835  * Structure to save mount options for ext4_remount's benefit
4836  */
4837 struct ext4_mount_options {
4838 	unsigned long s_mount_opt;
4839 	unsigned long s_mount_opt2;
4840 	kuid_t s_resuid;
4841 	kgid_t s_resgid;
4842 	unsigned long s_commit_interval;
4843 	u32 s_min_batch_time, s_max_batch_time;
4844 #ifdef CONFIG_QUOTA
4845 	int s_jquota_fmt;
4846 	char *s_qf_names[EXT4_MAXQUOTAS];
4847 #endif
4848 };
4849 
ext4_remount(struct super_block * sb,int * flags,char * data)4850 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4851 {
4852 	struct ext4_super_block *es;
4853 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4854 	unsigned long old_sb_flags;
4855 	struct ext4_mount_options old_opts;
4856 	int enable_quota = 0;
4857 	ext4_group_t g;
4858 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4859 	int err = 0;
4860 #ifdef CONFIG_QUOTA
4861 	int i, j;
4862 #endif
4863 	char *orig_data = kstrdup(data, GFP_KERNEL);
4864 
4865 	/* Store the original options */
4866 	old_sb_flags = sb->s_flags;
4867 	old_opts.s_mount_opt = sbi->s_mount_opt;
4868 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4869 	old_opts.s_resuid = sbi->s_resuid;
4870 	old_opts.s_resgid = sbi->s_resgid;
4871 	old_opts.s_commit_interval = sbi->s_commit_interval;
4872 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4873 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4874 #ifdef CONFIG_QUOTA
4875 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4876 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4877 		if (sbi->s_qf_names[i]) {
4878 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4879 							 GFP_KERNEL);
4880 			if (!old_opts.s_qf_names[i]) {
4881 				for (j = 0; j < i; j++)
4882 					kfree(old_opts.s_qf_names[j]);
4883 				kfree(orig_data);
4884 				return -ENOMEM;
4885 			}
4886 		} else
4887 			old_opts.s_qf_names[i] = NULL;
4888 #endif
4889 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4890 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4891 
4892 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4893 		err = -EINVAL;
4894 		goto restore_opts;
4895 	}
4896 
4897 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4898 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4899 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4900 			 "during remount not supported; ignoring");
4901 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4902 	}
4903 
4904 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4905 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4906 			ext4_msg(sb, KERN_ERR, "can't mount with "
4907 				 "both data=journal and delalloc");
4908 			err = -EINVAL;
4909 			goto restore_opts;
4910 		}
4911 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4912 			ext4_msg(sb, KERN_ERR, "can't mount with "
4913 				 "both data=journal and dioread_nolock");
4914 			err = -EINVAL;
4915 			goto restore_opts;
4916 		}
4917 		if (test_opt(sb, DAX)) {
4918 			ext4_msg(sb, KERN_ERR, "can't mount with "
4919 				 "both data=journal and dax");
4920 			err = -EINVAL;
4921 			goto restore_opts;
4922 		}
4923 	}
4924 
4925 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4926 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4927 			"dax flag with busy inodes while remounting");
4928 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4929 	}
4930 
4931 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4932 		ext4_abort(sb, "Abort forced by user");
4933 
4934 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4935 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4936 
4937 	es = sbi->s_es;
4938 
4939 	if (sbi->s_journal) {
4940 		ext4_init_journal_params(sb, sbi->s_journal);
4941 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4942 	}
4943 
4944 	if (*flags & MS_LAZYTIME)
4945 		sb->s_flags |= MS_LAZYTIME;
4946 
4947 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4948 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4949 			err = -EROFS;
4950 			goto restore_opts;
4951 		}
4952 
4953 		if (*flags & MS_RDONLY) {
4954 			err = sync_filesystem(sb);
4955 			if (err < 0)
4956 				goto restore_opts;
4957 			err = dquot_suspend(sb, -1);
4958 			if (err < 0)
4959 				goto restore_opts;
4960 
4961 			/*
4962 			 * First of all, the unconditional stuff we have to do
4963 			 * to disable replay of the journal when we next remount
4964 			 */
4965 			sb->s_flags |= MS_RDONLY;
4966 
4967 			/*
4968 			 * OK, test if we are remounting a valid rw partition
4969 			 * readonly, and if so set the rdonly flag and then
4970 			 * mark the partition as valid again.
4971 			 */
4972 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4973 			    (sbi->s_mount_state & EXT4_VALID_FS))
4974 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4975 
4976 			if (sbi->s_journal)
4977 				ext4_mark_recovery_complete(sb, es);
4978 		} else {
4979 			/* Make sure we can mount this feature set readwrite */
4980 			if (ext4_has_feature_readonly(sb) ||
4981 			    !ext4_feature_set_ok(sb, 0)) {
4982 				err = -EROFS;
4983 				goto restore_opts;
4984 			}
4985 			/*
4986 			 * Make sure the group descriptor checksums
4987 			 * are sane.  If they aren't, refuse to remount r/w.
4988 			 */
4989 			for (g = 0; g < sbi->s_groups_count; g++) {
4990 				struct ext4_group_desc *gdp =
4991 					ext4_get_group_desc(sb, g, NULL);
4992 
4993 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4994 					ext4_msg(sb, KERN_ERR,
4995 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4996 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4997 					       le16_to_cpu(gdp->bg_checksum));
4998 					err = -EFSBADCRC;
4999 					goto restore_opts;
5000 				}
5001 			}
5002 
5003 			/*
5004 			 * If we have an unprocessed orphan list hanging
5005 			 * around from a previously readonly bdev mount,
5006 			 * require a full umount/remount for now.
5007 			 */
5008 			if (es->s_last_orphan) {
5009 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5010 				       "remount RDWR because of unprocessed "
5011 				       "orphan inode list.  Please "
5012 				       "umount/remount instead");
5013 				err = -EINVAL;
5014 				goto restore_opts;
5015 			}
5016 
5017 			/*
5018 			 * Mounting a RDONLY partition read-write, so reread
5019 			 * and store the current valid flag.  (It may have
5020 			 * been changed by e2fsck since we originally mounted
5021 			 * the partition.)
5022 			 */
5023 			if (sbi->s_journal)
5024 				ext4_clear_journal_err(sb, es);
5025 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5026 			if (!ext4_setup_super(sb, es, 0))
5027 				sb->s_flags &= ~MS_RDONLY;
5028 			if (ext4_has_feature_mmp(sb))
5029 				if (ext4_multi_mount_protect(sb,
5030 						le64_to_cpu(es->s_mmp_block))) {
5031 					err = -EROFS;
5032 					goto restore_opts;
5033 				}
5034 			enable_quota = 1;
5035 		}
5036 	}
5037 
5038 	/*
5039 	 * Reinitialize lazy itable initialization thread based on
5040 	 * current settings
5041 	 */
5042 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5043 		ext4_unregister_li_request(sb);
5044 	else {
5045 		ext4_group_t first_not_zeroed;
5046 		first_not_zeroed = ext4_has_uninit_itable(sb);
5047 		ext4_register_li_request(sb, first_not_zeroed);
5048 	}
5049 
5050 	ext4_setup_system_zone(sb);
5051 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5052 		ext4_commit_super(sb, 1);
5053 
5054 #ifdef CONFIG_QUOTA
5055 	/* Release old quota file names */
5056 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5057 		kfree(old_opts.s_qf_names[i]);
5058 	if (enable_quota) {
5059 		if (sb_any_quota_suspended(sb))
5060 			dquot_resume(sb, -1);
5061 		else if (ext4_has_feature_quota(sb)) {
5062 			err = ext4_enable_quotas(sb);
5063 			if (err)
5064 				goto restore_opts;
5065 		}
5066 	}
5067 #endif
5068 
5069 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5070 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5071 	kfree(orig_data);
5072 	return 0;
5073 
5074 restore_opts:
5075 	sb->s_flags = old_sb_flags;
5076 	sbi->s_mount_opt = old_opts.s_mount_opt;
5077 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5078 	sbi->s_resuid = old_opts.s_resuid;
5079 	sbi->s_resgid = old_opts.s_resgid;
5080 	sbi->s_commit_interval = old_opts.s_commit_interval;
5081 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5082 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5083 #ifdef CONFIG_QUOTA
5084 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5085 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5086 		kfree(sbi->s_qf_names[i]);
5087 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5088 	}
5089 #endif
5090 	kfree(orig_data);
5091 	return err;
5092 }
5093 
5094 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5095 static int ext4_statfs_project(struct super_block *sb,
5096 			       kprojid_t projid, struct kstatfs *buf)
5097 {
5098 	struct kqid qid;
5099 	struct dquot *dquot;
5100 	u64 limit;
5101 	u64 curblock;
5102 
5103 	qid = make_kqid_projid(projid);
5104 	dquot = dqget(sb, qid);
5105 	if (IS_ERR(dquot))
5106 		return PTR_ERR(dquot);
5107 	spin_lock(&dq_data_lock);
5108 
5109 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5110 		 dquot->dq_dqb.dqb_bsoftlimit :
5111 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5112 	if (limit && buf->f_blocks > limit) {
5113 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5114 		buf->f_blocks = limit;
5115 		buf->f_bfree = buf->f_bavail =
5116 			(buf->f_blocks > curblock) ?
5117 			 (buf->f_blocks - curblock) : 0;
5118 	}
5119 
5120 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5121 		dquot->dq_dqb.dqb_isoftlimit :
5122 		dquot->dq_dqb.dqb_ihardlimit;
5123 	if (limit && buf->f_files > limit) {
5124 		buf->f_files = limit;
5125 		buf->f_ffree =
5126 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5127 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5128 	}
5129 
5130 	spin_unlock(&dq_data_lock);
5131 	dqput(dquot);
5132 	return 0;
5133 }
5134 #endif
5135 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5136 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5137 {
5138 	struct super_block *sb = dentry->d_sb;
5139 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 	struct ext4_super_block *es = sbi->s_es;
5141 	ext4_fsblk_t overhead = 0, resv_blocks;
5142 	u64 fsid;
5143 	s64 bfree;
5144 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5145 
5146 	if (!test_opt(sb, MINIX_DF))
5147 		overhead = sbi->s_overhead;
5148 
5149 	buf->f_type = EXT4_SUPER_MAGIC;
5150 	buf->f_bsize = sb->s_blocksize;
5151 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5152 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5153 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5154 	/* prevent underflow in case that few free space is available */
5155 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5156 	buf->f_bavail = buf->f_bfree -
5157 			(ext4_r_blocks_count(es) + resv_blocks);
5158 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5159 		buf->f_bavail = 0;
5160 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5161 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5162 	buf->f_namelen = EXT4_NAME_LEN;
5163 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5164 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5165 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5166 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5167 
5168 #ifdef CONFIG_QUOTA
5169 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5170 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5171 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5172 #endif
5173 	return 0;
5174 }
5175 
5176 /* Helper function for writing quotas on sync - we need to start transaction
5177  * before quota file is locked for write. Otherwise the are possible deadlocks:
5178  * Process 1                         Process 2
5179  * ext4_create()                     quota_sync()
5180  *   jbd2_journal_start()                  write_dquot()
5181  *   dquot_initialize()                         down(dqio_mutex)
5182  *     down(dqio_mutex)                    jbd2_journal_start()
5183  *
5184  */
5185 
5186 #ifdef CONFIG_QUOTA
5187 
dquot_to_inode(struct dquot * dquot)5188 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5189 {
5190 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5191 }
5192 
ext4_write_dquot(struct dquot * dquot)5193 static int ext4_write_dquot(struct dquot *dquot)
5194 {
5195 	int ret, err;
5196 	handle_t *handle;
5197 	struct inode *inode;
5198 
5199 	inode = dquot_to_inode(dquot);
5200 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5201 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5202 	if (IS_ERR(handle))
5203 		return PTR_ERR(handle);
5204 	ret = dquot_commit(dquot);
5205 	err = ext4_journal_stop(handle);
5206 	if (!ret)
5207 		ret = err;
5208 	return ret;
5209 }
5210 
ext4_acquire_dquot(struct dquot * dquot)5211 static int ext4_acquire_dquot(struct dquot *dquot)
5212 {
5213 	int ret, err;
5214 	handle_t *handle;
5215 
5216 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5217 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5218 	if (IS_ERR(handle))
5219 		return PTR_ERR(handle);
5220 	ret = dquot_acquire(dquot);
5221 	err = ext4_journal_stop(handle);
5222 	if (!ret)
5223 		ret = err;
5224 	return ret;
5225 }
5226 
ext4_release_dquot(struct dquot * dquot)5227 static int ext4_release_dquot(struct dquot *dquot)
5228 {
5229 	int ret, err;
5230 	handle_t *handle;
5231 
5232 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5233 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5234 	if (IS_ERR(handle)) {
5235 		/* Release dquot anyway to avoid endless cycle in dqput() */
5236 		dquot_release(dquot);
5237 		return PTR_ERR(handle);
5238 	}
5239 	ret = dquot_release(dquot);
5240 	err = ext4_journal_stop(handle);
5241 	if (!ret)
5242 		ret = err;
5243 	return ret;
5244 }
5245 
ext4_mark_dquot_dirty(struct dquot * dquot)5246 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5247 {
5248 	struct super_block *sb = dquot->dq_sb;
5249 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5250 
5251 	/* Are we journaling quotas? */
5252 	if (ext4_has_feature_quota(sb) ||
5253 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5254 		dquot_mark_dquot_dirty(dquot);
5255 		return ext4_write_dquot(dquot);
5256 	} else {
5257 		return dquot_mark_dquot_dirty(dquot);
5258 	}
5259 }
5260 
ext4_write_info(struct super_block * sb,int type)5261 static int ext4_write_info(struct super_block *sb, int type)
5262 {
5263 	int ret, err;
5264 	handle_t *handle;
5265 
5266 	/* Data block + inode block */
5267 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5268 	if (IS_ERR(handle))
5269 		return PTR_ERR(handle);
5270 	ret = dquot_commit_info(sb, type);
5271 	err = ext4_journal_stop(handle);
5272 	if (!ret)
5273 		ret = err;
5274 	return ret;
5275 }
5276 
5277 /*
5278  * Turn on quotas during mount time - we need to find
5279  * the quota file and such...
5280  */
ext4_quota_on_mount(struct super_block * sb,int type)5281 static int ext4_quota_on_mount(struct super_block *sb, int type)
5282 {
5283 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5284 					EXT4_SB(sb)->s_jquota_fmt, type);
5285 }
5286 
lockdep_set_quota_inode(struct inode * inode,int subclass)5287 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5288 {
5289 	struct ext4_inode_info *ei = EXT4_I(inode);
5290 
5291 	/* The first argument of lockdep_set_subclass has to be
5292 	 * *exactly* the same as the argument to init_rwsem() --- in
5293 	 * this case, in init_once() --- or lockdep gets unhappy
5294 	 * because the name of the lock is set using the
5295 	 * stringification of the argument to init_rwsem().
5296 	 */
5297 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5298 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5299 }
5300 
5301 /*
5302  * Standard function to be called on quota_on
5303  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5304 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5305 			 struct path *path)
5306 {
5307 	int err;
5308 
5309 	if (!test_opt(sb, QUOTA))
5310 		return -EINVAL;
5311 
5312 	/* Quotafile not on the same filesystem? */
5313 	if (path->dentry->d_sb != sb)
5314 		return -EXDEV;
5315 	/* Journaling quota? */
5316 	if (EXT4_SB(sb)->s_qf_names[type]) {
5317 		/* Quotafile not in fs root? */
5318 		if (path->dentry->d_parent != sb->s_root)
5319 			ext4_msg(sb, KERN_WARNING,
5320 				"Quota file not on filesystem root. "
5321 				"Journaled quota will not work");
5322 	}
5323 
5324 	/*
5325 	 * When we journal data on quota file, we have to flush journal to see
5326 	 * all updates to the file when we bypass pagecache...
5327 	 */
5328 	if (EXT4_SB(sb)->s_journal &&
5329 	    ext4_should_journal_data(d_inode(path->dentry))) {
5330 		/*
5331 		 * We don't need to lock updates but journal_flush() could
5332 		 * otherwise be livelocked...
5333 		 */
5334 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5335 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5336 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5337 		if (err)
5338 			return err;
5339 	}
5340 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5341 	err = dquot_quota_on(sb, type, format_id, path);
5342 	if (err)
5343 		lockdep_set_quota_inode(path->dentry->d_inode,
5344 					     I_DATA_SEM_NORMAL);
5345 	return err;
5346 }
5347 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5348 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5349 			     unsigned int flags)
5350 {
5351 	int err;
5352 	struct inode *qf_inode;
5353 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5354 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5355 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5356 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5357 	};
5358 
5359 	BUG_ON(!ext4_has_feature_quota(sb));
5360 
5361 	if (!qf_inums[type])
5362 		return -EPERM;
5363 
5364 	qf_inode = ext4_iget(sb, qf_inums[type]);
5365 	if (IS_ERR(qf_inode)) {
5366 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5367 		return PTR_ERR(qf_inode);
5368 	}
5369 
5370 	/* Don't account quota for quota files to avoid recursion */
5371 	qf_inode->i_flags |= S_NOQUOTA;
5372 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5373 	err = dquot_enable(qf_inode, type, format_id, flags);
5374 	iput(qf_inode);
5375 	if (err)
5376 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5377 
5378 	return err;
5379 }
5380 
5381 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5382 static int ext4_enable_quotas(struct super_block *sb)
5383 {
5384 	int type, err = 0;
5385 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5386 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5387 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5388 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5389 	};
5390 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5391 		test_opt(sb, USRQUOTA),
5392 		test_opt(sb, GRPQUOTA),
5393 		test_opt(sb, PRJQUOTA),
5394 	};
5395 
5396 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5397 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5398 		if (qf_inums[type]) {
5399 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5400 				DQUOT_USAGE_ENABLED |
5401 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5402 			if (err) {
5403 				for (type--; type >= 0; type--)
5404 					dquot_quota_off(sb, type);
5405 
5406 				ext4_warning(sb,
5407 					"Failed to enable quota tracking "
5408 					"(type=%d, err=%d). Please run "
5409 					"e2fsck to fix.", type, err);
5410 				return err;
5411 			}
5412 		}
5413 	}
5414 	return 0;
5415 }
5416 
ext4_quota_off(struct super_block * sb,int type)5417 static int ext4_quota_off(struct super_block *sb, int type)
5418 {
5419 	struct inode *inode = sb_dqopt(sb)->files[type];
5420 	handle_t *handle;
5421 
5422 	/* Force all delayed allocation blocks to be allocated.
5423 	 * Caller already holds s_umount sem */
5424 	if (test_opt(sb, DELALLOC))
5425 		sync_filesystem(sb);
5426 
5427 	if (!inode)
5428 		goto out;
5429 
5430 	/* Update modification times of quota files when userspace can
5431 	 * start looking at them */
5432 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5433 	if (IS_ERR(handle))
5434 		goto out;
5435 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5436 	ext4_mark_inode_dirty(handle, inode);
5437 	ext4_journal_stop(handle);
5438 
5439 out:
5440 	return dquot_quota_off(sb, type);
5441 }
5442 
5443 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5444  * acquiring the locks... As quota files are never truncated and quota code
5445  * itself serializes the operations (and no one else should touch the files)
5446  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5447 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5448 			       size_t len, loff_t off)
5449 {
5450 	struct inode *inode = sb_dqopt(sb)->files[type];
5451 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5452 	int offset = off & (sb->s_blocksize - 1);
5453 	int tocopy;
5454 	size_t toread;
5455 	struct buffer_head *bh;
5456 	loff_t i_size = i_size_read(inode);
5457 
5458 	if (off > i_size)
5459 		return 0;
5460 	if (off+len > i_size)
5461 		len = i_size-off;
5462 	toread = len;
5463 	while (toread > 0) {
5464 		tocopy = sb->s_blocksize - offset < toread ?
5465 				sb->s_blocksize - offset : toread;
5466 		bh = ext4_bread(NULL, inode, blk, 0);
5467 		if (IS_ERR(bh))
5468 			return PTR_ERR(bh);
5469 		if (!bh)	/* A hole? */
5470 			memset(data, 0, tocopy);
5471 		else
5472 			memcpy(data, bh->b_data+offset, tocopy);
5473 		brelse(bh);
5474 		offset = 0;
5475 		toread -= tocopy;
5476 		data += tocopy;
5477 		blk++;
5478 	}
5479 	return len;
5480 }
5481 
5482 /* Write to quotafile (we know the transaction is already started and has
5483  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5484 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5485 				const char *data, size_t len, loff_t off)
5486 {
5487 	struct inode *inode = sb_dqopt(sb)->files[type];
5488 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5489 	int err, offset = off & (sb->s_blocksize - 1);
5490 	int retries = 0;
5491 	struct buffer_head *bh;
5492 	handle_t *handle = journal_current_handle();
5493 
5494 	if (EXT4_SB(sb)->s_journal && !handle) {
5495 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5496 			" cancelled because transaction is not started",
5497 			(unsigned long long)off, (unsigned long long)len);
5498 		return -EIO;
5499 	}
5500 	/*
5501 	 * Since we account only one data block in transaction credits,
5502 	 * then it is impossible to cross a block boundary.
5503 	 */
5504 	if (sb->s_blocksize - offset < len) {
5505 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5506 			" cancelled because not block aligned",
5507 			(unsigned long long)off, (unsigned long long)len);
5508 		return -EIO;
5509 	}
5510 
5511 	do {
5512 		bh = ext4_bread(handle, inode, blk,
5513 				EXT4_GET_BLOCKS_CREATE |
5514 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5515 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5516 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5517 	if (IS_ERR(bh))
5518 		return PTR_ERR(bh);
5519 	if (!bh)
5520 		goto out;
5521 	BUFFER_TRACE(bh, "get write access");
5522 	err = ext4_journal_get_write_access(handle, bh);
5523 	if (err) {
5524 		brelse(bh);
5525 		return err;
5526 	}
5527 	lock_buffer(bh);
5528 	memcpy(bh->b_data+offset, data, len);
5529 	flush_dcache_page(bh->b_page);
5530 	unlock_buffer(bh);
5531 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5532 	brelse(bh);
5533 out:
5534 	if (inode->i_size < off + len) {
5535 		i_size_write(inode, off + len);
5536 		EXT4_I(inode)->i_disksize = inode->i_size;
5537 		ext4_mark_inode_dirty(handle, inode);
5538 	}
5539 	return len;
5540 }
5541 
ext4_get_next_id(struct super_block * sb,struct kqid * qid)5542 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5543 {
5544 	const struct quota_format_ops	*ops;
5545 
5546 	if (!sb_has_quota_loaded(sb, qid->type))
5547 		return -ESRCH;
5548 	ops = sb_dqopt(sb)->ops[qid->type];
5549 	if (!ops || !ops->get_next_id)
5550 		return -ENOSYS;
5551 	return dquot_get_next_id(sb, qid);
5552 }
5553 #endif
5554 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5555 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5556 		       const char *dev_name, void *data)
5557 {
5558 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5559 }
5560 
5561 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)5562 static inline void register_as_ext2(void)
5563 {
5564 	int err = register_filesystem(&ext2_fs_type);
5565 	if (err)
5566 		printk(KERN_WARNING
5567 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5568 }
5569 
unregister_as_ext2(void)5570 static inline void unregister_as_ext2(void)
5571 {
5572 	unregister_filesystem(&ext2_fs_type);
5573 }
5574 
ext2_feature_set_ok(struct super_block * sb)5575 static inline int ext2_feature_set_ok(struct super_block *sb)
5576 {
5577 	if (ext4_has_unknown_ext2_incompat_features(sb))
5578 		return 0;
5579 	if (sb->s_flags & MS_RDONLY)
5580 		return 1;
5581 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5582 		return 0;
5583 	return 1;
5584 }
5585 #else
register_as_ext2(void)5586 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5587 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5588 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5589 #endif
5590 
register_as_ext3(void)5591 static inline void register_as_ext3(void)
5592 {
5593 	int err = register_filesystem(&ext3_fs_type);
5594 	if (err)
5595 		printk(KERN_WARNING
5596 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5597 }
5598 
unregister_as_ext3(void)5599 static inline void unregister_as_ext3(void)
5600 {
5601 	unregister_filesystem(&ext3_fs_type);
5602 }
5603 
ext3_feature_set_ok(struct super_block * sb)5604 static inline int ext3_feature_set_ok(struct super_block *sb)
5605 {
5606 	if (ext4_has_unknown_ext3_incompat_features(sb))
5607 		return 0;
5608 	if (!ext4_has_feature_journal(sb))
5609 		return 0;
5610 	if (sb->s_flags & MS_RDONLY)
5611 		return 1;
5612 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5613 		return 0;
5614 	return 1;
5615 }
5616 
5617 static struct file_system_type ext4_fs_type = {
5618 	.owner		= THIS_MODULE,
5619 	.name		= "ext4",
5620 	.mount		= ext4_mount,
5621 	.kill_sb	= kill_block_super,
5622 	.fs_flags	= FS_REQUIRES_DEV,
5623 };
5624 MODULE_ALIAS_FS("ext4");
5625 
5626 /* Shared across all ext4 file systems */
5627 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5628 
ext4_init_fs(void)5629 static int __init ext4_init_fs(void)
5630 {
5631 	int i, err;
5632 
5633 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5634 	ext4_li_info = NULL;
5635 	mutex_init(&ext4_li_mtx);
5636 
5637 	/* Build-time check for flags consistency */
5638 	ext4_check_flag_values();
5639 
5640 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5641 		init_waitqueue_head(&ext4__ioend_wq[i]);
5642 
5643 	err = ext4_init_es();
5644 	if (err)
5645 		return err;
5646 
5647 	err = ext4_init_pageio();
5648 	if (err)
5649 		goto out5;
5650 
5651 	err = ext4_init_system_zone();
5652 	if (err)
5653 		goto out4;
5654 
5655 	err = ext4_init_sysfs();
5656 	if (err)
5657 		goto out3;
5658 
5659 	err = ext4_init_mballoc();
5660 	if (err)
5661 		goto out2;
5662 	err = init_inodecache();
5663 	if (err)
5664 		goto out1;
5665 	register_as_ext3();
5666 	register_as_ext2();
5667 	err = register_filesystem(&ext4_fs_type);
5668 	if (err)
5669 		goto out;
5670 
5671 	return 0;
5672 out:
5673 	unregister_as_ext2();
5674 	unregister_as_ext3();
5675 	destroy_inodecache();
5676 out1:
5677 	ext4_exit_mballoc();
5678 out2:
5679 	ext4_exit_sysfs();
5680 out3:
5681 	ext4_exit_system_zone();
5682 out4:
5683 	ext4_exit_pageio();
5684 out5:
5685 	ext4_exit_es();
5686 
5687 	return err;
5688 }
5689 
ext4_exit_fs(void)5690 static void __exit ext4_exit_fs(void)
5691 {
5692 	ext4_destroy_lazyinit_thread();
5693 	unregister_as_ext2();
5694 	unregister_as_ext3();
5695 	unregister_filesystem(&ext4_fs_type);
5696 	destroy_inodecache();
5697 	ext4_exit_mballoc();
5698 	ext4_exit_sysfs();
5699 	ext4_exit_system_zone();
5700 	ext4_exit_pageio();
5701 	ext4_exit_es();
5702 }
5703 
5704 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5705 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5706 MODULE_LICENSE("GPL");
5707 module_init(ext4_init_fs)
5708 module_exit(ext4_exit_fs)
5709