1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81 static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 unsigned int journal_inum);
83
84 /*
85 * Lock ordering
86 *
87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88 * i_mmap_rwsem (inode->i_mmap_rwsem)!
89 *
90 * page fault path:
91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92 * page lock -> i_data_sem (rw)
93 *
94 * buffered write path:
95 * sb_start_write -> i_mutex -> mmap_sem
96 * sb_start_write -> i_mutex -> transaction start -> page lock ->
97 * i_data_sem (rw)
98 *
99 * truncate:
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * i_mmap_rwsem (w) -> page lock
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * transaction start -> i_data_sem (rw)
104 *
105 * direct IO:
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108 * transaction start -> i_data_sem (rw)
109 *
110 * writepages:
111 * transaction start -> page lock(s) -> i_data_sem (rw)
112 */
113
114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115 static struct file_system_type ext2_fs_type = {
116 .owner = THIS_MODULE,
117 .name = "ext2",
118 .mount = ext4_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121 };
122 MODULE_ALIAS_FS("ext2");
123 MODULE_ALIAS("ext2");
124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125 #else
126 #define IS_EXT2_SB(sb) (0)
127 #endif
128
129
130 static struct file_system_type ext3_fs_type = {
131 .owner = THIS_MODULE,
132 .name = "ext3",
133 .mount = ext4_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("ext3");
138 MODULE_ALIAS("ext3");
139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)141 static int ext4_verify_csum_type(struct super_block *sb,
142 struct ext4_super_block *es)
143 {
144 if (!ext4_has_feature_metadata_csum(sb))
145 return 1;
146
147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148 }
149
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)150 static __le32 ext4_superblock_csum(struct super_block *sb,
151 struct ext4_super_block *es)
152 {
153 struct ext4_sb_info *sbi = EXT4_SB(sb);
154 int offset = offsetof(struct ext4_super_block, s_checksum);
155 __u32 csum;
156
157 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158
159 return cpu_to_le32(csum);
160 }
161
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)162 static int ext4_superblock_csum_verify(struct super_block *sb,
163 struct ext4_super_block *es)
164 {
165 if (!ext4_has_metadata_csum(sb))
166 return 1;
167
168 return es->s_checksum == ext4_superblock_csum(sb, es);
169 }
170
ext4_superblock_csum_set(struct super_block * sb)171 void ext4_superblock_csum_set(struct super_block *sb)
172 {
173 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174
175 if (!ext4_has_metadata_csum(sb))
176 return;
177
178 es->s_checksum = ext4_superblock_csum(sb, es);
179 }
180
ext4_kvmalloc(size_t size,gfp_t flags)181 void *ext4_kvmalloc(size_t size, gfp_t flags)
182 {
183 void *ret;
184
185 ret = kmalloc(size, flags | __GFP_NOWARN);
186 if (!ret)
187 ret = __vmalloc(size, flags, PAGE_KERNEL);
188 return ret;
189 }
190
ext4_kvzalloc(size_t size,gfp_t flags)191 void *ext4_kvzalloc(size_t size, gfp_t flags)
192 {
193 void *ret;
194
195 ret = kzalloc(size, flags | __GFP_NOWARN);
196 if (!ret)
197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 return ret;
199 }
200
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 struct ext4_group_desc *bg)
203 {
204 return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207 }
208
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 struct ext4_group_desc *bg)
211 {
212 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215 }
216
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)217 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 struct ext4_group_desc *bg)
219 {
220 return le32_to_cpu(bg->bg_inode_table_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223 }
224
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)225 __u32 ext4_free_group_clusters(struct super_block *sb,
226 struct ext4_group_desc *bg)
227 {
228 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231 }
232
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)233 __u32 ext4_free_inodes_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
235 {
236 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239 }
240
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)241 __u32 ext4_used_dirs_count(struct super_block *sb,
242 struct ext4_group_desc *bg)
243 {
244 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247 }
248
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)249 __u32 ext4_itable_unused_count(struct super_block *sb,
250 struct ext4_group_desc *bg)
251 {
252 return le16_to_cpu(bg->bg_itable_unused_lo) |
253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255 }
256
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)257 void ext4_block_bitmap_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
259 {
260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263 }
264
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)265 void ext4_inode_bitmap_set(struct super_block *sb,
266 struct ext4_group_desc *bg, ext4_fsblk_t blk)
267 {
268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271 }
272
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)273 void ext4_inode_table_set(struct super_block *sb,
274 struct ext4_group_desc *bg, ext4_fsblk_t blk)
275 {
276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279 }
280
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)281 void ext4_free_group_clusters_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
283 {
284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287 }
288
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)289 void ext4_free_inodes_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
291 {
292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295 }
296
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)297 void ext4_used_dirs_set(struct super_block *sb,
298 struct ext4_group_desc *bg, __u32 count)
299 {
300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303 }
304
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)305 void ext4_itable_unused_set(struct super_block *sb,
306 struct ext4_group_desc *bg, __u32 count)
307 {
308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311 }
312
313
__save_error_info(struct super_block * sb,const char * func,unsigned int line)314 static void __save_error_info(struct super_block *sb, const char *func,
315 unsigned int line)
316 {
317 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318
319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 if (bdev_read_only(sb->s_bdev))
321 return;
322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 es->s_last_error_time = cpu_to_le32(get_seconds());
324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 es->s_last_error_line = cpu_to_le32(line);
326 if (!es->s_first_error_time) {
327 es->s_first_error_time = es->s_last_error_time;
328 strncpy(es->s_first_error_func, func,
329 sizeof(es->s_first_error_func));
330 es->s_first_error_line = cpu_to_le32(line);
331 es->s_first_error_ino = es->s_last_error_ino;
332 es->s_first_error_block = es->s_last_error_block;
333 }
334 /*
335 * Start the daily error reporting function if it hasn't been
336 * started already
337 */
338 if (!es->s_error_count)
339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 le32_add_cpu(&es->s_error_count, 1);
341 }
342
save_error_info(struct super_block * sb,const char * func,unsigned int line)343 static void save_error_info(struct super_block *sb, const char *func,
344 unsigned int line)
345 {
346 __save_error_info(sb, func, line);
347 ext4_commit_super(sb, 1);
348 }
349
350 /*
351 * The del_gendisk() function uninitializes the disk-specific data
352 * structures, including the bdi structure, without telling anyone
353 * else. Once this happens, any attempt to call mark_buffer_dirty()
354 * (for example, by ext4_commit_super), will cause a kernel OOPS.
355 * This is a kludge to prevent these oops until we can put in a proper
356 * hook in del_gendisk() to inform the VFS and file system layers.
357 */
block_device_ejected(struct super_block * sb)358 static int block_device_ejected(struct super_block *sb)
359 {
360 struct inode *bd_inode = sb->s_bdev->bd_inode;
361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362
363 return bdi->dev == NULL;
364 }
365
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367 {
368 struct super_block *sb = journal->j_private;
369 struct ext4_sb_info *sbi = EXT4_SB(sb);
370 int error = is_journal_aborted(journal);
371 struct ext4_journal_cb_entry *jce;
372
373 BUG_ON(txn->t_state == T_FINISHED);
374 spin_lock(&sbi->s_md_lock);
375 while (!list_empty(&txn->t_private_list)) {
376 jce = list_entry(txn->t_private_list.next,
377 struct ext4_journal_cb_entry, jce_list);
378 list_del_init(&jce->jce_list);
379 spin_unlock(&sbi->s_md_lock);
380 jce->jce_func(sb, jce, error);
381 spin_lock(&sbi->s_md_lock);
382 }
383 spin_unlock(&sbi->s_md_lock);
384 }
385
386 /* Deal with the reporting of failure conditions on a filesystem such as
387 * inconsistencies detected or read IO failures.
388 *
389 * On ext2, we can store the error state of the filesystem in the
390 * superblock. That is not possible on ext4, because we may have other
391 * write ordering constraints on the superblock which prevent us from
392 * writing it out straight away; and given that the journal is about to
393 * be aborted, we can't rely on the current, or future, transactions to
394 * write out the superblock safely.
395 *
396 * We'll just use the jbd2_journal_abort() error code to record an error in
397 * the journal instead. On recovery, the journal will complain about
398 * that error until we've noted it down and cleared it.
399 */
400
ext4_handle_error(struct super_block * sb)401 static void ext4_handle_error(struct super_block *sb)
402 {
403 if (sb->s_flags & MS_RDONLY)
404 return;
405
406 if (!test_opt(sb, ERRORS_CONT)) {
407 journal_t *journal = EXT4_SB(sb)->s_journal;
408
409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 if (journal)
411 jbd2_journal_abort(journal, -EIO);
412 }
413 if (test_opt(sb, ERRORS_RO)) {
414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 /*
416 * Make sure updated value of ->s_mount_flags will be visible
417 * before ->s_flags update
418 */
419 smp_wmb();
420 sb->s_flags |= MS_RDONLY;
421 }
422 if (test_opt(sb, ERRORS_PANIC)) {
423 if (EXT4_SB(sb)->s_journal &&
424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 return;
426 panic("EXT4-fs (device %s): panic forced after error\n",
427 sb->s_id);
428 }
429 }
430
431 #define ext4_error_ratelimit(sb) \
432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
433 "EXT4-fs error")
434
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)435 void __ext4_error(struct super_block *sb, const char *function,
436 unsigned int line, const char *fmt, ...)
437 {
438 struct va_format vaf;
439 va_list args;
440
441 if (ext4_error_ratelimit(sb)) {
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 printk(KERN_CRIT
446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 sb->s_id, function, line, current->comm, &vaf);
448 va_end(args);
449 }
450 save_error_info(sb, function, line);
451 ext4_handle_error(sb);
452 }
453
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)454 void __ext4_error_inode(struct inode *inode, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461
462 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 es->s_last_error_block = cpu_to_le64(block);
464 if (ext4_error_ratelimit(inode->i_sb)) {
465 va_start(args, fmt);
466 vaf.fmt = fmt;
467 vaf.va = &args;
468 if (block)
469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 "inode #%lu: block %llu: comm %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 block, current->comm, &vaf);
473 else
474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 "inode #%lu: comm %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 current->comm, &vaf);
478 va_end(args);
479 }
480 save_error_info(inode->i_sb, function, line);
481 ext4_handle_error(inode->i_sb);
482 }
483
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)484 void __ext4_error_file(struct file *file, const char *function,
485 unsigned int line, ext4_fsblk_t block,
486 const char *fmt, ...)
487 {
488 va_list args;
489 struct va_format vaf;
490 struct ext4_super_block *es;
491 struct inode *inode = file_inode(file);
492 char pathname[80], *path;
493
494 es = EXT4_SB(inode->i_sb)->s_es;
495 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 if (ext4_error_ratelimit(inode->i_sb)) {
497 path = file_path(file, pathname, sizeof(pathname));
498 if (IS_ERR(path))
499 path = "(unknown)";
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT
505 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 "block %llu: comm %s: path %s: %pV\n",
507 inode->i_sb->s_id, function, line, inode->i_ino,
508 block, current->comm, path, &vaf);
509 else
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 "comm %s: path %s: %pV\n",
513 inode->i_sb->s_id, function, line, inode->i_ino,
514 current->comm, path, &vaf);
515 va_end(args);
516 }
517 save_error_info(inode->i_sb, function, line);
518 ext4_handle_error(inode->i_sb);
519 }
520
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])521 const char *ext4_decode_error(struct super_block *sb, int errno,
522 char nbuf[16])
523 {
524 char *errstr = NULL;
525
526 switch (errno) {
527 case -EFSCORRUPTED:
528 errstr = "Corrupt filesystem";
529 break;
530 case -EFSBADCRC:
531 errstr = "Filesystem failed CRC";
532 break;
533 case -EIO:
534 errstr = "IO failure";
535 break;
536 case -ENOMEM:
537 errstr = "Out of memory";
538 break;
539 case -EROFS:
540 if (!sb || (EXT4_SB(sb)->s_journal &&
541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 errstr = "Journal has aborted";
543 else
544 errstr = "Readonly filesystem";
545 break;
546 default:
547 /* If the caller passed in an extra buffer for unknown
548 * errors, textualise them now. Else we just return
549 * NULL. */
550 if (nbuf) {
551 /* Check for truncated error codes... */
552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 errstr = nbuf;
554 }
555 break;
556 }
557
558 return errstr;
559 }
560
561 /* __ext4_std_error decodes expected errors from journaling functions
562 * automatically and invokes the appropriate error response. */
563
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)564 void __ext4_std_error(struct super_block *sb, const char *function,
565 unsigned int line, int errno)
566 {
567 char nbuf[16];
568 const char *errstr;
569
570 /* Special case: if the error is EROFS, and we're not already
571 * inside a transaction, then there's really no point in logging
572 * an error. */
573 if (errno == -EROFS && journal_current_handle() == NULL &&
574 (sb->s_flags & MS_RDONLY))
575 return;
576
577 if (ext4_error_ratelimit(sb)) {
578 errstr = ext4_decode_error(sb, errno, nbuf);
579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 sb->s_id, function, line, errstr);
581 }
582
583 save_error_info(sb, function, line);
584 ext4_handle_error(sb);
585 }
586
587 /*
588 * ext4_abort is a much stronger failure handler than ext4_error. The
589 * abort function may be used to deal with unrecoverable failures such
590 * as journal IO errors or ENOMEM at a critical moment in log management.
591 *
592 * We unconditionally force the filesystem into an ABORT|READONLY state,
593 * unless the error response on the fs has been set to panic in which
594 * case we take the easy way out and panic immediately.
595 */
596
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)597 void __ext4_abort(struct super_block *sb, const char *function,
598 unsigned int line, const char *fmt, ...)
599 {
600 struct va_format vaf;
601 va_list args;
602
603 save_error_info(sb, function, line);
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610
611 if ((sb->s_flags & MS_RDONLY) == 0) {
612 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 /*
615 * Make sure updated value of ->s_mount_flags will be visible
616 * before ->s_flags update
617 */
618 smp_wmb();
619 sb->s_flags |= MS_RDONLY;
620 if (EXT4_SB(sb)->s_journal)
621 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 save_error_info(sb, function, line);
623 }
624 if (test_opt(sb, ERRORS_PANIC)) {
625 if (EXT4_SB(sb)->s_journal &&
626 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 return;
628 panic("EXT4-fs panic from previous error\n");
629 }
630 }
631
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)632 void __ext4_msg(struct super_block *sb,
633 const char *prefix, const char *fmt, ...)
634 {
635 struct va_format vaf;
636 va_list args;
637
638 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 return;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 va_end(args);
646 }
647
648 #define ext4_warning_ratelimit(sb) \
649 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
650 "EXT4-fs warning")
651
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)652 void __ext4_warning(struct super_block *sb, const char *function,
653 unsigned int line, const char *fmt, ...)
654 {
655 struct va_format vaf;
656 va_list args;
657
658 if (!ext4_warning_ratelimit(sb))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 sb->s_id, function, line, &vaf);
666 va_end(args);
667 }
668
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)669 void __ext4_warning_inode(const struct inode *inode, const char *function,
670 unsigned int line, const char *fmt, ...)
671 {
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(inode->i_sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 function, line, inode->i_ino, current->comm, &vaf);
684 va_end(args);
685 }
686
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)687 void __ext4_grp_locked_error(const char *function, unsigned int line,
688 struct super_block *sb, ext4_group_t grp,
689 unsigned long ino, ext4_fsblk_t block,
690 const char *fmt, ...)
691 __releases(bitlock)
692 __acquires(bitlock)
693 {
694 struct va_format vaf;
695 va_list args;
696 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697
698 es->s_last_error_ino = cpu_to_le32(ino);
699 es->s_last_error_block = cpu_to_le64(block);
700 __save_error_info(sb, function, line);
701
702 if (ext4_error_ratelimit(sb)) {
703 va_start(args, fmt);
704 vaf.fmt = fmt;
705 vaf.va = &args;
706 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 sb->s_id, function, line, grp);
708 if (ino)
709 printk(KERN_CONT "inode %lu: ", ino);
710 if (block)
711 printk(KERN_CONT "block %llu:",
712 (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715 }
716
717 if (test_opt(sb, ERRORS_CONT)) {
718 ext4_commit_super(sb, 0);
719 return;
720 }
721
722 ext4_unlock_group(sb, grp);
723 ext4_commit_super(sb, 1);
724 ext4_handle_error(sb);
725 /*
726 * We only get here in the ERRORS_RO case; relocking the group
727 * may be dangerous, but nothing bad will happen since the
728 * filesystem will have already been marked read/only and the
729 * journal has been aborted. We return 1 as a hint to callers
730 * who might what to use the return value from
731 * ext4_grp_locked_error() to distinguish between the
732 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
733 * aggressively from the ext4 function in question, with a
734 * more appropriate error code.
735 */
736 ext4_lock_group(sb, grp);
737 return;
738 }
739
ext4_update_dynamic_rev(struct super_block * sb)740 void ext4_update_dynamic_rev(struct super_block *sb)
741 {
742 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
743
744 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
745 return;
746
747 ext4_warning(sb,
748 "updating to rev %d because of new feature flag, "
749 "running e2fsck is recommended",
750 EXT4_DYNAMIC_REV);
751
752 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
753 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
754 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
755 /* leave es->s_feature_*compat flags alone */
756 /* es->s_uuid will be set by e2fsck if empty */
757
758 /*
759 * The rest of the superblock fields should be zero, and if not it
760 * means they are likely already in use, so leave them alone. We
761 * can leave it up to e2fsck to clean up any inconsistencies there.
762 */
763 }
764
765 /*
766 * Open the external journal device
767 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)768 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
769 {
770 struct block_device *bdev;
771 char b[BDEVNAME_SIZE];
772
773 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
774 if (IS_ERR(bdev))
775 goto fail;
776 return bdev;
777
778 fail:
779 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
780 __bdevname(dev, b), PTR_ERR(bdev));
781 return NULL;
782 }
783
784 /*
785 * Release the journal device
786 */
ext4_blkdev_put(struct block_device * bdev)787 static void ext4_blkdev_put(struct block_device *bdev)
788 {
789 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
790 }
791
ext4_blkdev_remove(struct ext4_sb_info * sbi)792 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
793 {
794 struct block_device *bdev;
795 bdev = sbi->journal_bdev;
796 if (bdev) {
797 ext4_blkdev_put(bdev);
798 sbi->journal_bdev = NULL;
799 }
800 }
801
orphan_list_entry(struct list_head * l)802 static inline struct inode *orphan_list_entry(struct list_head *l)
803 {
804 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
805 }
806
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)807 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
808 {
809 struct list_head *l;
810
811 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
812 le32_to_cpu(sbi->s_es->s_last_orphan));
813
814 printk(KERN_ERR "sb_info orphan list:\n");
815 list_for_each(l, &sbi->s_orphan) {
816 struct inode *inode = orphan_list_entry(l);
817 printk(KERN_ERR " "
818 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
819 inode->i_sb->s_id, inode->i_ino, inode,
820 inode->i_mode, inode->i_nlink,
821 NEXT_ORPHAN(inode));
822 }
823 }
824
ext4_put_super(struct super_block * sb)825 static void ext4_put_super(struct super_block *sb)
826 {
827 struct ext4_sb_info *sbi = EXT4_SB(sb);
828 struct ext4_super_block *es = sbi->s_es;
829 int aborted = 0;
830 int i, err;
831
832 ext4_unregister_li_request(sb);
833 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
834
835 flush_workqueue(sbi->rsv_conversion_wq);
836 destroy_workqueue(sbi->rsv_conversion_wq);
837
838 if (sbi->s_journal) {
839 aborted = is_journal_aborted(sbi->s_journal);
840 err = jbd2_journal_destroy(sbi->s_journal);
841 sbi->s_journal = NULL;
842 if ((err < 0) && !aborted)
843 ext4_abort(sb, "Couldn't clean up the journal");
844 }
845
846 ext4_unregister_sysfs(sb);
847 ext4_es_unregister_shrinker(sbi);
848 del_timer_sync(&sbi->s_err_report);
849 ext4_release_system_zone(sb);
850 ext4_mb_release(sb);
851 ext4_ext_release(sb);
852
853 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
854 ext4_clear_feature_journal_needs_recovery(sb);
855 es->s_state = cpu_to_le16(sbi->s_mount_state);
856 }
857 if (!(sb->s_flags & MS_RDONLY))
858 ext4_commit_super(sb, 1);
859
860 for (i = 0; i < sbi->s_gdb_count; i++)
861 brelse(sbi->s_group_desc[i]);
862 kvfree(sbi->s_group_desc);
863 kvfree(sbi->s_flex_groups);
864 percpu_counter_destroy(&sbi->s_freeclusters_counter);
865 percpu_counter_destroy(&sbi->s_freeinodes_counter);
866 percpu_counter_destroy(&sbi->s_dirs_counter);
867 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
868 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
869 brelse(sbi->s_sbh);
870 #ifdef CONFIG_QUOTA
871 for (i = 0; i < EXT4_MAXQUOTAS; i++)
872 kfree(sbi->s_qf_names[i]);
873 #endif
874
875 /* Debugging code just in case the in-memory inode orphan list
876 * isn't empty. The on-disk one can be non-empty if we've
877 * detected an error and taken the fs readonly, but the
878 * in-memory list had better be clean by this point. */
879 if (!list_empty(&sbi->s_orphan))
880 dump_orphan_list(sb, sbi);
881 J_ASSERT(list_empty(&sbi->s_orphan));
882
883 sync_blockdev(sb->s_bdev);
884 invalidate_bdev(sb->s_bdev);
885 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
886 /*
887 * Invalidate the journal device's buffers. We don't want them
888 * floating about in memory - the physical journal device may
889 * hotswapped, and it breaks the `ro-after' testing code.
890 */
891 sync_blockdev(sbi->journal_bdev);
892 invalidate_bdev(sbi->journal_bdev);
893 ext4_blkdev_remove(sbi);
894 }
895 if (sbi->s_mb_cache) {
896 ext4_xattr_destroy_cache(sbi->s_mb_cache);
897 sbi->s_mb_cache = NULL;
898 }
899 if (sbi->s_mmp_tsk)
900 kthread_stop(sbi->s_mmp_tsk);
901 sb->s_fs_info = NULL;
902 /*
903 * Now that we are completely done shutting down the
904 * superblock, we need to actually destroy the kobject.
905 */
906 kobject_put(&sbi->s_kobj);
907 wait_for_completion(&sbi->s_kobj_unregister);
908 if (sbi->s_chksum_driver)
909 crypto_free_shash(sbi->s_chksum_driver);
910 kfree(sbi->s_blockgroup_lock);
911 kfree(sbi);
912 }
913
914 static struct kmem_cache *ext4_inode_cachep;
915
916 /*
917 * Called inside transaction, so use GFP_NOFS
918 */
ext4_alloc_inode(struct super_block * sb)919 static struct inode *ext4_alloc_inode(struct super_block *sb)
920 {
921 struct ext4_inode_info *ei;
922
923 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
924 if (!ei)
925 return NULL;
926
927 ei->vfs_inode.i_version = 1;
928 spin_lock_init(&ei->i_raw_lock);
929 INIT_LIST_HEAD(&ei->i_prealloc_list);
930 spin_lock_init(&ei->i_prealloc_lock);
931 ext4_es_init_tree(&ei->i_es_tree);
932 rwlock_init(&ei->i_es_lock);
933 INIT_LIST_HEAD(&ei->i_es_list);
934 ei->i_es_all_nr = 0;
935 ei->i_es_shk_nr = 0;
936 ei->i_es_shrink_lblk = 0;
937 ei->i_reserved_data_blocks = 0;
938 ei->i_reserved_meta_blocks = 0;
939 ei->i_allocated_meta_blocks = 0;
940 ei->i_da_metadata_calc_len = 0;
941 ei->i_da_metadata_calc_last_lblock = 0;
942 spin_lock_init(&(ei->i_block_reservation_lock));
943 #ifdef CONFIG_QUOTA
944 ei->i_reserved_quota = 0;
945 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
946 #endif
947 ei->jinode = NULL;
948 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
949 spin_lock_init(&ei->i_completed_io_lock);
950 ei->i_sync_tid = 0;
951 ei->i_datasync_tid = 0;
952 atomic_set(&ei->i_unwritten, 0);
953 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
954 return &ei->vfs_inode;
955 }
956
ext4_drop_inode(struct inode * inode)957 static int ext4_drop_inode(struct inode *inode)
958 {
959 int drop = generic_drop_inode(inode);
960
961 trace_ext4_drop_inode(inode, drop);
962 return drop;
963 }
964
ext4_i_callback(struct rcu_head * head)965 static void ext4_i_callback(struct rcu_head *head)
966 {
967 struct inode *inode = container_of(head, struct inode, i_rcu);
968 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
969 }
970
ext4_destroy_inode(struct inode * inode)971 static void ext4_destroy_inode(struct inode *inode)
972 {
973 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
974 ext4_msg(inode->i_sb, KERN_ERR,
975 "Inode %lu (%p): orphan list check failed!",
976 inode->i_ino, EXT4_I(inode));
977 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
978 EXT4_I(inode), sizeof(struct ext4_inode_info),
979 true);
980 dump_stack();
981 }
982 call_rcu(&inode->i_rcu, ext4_i_callback);
983 }
984
init_once(void * foo)985 static void init_once(void *foo)
986 {
987 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
988
989 INIT_LIST_HEAD(&ei->i_orphan);
990 init_rwsem(&ei->xattr_sem);
991 init_rwsem(&ei->i_data_sem);
992 init_rwsem(&ei->i_mmap_sem);
993 inode_init_once(&ei->vfs_inode);
994 }
995
init_inodecache(void)996 static int __init init_inodecache(void)
997 {
998 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
999 sizeof(struct ext4_inode_info),
1000 0, (SLAB_RECLAIM_ACCOUNT|
1001 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1002 init_once);
1003 if (ext4_inode_cachep == NULL)
1004 return -ENOMEM;
1005 return 0;
1006 }
1007
destroy_inodecache(void)1008 static void destroy_inodecache(void)
1009 {
1010 /*
1011 * Make sure all delayed rcu free inodes are flushed before we
1012 * destroy cache.
1013 */
1014 rcu_barrier();
1015 kmem_cache_destroy(ext4_inode_cachep);
1016 }
1017
ext4_clear_inode(struct inode * inode)1018 void ext4_clear_inode(struct inode *inode)
1019 {
1020 invalidate_inode_buffers(inode);
1021 clear_inode(inode);
1022 dquot_drop(inode);
1023 ext4_discard_preallocations(inode);
1024 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1025 if (EXT4_I(inode)->jinode) {
1026 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1027 EXT4_I(inode)->jinode);
1028 jbd2_free_inode(EXT4_I(inode)->jinode);
1029 EXT4_I(inode)->jinode = NULL;
1030 }
1031 fscrypt_put_encryption_info(inode);
1032 }
1033
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1034 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1035 u64 ino, u32 generation)
1036 {
1037 struct inode *inode;
1038
1039 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1040 return ERR_PTR(-ESTALE);
1041 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1042 return ERR_PTR(-ESTALE);
1043
1044 /* iget isn't really right if the inode is currently unallocated!!
1045 *
1046 * ext4_read_inode will return a bad_inode if the inode had been
1047 * deleted, so we should be safe.
1048 *
1049 * Currently we don't know the generation for parent directory, so
1050 * a generation of 0 means "accept any"
1051 */
1052 inode = ext4_iget_normal(sb, ino);
1053 if (IS_ERR(inode))
1054 return ERR_CAST(inode);
1055 if (generation && inode->i_generation != generation) {
1056 iput(inode);
1057 return ERR_PTR(-ESTALE);
1058 }
1059
1060 return inode;
1061 }
1062
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1063 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1064 int fh_len, int fh_type)
1065 {
1066 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1067 ext4_nfs_get_inode);
1068 }
1069
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1070 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1071 int fh_len, int fh_type)
1072 {
1073 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1074 ext4_nfs_get_inode);
1075 }
1076
1077 /*
1078 * Try to release metadata pages (indirect blocks, directories) which are
1079 * mapped via the block device. Since these pages could have journal heads
1080 * which would prevent try_to_free_buffers() from freeing them, we must use
1081 * jbd2 layer's try_to_free_buffers() function to release them.
1082 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1083 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1084 gfp_t wait)
1085 {
1086 journal_t *journal = EXT4_SB(sb)->s_journal;
1087
1088 WARN_ON(PageChecked(page));
1089 if (!page_has_buffers(page))
1090 return 0;
1091 if (journal)
1092 return jbd2_journal_try_to_free_buffers(journal, page,
1093 wait & ~__GFP_DIRECT_RECLAIM);
1094 return try_to_free_buffers(page);
1095 }
1096
1097 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1098 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1099 {
1100 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1101 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1102 }
1103
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1104 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1105 void *fs_data)
1106 {
1107 handle_t *handle = fs_data;
1108 int res, res2, retries = 0;
1109
1110 res = ext4_convert_inline_data(inode);
1111 if (res)
1112 return res;
1113
1114 /*
1115 * If a journal handle was specified, then the encryption context is
1116 * being set on a new inode via inheritance and is part of a larger
1117 * transaction to create the inode. Otherwise the encryption context is
1118 * being set on an existing inode in its own transaction. Only in the
1119 * latter case should the "retry on ENOSPC" logic be used.
1120 */
1121
1122 if (handle) {
1123 res = ext4_xattr_set_handle(handle, inode,
1124 EXT4_XATTR_INDEX_ENCRYPTION,
1125 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1126 ctx, len, 0);
1127 if (!res) {
1128 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1129 ext4_clear_inode_state(inode,
1130 EXT4_STATE_MAY_INLINE_DATA);
1131 /*
1132 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1133 * S_DAX may be disabled
1134 */
1135 ext4_set_inode_flags(inode);
1136 }
1137 return res;
1138 }
1139
1140 res = dquot_initialize(inode);
1141 if (res)
1142 return res;
1143 retry:
1144 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1145 ext4_jbd2_credits_xattr(inode));
1146 if (IS_ERR(handle))
1147 return PTR_ERR(handle);
1148
1149 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1150 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1151 ctx, len, 0);
1152 if (!res) {
1153 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1154 /*
1155 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1156 * S_DAX may be disabled
1157 */
1158 ext4_set_inode_flags(inode);
1159 res = ext4_mark_inode_dirty(handle, inode);
1160 if (res)
1161 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1162 }
1163 res2 = ext4_journal_stop(handle);
1164
1165 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1166 goto retry;
1167 if (!res)
1168 res = res2;
1169 return res;
1170 }
1171
ext4_dummy_context(struct inode * inode)1172 static bool ext4_dummy_context(struct inode *inode)
1173 {
1174 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1175 }
1176
ext4_max_namelen(struct inode * inode)1177 static unsigned ext4_max_namelen(struct inode *inode)
1178 {
1179 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1180 EXT4_NAME_LEN;
1181 }
1182
1183 static const struct fscrypt_operations ext4_cryptops = {
1184 .key_prefix = "ext4:",
1185 .get_context = ext4_get_context,
1186 .set_context = ext4_set_context,
1187 .dummy_context = ext4_dummy_context,
1188 .empty_dir = ext4_empty_dir,
1189 .max_namelen = ext4_max_namelen,
1190 };
1191 #endif
1192
1193 #ifdef CONFIG_QUOTA
1194 static char *quotatypes[] = INITQFNAMES;
1195 #define QTYPE2NAME(t) (quotatypes[t])
1196
1197 static int ext4_write_dquot(struct dquot *dquot);
1198 static int ext4_acquire_dquot(struct dquot *dquot);
1199 static int ext4_release_dquot(struct dquot *dquot);
1200 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1201 static int ext4_write_info(struct super_block *sb, int type);
1202 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1203 struct path *path);
1204 static int ext4_quota_off(struct super_block *sb, int type);
1205 static int ext4_quota_on_mount(struct super_block *sb, int type);
1206 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1207 size_t len, loff_t off);
1208 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1209 const char *data, size_t len, loff_t off);
1210 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1211 unsigned int flags);
1212 static int ext4_enable_quotas(struct super_block *sb);
1213 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1214
ext4_get_dquots(struct inode * inode)1215 static struct dquot **ext4_get_dquots(struct inode *inode)
1216 {
1217 return EXT4_I(inode)->i_dquot;
1218 }
1219
1220 static const struct dquot_operations ext4_quota_operations = {
1221 .get_reserved_space = ext4_get_reserved_space,
1222 .write_dquot = ext4_write_dquot,
1223 .acquire_dquot = ext4_acquire_dquot,
1224 .release_dquot = ext4_release_dquot,
1225 .mark_dirty = ext4_mark_dquot_dirty,
1226 .write_info = ext4_write_info,
1227 .alloc_dquot = dquot_alloc,
1228 .destroy_dquot = dquot_destroy,
1229 .get_projid = ext4_get_projid,
1230 .get_next_id = ext4_get_next_id,
1231 };
1232
1233 static const struct quotactl_ops ext4_qctl_operations = {
1234 .quota_on = ext4_quota_on,
1235 .quota_off = ext4_quota_off,
1236 .quota_sync = dquot_quota_sync,
1237 .get_state = dquot_get_state,
1238 .set_info = dquot_set_dqinfo,
1239 .get_dqblk = dquot_get_dqblk,
1240 .set_dqblk = dquot_set_dqblk,
1241 .get_nextdqblk = dquot_get_next_dqblk,
1242 };
1243 #endif
1244
1245 static const struct super_operations ext4_sops = {
1246 .alloc_inode = ext4_alloc_inode,
1247 .destroy_inode = ext4_destroy_inode,
1248 .write_inode = ext4_write_inode,
1249 .dirty_inode = ext4_dirty_inode,
1250 .drop_inode = ext4_drop_inode,
1251 .evict_inode = ext4_evict_inode,
1252 .put_super = ext4_put_super,
1253 .sync_fs = ext4_sync_fs,
1254 .freeze_fs = ext4_freeze,
1255 .unfreeze_fs = ext4_unfreeze,
1256 .statfs = ext4_statfs,
1257 .remount_fs = ext4_remount,
1258 .show_options = ext4_show_options,
1259 #ifdef CONFIG_QUOTA
1260 .quota_read = ext4_quota_read,
1261 .quota_write = ext4_quota_write,
1262 .get_dquots = ext4_get_dquots,
1263 #endif
1264 .bdev_try_to_free_page = bdev_try_to_free_page,
1265 };
1266
1267 static const struct export_operations ext4_export_ops = {
1268 .fh_to_dentry = ext4_fh_to_dentry,
1269 .fh_to_parent = ext4_fh_to_parent,
1270 .get_parent = ext4_get_parent,
1271 };
1272
1273 enum {
1274 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1275 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1276 Opt_nouid32, Opt_debug, Opt_removed,
1277 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1278 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1279 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1280 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1281 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1282 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1283 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1284 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1285 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1286 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1287 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1288 Opt_lazytime, Opt_nolazytime,
1289 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1290 Opt_inode_readahead_blks, Opt_journal_ioprio,
1291 Opt_dioread_nolock, Opt_dioread_lock,
1292 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1293 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1294 };
1295
1296 static const match_table_t tokens = {
1297 {Opt_bsd_df, "bsddf"},
1298 {Opt_minix_df, "minixdf"},
1299 {Opt_grpid, "grpid"},
1300 {Opt_grpid, "bsdgroups"},
1301 {Opt_nogrpid, "nogrpid"},
1302 {Opt_nogrpid, "sysvgroups"},
1303 {Opt_resgid, "resgid=%u"},
1304 {Opt_resuid, "resuid=%u"},
1305 {Opt_sb, "sb=%u"},
1306 {Opt_err_cont, "errors=continue"},
1307 {Opt_err_panic, "errors=panic"},
1308 {Opt_err_ro, "errors=remount-ro"},
1309 {Opt_nouid32, "nouid32"},
1310 {Opt_debug, "debug"},
1311 {Opt_removed, "oldalloc"},
1312 {Opt_removed, "orlov"},
1313 {Opt_user_xattr, "user_xattr"},
1314 {Opt_nouser_xattr, "nouser_xattr"},
1315 {Opt_acl, "acl"},
1316 {Opt_noacl, "noacl"},
1317 {Opt_noload, "norecovery"},
1318 {Opt_noload, "noload"},
1319 {Opt_removed, "nobh"},
1320 {Opt_removed, "bh"},
1321 {Opt_commit, "commit=%u"},
1322 {Opt_min_batch_time, "min_batch_time=%u"},
1323 {Opt_max_batch_time, "max_batch_time=%u"},
1324 {Opt_journal_dev, "journal_dev=%u"},
1325 {Opt_journal_path, "journal_path=%s"},
1326 {Opt_journal_checksum, "journal_checksum"},
1327 {Opt_nojournal_checksum, "nojournal_checksum"},
1328 {Opt_journal_async_commit, "journal_async_commit"},
1329 {Opt_abort, "abort"},
1330 {Opt_data_journal, "data=journal"},
1331 {Opt_data_ordered, "data=ordered"},
1332 {Opt_data_writeback, "data=writeback"},
1333 {Opt_data_err_abort, "data_err=abort"},
1334 {Opt_data_err_ignore, "data_err=ignore"},
1335 {Opt_offusrjquota, "usrjquota="},
1336 {Opt_usrjquota, "usrjquota=%s"},
1337 {Opt_offgrpjquota, "grpjquota="},
1338 {Opt_grpjquota, "grpjquota=%s"},
1339 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1340 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1341 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1342 {Opt_grpquota, "grpquota"},
1343 {Opt_noquota, "noquota"},
1344 {Opt_quota, "quota"},
1345 {Opt_usrquota, "usrquota"},
1346 {Opt_prjquota, "prjquota"},
1347 {Opt_barrier, "barrier=%u"},
1348 {Opt_barrier, "barrier"},
1349 {Opt_nobarrier, "nobarrier"},
1350 {Opt_i_version, "i_version"},
1351 {Opt_dax, "dax"},
1352 {Opt_stripe, "stripe=%u"},
1353 {Opt_delalloc, "delalloc"},
1354 {Opt_lazytime, "lazytime"},
1355 {Opt_nolazytime, "nolazytime"},
1356 {Opt_nodelalloc, "nodelalloc"},
1357 {Opt_removed, "mblk_io_submit"},
1358 {Opt_removed, "nomblk_io_submit"},
1359 {Opt_block_validity, "block_validity"},
1360 {Opt_noblock_validity, "noblock_validity"},
1361 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1362 {Opt_journal_ioprio, "journal_ioprio=%u"},
1363 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1364 {Opt_auto_da_alloc, "auto_da_alloc"},
1365 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1366 {Opt_dioread_nolock, "dioread_nolock"},
1367 {Opt_dioread_lock, "dioread_lock"},
1368 {Opt_discard, "discard"},
1369 {Opt_nodiscard, "nodiscard"},
1370 {Opt_init_itable, "init_itable=%u"},
1371 {Opt_init_itable, "init_itable"},
1372 {Opt_noinit_itable, "noinit_itable"},
1373 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1374 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1375 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1376 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1377 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1378 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1379 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1380 {Opt_err, NULL},
1381 };
1382
get_sb_block(void ** data)1383 static ext4_fsblk_t get_sb_block(void **data)
1384 {
1385 ext4_fsblk_t sb_block;
1386 char *options = (char *) *data;
1387
1388 if (!options || strncmp(options, "sb=", 3) != 0)
1389 return 1; /* Default location */
1390
1391 options += 3;
1392 /* TODO: use simple_strtoll with >32bit ext4 */
1393 sb_block = simple_strtoul(options, &options, 0);
1394 if (*options && *options != ',') {
1395 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1396 (char *) *data);
1397 return 1;
1398 }
1399 if (*options == ',')
1400 options++;
1401 *data = (void *) options;
1402
1403 return sb_block;
1404 }
1405
1406 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1407 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1408 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1409
1410 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1411 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1412 {
1413 struct ext4_sb_info *sbi = EXT4_SB(sb);
1414 char *qname;
1415 int ret = -1;
1416
1417 if (sb_any_quota_loaded(sb) &&
1418 !sbi->s_qf_names[qtype]) {
1419 ext4_msg(sb, KERN_ERR,
1420 "Cannot change journaled "
1421 "quota options when quota turned on");
1422 return -1;
1423 }
1424 if (ext4_has_feature_quota(sb)) {
1425 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1426 "ignored when QUOTA feature is enabled");
1427 return 1;
1428 }
1429 qname = match_strdup(args);
1430 if (!qname) {
1431 ext4_msg(sb, KERN_ERR,
1432 "Not enough memory for storing quotafile name");
1433 return -1;
1434 }
1435 if (sbi->s_qf_names[qtype]) {
1436 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1437 ret = 1;
1438 else
1439 ext4_msg(sb, KERN_ERR,
1440 "%s quota file already specified",
1441 QTYPE2NAME(qtype));
1442 goto errout;
1443 }
1444 if (strchr(qname, '/')) {
1445 ext4_msg(sb, KERN_ERR,
1446 "quotafile must be on filesystem root");
1447 goto errout;
1448 }
1449 sbi->s_qf_names[qtype] = qname;
1450 set_opt(sb, QUOTA);
1451 return 1;
1452 errout:
1453 kfree(qname);
1454 return ret;
1455 }
1456
clear_qf_name(struct super_block * sb,int qtype)1457 static int clear_qf_name(struct super_block *sb, int qtype)
1458 {
1459
1460 struct ext4_sb_info *sbi = EXT4_SB(sb);
1461
1462 if (sb_any_quota_loaded(sb) &&
1463 sbi->s_qf_names[qtype]) {
1464 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1465 " when quota turned on");
1466 return -1;
1467 }
1468 kfree(sbi->s_qf_names[qtype]);
1469 sbi->s_qf_names[qtype] = NULL;
1470 return 1;
1471 }
1472 #endif
1473
1474 #define MOPT_SET 0x0001
1475 #define MOPT_CLEAR 0x0002
1476 #define MOPT_NOSUPPORT 0x0004
1477 #define MOPT_EXPLICIT 0x0008
1478 #define MOPT_CLEAR_ERR 0x0010
1479 #define MOPT_GTE0 0x0020
1480 #ifdef CONFIG_QUOTA
1481 #define MOPT_Q 0
1482 #define MOPT_QFMT 0x0040
1483 #else
1484 #define MOPT_Q MOPT_NOSUPPORT
1485 #define MOPT_QFMT MOPT_NOSUPPORT
1486 #endif
1487 #define MOPT_DATAJ 0x0080
1488 #define MOPT_NO_EXT2 0x0100
1489 #define MOPT_NO_EXT3 0x0200
1490 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1491 #define MOPT_STRING 0x0400
1492
1493 static const struct mount_opts {
1494 int token;
1495 int mount_opt;
1496 int flags;
1497 } ext4_mount_opts[] = {
1498 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1499 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1500 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1501 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1502 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1503 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1504 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1505 MOPT_EXT4_ONLY | MOPT_SET},
1506 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1507 MOPT_EXT4_ONLY | MOPT_CLEAR},
1508 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1509 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1510 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1511 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1512 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1513 MOPT_EXT4_ONLY | MOPT_CLEAR},
1514 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1515 MOPT_EXT4_ONLY | MOPT_CLEAR},
1516 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1517 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1518 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1519 EXT4_MOUNT_JOURNAL_CHECKSUM),
1520 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1521 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1522 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1523 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1524 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1525 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1526 MOPT_NO_EXT2},
1527 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1528 MOPT_NO_EXT2},
1529 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1530 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1531 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1532 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1533 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1534 {Opt_commit, 0, MOPT_GTE0},
1535 {Opt_max_batch_time, 0, MOPT_GTE0},
1536 {Opt_min_batch_time, 0, MOPT_GTE0},
1537 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1538 {Opt_init_itable, 0, MOPT_GTE0},
1539 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1540 {Opt_stripe, 0, MOPT_GTE0},
1541 {Opt_resuid, 0, MOPT_GTE0},
1542 {Opt_resgid, 0, MOPT_GTE0},
1543 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1544 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1545 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1546 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1547 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1548 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1549 MOPT_NO_EXT2 | MOPT_DATAJ},
1550 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1551 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1552 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1553 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1554 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1555 #else
1556 {Opt_acl, 0, MOPT_NOSUPPORT},
1557 {Opt_noacl, 0, MOPT_NOSUPPORT},
1558 #endif
1559 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1560 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1561 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1562 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1563 MOPT_SET | MOPT_Q},
1564 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1565 MOPT_SET | MOPT_Q},
1566 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1567 MOPT_SET | MOPT_Q},
1568 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1569 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1570 MOPT_CLEAR | MOPT_Q},
1571 {Opt_usrjquota, 0, MOPT_Q},
1572 {Opt_grpjquota, 0, MOPT_Q},
1573 {Opt_offusrjquota, 0, MOPT_Q},
1574 {Opt_offgrpjquota, 0, MOPT_Q},
1575 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1576 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1577 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1578 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1579 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1580 {Opt_err, 0, 0}
1581 };
1582
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1583 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1584 substring_t *args, unsigned long *journal_devnum,
1585 unsigned int *journal_ioprio, int is_remount)
1586 {
1587 struct ext4_sb_info *sbi = EXT4_SB(sb);
1588 const struct mount_opts *m;
1589 kuid_t uid;
1590 kgid_t gid;
1591 int arg = 0;
1592
1593 #ifdef CONFIG_QUOTA
1594 if (token == Opt_usrjquota)
1595 return set_qf_name(sb, USRQUOTA, &args[0]);
1596 else if (token == Opt_grpjquota)
1597 return set_qf_name(sb, GRPQUOTA, &args[0]);
1598 else if (token == Opt_offusrjquota)
1599 return clear_qf_name(sb, USRQUOTA);
1600 else if (token == Opt_offgrpjquota)
1601 return clear_qf_name(sb, GRPQUOTA);
1602 #endif
1603 switch (token) {
1604 case Opt_noacl:
1605 case Opt_nouser_xattr:
1606 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1607 break;
1608 case Opt_sb:
1609 return 1; /* handled by get_sb_block() */
1610 case Opt_removed:
1611 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1612 return 1;
1613 case Opt_abort:
1614 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1615 return 1;
1616 case Opt_i_version:
1617 sb->s_flags |= MS_I_VERSION;
1618 return 1;
1619 case Opt_lazytime:
1620 sb->s_flags |= MS_LAZYTIME;
1621 return 1;
1622 case Opt_nolazytime:
1623 sb->s_flags &= ~MS_LAZYTIME;
1624 return 1;
1625 }
1626
1627 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1628 if (token == m->token)
1629 break;
1630
1631 if (m->token == Opt_err) {
1632 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1633 "or missing value", opt);
1634 return -1;
1635 }
1636
1637 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1638 ext4_msg(sb, KERN_ERR,
1639 "Mount option \"%s\" incompatible with ext2", opt);
1640 return -1;
1641 }
1642 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1643 ext4_msg(sb, KERN_ERR,
1644 "Mount option \"%s\" incompatible with ext3", opt);
1645 return -1;
1646 }
1647
1648 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1649 return -1;
1650 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1651 return -1;
1652 if (m->flags & MOPT_EXPLICIT) {
1653 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1654 set_opt2(sb, EXPLICIT_DELALLOC);
1655 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1656 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1657 } else
1658 return -1;
1659 }
1660 if (m->flags & MOPT_CLEAR_ERR)
1661 clear_opt(sb, ERRORS_MASK);
1662 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1663 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1664 "options when quota turned on");
1665 return -1;
1666 }
1667
1668 if (m->flags & MOPT_NOSUPPORT) {
1669 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1670 } else if (token == Opt_commit) {
1671 if (arg == 0)
1672 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1673 sbi->s_commit_interval = HZ * arg;
1674 } else if (token == Opt_max_batch_time) {
1675 sbi->s_max_batch_time = arg;
1676 } else if (token == Opt_min_batch_time) {
1677 sbi->s_min_batch_time = arg;
1678 } else if (token == Opt_inode_readahead_blks) {
1679 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1680 ext4_msg(sb, KERN_ERR,
1681 "EXT4-fs: inode_readahead_blks must be "
1682 "0 or a power of 2 smaller than 2^31");
1683 return -1;
1684 }
1685 sbi->s_inode_readahead_blks = arg;
1686 } else if (token == Opt_init_itable) {
1687 set_opt(sb, INIT_INODE_TABLE);
1688 if (!args->from)
1689 arg = EXT4_DEF_LI_WAIT_MULT;
1690 sbi->s_li_wait_mult = arg;
1691 } else if (token == Opt_max_dir_size_kb) {
1692 sbi->s_max_dir_size_kb = arg;
1693 } else if (token == Opt_stripe) {
1694 sbi->s_stripe = arg;
1695 } else if (token == Opt_resuid) {
1696 uid = make_kuid(current_user_ns(), arg);
1697 if (!uid_valid(uid)) {
1698 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1699 return -1;
1700 }
1701 sbi->s_resuid = uid;
1702 } else if (token == Opt_resgid) {
1703 gid = make_kgid(current_user_ns(), arg);
1704 if (!gid_valid(gid)) {
1705 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1706 return -1;
1707 }
1708 sbi->s_resgid = gid;
1709 } else if (token == Opt_journal_dev) {
1710 if (is_remount) {
1711 ext4_msg(sb, KERN_ERR,
1712 "Cannot specify journal on remount");
1713 return -1;
1714 }
1715 *journal_devnum = arg;
1716 } else if (token == Opt_journal_path) {
1717 char *journal_path;
1718 struct inode *journal_inode;
1719 struct path path;
1720 int error;
1721
1722 if (is_remount) {
1723 ext4_msg(sb, KERN_ERR,
1724 "Cannot specify journal on remount");
1725 return -1;
1726 }
1727 journal_path = match_strdup(&args[0]);
1728 if (!journal_path) {
1729 ext4_msg(sb, KERN_ERR, "error: could not dup "
1730 "journal device string");
1731 return -1;
1732 }
1733
1734 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1735 if (error) {
1736 ext4_msg(sb, KERN_ERR, "error: could not find "
1737 "journal device path: error %d", error);
1738 kfree(journal_path);
1739 return -1;
1740 }
1741
1742 journal_inode = d_inode(path.dentry);
1743 if (!S_ISBLK(journal_inode->i_mode)) {
1744 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1745 "is not a block device", journal_path);
1746 path_put(&path);
1747 kfree(journal_path);
1748 return -1;
1749 }
1750
1751 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1752 path_put(&path);
1753 kfree(journal_path);
1754 } else if (token == Opt_journal_ioprio) {
1755 if (arg > 7) {
1756 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1757 " (must be 0-7)");
1758 return -1;
1759 }
1760 *journal_ioprio =
1761 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1762 } else if (token == Opt_test_dummy_encryption) {
1763 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1764 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1765 ext4_msg(sb, KERN_WARNING,
1766 "Test dummy encryption mode enabled");
1767 #else
1768 ext4_msg(sb, KERN_WARNING,
1769 "Test dummy encryption mount option ignored");
1770 #endif
1771 } else if (m->flags & MOPT_DATAJ) {
1772 if (is_remount) {
1773 if (!sbi->s_journal)
1774 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1775 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1776 ext4_msg(sb, KERN_ERR,
1777 "Cannot change data mode on remount");
1778 return -1;
1779 }
1780 } else {
1781 clear_opt(sb, DATA_FLAGS);
1782 sbi->s_mount_opt |= m->mount_opt;
1783 }
1784 #ifdef CONFIG_QUOTA
1785 } else if (m->flags & MOPT_QFMT) {
1786 if (sb_any_quota_loaded(sb) &&
1787 sbi->s_jquota_fmt != m->mount_opt) {
1788 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1789 "quota options when quota turned on");
1790 return -1;
1791 }
1792 if (ext4_has_feature_quota(sb)) {
1793 ext4_msg(sb, KERN_INFO,
1794 "Quota format mount options ignored "
1795 "when QUOTA feature is enabled");
1796 return 1;
1797 }
1798 sbi->s_jquota_fmt = m->mount_opt;
1799 #endif
1800 } else if (token == Opt_dax) {
1801 #ifdef CONFIG_FS_DAX
1802 ext4_msg(sb, KERN_WARNING,
1803 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1804 sbi->s_mount_opt |= m->mount_opt;
1805 #else
1806 ext4_msg(sb, KERN_INFO, "dax option not supported");
1807 return -1;
1808 #endif
1809 } else if (token == Opt_data_err_abort) {
1810 sbi->s_mount_opt |= m->mount_opt;
1811 } else if (token == Opt_data_err_ignore) {
1812 sbi->s_mount_opt &= ~m->mount_opt;
1813 } else {
1814 if (!args->from)
1815 arg = 1;
1816 if (m->flags & MOPT_CLEAR)
1817 arg = !arg;
1818 else if (unlikely(!(m->flags & MOPT_SET))) {
1819 ext4_msg(sb, KERN_WARNING,
1820 "buggy handling of option %s", opt);
1821 WARN_ON(1);
1822 return -1;
1823 }
1824 if (arg != 0)
1825 sbi->s_mount_opt |= m->mount_opt;
1826 else
1827 sbi->s_mount_opt &= ~m->mount_opt;
1828 }
1829 return 1;
1830 }
1831
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1832 static int parse_options(char *options, struct super_block *sb,
1833 unsigned long *journal_devnum,
1834 unsigned int *journal_ioprio,
1835 int is_remount)
1836 {
1837 struct ext4_sb_info *sbi = EXT4_SB(sb);
1838 char *p;
1839 substring_t args[MAX_OPT_ARGS];
1840 int token;
1841
1842 if (!options)
1843 return 1;
1844
1845 while ((p = strsep(&options, ",")) != NULL) {
1846 if (!*p)
1847 continue;
1848 /*
1849 * Initialize args struct so we know whether arg was
1850 * found; some options take optional arguments.
1851 */
1852 args[0].to = args[0].from = NULL;
1853 token = match_token(p, tokens, args);
1854 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1855 journal_ioprio, is_remount) < 0)
1856 return 0;
1857 }
1858 #ifdef CONFIG_QUOTA
1859 /*
1860 * We do the test below only for project quotas. 'usrquota' and
1861 * 'grpquota' mount options are allowed even without quota feature
1862 * to support legacy quotas in quota files.
1863 */
1864 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1865 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1866 "Cannot enable project quota enforcement.");
1867 return 0;
1868 }
1869 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1870 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1871 clear_opt(sb, USRQUOTA);
1872
1873 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1874 clear_opt(sb, GRPQUOTA);
1875
1876 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1877 ext4_msg(sb, KERN_ERR, "old and new quota "
1878 "format mixing");
1879 return 0;
1880 }
1881
1882 if (!sbi->s_jquota_fmt) {
1883 ext4_msg(sb, KERN_ERR, "journaled quota format "
1884 "not specified");
1885 return 0;
1886 }
1887 }
1888 #endif
1889 if (test_opt(sb, DIOREAD_NOLOCK)) {
1890 int blocksize =
1891 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1892
1893 if (blocksize < PAGE_SIZE) {
1894 ext4_msg(sb, KERN_ERR, "can't mount with "
1895 "dioread_nolock if block size != PAGE_SIZE");
1896 return 0;
1897 }
1898 }
1899 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1900 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1901 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1902 "in data=ordered mode");
1903 return 0;
1904 }
1905 return 1;
1906 }
1907
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1908 static inline void ext4_show_quota_options(struct seq_file *seq,
1909 struct super_block *sb)
1910 {
1911 #if defined(CONFIG_QUOTA)
1912 struct ext4_sb_info *sbi = EXT4_SB(sb);
1913
1914 if (sbi->s_jquota_fmt) {
1915 char *fmtname = "";
1916
1917 switch (sbi->s_jquota_fmt) {
1918 case QFMT_VFS_OLD:
1919 fmtname = "vfsold";
1920 break;
1921 case QFMT_VFS_V0:
1922 fmtname = "vfsv0";
1923 break;
1924 case QFMT_VFS_V1:
1925 fmtname = "vfsv1";
1926 break;
1927 }
1928 seq_printf(seq, ",jqfmt=%s", fmtname);
1929 }
1930
1931 if (sbi->s_qf_names[USRQUOTA])
1932 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1933
1934 if (sbi->s_qf_names[GRPQUOTA])
1935 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1936 #endif
1937 }
1938
token2str(int token)1939 static const char *token2str(int token)
1940 {
1941 const struct match_token *t;
1942
1943 for (t = tokens; t->token != Opt_err; t++)
1944 if (t->token == token && !strchr(t->pattern, '='))
1945 break;
1946 return t->pattern;
1947 }
1948
1949 /*
1950 * Show an option if
1951 * - it's set to a non-default value OR
1952 * - if the per-sb default is different from the global default
1953 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1954 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1955 int nodefs)
1956 {
1957 struct ext4_sb_info *sbi = EXT4_SB(sb);
1958 struct ext4_super_block *es = sbi->s_es;
1959 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1960 const struct mount_opts *m;
1961 char sep = nodefs ? '\n' : ',';
1962
1963 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1964 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1965
1966 if (sbi->s_sb_block != 1)
1967 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1968
1969 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1970 int want_set = m->flags & MOPT_SET;
1971 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1972 (m->flags & MOPT_CLEAR_ERR))
1973 continue;
1974 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1975 continue; /* skip if same as the default */
1976 if ((want_set &&
1977 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1978 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1979 continue; /* select Opt_noFoo vs Opt_Foo */
1980 SEQ_OPTS_PRINT("%s", token2str(m->token));
1981 }
1982
1983 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1984 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1985 SEQ_OPTS_PRINT("resuid=%u",
1986 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1987 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1988 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1989 SEQ_OPTS_PRINT("resgid=%u",
1990 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1991 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1992 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1993 SEQ_OPTS_PUTS("errors=remount-ro");
1994 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1995 SEQ_OPTS_PUTS("errors=continue");
1996 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1997 SEQ_OPTS_PUTS("errors=panic");
1998 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1999 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2000 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2001 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2002 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2003 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2004 if (sb->s_flags & MS_I_VERSION)
2005 SEQ_OPTS_PUTS("i_version");
2006 if (nodefs || sbi->s_stripe)
2007 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2008 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2009 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2010 SEQ_OPTS_PUTS("data=journal");
2011 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2012 SEQ_OPTS_PUTS("data=ordered");
2013 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2014 SEQ_OPTS_PUTS("data=writeback");
2015 }
2016 if (nodefs ||
2017 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2018 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2019 sbi->s_inode_readahead_blks);
2020
2021 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2022 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2023 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2024 if (nodefs || sbi->s_max_dir_size_kb)
2025 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2026 if (test_opt(sb, DATA_ERR_ABORT))
2027 SEQ_OPTS_PUTS("data_err=abort");
2028
2029 ext4_show_quota_options(seq, sb);
2030 return 0;
2031 }
2032
ext4_show_options(struct seq_file * seq,struct dentry * root)2033 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2034 {
2035 return _ext4_show_options(seq, root->d_sb, 0);
2036 }
2037
ext4_seq_options_show(struct seq_file * seq,void * offset)2038 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2039 {
2040 struct super_block *sb = seq->private;
2041 int rc;
2042
2043 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2044 rc = _ext4_show_options(seq, sb, 1);
2045 seq_puts(seq, "\n");
2046 return rc;
2047 }
2048
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2049 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2050 int read_only)
2051 {
2052 struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 int res = 0;
2054
2055 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2056 ext4_msg(sb, KERN_ERR, "revision level too high, "
2057 "forcing read-only mode");
2058 res = MS_RDONLY;
2059 }
2060 if (read_only)
2061 goto done;
2062 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2063 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2064 "running e2fsck is recommended");
2065 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2066 ext4_msg(sb, KERN_WARNING,
2067 "warning: mounting fs with errors, "
2068 "running e2fsck is recommended");
2069 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2070 le16_to_cpu(es->s_mnt_count) >=
2071 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2072 ext4_msg(sb, KERN_WARNING,
2073 "warning: maximal mount count reached, "
2074 "running e2fsck is recommended");
2075 else if (le32_to_cpu(es->s_checkinterval) &&
2076 (le32_to_cpu(es->s_lastcheck) +
2077 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2078 ext4_msg(sb, KERN_WARNING,
2079 "warning: checktime reached, "
2080 "running e2fsck is recommended");
2081 if (!sbi->s_journal)
2082 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2083 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2084 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2085 le16_add_cpu(&es->s_mnt_count, 1);
2086 es->s_mtime = cpu_to_le32(get_seconds());
2087 ext4_update_dynamic_rev(sb);
2088 if (sbi->s_journal)
2089 ext4_set_feature_journal_needs_recovery(sb);
2090
2091 ext4_commit_super(sb, 1);
2092 done:
2093 if (test_opt(sb, DEBUG))
2094 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2095 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2096 sb->s_blocksize,
2097 sbi->s_groups_count,
2098 EXT4_BLOCKS_PER_GROUP(sb),
2099 EXT4_INODES_PER_GROUP(sb),
2100 sbi->s_mount_opt, sbi->s_mount_opt2);
2101
2102 cleancache_init_fs(sb);
2103 return res;
2104 }
2105
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2106 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2107 {
2108 struct ext4_sb_info *sbi = EXT4_SB(sb);
2109 struct flex_groups *new_groups;
2110 int size;
2111
2112 if (!sbi->s_log_groups_per_flex)
2113 return 0;
2114
2115 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2116 if (size <= sbi->s_flex_groups_allocated)
2117 return 0;
2118
2119 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2120 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2121 if (!new_groups) {
2122 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2123 size / (int) sizeof(struct flex_groups));
2124 return -ENOMEM;
2125 }
2126
2127 if (sbi->s_flex_groups) {
2128 memcpy(new_groups, sbi->s_flex_groups,
2129 (sbi->s_flex_groups_allocated *
2130 sizeof(struct flex_groups)));
2131 kvfree(sbi->s_flex_groups);
2132 }
2133 sbi->s_flex_groups = new_groups;
2134 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2135 return 0;
2136 }
2137
ext4_fill_flex_info(struct super_block * sb)2138 static int ext4_fill_flex_info(struct super_block *sb)
2139 {
2140 struct ext4_sb_info *sbi = EXT4_SB(sb);
2141 struct ext4_group_desc *gdp = NULL;
2142 ext4_group_t flex_group;
2143 int i, err;
2144
2145 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2146 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2147 sbi->s_log_groups_per_flex = 0;
2148 return 1;
2149 }
2150
2151 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2152 if (err)
2153 goto failed;
2154
2155 for (i = 0; i < sbi->s_groups_count; i++) {
2156 gdp = ext4_get_group_desc(sb, i, NULL);
2157
2158 flex_group = ext4_flex_group(sbi, i);
2159 atomic_add(ext4_free_inodes_count(sb, gdp),
2160 &sbi->s_flex_groups[flex_group].free_inodes);
2161 atomic64_add(ext4_free_group_clusters(sb, gdp),
2162 &sbi->s_flex_groups[flex_group].free_clusters);
2163 atomic_add(ext4_used_dirs_count(sb, gdp),
2164 &sbi->s_flex_groups[flex_group].used_dirs);
2165 }
2166
2167 return 1;
2168 failed:
2169 return 0;
2170 }
2171
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2172 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2173 struct ext4_group_desc *gdp)
2174 {
2175 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2176 __u16 crc = 0;
2177 __le32 le_group = cpu_to_le32(block_group);
2178 struct ext4_sb_info *sbi = EXT4_SB(sb);
2179
2180 if (ext4_has_metadata_csum(sbi->s_sb)) {
2181 /* Use new metadata_csum algorithm */
2182 __u32 csum32;
2183 __u16 dummy_csum = 0;
2184
2185 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2186 sizeof(le_group));
2187 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2188 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2189 sizeof(dummy_csum));
2190 offset += sizeof(dummy_csum);
2191 if (offset < sbi->s_desc_size)
2192 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2193 sbi->s_desc_size - offset);
2194
2195 crc = csum32 & 0xFFFF;
2196 goto out;
2197 }
2198
2199 /* old crc16 code */
2200 if (!ext4_has_feature_gdt_csum(sb))
2201 return 0;
2202
2203 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2204 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2205 crc = crc16(crc, (__u8 *)gdp, offset);
2206 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2207 /* for checksum of struct ext4_group_desc do the rest...*/
2208 if (ext4_has_feature_64bit(sb) &&
2209 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2210 crc = crc16(crc, (__u8 *)gdp + offset,
2211 le16_to_cpu(sbi->s_es->s_desc_size) -
2212 offset);
2213
2214 out:
2215 return cpu_to_le16(crc);
2216 }
2217
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2218 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2219 struct ext4_group_desc *gdp)
2220 {
2221 if (ext4_has_group_desc_csum(sb) &&
2222 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2223 return 0;
2224
2225 return 1;
2226 }
2227
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2228 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2229 struct ext4_group_desc *gdp)
2230 {
2231 if (!ext4_has_group_desc_csum(sb))
2232 return;
2233 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2234 }
2235
2236 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2237 static int ext4_check_descriptors(struct super_block *sb,
2238 ext4_fsblk_t sb_block,
2239 ext4_group_t *first_not_zeroed)
2240 {
2241 struct ext4_sb_info *sbi = EXT4_SB(sb);
2242 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2243 ext4_fsblk_t last_block;
2244 ext4_fsblk_t block_bitmap;
2245 ext4_fsblk_t inode_bitmap;
2246 ext4_fsblk_t inode_table;
2247 int flexbg_flag = 0;
2248 ext4_group_t i, grp = sbi->s_groups_count;
2249
2250 if (ext4_has_feature_flex_bg(sb))
2251 flexbg_flag = 1;
2252
2253 ext4_debug("Checking group descriptors");
2254
2255 for (i = 0; i < sbi->s_groups_count; i++) {
2256 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2257
2258 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2259 last_block = ext4_blocks_count(sbi->s_es) - 1;
2260 else
2261 last_block = first_block +
2262 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2263
2264 if ((grp == sbi->s_groups_count) &&
2265 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2266 grp = i;
2267
2268 block_bitmap = ext4_block_bitmap(sb, gdp);
2269 if (block_bitmap == sb_block) {
2270 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2271 "Block bitmap for group %u overlaps "
2272 "superblock", i);
2273 if (!(sb->s_flags & MS_RDONLY))
2274 return 0;
2275 }
2276 if (block_bitmap < first_block || block_bitmap > last_block) {
2277 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2278 "Block bitmap for group %u not in group "
2279 "(block %llu)!", i, block_bitmap);
2280 return 0;
2281 }
2282 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2283 if (inode_bitmap == sb_block) {
2284 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2285 "Inode bitmap for group %u overlaps "
2286 "superblock", i);
2287 if (!(sb->s_flags & MS_RDONLY))
2288 return 0;
2289 }
2290 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2291 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2292 "Inode bitmap for group %u not in group "
2293 "(block %llu)!", i, inode_bitmap);
2294 return 0;
2295 }
2296 inode_table = ext4_inode_table(sb, gdp);
2297 if (inode_table == sb_block) {
2298 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2299 "Inode table for group %u overlaps "
2300 "superblock", i);
2301 if (!(sb->s_flags & MS_RDONLY))
2302 return 0;
2303 }
2304 if (inode_table < first_block ||
2305 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2306 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2307 "Inode table for group %u not in group "
2308 "(block %llu)!", i, inode_table);
2309 return 0;
2310 }
2311 ext4_lock_group(sb, i);
2312 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2313 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2314 "Checksum for group %u failed (%u!=%u)",
2315 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2316 gdp)), le16_to_cpu(gdp->bg_checksum));
2317 if (!(sb->s_flags & MS_RDONLY)) {
2318 ext4_unlock_group(sb, i);
2319 return 0;
2320 }
2321 }
2322 ext4_unlock_group(sb, i);
2323 if (!flexbg_flag)
2324 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2325 }
2326 if (NULL != first_not_zeroed)
2327 *first_not_zeroed = grp;
2328 return 1;
2329 }
2330
2331 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2332 * the superblock) which were deleted from all directories, but held open by
2333 * a process at the time of a crash. We walk the list and try to delete these
2334 * inodes at recovery time (only with a read-write filesystem).
2335 *
2336 * In order to keep the orphan inode chain consistent during traversal (in
2337 * case of crash during recovery), we link each inode into the superblock
2338 * orphan list_head and handle it the same way as an inode deletion during
2339 * normal operation (which journals the operations for us).
2340 *
2341 * We only do an iget() and an iput() on each inode, which is very safe if we
2342 * accidentally point at an in-use or already deleted inode. The worst that
2343 * can happen in this case is that we get a "bit already cleared" message from
2344 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2345 * e2fsck was run on this filesystem, and it must have already done the orphan
2346 * inode cleanup for us, so we can safely abort without any further action.
2347 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2348 static void ext4_orphan_cleanup(struct super_block *sb,
2349 struct ext4_super_block *es)
2350 {
2351 unsigned int s_flags = sb->s_flags;
2352 int nr_orphans = 0, nr_truncates = 0;
2353 #ifdef CONFIG_QUOTA
2354 int quota_update = 0;
2355 int i;
2356 #endif
2357 if (!es->s_last_orphan) {
2358 jbd_debug(4, "no orphan inodes to clean up\n");
2359 return;
2360 }
2361
2362 if (bdev_read_only(sb->s_bdev)) {
2363 ext4_msg(sb, KERN_ERR, "write access "
2364 "unavailable, skipping orphan cleanup");
2365 return;
2366 }
2367
2368 /* Check if feature set would not allow a r/w mount */
2369 if (!ext4_feature_set_ok(sb, 0)) {
2370 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2371 "unknown ROCOMPAT features");
2372 return;
2373 }
2374
2375 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2376 /* don't clear list on RO mount w/ errors */
2377 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2378 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2379 "clearing orphan list.\n");
2380 es->s_last_orphan = 0;
2381 }
2382 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2383 return;
2384 }
2385
2386 if (s_flags & MS_RDONLY) {
2387 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2388 sb->s_flags &= ~MS_RDONLY;
2389 }
2390 #ifdef CONFIG_QUOTA
2391 /* Needed for iput() to work correctly and not trash data */
2392 sb->s_flags |= MS_ACTIVE;
2393
2394 /*
2395 * Turn on quotas which were not enabled for read-only mounts if
2396 * filesystem has quota feature, so that they are updated correctly.
2397 */
2398 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2399 int ret = ext4_enable_quotas(sb);
2400
2401 if (!ret)
2402 quota_update = 1;
2403 else
2404 ext4_msg(sb, KERN_ERR,
2405 "Cannot turn on quotas: error %d", ret);
2406 }
2407
2408 /* Turn on journaled quotas used for old sytle */
2409 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2410 if (EXT4_SB(sb)->s_qf_names[i]) {
2411 int ret = ext4_quota_on_mount(sb, i);
2412
2413 if (!ret)
2414 quota_update = 1;
2415 else
2416 ext4_msg(sb, KERN_ERR,
2417 "Cannot turn on journaled "
2418 "quota: type %d: error %d", i, ret);
2419 }
2420 }
2421 #endif
2422
2423 while (es->s_last_orphan) {
2424 struct inode *inode;
2425
2426 /*
2427 * We may have encountered an error during cleanup; if
2428 * so, skip the rest.
2429 */
2430 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2431 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2432 es->s_last_orphan = 0;
2433 break;
2434 }
2435
2436 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2437 if (IS_ERR(inode)) {
2438 es->s_last_orphan = 0;
2439 break;
2440 }
2441
2442 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2443 dquot_initialize(inode);
2444 if (inode->i_nlink) {
2445 if (test_opt(sb, DEBUG))
2446 ext4_msg(sb, KERN_DEBUG,
2447 "%s: truncating inode %lu to %lld bytes",
2448 __func__, inode->i_ino, inode->i_size);
2449 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2450 inode->i_ino, inode->i_size);
2451 inode_lock(inode);
2452 truncate_inode_pages(inode->i_mapping, inode->i_size);
2453 ext4_truncate(inode);
2454 inode_unlock(inode);
2455 nr_truncates++;
2456 } else {
2457 if (test_opt(sb, DEBUG))
2458 ext4_msg(sb, KERN_DEBUG,
2459 "%s: deleting unreferenced inode %lu",
2460 __func__, inode->i_ino);
2461 jbd_debug(2, "deleting unreferenced inode %lu\n",
2462 inode->i_ino);
2463 nr_orphans++;
2464 }
2465 iput(inode); /* The delete magic happens here! */
2466 }
2467
2468 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2469
2470 if (nr_orphans)
2471 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2472 PLURAL(nr_orphans));
2473 if (nr_truncates)
2474 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2475 PLURAL(nr_truncates));
2476 #ifdef CONFIG_QUOTA
2477 /* Turn off quotas if they were enabled for orphan cleanup */
2478 if (quota_update) {
2479 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2480 if (sb_dqopt(sb)->files[i])
2481 dquot_quota_off(sb, i);
2482 }
2483 }
2484 #endif
2485 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2486 }
2487
2488 /*
2489 * Maximal extent format file size.
2490 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2491 * extent format containers, within a sector_t, and within i_blocks
2492 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2493 * so that won't be a limiting factor.
2494 *
2495 * However there is other limiting factor. We do store extents in the form
2496 * of starting block and length, hence the resulting length of the extent
2497 * covering maximum file size must fit into on-disk format containers as
2498 * well. Given that length is always by 1 unit bigger than max unit (because
2499 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2500 *
2501 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2502 */
ext4_max_size(int blkbits,int has_huge_files)2503 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2504 {
2505 loff_t res;
2506 loff_t upper_limit = MAX_LFS_FILESIZE;
2507
2508 /* small i_blocks in vfs inode? */
2509 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2510 /*
2511 * CONFIG_LBDAF is not enabled implies the inode
2512 * i_block represent total blocks in 512 bytes
2513 * 32 == size of vfs inode i_blocks * 8
2514 */
2515 upper_limit = (1LL << 32) - 1;
2516
2517 /* total blocks in file system block size */
2518 upper_limit >>= (blkbits - 9);
2519 upper_limit <<= blkbits;
2520 }
2521
2522 /*
2523 * 32-bit extent-start container, ee_block. We lower the maxbytes
2524 * by one fs block, so ee_len can cover the extent of maximum file
2525 * size
2526 */
2527 res = (1LL << 32) - 1;
2528 res <<= blkbits;
2529
2530 /* Sanity check against vm- & vfs- imposed limits */
2531 if (res > upper_limit)
2532 res = upper_limit;
2533
2534 return res;
2535 }
2536
2537 /*
2538 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2539 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2540 * We need to be 1 filesystem block less than the 2^48 sector limit.
2541 */
ext4_max_bitmap_size(int bits,int has_huge_files)2542 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2543 {
2544 loff_t res = EXT4_NDIR_BLOCKS;
2545 int meta_blocks;
2546 loff_t upper_limit;
2547 /* This is calculated to be the largest file size for a dense, block
2548 * mapped file such that the file's total number of 512-byte sectors,
2549 * including data and all indirect blocks, does not exceed (2^48 - 1).
2550 *
2551 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2552 * number of 512-byte sectors of the file.
2553 */
2554
2555 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2556 /*
2557 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2558 * the inode i_block field represents total file blocks in
2559 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2560 */
2561 upper_limit = (1LL << 32) - 1;
2562
2563 /* total blocks in file system block size */
2564 upper_limit >>= (bits - 9);
2565
2566 } else {
2567 /*
2568 * We use 48 bit ext4_inode i_blocks
2569 * With EXT4_HUGE_FILE_FL set the i_blocks
2570 * represent total number of blocks in
2571 * file system block size
2572 */
2573 upper_limit = (1LL << 48) - 1;
2574
2575 }
2576
2577 /* indirect blocks */
2578 meta_blocks = 1;
2579 /* double indirect blocks */
2580 meta_blocks += 1 + (1LL << (bits-2));
2581 /* tripple indirect blocks */
2582 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2583
2584 upper_limit -= meta_blocks;
2585 upper_limit <<= bits;
2586
2587 res += 1LL << (bits-2);
2588 res += 1LL << (2*(bits-2));
2589 res += 1LL << (3*(bits-2));
2590 res <<= bits;
2591 if (res > upper_limit)
2592 res = upper_limit;
2593
2594 if (res > MAX_LFS_FILESIZE)
2595 res = MAX_LFS_FILESIZE;
2596
2597 return res;
2598 }
2599
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2600 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2601 ext4_fsblk_t logical_sb_block, int nr)
2602 {
2603 struct ext4_sb_info *sbi = EXT4_SB(sb);
2604 ext4_group_t bg, first_meta_bg;
2605 int has_super = 0;
2606
2607 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2608
2609 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2610 return logical_sb_block + nr + 1;
2611 bg = sbi->s_desc_per_block * nr;
2612 if (ext4_bg_has_super(sb, bg))
2613 has_super = 1;
2614
2615 /*
2616 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2617 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2618 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2619 * compensate.
2620 */
2621 if (sb->s_blocksize == 1024 && nr == 0 &&
2622 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2623 has_super++;
2624
2625 return (has_super + ext4_group_first_block_no(sb, bg));
2626 }
2627
2628 /**
2629 * ext4_get_stripe_size: Get the stripe size.
2630 * @sbi: In memory super block info
2631 *
2632 * If we have specified it via mount option, then
2633 * use the mount option value. If the value specified at mount time is
2634 * greater than the blocks per group use the super block value.
2635 * If the super block value is greater than blocks per group return 0.
2636 * Allocator needs it be less than blocks per group.
2637 *
2638 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2639 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2640 {
2641 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2642 unsigned long stripe_width =
2643 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2644 int ret;
2645
2646 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2647 ret = sbi->s_stripe;
2648 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2649 ret = stripe_width;
2650 else if (stride && stride <= sbi->s_blocks_per_group)
2651 ret = stride;
2652 else
2653 ret = 0;
2654
2655 /*
2656 * If the stripe width is 1, this makes no sense and
2657 * we set it to 0 to turn off stripe handling code.
2658 */
2659 if (ret <= 1)
2660 ret = 0;
2661
2662 return ret;
2663 }
2664
2665 /*
2666 * Check whether this filesystem can be mounted based on
2667 * the features present and the RDONLY/RDWR mount requested.
2668 * Returns 1 if this filesystem can be mounted as requested,
2669 * 0 if it cannot be.
2670 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2671 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2672 {
2673 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2674 ext4_msg(sb, KERN_ERR,
2675 "Couldn't mount because of "
2676 "unsupported optional features (%x)",
2677 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2678 ~EXT4_FEATURE_INCOMPAT_SUPP));
2679 return 0;
2680 }
2681
2682 if (readonly)
2683 return 1;
2684
2685 if (ext4_has_feature_readonly(sb)) {
2686 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2687 sb->s_flags |= MS_RDONLY;
2688 return 1;
2689 }
2690
2691 /* Check that feature set is OK for a read-write mount */
2692 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2693 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2694 "unsupported optional features (%x)",
2695 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2696 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2697 return 0;
2698 }
2699 /*
2700 * Large file size enabled file system can only be mounted
2701 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2702 */
2703 if (ext4_has_feature_huge_file(sb)) {
2704 if (sizeof(blkcnt_t) < sizeof(u64)) {
2705 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2706 "cannot be mounted RDWR without "
2707 "CONFIG_LBDAF");
2708 return 0;
2709 }
2710 }
2711 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2712 ext4_msg(sb, KERN_ERR,
2713 "Can't support bigalloc feature without "
2714 "extents feature\n");
2715 return 0;
2716 }
2717
2718 #ifndef CONFIG_QUOTA
2719 if (ext4_has_feature_quota(sb) && !readonly) {
2720 ext4_msg(sb, KERN_ERR,
2721 "Filesystem with quota feature cannot be mounted RDWR "
2722 "without CONFIG_QUOTA");
2723 return 0;
2724 }
2725 if (ext4_has_feature_project(sb) && !readonly) {
2726 ext4_msg(sb, KERN_ERR,
2727 "Filesystem with project quota feature cannot be mounted RDWR "
2728 "without CONFIG_QUOTA");
2729 return 0;
2730 }
2731 #endif /* CONFIG_QUOTA */
2732 return 1;
2733 }
2734
2735 /*
2736 * This function is called once a day if we have errors logged
2737 * on the file system
2738 */
print_daily_error_info(unsigned long arg)2739 static void print_daily_error_info(unsigned long arg)
2740 {
2741 struct super_block *sb = (struct super_block *) arg;
2742 struct ext4_sb_info *sbi;
2743 struct ext4_super_block *es;
2744
2745 sbi = EXT4_SB(sb);
2746 es = sbi->s_es;
2747
2748 if (es->s_error_count)
2749 /* fsck newer than v1.41.13 is needed to clean this condition. */
2750 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2751 le32_to_cpu(es->s_error_count));
2752 if (es->s_first_error_time) {
2753 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2754 sb->s_id, le32_to_cpu(es->s_first_error_time),
2755 (int) sizeof(es->s_first_error_func),
2756 es->s_first_error_func,
2757 le32_to_cpu(es->s_first_error_line));
2758 if (es->s_first_error_ino)
2759 printk(KERN_CONT ": inode %u",
2760 le32_to_cpu(es->s_first_error_ino));
2761 if (es->s_first_error_block)
2762 printk(KERN_CONT ": block %llu", (unsigned long long)
2763 le64_to_cpu(es->s_first_error_block));
2764 printk(KERN_CONT "\n");
2765 }
2766 if (es->s_last_error_time) {
2767 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2768 sb->s_id, le32_to_cpu(es->s_last_error_time),
2769 (int) sizeof(es->s_last_error_func),
2770 es->s_last_error_func,
2771 le32_to_cpu(es->s_last_error_line));
2772 if (es->s_last_error_ino)
2773 printk(KERN_CONT ": inode %u",
2774 le32_to_cpu(es->s_last_error_ino));
2775 if (es->s_last_error_block)
2776 printk(KERN_CONT ": block %llu", (unsigned long long)
2777 le64_to_cpu(es->s_last_error_block));
2778 printk(KERN_CONT "\n");
2779 }
2780 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2781 }
2782
2783 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2784 static int ext4_run_li_request(struct ext4_li_request *elr)
2785 {
2786 struct ext4_group_desc *gdp = NULL;
2787 ext4_group_t group, ngroups;
2788 struct super_block *sb;
2789 unsigned long timeout = 0;
2790 int ret = 0;
2791
2792 sb = elr->lr_super;
2793 ngroups = EXT4_SB(sb)->s_groups_count;
2794
2795 for (group = elr->lr_next_group; group < ngroups; group++) {
2796 gdp = ext4_get_group_desc(sb, group, NULL);
2797 if (!gdp) {
2798 ret = 1;
2799 break;
2800 }
2801
2802 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2803 break;
2804 }
2805
2806 if (group >= ngroups)
2807 ret = 1;
2808
2809 if (!ret) {
2810 timeout = jiffies;
2811 ret = ext4_init_inode_table(sb, group,
2812 elr->lr_timeout ? 0 : 1);
2813 if (elr->lr_timeout == 0) {
2814 timeout = (jiffies - timeout) *
2815 elr->lr_sbi->s_li_wait_mult;
2816 elr->lr_timeout = timeout;
2817 }
2818 elr->lr_next_sched = jiffies + elr->lr_timeout;
2819 elr->lr_next_group = group + 1;
2820 }
2821 return ret;
2822 }
2823
2824 /*
2825 * Remove lr_request from the list_request and free the
2826 * request structure. Should be called with li_list_mtx held
2827 */
ext4_remove_li_request(struct ext4_li_request * elr)2828 static void ext4_remove_li_request(struct ext4_li_request *elr)
2829 {
2830 struct ext4_sb_info *sbi;
2831
2832 if (!elr)
2833 return;
2834
2835 sbi = elr->lr_sbi;
2836
2837 list_del(&elr->lr_request);
2838 sbi->s_li_request = NULL;
2839 kfree(elr);
2840 }
2841
ext4_unregister_li_request(struct super_block * sb)2842 static void ext4_unregister_li_request(struct super_block *sb)
2843 {
2844 mutex_lock(&ext4_li_mtx);
2845 if (!ext4_li_info) {
2846 mutex_unlock(&ext4_li_mtx);
2847 return;
2848 }
2849
2850 mutex_lock(&ext4_li_info->li_list_mtx);
2851 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2852 mutex_unlock(&ext4_li_info->li_list_mtx);
2853 mutex_unlock(&ext4_li_mtx);
2854 }
2855
2856 static struct task_struct *ext4_lazyinit_task;
2857
2858 /*
2859 * This is the function where ext4lazyinit thread lives. It walks
2860 * through the request list searching for next scheduled filesystem.
2861 * When such a fs is found, run the lazy initialization request
2862 * (ext4_rn_li_request) and keep track of the time spend in this
2863 * function. Based on that time we compute next schedule time of
2864 * the request. When walking through the list is complete, compute
2865 * next waking time and put itself into sleep.
2866 */
ext4_lazyinit_thread(void * arg)2867 static int ext4_lazyinit_thread(void *arg)
2868 {
2869 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2870 struct list_head *pos, *n;
2871 struct ext4_li_request *elr;
2872 unsigned long next_wakeup, cur;
2873
2874 BUG_ON(NULL == eli);
2875
2876 cont_thread:
2877 while (true) {
2878 next_wakeup = MAX_JIFFY_OFFSET;
2879
2880 mutex_lock(&eli->li_list_mtx);
2881 if (list_empty(&eli->li_request_list)) {
2882 mutex_unlock(&eli->li_list_mtx);
2883 goto exit_thread;
2884 }
2885 list_for_each_safe(pos, n, &eli->li_request_list) {
2886 int err = 0;
2887 int progress = 0;
2888 elr = list_entry(pos, struct ext4_li_request,
2889 lr_request);
2890
2891 if (time_before(jiffies, elr->lr_next_sched)) {
2892 if (time_before(elr->lr_next_sched, next_wakeup))
2893 next_wakeup = elr->lr_next_sched;
2894 continue;
2895 }
2896 if (down_read_trylock(&elr->lr_super->s_umount)) {
2897 if (sb_start_write_trylock(elr->lr_super)) {
2898 progress = 1;
2899 /*
2900 * We hold sb->s_umount, sb can not
2901 * be removed from the list, it is
2902 * now safe to drop li_list_mtx
2903 */
2904 mutex_unlock(&eli->li_list_mtx);
2905 err = ext4_run_li_request(elr);
2906 sb_end_write(elr->lr_super);
2907 mutex_lock(&eli->li_list_mtx);
2908 n = pos->next;
2909 }
2910 up_read((&elr->lr_super->s_umount));
2911 }
2912 /* error, remove the lazy_init job */
2913 if (err) {
2914 ext4_remove_li_request(elr);
2915 continue;
2916 }
2917 if (!progress) {
2918 elr->lr_next_sched = jiffies +
2919 (prandom_u32()
2920 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2921 }
2922 if (time_before(elr->lr_next_sched, next_wakeup))
2923 next_wakeup = elr->lr_next_sched;
2924 }
2925 mutex_unlock(&eli->li_list_mtx);
2926
2927 try_to_freeze();
2928
2929 cur = jiffies;
2930 if ((time_after_eq(cur, next_wakeup)) ||
2931 (MAX_JIFFY_OFFSET == next_wakeup)) {
2932 cond_resched();
2933 continue;
2934 }
2935
2936 schedule_timeout_interruptible(next_wakeup - cur);
2937
2938 if (kthread_should_stop()) {
2939 ext4_clear_request_list();
2940 goto exit_thread;
2941 }
2942 }
2943
2944 exit_thread:
2945 /*
2946 * It looks like the request list is empty, but we need
2947 * to check it under the li_list_mtx lock, to prevent any
2948 * additions into it, and of course we should lock ext4_li_mtx
2949 * to atomically free the list and ext4_li_info, because at
2950 * this point another ext4 filesystem could be registering
2951 * new one.
2952 */
2953 mutex_lock(&ext4_li_mtx);
2954 mutex_lock(&eli->li_list_mtx);
2955 if (!list_empty(&eli->li_request_list)) {
2956 mutex_unlock(&eli->li_list_mtx);
2957 mutex_unlock(&ext4_li_mtx);
2958 goto cont_thread;
2959 }
2960 mutex_unlock(&eli->li_list_mtx);
2961 kfree(ext4_li_info);
2962 ext4_li_info = NULL;
2963 mutex_unlock(&ext4_li_mtx);
2964
2965 return 0;
2966 }
2967
ext4_clear_request_list(void)2968 static void ext4_clear_request_list(void)
2969 {
2970 struct list_head *pos, *n;
2971 struct ext4_li_request *elr;
2972
2973 mutex_lock(&ext4_li_info->li_list_mtx);
2974 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2975 elr = list_entry(pos, struct ext4_li_request,
2976 lr_request);
2977 ext4_remove_li_request(elr);
2978 }
2979 mutex_unlock(&ext4_li_info->li_list_mtx);
2980 }
2981
ext4_run_lazyinit_thread(void)2982 static int ext4_run_lazyinit_thread(void)
2983 {
2984 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2985 ext4_li_info, "ext4lazyinit");
2986 if (IS_ERR(ext4_lazyinit_task)) {
2987 int err = PTR_ERR(ext4_lazyinit_task);
2988 ext4_clear_request_list();
2989 kfree(ext4_li_info);
2990 ext4_li_info = NULL;
2991 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2992 "initialization thread\n",
2993 err);
2994 return err;
2995 }
2996 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2997 return 0;
2998 }
2999
3000 /*
3001 * Check whether it make sense to run itable init. thread or not.
3002 * If there is at least one uninitialized inode table, return
3003 * corresponding group number, else the loop goes through all
3004 * groups and return total number of groups.
3005 */
ext4_has_uninit_itable(struct super_block * sb)3006 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3007 {
3008 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3009 struct ext4_group_desc *gdp = NULL;
3010
3011 for (group = 0; group < ngroups; group++) {
3012 gdp = ext4_get_group_desc(sb, group, NULL);
3013 if (!gdp)
3014 continue;
3015
3016 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3017 break;
3018 }
3019
3020 return group;
3021 }
3022
ext4_li_info_new(void)3023 static int ext4_li_info_new(void)
3024 {
3025 struct ext4_lazy_init *eli = NULL;
3026
3027 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3028 if (!eli)
3029 return -ENOMEM;
3030
3031 INIT_LIST_HEAD(&eli->li_request_list);
3032 mutex_init(&eli->li_list_mtx);
3033
3034 eli->li_state |= EXT4_LAZYINIT_QUIT;
3035
3036 ext4_li_info = eli;
3037
3038 return 0;
3039 }
3040
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3041 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3042 ext4_group_t start)
3043 {
3044 struct ext4_sb_info *sbi = EXT4_SB(sb);
3045 struct ext4_li_request *elr;
3046
3047 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3048 if (!elr)
3049 return NULL;
3050
3051 elr->lr_super = sb;
3052 elr->lr_sbi = sbi;
3053 elr->lr_next_group = start;
3054
3055 /*
3056 * Randomize first schedule time of the request to
3057 * spread the inode table initialization requests
3058 * better.
3059 */
3060 elr->lr_next_sched = jiffies + (prandom_u32() %
3061 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3062 return elr;
3063 }
3064
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3065 int ext4_register_li_request(struct super_block *sb,
3066 ext4_group_t first_not_zeroed)
3067 {
3068 struct ext4_sb_info *sbi = EXT4_SB(sb);
3069 struct ext4_li_request *elr = NULL;
3070 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3071 int ret = 0;
3072
3073 mutex_lock(&ext4_li_mtx);
3074 if (sbi->s_li_request != NULL) {
3075 /*
3076 * Reset timeout so it can be computed again, because
3077 * s_li_wait_mult might have changed.
3078 */
3079 sbi->s_li_request->lr_timeout = 0;
3080 goto out;
3081 }
3082
3083 if (first_not_zeroed == ngroups ||
3084 (sb->s_flags & MS_RDONLY) ||
3085 !test_opt(sb, INIT_INODE_TABLE))
3086 goto out;
3087
3088 elr = ext4_li_request_new(sb, first_not_zeroed);
3089 if (!elr) {
3090 ret = -ENOMEM;
3091 goto out;
3092 }
3093
3094 if (NULL == ext4_li_info) {
3095 ret = ext4_li_info_new();
3096 if (ret)
3097 goto out;
3098 }
3099
3100 mutex_lock(&ext4_li_info->li_list_mtx);
3101 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3102 mutex_unlock(&ext4_li_info->li_list_mtx);
3103
3104 sbi->s_li_request = elr;
3105 /*
3106 * set elr to NULL here since it has been inserted to
3107 * the request_list and the removal and free of it is
3108 * handled by ext4_clear_request_list from now on.
3109 */
3110 elr = NULL;
3111
3112 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3113 ret = ext4_run_lazyinit_thread();
3114 if (ret)
3115 goto out;
3116 }
3117 out:
3118 mutex_unlock(&ext4_li_mtx);
3119 if (ret)
3120 kfree(elr);
3121 return ret;
3122 }
3123
3124 /*
3125 * We do not need to lock anything since this is called on
3126 * module unload.
3127 */
ext4_destroy_lazyinit_thread(void)3128 static void ext4_destroy_lazyinit_thread(void)
3129 {
3130 /*
3131 * If thread exited earlier
3132 * there's nothing to be done.
3133 */
3134 if (!ext4_li_info || !ext4_lazyinit_task)
3135 return;
3136
3137 kthread_stop(ext4_lazyinit_task);
3138 }
3139
set_journal_csum_feature_set(struct super_block * sb)3140 static int set_journal_csum_feature_set(struct super_block *sb)
3141 {
3142 int ret = 1;
3143 int compat, incompat;
3144 struct ext4_sb_info *sbi = EXT4_SB(sb);
3145
3146 if (ext4_has_metadata_csum(sb)) {
3147 /* journal checksum v3 */
3148 compat = 0;
3149 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3150 } else {
3151 /* journal checksum v1 */
3152 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3153 incompat = 0;
3154 }
3155
3156 jbd2_journal_clear_features(sbi->s_journal,
3157 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3158 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3159 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3160 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3161 ret = jbd2_journal_set_features(sbi->s_journal,
3162 compat, 0,
3163 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3164 incompat);
3165 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3166 ret = jbd2_journal_set_features(sbi->s_journal,
3167 compat, 0,
3168 incompat);
3169 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3170 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3171 } else {
3172 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3173 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3174 }
3175
3176 return ret;
3177 }
3178
3179 /*
3180 * Note: calculating the overhead so we can be compatible with
3181 * historical BSD practice is quite difficult in the face of
3182 * clusters/bigalloc. This is because multiple metadata blocks from
3183 * different block group can end up in the same allocation cluster.
3184 * Calculating the exact overhead in the face of clustered allocation
3185 * requires either O(all block bitmaps) in memory or O(number of block
3186 * groups**2) in time. We will still calculate the superblock for
3187 * older file systems --- and if we come across with a bigalloc file
3188 * system with zero in s_overhead_clusters the estimate will be close to
3189 * correct especially for very large cluster sizes --- but for newer
3190 * file systems, it's better to calculate this figure once at mkfs
3191 * time, and store it in the superblock. If the superblock value is
3192 * present (even for non-bigalloc file systems), we will use it.
3193 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3194 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3195 char *buf)
3196 {
3197 struct ext4_sb_info *sbi = EXT4_SB(sb);
3198 struct ext4_group_desc *gdp;
3199 ext4_fsblk_t first_block, last_block, b;
3200 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3201 int s, j, count = 0;
3202
3203 if (!ext4_has_feature_bigalloc(sb))
3204 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3205 sbi->s_itb_per_group + 2);
3206
3207 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3208 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3209 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3210 for (i = 0; i < ngroups; i++) {
3211 gdp = ext4_get_group_desc(sb, i, NULL);
3212 b = ext4_block_bitmap(sb, gdp);
3213 if (b >= first_block && b <= last_block) {
3214 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3215 count++;
3216 }
3217 b = ext4_inode_bitmap(sb, gdp);
3218 if (b >= first_block && b <= last_block) {
3219 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3220 count++;
3221 }
3222 b = ext4_inode_table(sb, gdp);
3223 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3224 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3225 int c = EXT4_B2C(sbi, b - first_block);
3226 ext4_set_bit(c, buf);
3227 count++;
3228 }
3229 if (i != grp)
3230 continue;
3231 s = 0;
3232 if (ext4_bg_has_super(sb, grp)) {
3233 ext4_set_bit(s++, buf);
3234 count++;
3235 }
3236 j = ext4_bg_num_gdb(sb, grp);
3237 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3238 ext4_error(sb, "Invalid number of block group "
3239 "descriptor blocks: %d", j);
3240 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3241 }
3242 count += j;
3243 for (; j > 0; j--)
3244 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3245 }
3246 if (!count)
3247 return 0;
3248 return EXT4_CLUSTERS_PER_GROUP(sb) -
3249 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3250 }
3251
3252 /*
3253 * Compute the overhead and stash it in sbi->s_overhead
3254 */
ext4_calculate_overhead(struct super_block * sb)3255 int ext4_calculate_overhead(struct super_block *sb)
3256 {
3257 struct ext4_sb_info *sbi = EXT4_SB(sb);
3258 struct ext4_super_block *es = sbi->s_es;
3259 struct inode *j_inode;
3260 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3261 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3262 ext4_fsblk_t overhead = 0;
3263 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3264
3265 if (!buf)
3266 return -ENOMEM;
3267
3268 /*
3269 * Compute the overhead (FS structures). This is constant
3270 * for a given filesystem unless the number of block groups
3271 * changes so we cache the previous value until it does.
3272 */
3273
3274 /*
3275 * All of the blocks before first_data_block are overhead
3276 */
3277 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3278
3279 /*
3280 * Add the overhead found in each block group
3281 */
3282 for (i = 0; i < ngroups; i++) {
3283 int blks;
3284
3285 blks = count_overhead(sb, i, buf);
3286 overhead += blks;
3287 if (blks)
3288 memset(buf, 0, PAGE_SIZE);
3289 cond_resched();
3290 }
3291
3292 /*
3293 * Add the internal journal blocks whether the journal has been
3294 * loaded or not
3295 */
3296 if (sbi->s_journal && !sbi->journal_bdev)
3297 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3298 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3299 j_inode = ext4_get_journal_inode(sb, j_inum);
3300 if (j_inode) {
3301 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3302 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3303 iput(j_inode);
3304 } else {
3305 ext4_msg(sb, KERN_ERR, "can't get journal size");
3306 }
3307 }
3308 sbi->s_overhead = overhead;
3309 smp_wmb();
3310 free_page((unsigned long) buf);
3311 return 0;
3312 }
3313
ext4_set_resv_clusters(struct super_block * sb)3314 static void ext4_set_resv_clusters(struct super_block *sb)
3315 {
3316 ext4_fsblk_t resv_clusters;
3317 struct ext4_sb_info *sbi = EXT4_SB(sb);
3318
3319 /*
3320 * There's no need to reserve anything when we aren't using extents.
3321 * The space estimates are exact, there are no unwritten extents,
3322 * hole punching doesn't need new metadata... This is needed especially
3323 * to keep ext2/3 backward compatibility.
3324 */
3325 if (!ext4_has_feature_extents(sb))
3326 return;
3327 /*
3328 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3329 * This should cover the situations where we can not afford to run
3330 * out of space like for example punch hole, or converting
3331 * unwritten extents in delalloc path. In most cases such
3332 * allocation would require 1, or 2 blocks, higher numbers are
3333 * very rare.
3334 */
3335 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3336 sbi->s_cluster_bits);
3337
3338 do_div(resv_clusters, 50);
3339 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3340
3341 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3342 }
3343
ext4_fill_super(struct super_block * sb,void * data,int silent)3344 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3345 {
3346 char *orig_data = kstrdup(data, GFP_KERNEL);
3347 struct buffer_head *bh;
3348 struct ext4_super_block *es = NULL;
3349 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3350 ext4_fsblk_t block;
3351 ext4_fsblk_t sb_block = get_sb_block(&data);
3352 ext4_fsblk_t logical_sb_block;
3353 unsigned long offset = 0;
3354 unsigned long journal_devnum = 0;
3355 unsigned long def_mount_opts;
3356 struct inode *root;
3357 const char *descr;
3358 int ret = -ENOMEM;
3359 int blocksize, clustersize;
3360 unsigned int db_count;
3361 unsigned int i;
3362 int needs_recovery, has_huge_files, has_bigalloc;
3363 __u64 blocks_count;
3364 int err = 0;
3365 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3366 ext4_group_t first_not_zeroed;
3367
3368 if ((data && !orig_data) || !sbi)
3369 goto out_free_base;
3370
3371 sbi->s_blockgroup_lock =
3372 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3373 if (!sbi->s_blockgroup_lock)
3374 goto out_free_base;
3375
3376 sb->s_fs_info = sbi;
3377 sbi->s_sb = sb;
3378 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3379 sbi->s_sb_block = sb_block;
3380 if (sb->s_bdev->bd_part)
3381 sbi->s_sectors_written_start =
3382 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3383
3384 /* Cleanup superblock name */
3385 strreplace(sb->s_id, '/', '!');
3386
3387 /* -EINVAL is default */
3388 ret = -EINVAL;
3389 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3390 if (!blocksize) {
3391 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3392 goto out_fail;
3393 }
3394
3395 /*
3396 * The ext4 superblock will not be buffer aligned for other than 1kB
3397 * block sizes. We need to calculate the offset from buffer start.
3398 */
3399 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3400 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3401 offset = do_div(logical_sb_block, blocksize);
3402 } else {
3403 logical_sb_block = sb_block;
3404 }
3405
3406 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3407 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3408 goto out_fail;
3409 }
3410 /*
3411 * Note: s_es must be initialized as soon as possible because
3412 * some ext4 macro-instructions depend on its value
3413 */
3414 es = (struct ext4_super_block *) (bh->b_data + offset);
3415 sbi->s_es = es;
3416 sb->s_magic = le16_to_cpu(es->s_magic);
3417 if (sb->s_magic != EXT4_SUPER_MAGIC)
3418 goto cantfind_ext4;
3419 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3420
3421 /* Warn if metadata_csum and gdt_csum are both set. */
3422 if (ext4_has_feature_metadata_csum(sb) &&
3423 ext4_has_feature_gdt_csum(sb))
3424 ext4_warning(sb, "metadata_csum and uninit_bg are "
3425 "redundant flags; please run fsck.");
3426
3427 /* Check for a known checksum algorithm */
3428 if (!ext4_verify_csum_type(sb, es)) {
3429 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3430 "unknown checksum algorithm.");
3431 silent = 1;
3432 goto cantfind_ext4;
3433 }
3434
3435 /* Load the checksum driver */
3436 if (ext4_has_feature_metadata_csum(sb)) {
3437 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3438 if (IS_ERR(sbi->s_chksum_driver)) {
3439 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3440 ret = PTR_ERR(sbi->s_chksum_driver);
3441 sbi->s_chksum_driver = NULL;
3442 goto failed_mount;
3443 }
3444 }
3445
3446 /* Check superblock checksum */
3447 if (!ext4_superblock_csum_verify(sb, es)) {
3448 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3449 "invalid superblock checksum. Run e2fsck?");
3450 silent = 1;
3451 ret = -EFSBADCRC;
3452 goto cantfind_ext4;
3453 }
3454
3455 /* Precompute checksum seed for all metadata */
3456 if (ext4_has_feature_csum_seed(sb))
3457 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3458 else if (ext4_has_metadata_csum(sb))
3459 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3460 sizeof(es->s_uuid));
3461
3462 /* Set defaults before we parse the mount options */
3463 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3464 set_opt(sb, INIT_INODE_TABLE);
3465 if (def_mount_opts & EXT4_DEFM_DEBUG)
3466 set_opt(sb, DEBUG);
3467 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3468 set_opt(sb, GRPID);
3469 if (def_mount_opts & EXT4_DEFM_UID16)
3470 set_opt(sb, NO_UID32);
3471 /* xattr user namespace & acls are now defaulted on */
3472 set_opt(sb, XATTR_USER);
3473 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3474 set_opt(sb, POSIX_ACL);
3475 #endif
3476 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3477 if (ext4_has_metadata_csum(sb))
3478 set_opt(sb, JOURNAL_CHECKSUM);
3479
3480 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3481 set_opt(sb, JOURNAL_DATA);
3482 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3483 set_opt(sb, ORDERED_DATA);
3484 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3485 set_opt(sb, WRITEBACK_DATA);
3486
3487 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3488 set_opt(sb, ERRORS_PANIC);
3489 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3490 set_opt(sb, ERRORS_CONT);
3491 else
3492 set_opt(sb, ERRORS_RO);
3493 /* block_validity enabled by default; disable with noblock_validity */
3494 set_opt(sb, BLOCK_VALIDITY);
3495 if (def_mount_opts & EXT4_DEFM_DISCARD)
3496 set_opt(sb, DISCARD);
3497
3498 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3499 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3500 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3501 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3502 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3503
3504 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3505 set_opt(sb, BARRIER);
3506
3507 /*
3508 * enable delayed allocation by default
3509 * Use -o nodelalloc to turn it off
3510 */
3511 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3512 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3513 set_opt(sb, DELALLOC);
3514
3515 /*
3516 * set default s_li_wait_mult for lazyinit, for the case there is
3517 * no mount option specified.
3518 */
3519 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3520
3521 if (sbi->s_es->s_mount_opts[0]) {
3522 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3523 sizeof(sbi->s_es->s_mount_opts),
3524 GFP_KERNEL);
3525 if (!s_mount_opts)
3526 goto failed_mount;
3527 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3528 &journal_ioprio, 0)) {
3529 ext4_msg(sb, KERN_WARNING,
3530 "failed to parse options in superblock: %s",
3531 s_mount_opts);
3532 }
3533 kfree(s_mount_opts);
3534 }
3535 sbi->s_def_mount_opt = sbi->s_mount_opt;
3536 if (!parse_options((char *) data, sb, &journal_devnum,
3537 &journal_ioprio, 0))
3538 goto failed_mount;
3539
3540 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3541 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3542 "with data=journal disables delayed "
3543 "allocation and O_DIRECT support!\n");
3544 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3545 ext4_msg(sb, KERN_ERR, "can't mount with "
3546 "both data=journal and delalloc");
3547 goto failed_mount;
3548 }
3549 if (test_opt(sb, DIOREAD_NOLOCK)) {
3550 ext4_msg(sb, KERN_ERR, "can't mount with "
3551 "both data=journal and dioread_nolock");
3552 goto failed_mount;
3553 }
3554 if (test_opt(sb, DAX)) {
3555 ext4_msg(sb, KERN_ERR, "can't mount with "
3556 "both data=journal and dax");
3557 goto failed_mount;
3558 }
3559 if (ext4_has_feature_encrypt(sb)) {
3560 ext4_msg(sb, KERN_WARNING,
3561 "encrypted files will use data=ordered "
3562 "instead of data journaling mode");
3563 }
3564 if (test_opt(sb, DELALLOC))
3565 clear_opt(sb, DELALLOC);
3566 } else {
3567 sb->s_iflags |= SB_I_CGROUPWB;
3568 }
3569
3570 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3571 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3572
3573 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3574 (ext4_has_compat_features(sb) ||
3575 ext4_has_ro_compat_features(sb) ||
3576 ext4_has_incompat_features(sb)))
3577 ext4_msg(sb, KERN_WARNING,
3578 "feature flags set on rev 0 fs, "
3579 "running e2fsck is recommended");
3580
3581 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3582 set_opt2(sb, HURD_COMPAT);
3583 if (ext4_has_feature_64bit(sb)) {
3584 ext4_msg(sb, KERN_ERR,
3585 "The Hurd can't support 64-bit file systems");
3586 goto failed_mount;
3587 }
3588 }
3589
3590 if (IS_EXT2_SB(sb)) {
3591 if (ext2_feature_set_ok(sb))
3592 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3593 "using the ext4 subsystem");
3594 else {
3595 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3596 "to feature incompatibilities");
3597 goto failed_mount;
3598 }
3599 }
3600
3601 if (IS_EXT3_SB(sb)) {
3602 if (ext3_feature_set_ok(sb))
3603 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3604 "using the ext4 subsystem");
3605 else {
3606 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3607 "to feature incompatibilities");
3608 goto failed_mount;
3609 }
3610 }
3611
3612 /*
3613 * Check feature flags regardless of the revision level, since we
3614 * previously didn't change the revision level when setting the flags,
3615 * so there is a chance incompat flags are set on a rev 0 filesystem.
3616 */
3617 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3618 goto failed_mount;
3619
3620 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3621 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3622 blocksize > EXT4_MAX_BLOCK_SIZE) {
3623 ext4_msg(sb, KERN_ERR,
3624 "Unsupported filesystem blocksize %d (%d log_block_size)",
3625 blocksize, le32_to_cpu(es->s_log_block_size));
3626 goto failed_mount;
3627 }
3628 if (le32_to_cpu(es->s_log_block_size) >
3629 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3630 ext4_msg(sb, KERN_ERR,
3631 "Invalid log block size: %u",
3632 le32_to_cpu(es->s_log_block_size));
3633 goto failed_mount;
3634 }
3635
3636 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3637 ext4_msg(sb, KERN_ERR,
3638 "Number of reserved GDT blocks insanely large: %d",
3639 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3640 goto failed_mount;
3641 }
3642
3643 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3644 err = bdev_dax_supported(sb, blocksize);
3645 if (err)
3646 goto failed_mount;
3647 }
3648
3649 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3650 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3651 es->s_encryption_level);
3652 goto failed_mount;
3653 }
3654
3655 if (sb->s_blocksize != blocksize) {
3656 /* Validate the filesystem blocksize */
3657 if (!sb_set_blocksize(sb, blocksize)) {
3658 ext4_msg(sb, KERN_ERR, "bad block size %d",
3659 blocksize);
3660 goto failed_mount;
3661 }
3662
3663 brelse(bh);
3664 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3665 offset = do_div(logical_sb_block, blocksize);
3666 bh = sb_bread_unmovable(sb, logical_sb_block);
3667 if (!bh) {
3668 ext4_msg(sb, KERN_ERR,
3669 "Can't read superblock on 2nd try");
3670 goto failed_mount;
3671 }
3672 es = (struct ext4_super_block *)(bh->b_data + offset);
3673 sbi->s_es = es;
3674 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3675 ext4_msg(sb, KERN_ERR,
3676 "Magic mismatch, very weird!");
3677 goto failed_mount;
3678 }
3679 }
3680
3681 has_huge_files = ext4_has_feature_huge_file(sb);
3682 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3683 has_huge_files);
3684 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3685
3686 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3687 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3688 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3689 } else {
3690 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3691 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3692 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3693 (!is_power_of_2(sbi->s_inode_size)) ||
3694 (sbi->s_inode_size > blocksize)) {
3695 ext4_msg(sb, KERN_ERR,
3696 "unsupported inode size: %d",
3697 sbi->s_inode_size);
3698 goto failed_mount;
3699 }
3700 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3701 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3702 }
3703
3704 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3705 if (ext4_has_feature_64bit(sb)) {
3706 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3707 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3708 !is_power_of_2(sbi->s_desc_size)) {
3709 ext4_msg(sb, KERN_ERR,
3710 "unsupported descriptor size %lu",
3711 sbi->s_desc_size);
3712 goto failed_mount;
3713 }
3714 } else
3715 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3716
3717 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3718 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3719
3720 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3721 if (sbi->s_inodes_per_block == 0)
3722 goto cantfind_ext4;
3723 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3724 sbi->s_inodes_per_group > blocksize * 8) {
3725 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3726 sbi->s_blocks_per_group);
3727 goto failed_mount;
3728 }
3729 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3730 sbi->s_inodes_per_block;
3731 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3732 sbi->s_sbh = bh;
3733 sbi->s_mount_state = le16_to_cpu(es->s_state);
3734 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3735 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3736
3737 for (i = 0; i < 4; i++)
3738 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3739 sbi->s_def_hash_version = es->s_def_hash_version;
3740 if (ext4_has_feature_dir_index(sb)) {
3741 i = le32_to_cpu(es->s_flags);
3742 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3743 sbi->s_hash_unsigned = 3;
3744 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3745 #ifdef __CHAR_UNSIGNED__
3746 if (!(sb->s_flags & MS_RDONLY))
3747 es->s_flags |=
3748 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3749 sbi->s_hash_unsigned = 3;
3750 #else
3751 if (!(sb->s_flags & MS_RDONLY))
3752 es->s_flags |=
3753 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3754 #endif
3755 }
3756 }
3757
3758 /* Handle clustersize */
3759 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3760 has_bigalloc = ext4_has_feature_bigalloc(sb);
3761 if (has_bigalloc) {
3762 if (clustersize < blocksize) {
3763 ext4_msg(sb, KERN_ERR,
3764 "cluster size (%d) smaller than "
3765 "block size (%d)", clustersize, blocksize);
3766 goto failed_mount;
3767 }
3768 if (le32_to_cpu(es->s_log_cluster_size) >
3769 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3770 ext4_msg(sb, KERN_ERR,
3771 "Invalid log cluster size: %u",
3772 le32_to_cpu(es->s_log_cluster_size));
3773 goto failed_mount;
3774 }
3775 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3776 le32_to_cpu(es->s_log_block_size);
3777 sbi->s_clusters_per_group =
3778 le32_to_cpu(es->s_clusters_per_group);
3779 if (sbi->s_clusters_per_group > blocksize * 8) {
3780 ext4_msg(sb, KERN_ERR,
3781 "#clusters per group too big: %lu",
3782 sbi->s_clusters_per_group);
3783 goto failed_mount;
3784 }
3785 if (sbi->s_blocks_per_group !=
3786 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3787 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3788 "clusters per group (%lu) inconsistent",
3789 sbi->s_blocks_per_group,
3790 sbi->s_clusters_per_group);
3791 goto failed_mount;
3792 }
3793 } else {
3794 if (clustersize != blocksize) {
3795 ext4_warning(sb, "fragment/cluster size (%d) != "
3796 "block size (%d)", clustersize,
3797 blocksize);
3798 clustersize = blocksize;
3799 }
3800 if (sbi->s_blocks_per_group > blocksize * 8) {
3801 ext4_msg(sb, KERN_ERR,
3802 "#blocks per group too big: %lu",
3803 sbi->s_blocks_per_group);
3804 goto failed_mount;
3805 }
3806 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3807 sbi->s_cluster_bits = 0;
3808 }
3809 sbi->s_cluster_ratio = clustersize / blocksize;
3810
3811 /* Do we have standard group size of clustersize * 8 blocks ? */
3812 if (sbi->s_blocks_per_group == clustersize << 3)
3813 set_opt2(sb, STD_GROUP_SIZE);
3814
3815 /*
3816 * Test whether we have more sectors than will fit in sector_t,
3817 * and whether the max offset is addressable by the page cache.
3818 */
3819 err = generic_check_addressable(sb->s_blocksize_bits,
3820 ext4_blocks_count(es));
3821 if (err) {
3822 ext4_msg(sb, KERN_ERR, "filesystem"
3823 " too large to mount safely on this system");
3824 if (sizeof(sector_t) < 8)
3825 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3826 goto failed_mount;
3827 }
3828
3829 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3830 goto cantfind_ext4;
3831
3832 /* check blocks count against device size */
3833 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3834 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3835 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3836 "exceeds size of device (%llu blocks)",
3837 ext4_blocks_count(es), blocks_count);
3838 goto failed_mount;
3839 }
3840
3841 /*
3842 * It makes no sense for the first data block to be beyond the end
3843 * of the filesystem.
3844 */
3845 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3846 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3847 "block %u is beyond end of filesystem (%llu)",
3848 le32_to_cpu(es->s_first_data_block),
3849 ext4_blocks_count(es));
3850 goto failed_mount;
3851 }
3852 blocks_count = (ext4_blocks_count(es) -
3853 le32_to_cpu(es->s_first_data_block) +
3854 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3855 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3856 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3857 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3858 "(block count %llu, first data block %u, "
3859 "blocks per group %lu)", sbi->s_groups_count,
3860 ext4_blocks_count(es),
3861 le32_to_cpu(es->s_first_data_block),
3862 EXT4_BLOCKS_PER_GROUP(sb));
3863 goto failed_mount;
3864 }
3865 sbi->s_groups_count = blocks_count;
3866 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3867 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3868 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3869 EXT4_DESC_PER_BLOCK(sb);
3870 if (ext4_has_feature_meta_bg(sb)) {
3871 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3872 ext4_msg(sb, KERN_WARNING,
3873 "first meta block group too large: %u "
3874 "(group descriptor block count %u)",
3875 le32_to_cpu(es->s_first_meta_bg), db_count);
3876 goto failed_mount;
3877 }
3878 }
3879 sbi->s_group_desc = ext4_kvmalloc(db_count *
3880 sizeof(struct buffer_head *),
3881 GFP_KERNEL);
3882 if (sbi->s_group_desc == NULL) {
3883 ext4_msg(sb, KERN_ERR, "not enough memory");
3884 ret = -ENOMEM;
3885 goto failed_mount;
3886 }
3887
3888 bgl_lock_init(sbi->s_blockgroup_lock);
3889
3890 for (i = 0; i < db_count; i++) {
3891 block = descriptor_loc(sb, logical_sb_block, i);
3892 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3893 if (!sbi->s_group_desc[i]) {
3894 ext4_msg(sb, KERN_ERR,
3895 "can't read group descriptor %d", i);
3896 db_count = i;
3897 goto failed_mount2;
3898 }
3899 }
3900 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3901 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3902 ret = -EFSCORRUPTED;
3903 goto failed_mount2;
3904 }
3905
3906 sbi->s_gdb_count = db_count;
3907 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3908 spin_lock_init(&sbi->s_next_gen_lock);
3909
3910 setup_timer(&sbi->s_err_report, print_daily_error_info,
3911 (unsigned long) sb);
3912
3913 /* Register extent status tree shrinker */
3914 if (ext4_es_register_shrinker(sbi))
3915 goto failed_mount3;
3916
3917 sbi->s_stripe = ext4_get_stripe_size(sbi);
3918 sbi->s_extent_max_zeroout_kb = 32;
3919
3920 /*
3921 * set up enough so that it can read an inode
3922 */
3923 sb->s_op = &ext4_sops;
3924 sb->s_export_op = &ext4_export_ops;
3925 sb->s_xattr = ext4_xattr_handlers;
3926 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3927 sb->s_cop = &ext4_cryptops;
3928 #endif
3929 #ifdef CONFIG_QUOTA
3930 sb->dq_op = &ext4_quota_operations;
3931 if (ext4_has_feature_quota(sb))
3932 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3933 else
3934 sb->s_qcop = &ext4_qctl_operations;
3935 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3936 #endif
3937 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3938
3939 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3940 mutex_init(&sbi->s_orphan_lock);
3941
3942 sb->s_root = NULL;
3943
3944 needs_recovery = (es->s_last_orphan != 0 ||
3945 ext4_has_feature_journal_needs_recovery(sb));
3946
3947 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3948 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3949 goto failed_mount3a;
3950
3951 /*
3952 * The first inode we look at is the journal inode. Don't try
3953 * root first: it may be modified in the journal!
3954 */
3955 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3956 err = ext4_load_journal(sb, es, journal_devnum);
3957 if (err)
3958 goto failed_mount3a;
3959 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3960 ext4_has_feature_journal_needs_recovery(sb)) {
3961 ext4_msg(sb, KERN_ERR, "required journal recovery "
3962 "suppressed and not mounted read-only");
3963 goto failed_mount_wq;
3964 } else {
3965 /* Nojournal mode, all journal mount options are illegal */
3966 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3967 ext4_msg(sb, KERN_ERR, "can't mount with "
3968 "journal_checksum, fs mounted w/o journal");
3969 goto failed_mount_wq;
3970 }
3971 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3972 ext4_msg(sb, KERN_ERR, "can't mount with "
3973 "journal_async_commit, fs mounted w/o journal");
3974 goto failed_mount_wq;
3975 }
3976 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3977 ext4_msg(sb, KERN_ERR, "can't mount with "
3978 "commit=%lu, fs mounted w/o journal",
3979 sbi->s_commit_interval / HZ);
3980 goto failed_mount_wq;
3981 }
3982 if (EXT4_MOUNT_DATA_FLAGS &
3983 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3984 ext4_msg(sb, KERN_ERR, "can't mount with "
3985 "data=, fs mounted w/o journal");
3986 goto failed_mount_wq;
3987 }
3988 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3989 clear_opt(sb, JOURNAL_CHECKSUM);
3990 clear_opt(sb, DATA_FLAGS);
3991 sbi->s_journal = NULL;
3992 needs_recovery = 0;
3993 goto no_journal;
3994 }
3995
3996 if (ext4_has_feature_64bit(sb) &&
3997 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3998 JBD2_FEATURE_INCOMPAT_64BIT)) {
3999 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4000 goto failed_mount_wq;
4001 }
4002
4003 if (!set_journal_csum_feature_set(sb)) {
4004 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4005 "feature set");
4006 goto failed_mount_wq;
4007 }
4008
4009 /* We have now updated the journal if required, so we can
4010 * validate the data journaling mode. */
4011 switch (test_opt(sb, DATA_FLAGS)) {
4012 case 0:
4013 /* No mode set, assume a default based on the journal
4014 * capabilities: ORDERED_DATA if the journal can
4015 * cope, else JOURNAL_DATA
4016 */
4017 if (jbd2_journal_check_available_features
4018 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4019 set_opt(sb, ORDERED_DATA);
4020 else
4021 set_opt(sb, JOURNAL_DATA);
4022 break;
4023
4024 case EXT4_MOUNT_ORDERED_DATA:
4025 case EXT4_MOUNT_WRITEBACK_DATA:
4026 if (!jbd2_journal_check_available_features
4027 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4028 ext4_msg(sb, KERN_ERR, "Journal does not support "
4029 "requested data journaling mode");
4030 goto failed_mount_wq;
4031 }
4032 default:
4033 break;
4034 }
4035 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4036
4037 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4038
4039 no_journal:
4040 sbi->s_mb_cache = ext4_xattr_create_cache();
4041 if (!sbi->s_mb_cache) {
4042 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4043 goto failed_mount_wq;
4044 }
4045
4046 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4047 (blocksize != PAGE_SIZE)) {
4048 ext4_msg(sb, KERN_ERR,
4049 "Unsupported blocksize for fs encryption");
4050 goto failed_mount_wq;
4051 }
4052
4053 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4054 !ext4_has_feature_encrypt(sb)) {
4055 ext4_set_feature_encrypt(sb);
4056 ext4_commit_super(sb, 1);
4057 }
4058
4059 /*
4060 * Get the # of file system overhead blocks from the
4061 * superblock if present.
4062 */
4063 if (es->s_overhead_clusters)
4064 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4065 else {
4066 err = ext4_calculate_overhead(sb);
4067 if (err)
4068 goto failed_mount_wq;
4069 }
4070
4071 /*
4072 * The maximum number of concurrent works can be high and
4073 * concurrency isn't really necessary. Limit it to 1.
4074 */
4075 EXT4_SB(sb)->rsv_conversion_wq =
4076 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4077 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4078 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4079 ret = -ENOMEM;
4080 goto failed_mount4;
4081 }
4082
4083 /*
4084 * The jbd2_journal_load will have done any necessary log recovery,
4085 * so we can safely mount the rest of the filesystem now.
4086 */
4087
4088 root = ext4_iget(sb, EXT4_ROOT_INO);
4089 if (IS_ERR(root)) {
4090 ext4_msg(sb, KERN_ERR, "get root inode failed");
4091 ret = PTR_ERR(root);
4092 root = NULL;
4093 goto failed_mount4;
4094 }
4095 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4096 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4097 iput(root);
4098 goto failed_mount4;
4099 }
4100 sb->s_root = d_make_root(root);
4101 if (!sb->s_root) {
4102 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4103 ret = -ENOMEM;
4104 goto failed_mount4;
4105 }
4106
4107 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4108 sb->s_flags |= MS_RDONLY;
4109
4110 /* determine the minimum size of new large inodes, if present */
4111 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4112 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4113 EXT4_GOOD_OLD_INODE_SIZE;
4114 if (ext4_has_feature_extra_isize(sb)) {
4115 if (sbi->s_want_extra_isize <
4116 le16_to_cpu(es->s_want_extra_isize))
4117 sbi->s_want_extra_isize =
4118 le16_to_cpu(es->s_want_extra_isize);
4119 if (sbi->s_want_extra_isize <
4120 le16_to_cpu(es->s_min_extra_isize))
4121 sbi->s_want_extra_isize =
4122 le16_to_cpu(es->s_min_extra_isize);
4123 }
4124 }
4125 /* Check if enough inode space is available */
4126 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4127 sbi->s_inode_size) {
4128 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4129 EXT4_GOOD_OLD_INODE_SIZE;
4130 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4131 "available");
4132 }
4133
4134 ext4_set_resv_clusters(sb);
4135
4136 err = ext4_setup_system_zone(sb);
4137 if (err) {
4138 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4139 "zone (%d)", err);
4140 goto failed_mount4a;
4141 }
4142
4143 ext4_ext_init(sb);
4144 err = ext4_mb_init(sb);
4145 if (err) {
4146 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4147 err);
4148 goto failed_mount5;
4149 }
4150
4151 block = ext4_count_free_clusters(sb);
4152 ext4_free_blocks_count_set(sbi->s_es,
4153 EXT4_C2B(sbi, block));
4154 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4155 GFP_KERNEL);
4156 if (!err) {
4157 unsigned long freei = ext4_count_free_inodes(sb);
4158 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4159 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4160 GFP_KERNEL);
4161 }
4162 if (!err)
4163 err = percpu_counter_init(&sbi->s_dirs_counter,
4164 ext4_count_dirs(sb), GFP_KERNEL);
4165 if (!err)
4166 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4167 GFP_KERNEL);
4168 if (!err)
4169 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4170
4171 if (err) {
4172 ext4_msg(sb, KERN_ERR, "insufficient memory");
4173 goto failed_mount6;
4174 }
4175
4176 if (ext4_has_feature_flex_bg(sb))
4177 if (!ext4_fill_flex_info(sb)) {
4178 ext4_msg(sb, KERN_ERR,
4179 "unable to initialize "
4180 "flex_bg meta info!");
4181 goto failed_mount6;
4182 }
4183
4184 err = ext4_register_li_request(sb, first_not_zeroed);
4185 if (err)
4186 goto failed_mount6;
4187
4188 err = ext4_register_sysfs(sb);
4189 if (err)
4190 goto failed_mount7;
4191
4192 #ifdef CONFIG_QUOTA
4193 /* Enable quota usage during mount. */
4194 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4195 err = ext4_enable_quotas(sb);
4196 if (err)
4197 goto failed_mount8;
4198 }
4199 #endif /* CONFIG_QUOTA */
4200
4201 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4202 ext4_orphan_cleanup(sb, es);
4203 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4204 if (needs_recovery) {
4205 ext4_msg(sb, KERN_INFO, "recovery complete");
4206 ext4_mark_recovery_complete(sb, es);
4207 }
4208 if (EXT4_SB(sb)->s_journal) {
4209 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4210 descr = " journalled data mode";
4211 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4212 descr = " ordered data mode";
4213 else
4214 descr = " writeback data mode";
4215 } else
4216 descr = "out journal";
4217
4218 if (test_opt(sb, DISCARD)) {
4219 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4220 if (!blk_queue_discard(q))
4221 ext4_msg(sb, KERN_WARNING,
4222 "mounting with \"discard\" option, but "
4223 "the device does not support discard");
4224 }
4225
4226 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4227 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4228 "Opts: %.*s%s%s", descr,
4229 (int) sizeof(sbi->s_es->s_mount_opts),
4230 sbi->s_es->s_mount_opts,
4231 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4232
4233 if (es->s_error_count)
4234 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4235
4236 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4237 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4238 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4239 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4240
4241 kfree(orig_data);
4242 return 0;
4243
4244 cantfind_ext4:
4245 if (!silent)
4246 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4247 goto failed_mount;
4248
4249 #ifdef CONFIG_QUOTA
4250 failed_mount8:
4251 ext4_unregister_sysfs(sb);
4252 #endif
4253 failed_mount7:
4254 ext4_unregister_li_request(sb);
4255 failed_mount6:
4256 ext4_mb_release(sb);
4257 if (sbi->s_flex_groups)
4258 kvfree(sbi->s_flex_groups);
4259 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4260 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4261 percpu_counter_destroy(&sbi->s_dirs_counter);
4262 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4263 failed_mount5:
4264 ext4_ext_release(sb);
4265 ext4_release_system_zone(sb);
4266 failed_mount4a:
4267 dput(sb->s_root);
4268 sb->s_root = NULL;
4269 failed_mount4:
4270 ext4_msg(sb, KERN_ERR, "mount failed");
4271 if (EXT4_SB(sb)->rsv_conversion_wq)
4272 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4273 failed_mount_wq:
4274 if (sbi->s_mb_cache) {
4275 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4276 sbi->s_mb_cache = NULL;
4277 }
4278 if (sbi->s_journal) {
4279 jbd2_journal_destroy(sbi->s_journal);
4280 sbi->s_journal = NULL;
4281 }
4282 failed_mount3a:
4283 ext4_es_unregister_shrinker(sbi);
4284 failed_mount3:
4285 del_timer_sync(&sbi->s_err_report);
4286 if (sbi->s_mmp_tsk)
4287 kthread_stop(sbi->s_mmp_tsk);
4288 failed_mount2:
4289 for (i = 0; i < db_count; i++)
4290 brelse(sbi->s_group_desc[i]);
4291 kvfree(sbi->s_group_desc);
4292 failed_mount:
4293 if (sbi->s_chksum_driver)
4294 crypto_free_shash(sbi->s_chksum_driver);
4295 #ifdef CONFIG_QUOTA
4296 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4297 kfree(sbi->s_qf_names[i]);
4298 #endif
4299 ext4_blkdev_remove(sbi);
4300 brelse(bh);
4301 out_fail:
4302 sb->s_fs_info = NULL;
4303 kfree(sbi->s_blockgroup_lock);
4304 out_free_base:
4305 kfree(sbi);
4306 kfree(orig_data);
4307 return err ? err : ret;
4308 }
4309
4310 /*
4311 * Setup any per-fs journal parameters now. We'll do this both on
4312 * initial mount, once the journal has been initialised but before we've
4313 * done any recovery; and again on any subsequent remount.
4314 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4315 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4316 {
4317 struct ext4_sb_info *sbi = EXT4_SB(sb);
4318
4319 journal->j_commit_interval = sbi->s_commit_interval;
4320 journal->j_min_batch_time = sbi->s_min_batch_time;
4321 journal->j_max_batch_time = sbi->s_max_batch_time;
4322
4323 write_lock(&journal->j_state_lock);
4324 if (test_opt(sb, BARRIER))
4325 journal->j_flags |= JBD2_BARRIER;
4326 else
4327 journal->j_flags &= ~JBD2_BARRIER;
4328 if (test_opt(sb, DATA_ERR_ABORT))
4329 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4330 else
4331 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4332 write_unlock(&journal->j_state_lock);
4333 }
4334
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)4335 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4336 unsigned int journal_inum)
4337 {
4338 struct inode *journal_inode;
4339
4340 /*
4341 * Test for the existence of a valid inode on disk. Bad things
4342 * happen if we iget() an unused inode, as the subsequent iput()
4343 * will try to delete it.
4344 */
4345 journal_inode = ext4_iget(sb, journal_inum);
4346 if (IS_ERR(journal_inode)) {
4347 ext4_msg(sb, KERN_ERR, "no journal found");
4348 return NULL;
4349 }
4350 if (!journal_inode->i_nlink) {
4351 make_bad_inode(journal_inode);
4352 iput(journal_inode);
4353 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4354 return NULL;
4355 }
4356
4357 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4358 journal_inode, journal_inode->i_size);
4359 if (!S_ISREG(journal_inode->i_mode)) {
4360 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4361 iput(journal_inode);
4362 return NULL;
4363 }
4364 return journal_inode;
4365 }
4366
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4367 static journal_t *ext4_get_journal(struct super_block *sb,
4368 unsigned int journal_inum)
4369 {
4370 struct inode *journal_inode;
4371 journal_t *journal;
4372
4373 BUG_ON(!ext4_has_feature_journal(sb));
4374
4375 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4376 if (!journal_inode)
4377 return NULL;
4378
4379 journal = jbd2_journal_init_inode(journal_inode);
4380 if (!journal) {
4381 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4382 iput(journal_inode);
4383 return NULL;
4384 }
4385 journal->j_private = sb;
4386 ext4_init_journal_params(sb, journal);
4387 return journal;
4388 }
4389
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4390 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4391 dev_t j_dev)
4392 {
4393 struct buffer_head *bh;
4394 journal_t *journal;
4395 ext4_fsblk_t start;
4396 ext4_fsblk_t len;
4397 int hblock, blocksize;
4398 ext4_fsblk_t sb_block;
4399 unsigned long offset;
4400 struct ext4_super_block *es;
4401 struct block_device *bdev;
4402
4403 BUG_ON(!ext4_has_feature_journal(sb));
4404
4405 bdev = ext4_blkdev_get(j_dev, sb);
4406 if (bdev == NULL)
4407 return NULL;
4408
4409 blocksize = sb->s_blocksize;
4410 hblock = bdev_logical_block_size(bdev);
4411 if (blocksize < hblock) {
4412 ext4_msg(sb, KERN_ERR,
4413 "blocksize too small for journal device");
4414 goto out_bdev;
4415 }
4416
4417 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4418 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4419 set_blocksize(bdev, blocksize);
4420 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4421 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4422 "external journal");
4423 goto out_bdev;
4424 }
4425
4426 es = (struct ext4_super_block *) (bh->b_data + offset);
4427 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4428 !(le32_to_cpu(es->s_feature_incompat) &
4429 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4430 ext4_msg(sb, KERN_ERR, "external journal has "
4431 "bad superblock");
4432 brelse(bh);
4433 goto out_bdev;
4434 }
4435
4436 if ((le32_to_cpu(es->s_feature_ro_compat) &
4437 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4438 es->s_checksum != ext4_superblock_csum(sb, es)) {
4439 ext4_msg(sb, KERN_ERR, "external journal has "
4440 "corrupt superblock");
4441 brelse(bh);
4442 goto out_bdev;
4443 }
4444
4445 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4446 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4447 brelse(bh);
4448 goto out_bdev;
4449 }
4450
4451 len = ext4_blocks_count(es);
4452 start = sb_block + 1;
4453 brelse(bh); /* we're done with the superblock */
4454
4455 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4456 start, len, blocksize);
4457 if (!journal) {
4458 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4459 goto out_bdev;
4460 }
4461 journal->j_private = sb;
4462 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4463 wait_on_buffer(journal->j_sb_buffer);
4464 if (!buffer_uptodate(journal->j_sb_buffer)) {
4465 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4466 goto out_journal;
4467 }
4468 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4469 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4470 "user (unsupported) - %d",
4471 be32_to_cpu(journal->j_superblock->s_nr_users));
4472 goto out_journal;
4473 }
4474 EXT4_SB(sb)->journal_bdev = bdev;
4475 ext4_init_journal_params(sb, journal);
4476 return journal;
4477
4478 out_journal:
4479 jbd2_journal_destroy(journal);
4480 out_bdev:
4481 ext4_blkdev_put(bdev);
4482 return NULL;
4483 }
4484
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4485 static int ext4_load_journal(struct super_block *sb,
4486 struct ext4_super_block *es,
4487 unsigned long journal_devnum)
4488 {
4489 journal_t *journal;
4490 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4491 dev_t journal_dev;
4492 int err = 0;
4493 int really_read_only;
4494
4495 BUG_ON(!ext4_has_feature_journal(sb));
4496
4497 if (journal_devnum &&
4498 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4499 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4500 "numbers have changed");
4501 journal_dev = new_decode_dev(journal_devnum);
4502 } else
4503 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4504
4505 really_read_only = bdev_read_only(sb->s_bdev);
4506
4507 /*
4508 * Are we loading a blank journal or performing recovery after a
4509 * crash? For recovery, we need to check in advance whether we
4510 * can get read-write access to the device.
4511 */
4512 if (ext4_has_feature_journal_needs_recovery(sb)) {
4513 if (sb->s_flags & MS_RDONLY) {
4514 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4515 "required on readonly filesystem");
4516 if (really_read_only) {
4517 ext4_msg(sb, KERN_ERR, "write access "
4518 "unavailable, cannot proceed");
4519 return -EROFS;
4520 }
4521 ext4_msg(sb, KERN_INFO, "write access will "
4522 "be enabled during recovery");
4523 }
4524 }
4525
4526 if (journal_inum && journal_dev) {
4527 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4528 "and inode journals!");
4529 return -EINVAL;
4530 }
4531
4532 if (journal_inum) {
4533 if (!(journal = ext4_get_journal(sb, journal_inum)))
4534 return -EINVAL;
4535 } else {
4536 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4537 return -EINVAL;
4538 }
4539
4540 if (!(journal->j_flags & JBD2_BARRIER))
4541 ext4_msg(sb, KERN_INFO, "barriers disabled");
4542
4543 if (!ext4_has_feature_journal_needs_recovery(sb))
4544 err = jbd2_journal_wipe(journal, !really_read_only);
4545 if (!err) {
4546 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4547 if (save)
4548 memcpy(save, ((char *) es) +
4549 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4550 err = jbd2_journal_load(journal);
4551 if (save)
4552 memcpy(((char *) es) + EXT4_S_ERR_START,
4553 save, EXT4_S_ERR_LEN);
4554 kfree(save);
4555 }
4556
4557 if (err) {
4558 ext4_msg(sb, KERN_ERR, "error loading journal");
4559 jbd2_journal_destroy(journal);
4560 return err;
4561 }
4562
4563 EXT4_SB(sb)->s_journal = journal;
4564 ext4_clear_journal_err(sb, es);
4565
4566 if (!really_read_only && journal_devnum &&
4567 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4568 es->s_journal_dev = cpu_to_le32(journal_devnum);
4569
4570 /* Make sure we flush the recovery flag to disk. */
4571 ext4_commit_super(sb, 1);
4572 }
4573
4574 return 0;
4575 }
4576
ext4_commit_super(struct super_block * sb,int sync)4577 static int ext4_commit_super(struct super_block *sb, int sync)
4578 {
4579 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4580 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4581 int error = 0;
4582
4583 if (!sbh || block_device_ejected(sb))
4584 return error;
4585 /*
4586 * If the file system is mounted read-only, don't update the
4587 * superblock write time. This avoids updating the superblock
4588 * write time when we are mounting the root file system
4589 * read/only but we need to replay the journal; at that point,
4590 * for people who are east of GMT and who make their clock
4591 * tick in localtime for Windows bug-for-bug compatibility,
4592 * the clock is set in the future, and this will cause e2fsck
4593 * to complain and force a full file system check.
4594 */
4595 if (!(sb->s_flags & MS_RDONLY))
4596 es->s_wtime = cpu_to_le32(get_seconds());
4597 if (sb->s_bdev->bd_part)
4598 es->s_kbytes_written =
4599 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4600 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4601 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4602 else
4603 es->s_kbytes_written =
4604 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4605 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4606 ext4_free_blocks_count_set(es,
4607 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4608 &EXT4_SB(sb)->s_freeclusters_counter)));
4609 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4610 es->s_free_inodes_count =
4611 cpu_to_le32(percpu_counter_sum_positive(
4612 &EXT4_SB(sb)->s_freeinodes_counter));
4613 BUFFER_TRACE(sbh, "marking dirty");
4614 ext4_superblock_csum_set(sb);
4615 if (sync)
4616 lock_buffer(sbh);
4617 if (buffer_write_io_error(sbh)) {
4618 /*
4619 * Oh, dear. A previous attempt to write the
4620 * superblock failed. This could happen because the
4621 * USB device was yanked out. Or it could happen to
4622 * be a transient write error and maybe the block will
4623 * be remapped. Nothing we can do but to retry the
4624 * write and hope for the best.
4625 */
4626 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4627 "superblock detected");
4628 clear_buffer_write_io_error(sbh);
4629 set_buffer_uptodate(sbh);
4630 }
4631 mark_buffer_dirty(sbh);
4632 if (sync) {
4633 unlock_buffer(sbh);
4634 error = __sync_dirty_buffer(sbh,
4635 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4636 if (error)
4637 return error;
4638
4639 error = buffer_write_io_error(sbh);
4640 if (error) {
4641 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4642 "superblock");
4643 clear_buffer_write_io_error(sbh);
4644 set_buffer_uptodate(sbh);
4645 }
4646 }
4647 return error;
4648 }
4649
4650 /*
4651 * Have we just finished recovery? If so, and if we are mounting (or
4652 * remounting) the filesystem readonly, then we will end up with a
4653 * consistent fs on disk. Record that fact.
4654 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4655 static void ext4_mark_recovery_complete(struct super_block *sb,
4656 struct ext4_super_block *es)
4657 {
4658 journal_t *journal = EXT4_SB(sb)->s_journal;
4659
4660 if (!ext4_has_feature_journal(sb)) {
4661 BUG_ON(journal != NULL);
4662 return;
4663 }
4664 jbd2_journal_lock_updates(journal);
4665 if (jbd2_journal_flush(journal) < 0)
4666 goto out;
4667
4668 if (ext4_has_feature_journal_needs_recovery(sb) &&
4669 sb->s_flags & MS_RDONLY) {
4670 ext4_clear_feature_journal_needs_recovery(sb);
4671 ext4_commit_super(sb, 1);
4672 }
4673
4674 out:
4675 jbd2_journal_unlock_updates(journal);
4676 }
4677
4678 /*
4679 * If we are mounting (or read-write remounting) a filesystem whose journal
4680 * has recorded an error from a previous lifetime, move that error to the
4681 * main filesystem now.
4682 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4683 static void ext4_clear_journal_err(struct super_block *sb,
4684 struct ext4_super_block *es)
4685 {
4686 journal_t *journal;
4687 int j_errno;
4688 const char *errstr;
4689
4690 BUG_ON(!ext4_has_feature_journal(sb));
4691
4692 journal = EXT4_SB(sb)->s_journal;
4693
4694 /*
4695 * Now check for any error status which may have been recorded in the
4696 * journal by a prior ext4_error() or ext4_abort()
4697 */
4698
4699 j_errno = jbd2_journal_errno(journal);
4700 if (j_errno) {
4701 char nbuf[16];
4702
4703 errstr = ext4_decode_error(sb, j_errno, nbuf);
4704 ext4_warning(sb, "Filesystem error recorded "
4705 "from previous mount: %s", errstr);
4706 ext4_warning(sb, "Marking fs in need of filesystem check.");
4707
4708 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4709 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4710 ext4_commit_super(sb, 1);
4711
4712 jbd2_journal_clear_err(journal);
4713 jbd2_journal_update_sb_errno(journal);
4714 }
4715 }
4716
4717 /*
4718 * Force the running and committing transactions to commit,
4719 * and wait on the commit.
4720 */
ext4_force_commit(struct super_block * sb)4721 int ext4_force_commit(struct super_block *sb)
4722 {
4723 journal_t *journal;
4724
4725 if (sb->s_flags & MS_RDONLY)
4726 return 0;
4727
4728 journal = EXT4_SB(sb)->s_journal;
4729 return ext4_journal_force_commit(journal);
4730 }
4731
ext4_sync_fs(struct super_block * sb,int wait)4732 static int ext4_sync_fs(struct super_block *sb, int wait)
4733 {
4734 int ret = 0;
4735 tid_t target;
4736 bool needs_barrier = false;
4737 struct ext4_sb_info *sbi = EXT4_SB(sb);
4738
4739 trace_ext4_sync_fs(sb, wait);
4740 flush_workqueue(sbi->rsv_conversion_wq);
4741 /*
4742 * Writeback quota in non-journalled quota case - journalled quota has
4743 * no dirty dquots
4744 */
4745 dquot_writeback_dquots(sb, -1);
4746 /*
4747 * Data writeback is possible w/o journal transaction, so barrier must
4748 * being sent at the end of the function. But we can skip it if
4749 * transaction_commit will do it for us.
4750 */
4751 if (sbi->s_journal) {
4752 target = jbd2_get_latest_transaction(sbi->s_journal);
4753 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4754 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4755 needs_barrier = true;
4756
4757 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4758 if (wait)
4759 ret = jbd2_log_wait_commit(sbi->s_journal,
4760 target);
4761 }
4762 } else if (wait && test_opt(sb, BARRIER))
4763 needs_barrier = true;
4764 if (needs_barrier) {
4765 int err;
4766 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4767 if (!ret)
4768 ret = err;
4769 }
4770
4771 return ret;
4772 }
4773
4774 /*
4775 * LVM calls this function before a (read-only) snapshot is created. This
4776 * gives us a chance to flush the journal completely and mark the fs clean.
4777 *
4778 * Note that only this function cannot bring a filesystem to be in a clean
4779 * state independently. It relies on upper layer to stop all data & metadata
4780 * modifications.
4781 */
ext4_freeze(struct super_block * sb)4782 static int ext4_freeze(struct super_block *sb)
4783 {
4784 int error = 0;
4785 journal_t *journal;
4786
4787 if (sb->s_flags & MS_RDONLY)
4788 return 0;
4789
4790 journal = EXT4_SB(sb)->s_journal;
4791
4792 if (journal) {
4793 /* Now we set up the journal barrier. */
4794 jbd2_journal_lock_updates(journal);
4795
4796 /*
4797 * Don't clear the needs_recovery flag if we failed to
4798 * flush the journal.
4799 */
4800 error = jbd2_journal_flush(journal);
4801 if (error < 0)
4802 goto out;
4803
4804 /* Journal blocked and flushed, clear needs_recovery flag. */
4805 ext4_clear_feature_journal_needs_recovery(sb);
4806 }
4807
4808 error = ext4_commit_super(sb, 1);
4809 out:
4810 if (journal)
4811 /* we rely on upper layer to stop further updates */
4812 jbd2_journal_unlock_updates(journal);
4813 return error;
4814 }
4815
4816 /*
4817 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4818 * flag here, even though the filesystem is not technically dirty yet.
4819 */
ext4_unfreeze(struct super_block * sb)4820 static int ext4_unfreeze(struct super_block *sb)
4821 {
4822 if (sb->s_flags & MS_RDONLY)
4823 return 0;
4824
4825 if (EXT4_SB(sb)->s_journal) {
4826 /* Reset the needs_recovery flag before the fs is unlocked. */
4827 ext4_set_feature_journal_needs_recovery(sb);
4828 }
4829
4830 ext4_commit_super(sb, 1);
4831 return 0;
4832 }
4833
4834 /*
4835 * Structure to save mount options for ext4_remount's benefit
4836 */
4837 struct ext4_mount_options {
4838 unsigned long s_mount_opt;
4839 unsigned long s_mount_opt2;
4840 kuid_t s_resuid;
4841 kgid_t s_resgid;
4842 unsigned long s_commit_interval;
4843 u32 s_min_batch_time, s_max_batch_time;
4844 #ifdef CONFIG_QUOTA
4845 int s_jquota_fmt;
4846 char *s_qf_names[EXT4_MAXQUOTAS];
4847 #endif
4848 };
4849
ext4_remount(struct super_block * sb,int * flags,char * data)4850 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4851 {
4852 struct ext4_super_block *es;
4853 struct ext4_sb_info *sbi = EXT4_SB(sb);
4854 unsigned long old_sb_flags;
4855 struct ext4_mount_options old_opts;
4856 int enable_quota = 0;
4857 ext4_group_t g;
4858 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4859 int err = 0;
4860 #ifdef CONFIG_QUOTA
4861 int i, j;
4862 #endif
4863 char *orig_data = kstrdup(data, GFP_KERNEL);
4864
4865 /* Store the original options */
4866 old_sb_flags = sb->s_flags;
4867 old_opts.s_mount_opt = sbi->s_mount_opt;
4868 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4869 old_opts.s_resuid = sbi->s_resuid;
4870 old_opts.s_resgid = sbi->s_resgid;
4871 old_opts.s_commit_interval = sbi->s_commit_interval;
4872 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4873 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4874 #ifdef CONFIG_QUOTA
4875 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4876 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4877 if (sbi->s_qf_names[i]) {
4878 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4879 GFP_KERNEL);
4880 if (!old_opts.s_qf_names[i]) {
4881 for (j = 0; j < i; j++)
4882 kfree(old_opts.s_qf_names[j]);
4883 kfree(orig_data);
4884 return -ENOMEM;
4885 }
4886 } else
4887 old_opts.s_qf_names[i] = NULL;
4888 #endif
4889 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4890 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4891
4892 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4893 err = -EINVAL;
4894 goto restore_opts;
4895 }
4896
4897 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4898 test_opt(sb, JOURNAL_CHECKSUM)) {
4899 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4900 "during remount not supported; ignoring");
4901 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4902 }
4903
4904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4905 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4906 ext4_msg(sb, KERN_ERR, "can't mount with "
4907 "both data=journal and delalloc");
4908 err = -EINVAL;
4909 goto restore_opts;
4910 }
4911 if (test_opt(sb, DIOREAD_NOLOCK)) {
4912 ext4_msg(sb, KERN_ERR, "can't mount with "
4913 "both data=journal and dioread_nolock");
4914 err = -EINVAL;
4915 goto restore_opts;
4916 }
4917 if (test_opt(sb, DAX)) {
4918 ext4_msg(sb, KERN_ERR, "can't mount with "
4919 "both data=journal and dax");
4920 err = -EINVAL;
4921 goto restore_opts;
4922 }
4923 }
4924
4925 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4926 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4927 "dax flag with busy inodes while remounting");
4928 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4929 }
4930
4931 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4932 ext4_abort(sb, "Abort forced by user");
4933
4934 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4935 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4936
4937 es = sbi->s_es;
4938
4939 if (sbi->s_journal) {
4940 ext4_init_journal_params(sb, sbi->s_journal);
4941 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4942 }
4943
4944 if (*flags & MS_LAZYTIME)
4945 sb->s_flags |= MS_LAZYTIME;
4946
4947 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4948 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4949 err = -EROFS;
4950 goto restore_opts;
4951 }
4952
4953 if (*flags & MS_RDONLY) {
4954 err = sync_filesystem(sb);
4955 if (err < 0)
4956 goto restore_opts;
4957 err = dquot_suspend(sb, -1);
4958 if (err < 0)
4959 goto restore_opts;
4960
4961 /*
4962 * First of all, the unconditional stuff we have to do
4963 * to disable replay of the journal when we next remount
4964 */
4965 sb->s_flags |= MS_RDONLY;
4966
4967 /*
4968 * OK, test if we are remounting a valid rw partition
4969 * readonly, and if so set the rdonly flag and then
4970 * mark the partition as valid again.
4971 */
4972 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4973 (sbi->s_mount_state & EXT4_VALID_FS))
4974 es->s_state = cpu_to_le16(sbi->s_mount_state);
4975
4976 if (sbi->s_journal)
4977 ext4_mark_recovery_complete(sb, es);
4978 } else {
4979 /* Make sure we can mount this feature set readwrite */
4980 if (ext4_has_feature_readonly(sb) ||
4981 !ext4_feature_set_ok(sb, 0)) {
4982 err = -EROFS;
4983 goto restore_opts;
4984 }
4985 /*
4986 * Make sure the group descriptor checksums
4987 * are sane. If they aren't, refuse to remount r/w.
4988 */
4989 for (g = 0; g < sbi->s_groups_count; g++) {
4990 struct ext4_group_desc *gdp =
4991 ext4_get_group_desc(sb, g, NULL);
4992
4993 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4994 ext4_msg(sb, KERN_ERR,
4995 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4996 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4997 le16_to_cpu(gdp->bg_checksum));
4998 err = -EFSBADCRC;
4999 goto restore_opts;
5000 }
5001 }
5002
5003 /*
5004 * If we have an unprocessed orphan list hanging
5005 * around from a previously readonly bdev mount,
5006 * require a full umount/remount for now.
5007 */
5008 if (es->s_last_orphan) {
5009 ext4_msg(sb, KERN_WARNING, "Couldn't "
5010 "remount RDWR because of unprocessed "
5011 "orphan inode list. Please "
5012 "umount/remount instead");
5013 err = -EINVAL;
5014 goto restore_opts;
5015 }
5016
5017 /*
5018 * Mounting a RDONLY partition read-write, so reread
5019 * and store the current valid flag. (It may have
5020 * been changed by e2fsck since we originally mounted
5021 * the partition.)
5022 */
5023 if (sbi->s_journal)
5024 ext4_clear_journal_err(sb, es);
5025 sbi->s_mount_state = le16_to_cpu(es->s_state);
5026 if (!ext4_setup_super(sb, es, 0))
5027 sb->s_flags &= ~MS_RDONLY;
5028 if (ext4_has_feature_mmp(sb))
5029 if (ext4_multi_mount_protect(sb,
5030 le64_to_cpu(es->s_mmp_block))) {
5031 err = -EROFS;
5032 goto restore_opts;
5033 }
5034 enable_quota = 1;
5035 }
5036 }
5037
5038 /*
5039 * Reinitialize lazy itable initialization thread based on
5040 * current settings
5041 */
5042 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5043 ext4_unregister_li_request(sb);
5044 else {
5045 ext4_group_t first_not_zeroed;
5046 first_not_zeroed = ext4_has_uninit_itable(sb);
5047 ext4_register_li_request(sb, first_not_zeroed);
5048 }
5049
5050 ext4_setup_system_zone(sb);
5051 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5052 ext4_commit_super(sb, 1);
5053
5054 #ifdef CONFIG_QUOTA
5055 /* Release old quota file names */
5056 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5057 kfree(old_opts.s_qf_names[i]);
5058 if (enable_quota) {
5059 if (sb_any_quota_suspended(sb))
5060 dquot_resume(sb, -1);
5061 else if (ext4_has_feature_quota(sb)) {
5062 err = ext4_enable_quotas(sb);
5063 if (err)
5064 goto restore_opts;
5065 }
5066 }
5067 #endif
5068
5069 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5070 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5071 kfree(orig_data);
5072 return 0;
5073
5074 restore_opts:
5075 sb->s_flags = old_sb_flags;
5076 sbi->s_mount_opt = old_opts.s_mount_opt;
5077 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5078 sbi->s_resuid = old_opts.s_resuid;
5079 sbi->s_resgid = old_opts.s_resgid;
5080 sbi->s_commit_interval = old_opts.s_commit_interval;
5081 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5082 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5083 #ifdef CONFIG_QUOTA
5084 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5085 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5086 kfree(sbi->s_qf_names[i]);
5087 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5088 }
5089 #endif
5090 kfree(orig_data);
5091 return err;
5092 }
5093
5094 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)5095 static int ext4_statfs_project(struct super_block *sb,
5096 kprojid_t projid, struct kstatfs *buf)
5097 {
5098 struct kqid qid;
5099 struct dquot *dquot;
5100 u64 limit;
5101 u64 curblock;
5102
5103 qid = make_kqid_projid(projid);
5104 dquot = dqget(sb, qid);
5105 if (IS_ERR(dquot))
5106 return PTR_ERR(dquot);
5107 spin_lock(&dq_data_lock);
5108
5109 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5110 dquot->dq_dqb.dqb_bsoftlimit :
5111 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5112 if (limit && buf->f_blocks > limit) {
5113 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5114 buf->f_blocks = limit;
5115 buf->f_bfree = buf->f_bavail =
5116 (buf->f_blocks > curblock) ?
5117 (buf->f_blocks - curblock) : 0;
5118 }
5119
5120 limit = dquot->dq_dqb.dqb_isoftlimit ?
5121 dquot->dq_dqb.dqb_isoftlimit :
5122 dquot->dq_dqb.dqb_ihardlimit;
5123 if (limit && buf->f_files > limit) {
5124 buf->f_files = limit;
5125 buf->f_ffree =
5126 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5127 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5128 }
5129
5130 spin_unlock(&dq_data_lock);
5131 dqput(dquot);
5132 return 0;
5133 }
5134 #endif
5135
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5136 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5137 {
5138 struct super_block *sb = dentry->d_sb;
5139 struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 struct ext4_super_block *es = sbi->s_es;
5141 ext4_fsblk_t overhead = 0, resv_blocks;
5142 u64 fsid;
5143 s64 bfree;
5144 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5145
5146 if (!test_opt(sb, MINIX_DF))
5147 overhead = sbi->s_overhead;
5148
5149 buf->f_type = EXT4_SUPER_MAGIC;
5150 buf->f_bsize = sb->s_blocksize;
5151 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5152 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5153 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5154 /* prevent underflow in case that few free space is available */
5155 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5156 buf->f_bavail = buf->f_bfree -
5157 (ext4_r_blocks_count(es) + resv_blocks);
5158 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5159 buf->f_bavail = 0;
5160 buf->f_files = le32_to_cpu(es->s_inodes_count);
5161 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5162 buf->f_namelen = EXT4_NAME_LEN;
5163 fsid = le64_to_cpup((void *)es->s_uuid) ^
5164 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5165 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5166 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5167
5168 #ifdef CONFIG_QUOTA
5169 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5170 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5171 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5172 #endif
5173 return 0;
5174 }
5175
5176 /* Helper function for writing quotas on sync - we need to start transaction
5177 * before quota file is locked for write. Otherwise the are possible deadlocks:
5178 * Process 1 Process 2
5179 * ext4_create() quota_sync()
5180 * jbd2_journal_start() write_dquot()
5181 * dquot_initialize() down(dqio_mutex)
5182 * down(dqio_mutex) jbd2_journal_start()
5183 *
5184 */
5185
5186 #ifdef CONFIG_QUOTA
5187
dquot_to_inode(struct dquot * dquot)5188 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5189 {
5190 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5191 }
5192
ext4_write_dquot(struct dquot * dquot)5193 static int ext4_write_dquot(struct dquot *dquot)
5194 {
5195 int ret, err;
5196 handle_t *handle;
5197 struct inode *inode;
5198
5199 inode = dquot_to_inode(dquot);
5200 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5201 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5202 if (IS_ERR(handle))
5203 return PTR_ERR(handle);
5204 ret = dquot_commit(dquot);
5205 err = ext4_journal_stop(handle);
5206 if (!ret)
5207 ret = err;
5208 return ret;
5209 }
5210
ext4_acquire_dquot(struct dquot * dquot)5211 static int ext4_acquire_dquot(struct dquot *dquot)
5212 {
5213 int ret, err;
5214 handle_t *handle;
5215
5216 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5217 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5218 if (IS_ERR(handle))
5219 return PTR_ERR(handle);
5220 ret = dquot_acquire(dquot);
5221 err = ext4_journal_stop(handle);
5222 if (!ret)
5223 ret = err;
5224 return ret;
5225 }
5226
ext4_release_dquot(struct dquot * dquot)5227 static int ext4_release_dquot(struct dquot *dquot)
5228 {
5229 int ret, err;
5230 handle_t *handle;
5231
5232 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5233 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5234 if (IS_ERR(handle)) {
5235 /* Release dquot anyway to avoid endless cycle in dqput() */
5236 dquot_release(dquot);
5237 return PTR_ERR(handle);
5238 }
5239 ret = dquot_release(dquot);
5240 err = ext4_journal_stop(handle);
5241 if (!ret)
5242 ret = err;
5243 return ret;
5244 }
5245
ext4_mark_dquot_dirty(struct dquot * dquot)5246 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5247 {
5248 struct super_block *sb = dquot->dq_sb;
5249 struct ext4_sb_info *sbi = EXT4_SB(sb);
5250
5251 /* Are we journaling quotas? */
5252 if (ext4_has_feature_quota(sb) ||
5253 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5254 dquot_mark_dquot_dirty(dquot);
5255 return ext4_write_dquot(dquot);
5256 } else {
5257 return dquot_mark_dquot_dirty(dquot);
5258 }
5259 }
5260
ext4_write_info(struct super_block * sb,int type)5261 static int ext4_write_info(struct super_block *sb, int type)
5262 {
5263 int ret, err;
5264 handle_t *handle;
5265
5266 /* Data block + inode block */
5267 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5268 if (IS_ERR(handle))
5269 return PTR_ERR(handle);
5270 ret = dquot_commit_info(sb, type);
5271 err = ext4_journal_stop(handle);
5272 if (!ret)
5273 ret = err;
5274 return ret;
5275 }
5276
5277 /*
5278 * Turn on quotas during mount time - we need to find
5279 * the quota file and such...
5280 */
ext4_quota_on_mount(struct super_block * sb,int type)5281 static int ext4_quota_on_mount(struct super_block *sb, int type)
5282 {
5283 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5284 EXT4_SB(sb)->s_jquota_fmt, type);
5285 }
5286
lockdep_set_quota_inode(struct inode * inode,int subclass)5287 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5288 {
5289 struct ext4_inode_info *ei = EXT4_I(inode);
5290
5291 /* The first argument of lockdep_set_subclass has to be
5292 * *exactly* the same as the argument to init_rwsem() --- in
5293 * this case, in init_once() --- or lockdep gets unhappy
5294 * because the name of the lock is set using the
5295 * stringification of the argument to init_rwsem().
5296 */
5297 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5298 lockdep_set_subclass(&ei->i_data_sem, subclass);
5299 }
5300
5301 /*
5302 * Standard function to be called on quota_on
5303 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5304 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5305 struct path *path)
5306 {
5307 int err;
5308
5309 if (!test_opt(sb, QUOTA))
5310 return -EINVAL;
5311
5312 /* Quotafile not on the same filesystem? */
5313 if (path->dentry->d_sb != sb)
5314 return -EXDEV;
5315 /* Journaling quota? */
5316 if (EXT4_SB(sb)->s_qf_names[type]) {
5317 /* Quotafile not in fs root? */
5318 if (path->dentry->d_parent != sb->s_root)
5319 ext4_msg(sb, KERN_WARNING,
5320 "Quota file not on filesystem root. "
5321 "Journaled quota will not work");
5322 }
5323
5324 /*
5325 * When we journal data on quota file, we have to flush journal to see
5326 * all updates to the file when we bypass pagecache...
5327 */
5328 if (EXT4_SB(sb)->s_journal &&
5329 ext4_should_journal_data(d_inode(path->dentry))) {
5330 /*
5331 * We don't need to lock updates but journal_flush() could
5332 * otherwise be livelocked...
5333 */
5334 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5335 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5336 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5337 if (err)
5338 return err;
5339 }
5340 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5341 err = dquot_quota_on(sb, type, format_id, path);
5342 if (err)
5343 lockdep_set_quota_inode(path->dentry->d_inode,
5344 I_DATA_SEM_NORMAL);
5345 return err;
5346 }
5347
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5348 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5349 unsigned int flags)
5350 {
5351 int err;
5352 struct inode *qf_inode;
5353 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5354 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5355 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5356 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5357 };
5358
5359 BUG_ON(!ext4_has_feature_quota(sb));
5360
5361 if (!qf_inums[type])
5362 return -EPERM;
5363
5364 qf_inode = ext4_iget(sb, qf_inums[type]);
5365 if (IS_ERR(qf_inode)) {
5366 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5367 return PTR_ERR(qf_inode);
5368 }
5369
5370 /* Don't account quota for quota files to avoid recursion */
5371 qf_inode->i_flags |= S_NOQUOTA;
5372 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5373 err = dquot_enable(qf_inode, type, format_id, flags);
5374 iput(qf_inode);
5375 if (err)
5376 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5377
5378 return err;
5379 }
5380
5381 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5382 static int ext4_enable_quotas(struct super_block *sb)
5383 {
5384 int type, err = 0;
5385 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5386 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5387 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5388 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5389 };
5390 bool quota_mopt[EXT4_MAXQUOTAS] = {
5391 test_opt(sb, USRQUOTA),
5392 test_opt(sb, GRPQUOTA),
5393 test_opt(sb, PRJQUOTA),
5394 };
5395
5396 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5397 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5398 if (qf_inums[type]) {
5399 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5400 DQUOT_USAGE_ENABLED |
5401 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5402 if (err) {
5403 for (type--; type >= 0; type--)
5404 dquot_quota_off(sb, type);
5405
5406 ext4_warning(sb,
5407 "Failed to enable quota tracking "
5408 "(type=%d, err=%d). Please run "
5409 "e2fsck to fix.", type, err);
5410 return err;
5411 }
5412 }
5413 }
5414 return 0;
5415 }
5416
ext4_quota_off(struct super_block * sb,int type)5417 static int ext4_quota_off(struct super_block *sb, int type)
5418 {
5419 struct inode *inode = sb_dqopt(sb)->files[type];
5420 handle_t *handle;
5421
5422 /* Force all delayed allocation blocks to be allocated.
5423 * Caller already holds s_umount sem */
5424 if (test_opt(sb, DELALLOC))
5425 sync_filesystem(sb);
5426
5427 if (!inode)
5428 goto out;
5429
5430 /* Update modification times of quota files when userspace can
5431 * start looking at them */
5432 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5433 if (IS_ERR(handle))
5434 goto out;
5435 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5436 ext4_mark_inode_dirty(handle, inode);
5437 ext4_journal_stop(handle);
5438
5439 out:
5440 return dquot_quota_off(sb, type);
5441 }
5442
5443 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5444 * acquiring the locks... As quota files are never truncated and quota code
5445 * itself serializes the operations (and no one else should touch the files)
5446 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5447 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5448 size_t len, loff_t off)
5449 {
5450 struct inode *inode = sb_dqopt(sb)->files[type];
5451 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5452 int offset = off & (sb->s_blocksize - 1);
5453 int tocopy;
5454 size_t toread;
5455 struct buffer_head *bh;
5456 loff_t i_size = i_size_read(inode);
5457
5458 if (off > i_size)
5459 return 0;
5460 if (off+len > i_size)
5461 len = i_size-off;
5462 toread = len;
5463 while (toread > 0) {
5464 tocopy = sb->s_blocksize - offset < toread ?
5465 sb->s_blocksize - offset : toread;
5466 bh = ext4_bread(NULL, inode, blk, 0);
5467 if (IS_ERR(bh))
5468 return PTR_ERR(bh);
5469 if (!bh) /* A hole? */
5470 memset(data, 0, tocopy);
5471 else
5472 memcpy(data, bh->b_data+offset, tocopy);
5473 brelse(bh);
5474 offset = 0;
5475 toread -= tocopy;
5476 data += tocopy;
5477 blk++;
5478 }
5479 return len;
5480 }
5481
5482 /* Write to quotafile (we know the transaction is already started and has
5483 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5484 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5485 const char *data, size_t len, loff_t off)
5486 {
5487 struct inode *inode = sb_dqopt(sb)->files[type];
5488 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5489 int err, offset = off & (sb->s_blocksize - 1);
5490 int retries = 0;
5491 struct buffer_head *bh;
5492 handle_t *handle = journal_current_handle();
5493
5494 if (EXT4_SB(sb)->s_journal && !handle) {
5495 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5496 " cancelled because transaction is not started",
5497 (unsigned long long)off, (unsigned long long)len);
5498 return -EIO;
5499 }
5500 /*
5501 * Since we account only one data block in transaction credits,
5502 * then it is impossible to cross a block boundary.
5503 */
5504 if (sb->s_blocksize - offset < len) {
5505 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5506 " cancelled because not block aligned",
5507 (unsigned long long)off, (unsigned long long)len);
5508 return -EIO;
5509 }
5510
5511 do {
5512 bh = ext4_bread(handle, inode, blk,
5513 EXT4_GET_BLOCKS_CREATE |
5514 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5515 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5516 ext4_should_retry_alloc(inode->i_sb, &retries));
5517 if (IS_ERR(bh))
5518 return PTR_ERR(bh);
5519 if (!bh)
5520 goto out;
5521 BUFFER_TRACE(bh, "get write access");
5522 err = ext4_journal_get_write_access(handle, bh);
5523 if (err) {
5524 brelse(bh);
5525 return err;
5526 }
5527 lock_buffer(bh);
5528 memcpy(bh->b_data+offset, data, len);
5529 flush_dcache_page(bh->b_page);
5530 unlock_buffer(bh);
5531 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5532 brelse(bh);
5533 out:
5534 if (inode->i_size < off + len) {
5535 i_size_write(inode, off + len);
5536 EXT4_I(inode)->i_disksize = inode->i_size;
5537 ext4_mark_inode_dirty(handle, inode);
5538 }
5539 return len;
5540 }
5541
ext4_get_next_id(struct super_block * sb,struct kqid * qid)5542 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5543 {
5544 const struct quota_format_ops *ops;
5545
5546 if (!sb_has_quota_loaded(sb, qid->type))
5547 return -ESRCH;
5548 ops = sb_dqopt(sb)->ops[qid->type];
5549 if (!ops || !ops->get_next_id)
5550 return -ENOSYS;
5551 return dquot_get_next_id(sb, qid);
5552 }
5553 #endif
5554
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5555 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5556 const char *dev_name, void *data)
5557 {
5558 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5559 }
5560
5561 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)5562 static inline void register_as_ext2(void)
5563 {
5564 int err = register_filesystem(&ext2_fs_type);
5565 if (err)
5566 printk(KERN_WARNING
5567 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5568 }
5569
unregister_as_ext2(void)5570 static inline void unregister_as_ext2(void)
5571 {
5572 unregister_filesystem(&ext2_fs_type);
5573 }
5574
ext2_feature_set_ok(struct super_block * sb)5575 static inline int ext2_feature_set_ok(struct super_block *sb)
5576 {
5577 if (ext4_has_unknown_ext2_incompat_features(sb))
5578 return 0;
5579 if (sb->s_flags & MS_RDONLY)
5580 return 1;
5581 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5582 return 0;
5583 return 1;
5584 }
5585 #else
register_as_ext2(void)5586 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5587 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5588 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5589 #endif
5590
register_as_ext3(void)5591 static inline void register_as_ext3(void)
5592 {
5593 int err = register_filesystem(&ext3_fs_type);
5594 if (err)
5595 printk(KERN_WARNING
5596 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5597 }
5598
unregister_as_ext3(void)5599 static inline void unregister_as_ext3(void)
5600 {
5601 unregister_filesystem(&ext3_fs_type);
5602 }
5603
ext3_feature_set_ok(struct super_block * sb)5604 static inline int ext3_feature_set_ok(struct super_block *sb)
5605 {
5606 if (ext4_has_unknown_ext3_incompat_features(sb))
5607 return 0;
5608 if (!ext4_has_feature_journal(sb))
5609 return 0;
5610 if (sb->s_flags & MS_RDONLY)
5611 return 1;
5612 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5613 return 0;
5614 return 1;
5615 }
5616
5617 static struct file_system_type ext4_fs_type = {
5618 .owner = THIS_MODULE,
5619 .name = "ext4",
5620 .mount = ext4_mount,
5621 .kill_sb = kill_block_super,
5622 .fs_flags = FS_REQUIRES_DEV,
5623 };
5624 MODULE_ALIAS_FS("ext4");
5625
5626 /* Shared across all ext4 file systems */
5627 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5628
ext4_init_fs(void)5629 static int __init ext4_init_fs(void)
5630 {
5631 int i, err;
5632
5633 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5634 ext4_li_info = NULL;
5635 mutex_init(&ext4_li_mtx);
5636
5637 /* Build-time check for flags consistency */
5638 ext4_check_flag_values();
5639
5640 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5641 init_waitqueue_head(&ext4__ioend_wq[i]);
5642
5643 err = ext4_init_es();
5644 if (err)
5645 return err;
5646
5647 err = ext4_init_pageio();
5648 if (err)
5649 goto out5;
5650
5651 err = ext4_init_system_zone();
5652 if (err)
5653 goto out4;
5654
5655 err = ext4_init_sysfs();
5656 if (err)
5657 goto out3;
5658
5659 err = ext4_init_mballoc();
5660 if (err)
5661 goto out2;
5662 err = init_inodecache();
5663 if (err)
5664 goto out1;
5665 register_as_ext3();
5666 register_as_ext2();
5667 err = register_filesystem(&ext4_fs_type);
5668 if (err)
5669 goto out;
5670
5671 return 0;
5672 out:
5673 unregister_as_ext2();
5674 unregister_as_ext3();
5675 destroy_inodecache();
5676 out1:
5677 ext4_exit_mballoc();
5678 out2:
5679 ext4_exit_sysfs();
5680 out3:
5681 ext4_exit_system_zone();
5682 out4:
5683 ext4_exit_pageio();
5684 out5:
5685 ext4_exit_es();
5686
5687 return err;
5688 }
5689
ext4_exit_fs(void)5690 static void __exit ext4_exit_fs(void)
5691 {
5692 ext4_destroy_lazyinit_thread();
5693 unregister_as_ext2();
5694 unregister_as_ext3();
5695 unregister_filesystem(&ext4_fs_type);
5696 destroy_inodecache();
5697 ext4_exit_mballoc();
5698 ext4_exit_sysfs();
5699 ext4_exit_system_zone();
5700 ext4_exit_pageio();
5701 ext4_exit_es();
5702 }
5703
5704 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5705 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5706 MODULE_LICENSE("GPL");
5707 module_init(ext4_init_fs)
5708 module_exit(ext4_exit_fs)
5709