1 /*
2 * linux/fs/ext4/page-io.c
3 *
4 * This contains the new page_io functions for ext4
5 *
6 * Written by Theodore Ts'o, 2010.
7 */
8
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/backing-dev.h>
27
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31
32 static struct kmem_cache *io_end_cachep;
33
ext4_init_pageio(void)34 int __init ext4_init_pageio(void)
35 {
36 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
37 if (io_end_cachep == NULL)
38 return -ENOMEM;
39 return 0;
40 }
41
ext4_exit_pageio(void)42 void ext4_exit_pageio(void)
43 {
44 kmem_cache_destroy(io_end_cachep);
45 }
46
47 /*
48 * Print an buffer I/O error compatible with the fs/buffer.c. This
49 * provides compatibility with dmesg scrapers that look for a specific
50 * buffer I/O error message. We really need a unified error reporting
51 * structure to userspace ala Digital Unix's uerf system, but it's
52 * probably not going to happen in my lifetime, due to LKML politics...
53 */
buffer_io_error(struct buffer_head * bh)54 static void buffer_io_error(struct buffer_head *bh)
55 {
56 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
57 bh->b_bdev,
58 (unsigned long long)bh->b_blocknr);
59 }
60
ext4_finish_bio(struct bio * bio)61 static void ext4_finish_bio(struct bio *bio)
62 {
63 int i;
64 struct bio_vec *bvec;
65
66 bio_for_each_segment_all(bvec, bio, i) {
67 struct page *page = bvec->bv_page;
68 #ifdef CONFIG_EXT4_FS_ENCRYPTION
69 struct page *data_page = NULL;
70 #endif
71 struct buffer_head *bh, *head;
72 unsigned bio_start = bvec->bv_offset;
73 unsigned bio_end = bio_start + bvec->bv_len;
74 unsigned under_io = 0;
75 unsigned long flags;
76
77 if (!page)
78 continue;
79
80 #ifdef CONFIG_EXT4_FS_ENCRYPTION
81 if (!page->mapping) {
82 /* The bounce data pages are unmapped. */
83 data_page = page;
84 fscrypt_pullback_bio_page(&page, false);
85 }
86 #endif
87
88 if (bio->bi_error) {
89 SetPageError(page);
90 mapping_set_error(page->mapping, -EIO);
91 }
92 bh = head = page_buffers(page);
93 /*
94 * We check all buffers in the page under BH_Uptodate_Lock
95 * to avoid races with other end io clearing async_write flags
96 */
97 local_irq_save(flags);
98 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
99 do {
100 if (bh_offset(bh) < bio_start ||
101 bh_offset(bh) + bh->b_size > bio_end) {
102 if (buffer_async_write(bh))
103 under_io++;
104 continue;
105 }
106 clear_buffer_async_write(bh);
107 if (bio->bi_error)
108 buffer_io_error(bh);
109 } while ((bh = bh->b_this_page) != head);
110 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
111 local_irq_restore(flags);
112 if (!under_io) {
113 #ifdef CONFIG_EXT4_FS_ENCRYPTION
114 if (data_page)
115 fscrypt_restore_control_page(data_page);
116 #endif
117 end_page_writeback(page);
118 }
119 }
120 }
121
ext4_release_io_end(ext4_io_end_t * io_end)122 static void ext4_release_io_end(ext4_io_end_t *io_end)
123 {
124 struct bio *bio, *next_bio;
125
126 BUG_ON(!list_empty(&io_end->list));
127 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
128 WARN_ON(io_end->handle);
129
130 for (bio = io_end->bio; bio; bio = next_bio) {
131 next_bio = bio->bi_private;
132 ext4_finish_bio(bio);
133 bio_put(bio);
134 }
135 kmem_cache_free(io_end_cachep, io_end);
136 }
137
138 /*
139 * Check a range of space and convert unwritten extents to written. Note that
140 * we are protected from truncate touching same part of extent tree by the
141 * fact that truncate code waits for all DIO to finish (thus exclusion from
142 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
143 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
144 * completed (happens from ext4_free_ioend()).
145 */
ext4_end_io(ext4_io_end_t * io)146 static int ext4_end_io(ext4_io_end_t *io)
147 {
148 struct inode *inode = io->inode;
149 loff_t offset = io->offset;
150 ssize_t size = io->size;
151 handle_t *handle = io->handle;
152 int ret = 0;
153
154 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
155 "list->prev 0x%p\n",
156 io, inode->i_ino, io->list.next, io->list.prev);
157
158 io->handle = NULL; /* Following call will use up the handle */
159 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
160 if (ret < 0) {
161 ext4_msg(inode->i_sb, KERN_EMERG,
162 "failed to convert unwritten extents to written "
163 "extents -- potential data loss! "
164 "(inode %lu, offset %llu, size %zd, error %d)",
165 inode->i_ino, offset, size, ret);
166 }
167 ext4_clear_io_unwritten_flag(io);
168 ext4_release_io_end(io);
169 return ret;
170 }
171
dump_completed_IO(struct inode * inode,struct list_head * head)172 static void dump_completed_IO(struct inode *inode, struct list_head *head)
173 {
174 #ifdef EXT4FS_DEBUG
175 struct list_head *cur, *before, *after;
176 ext4_io_end_t *io, *io0, *io1;
177
178 if (list_empty(head))
179 return;
180
181 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
182 list_for_each_entry(io, head, list) {
183 cur = &io->list;
184 before = cur->prev;
185 io0 = container_of(before, ext4_io_end_t, list);
186 after = cur->next;
187 io1 = container_of(after, ext4_io_end_t, list);
188
189 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
190 io, inode->i_ino, io0, io1);
191 }
192 #endif
193 }
194
195 /* Add the io_end to per-inode completed end_io list. */
ext4_add_complete_io(ext4_io_end_t * io_end)196 static void ext4_add_complete_io(ext4_io_end_t *io_end)
197 {
198 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
199 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
200 struct workqueue_struct *wq;
201 unsigned long flags;
202
203 /* Only reserved conversions from writeback should enter here */
204 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
205 WARN_ON(!io_end->handle && sbi->s_journal);
206 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
207 wq = sbi->rsv_conversion_wq;
208 if (list_empty(&ei->i_rsv_conversion_list))
209 queue_work(wq, &ei->i_rsv_conversion_work);
210 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
211 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
212 }
213
ext4_do_flush_completed_IO(struct inode * inode,struct list_head * head)214 static int ext4_do_flush_completed_IO(struct inode *inode,
215 struct list_head *head)
216 {
217 ext4_io_end_t *io;
218 struct list_head unwritten;
219 unsigned long flags;
220 struct ext4_inode_info *ei = EXT4_I(inode);
221 int err, ret = 0;
222
223 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
224 dump_completed_IO(inode, head);
225 list_replace_init(head, &unwritten);
226 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
227
228 while (!list_empty(&unwritten)) {
229 io = list_entry(unwritten.next, ext4_io_end_t, list);
230 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
231 list_del_init(&io->list);
232
233 err = ext4_end_io(io);
234 if (unlikely(!ret && err))
235 ret = err;
236 }
237 return ret;
238 }
239
240 /*
241 * work on completed IO, to convert unwritten extents to extents
242 */
ext4_end_io_rsv_work(struct work_struct * work)243 void ext4_end_io_rsv_work(struct work_struct *work)
244 {
245 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
246 i_rsv_conversion_work);
247 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
248 }
249
ext4_init_io_end(struct inode * inode,gfp_t flags)250 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
251 {
252 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
253 if (io) {
254 io->inode = inode;
255 INIT_LIST_HEAD(&io->list);
256 atomic_set(&io->count, 1);
257 }
258 return io;
259 }
260
ext4_put_io_end_defer(ext4_io_end_t * io_end)261 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
262 {
263 if (atomic_dec_and_test(&io_end->count)) {
264 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
265 ext4_release_io_end(io_end);
266 return;
267 }
268 ext4_add_complete_io(io_end);
269 }
270 }
271
ext4_put_io_end(ext4_io_end_t * io_end)272 int ext4_put_io_end(ext4_io_end_t *io_end)
273 {
274 int err = 0;
275
276 if (atomic_dec_and_test(&io_end->count)) {
277 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
278 err = ext4_convert_unwritten_extents(io_end->handle,
279 io_end->inode, io_end->offset,
280 io_end->size);
281 io_end->handle = NULL;
282 ext4_clear_io_unwritten_flag(io_end);
283 }
284 ext4_release_io_end(io_end);
285 }
286 return err;
287 }
288
ext4_get_io_end(ext4_io_end_t * io_end)289 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
290 {
291 atomic_inc(&io_end->count);
292 return io_end;
293 }
294
295 /* BIO completion function for page writeback */
ext4_end_bio(struct bio * bio)296 static void ext4_end_bio(struct bio *bio)
297 {
298 ext4_io_end_t *io_end = bio->bi_private;
299 sector_t bi_sector = bio->bi_iter.bi_sector;
300
301 BUG_ON(!io_end);
302 bio->bi_end_io = NULL;
303
304 if (bio->bi_error) {
305 struct inode *inode = io_end->inode;
306
307 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
308 "(offset %llu size %ld starting block %llu)",
309 bio->bi_error, inode->i_ino,
310 (unsigned long long) io_end->offset,
311 (long) io_end->size,
312 (unsigned long long)
313 bi_sector >> (inode->i_blkbits - 9));
314 mapping_set_error(inode->i_mapping, bio->bi_error);
315 }
316
317 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
318 /*
319 * Link bio into list hanging from io_end. We have to do it
320 * atomically as bio completions can be racing against each
321 * other.
322 */
323 bio->bi_private = xchg(&io_end->bio, bio);
324 ext4_put_io_end_defer(io_end);
325 } else {
326 /*
327 * Drop io_end reference early. Inode can get freed once
328 * we finish the bio.
329 */
330 ext4_put_io_end_defer(io_end);
331 ext4_finish_bio(bio);
332 bio_put(bio);
333 }
334 }
335
ext4_io_submit(struct ext4_io_submit * io)336 void ext4_io_submit(struct ext4_io_submit *io)
337 {
338 struct bio *bio = io->io_bio;
339
340 if (bio) {
341 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
342 WRITE_SYNC : 0;
343 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
344 submit_bio(io->io_bio);
345 }
346 io->io_bio = NULL;
347 }
348
ext4_io_submit_init(struct ext4_io_submit * io,struct writeback_control * wbc)349 void ext4_io_submit_init(struct ext4_io_submit *io,
350 struct writeback_control *wbc)
351 {
352 io->io_wbc = wbc;
353 io->io_bio = NULL;
354 io->io_end = NULL;
355 }
356
io_submit_init_bio(struct ext4_io_submit * io,struct buffer_head * bh)357 static int io_submit_init_bio(struct ext4_io_submit *io,
358 struct buffer_head *bh)
359 {
360 struct bio *bio;
361
362 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
363 if (!bio)
364 return -ENOMEM;
365 wbc_init_bio(io->io_wbc, bio);
366 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
367 bio->bi_bdev = bh->b_bdev;
368 bio->bi_end_io = ext4_end_bio;
369 bio->bi_private = ext4_get_io_end(io->io_end);
370 io->io_bio = bio;
371 io->io_next_block = bh->b_blocknr;
372 return 0;
373 }
374
io_submit_add_bh(struct ext4_io_submit * io,struct inode * inode,struct page * page,struct buffer_head * bh)375 static int io_submit_add_bh(struct ext4_io_submit *io,
376 struct inode *inode,
377 struct page *page,
378 struct buffer_head *bh)
379 {
380 int ret;
381
382 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
383 submit_and_retry:
384 ext4_io_submit(io);
385 }
386 if (io->io_bio == NULL) {
387 ret = io_submit_init_bio(io, bh);
388 if (ret)
389 return ret;
390 }
391 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
392 if (ret != bh->b_size)
393 goto submit_and_retry;
394 wbc_account_io(io->io_wbc, page, bh->b_size);
395 io->io_next_block++;
396 return 0;
397 }
398
ext4_bio_write_page(struct ext4_io_submit * io,struct page * page,int len,struct writeback_control * wbc,bool keep_towrite)399 int ext4_bio_write_page(struct ext4_io_submit *io,
400 struct page *page,
401 int len,
402 struct writeback_control *wbc,
403 bool keep_towrite)
404 {
405 struct page *data_page = NULL;
406 struct inode *inode = page->mapping->host;
407 unsigned block_start;
408 struct buffer_head *bh, *head;
409 int ret = 0;
410 int nr_submitted = 0;
411 int nr_to_submit = 0;
412
413 BUG_ON(!PageLocked(page));
414 BUG_ON(PageWriteback(page));
415
416 if (keep_towrite)
417 set_page_writeback_keepwrite(page);
418 else
419 set_page_writeback(page);
420 ClearPageError(page);
421
422 /*
423 * Comments copied from block_write_full_page:
424 *
425 * The page straddles i_size. It must be zeroed out on each and every
426 * writepage invocation because it may be mmapped. "A file is mapped
427 * in multiples of the page size. For a file that is not a multiple of
428 * the page size, the remaining memory is zeroed when mapped, and
429 * writes to that region are not written out to the file."
430 */
431 if (len < PAGE_SIZE)
432 zero_user_segment(page, len, PAGE_SIZE);
433 /*
434 * In the first loop we prepare and mark buffers to submit. We have to
435 * mark all buffers in the page before submitting so that
436 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
437 * on the first buffer finishes and we are still working on submitting
438 * the second buffer.
439 */
440 bh = head = page_buffers(page);
441 do {
442 block_start = bh_offset(bh);
443 if (block_start >= len) {
444 clear_buffer_dirty(bh);
445 set_buffer_uptodate(bh);
446 continue;
447 }
448 if (!buffer_dirty(bh) || buffer_delay(bh) ||
449 !buffer_mapped(bh) || buffer_unwritten(bh)) {
450 /* A hole? We can safely clear the dirty bit */
451 if (!buffer_mapped(bh))
452 clear_buffer_dirty(bh);
453 if (io->io_bio)
454 ext4_io_submit(io);
455 continue;
456 }
457 if (buffer_new(bh)) {
458 clear_buffer_new(bh);
459 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
460 }
461 set_buffer_async_write(bh);
462 nr_to_submit++;
463 } while ((bh = bh->b_this_page) != head);
464
465 bh = head = page_buffers(page);
466
467 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
468 nr_to_submit) {
469 gfp_t gfp_flags = GFP_NOFS;
470
471 retry_encrypt:
472 data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
473 page->index, gfp_flags);
474 if (IS_ERR(data_page)) {
475 ret = PTR_ERR(data_page);
476 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
477 if (io->io_bio) {
478 ext4_io_submit(io);
479 congestion_wait(BLK_RW_ASYNC, HZ/50);
480 }
481 gfp_flags |= __GFP_NOFAIL;
482 goto retry_encrypt;
483 }
484 data_page = NULL;
485 goto out;
486 }
487 }
488
489 /* Now submit buffers to write */
490 do {
491 if (!buffer_async_write(bh))
492 continue;
493 ret = io_submit_add_bh(io, inode,
494 data_page ? data_page : page, bh);
495 if (ret) {
496 /*
497 * We only get here on ENOMEM. Not much else
498 * we can do but mark the page as dirty, and
499 * better luck next time.
500 */
501 break;
502 }
503 nr_submitted++;
504 clear_buffer_dirty(bh);
505 } while ((bh = bh->b_this_page) != head);
506
507 /* Error stopped previous loop? Clean up buffers... */
508 if (ret) {
509 out:
510 if (data_page)
511 fscrypt_restore_control_page(data_page);
512 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
513 redirty_page_for_writepage(wbc, page);
514 do {
515 clear_buffer_async_write(bh);
516 bh = bh->b_this_page;
517 } while (bh != head);
518 }
519 unlock_page(page);
520 /* Nothing submitted - we have to end page writeback */
521 if (!nr_submitted)
522 end_page_writeback(page);
523 return ret;
524 }
525