• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29 
30 /* Hardware control for SFC4000 (aka Falcon). */
31 
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38 
39 #define FALCON_MAC_STATS_SIZE 0x100
40 
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133 
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
135 	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136 
137 #define FALCON_DMA_STAT(ext_name, hw_name)				\
138 	[FALCON_STAT_ ## ext_name] =					\
139 	{ #ext_name,							\
140 	  /* 48-bit stats are zero-padded to 64 on DMA */		\
141 	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
142 	  hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)					\
144 	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name)				\
146 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 
148 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149 	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150 	FALCON_DMA_STAT(tx_packets, XgTxPkts),
151 	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152 	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153 	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154 	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155 	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156 	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157 	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158 	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159 	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160 	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161 	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162 	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163 	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164 	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165 	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166 	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167 	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168 	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169 	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170 	FALCON_OTHER_STAT(rx_bad_bytes),
171 	FALCON_DMA_STAT(rx_packets, XgRxPkts),
172 	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173 	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174 	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175 	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176 	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177 	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178 	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179 	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180 	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181 	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182 	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183 	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184 	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185 	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186 	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187 	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188 	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189 	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190 	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191 	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192 	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193 	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194 	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195 	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196 	GENERIC_SW_STAT(rx_nodesc_trunc),
197 	GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200 	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202 
203 /**************************************************************************
204  *
205  * Basic SPI command set and bit definitions
206  *
207  *************************************************************************/
208 
209 #define SPI_WRSR 0x01		/* Write status register */
210 #define SPI_WRITE 0x02		/* Write data to memory array */
211 #define SPI_READ 0x03		/* Read data from memory array */
212 #define SPI_WRDI 0x04		/* Reset write enable latch */
213 #define SPI_RDSR 0x05		/* Read status register */
214 #define SPI_WREN 0x06		/* Set write enable latch */
215 #define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
216 
217 #define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01	/* Device busy flag */
223 
224 /**************************************************************************
225  *
226  * Non-volatile memory layout
227  *
228  **************************************************************************
229  */
230 
231 /* SFC4000 flash is partitioned into:
232  *     0-0x400       chip and board config (see struct falcon_nvconfig)
233  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
234  *     0x8000-end    boot code (mapped to PCI expansion ROM)
235  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237  *     0-0x400       chip and board config
238  *     configurable  VPD
239  *     0x800-0x1800  boot config
240  * Aside from the chip and board config, all of these are optional and may
241  * be absent or truncated depending on the devices used.
242  */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247 
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250 	__le16 nports;
251 	u8 port0_phy_addr;
252 	u8 port0_phy_type;
253 	u8 port1_phy_addr;
254 	u8 port1_phy_type;
255 	__le16 asic_sub_revision;
256 	__le16 board_revision;
257 } __packed;
258 
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261 	__le32 spi_device_type[2];
262 } __packed;
263 
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field)					\
276 	(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277 
278 #define FALCON_NVCONFIG_OFFSET 0x300
279 
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282 	efx_oword_t ee_vpd_cfg_reg;			/* 0x300 */
283 	u8 mac_address[2][8];			/* 0x310 */
284 	efx_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
285 	efx_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
286 	efx_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
287 	efx_oword_t hw_init_reg;			/* 0x350 */
288 	efx_oword_t nic_stat_reg;			/* 0x360 */
289 	efx_oword_t glb_ctl_reg;			/* 0x370 */
290 	efx_oword_t srm_cfg_reg;			/* 0x380 */
291 	efx_oword_t spare_reg;				/* 0x390 */
292 	__le16 board_magic_num;			/* 0x3A0 */
293 	__le16 board_struct_ver;
294 	__le16 board_checksum;
295 	struct falcon_nvconfig_board_v2 board_v2;
296 	efx_oword_t ee_base_page_reg;			/* 0x3B0 */
297 	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
298 } __packed;
299 
300 /*************************************************************************/
301 
302 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304 
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307  * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318 
319 /**************************************************************************
320  *
321  * I2C bus - this is a bit-bashing interface using GPIO pins
322  * Note that it uses the output enables to tristate the outputs
323  * SDA is the data pin and SCL is the clock
324  *
325  **************************************************************************
326  */
falcon_setsda(void * data,int state)327 static void falcon_setsda(void *data, int state)
328 {
329 	struct efx_nic *efx = (struct efx_nic *)data;
330 	efx_oword_t reg;
331 
332 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336 
falcon_setscl(void * data,int state)337 static void falcon_setscl(void *data, int state)
338 {
339 	struct efx_nic *efx = (struct efx_nic *)data;
340 	efx_oword_t reg;
341 
342 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346 
falcon_getsda(void * data)347 static int falcon_getsda(void *data)
348 {
349 	struct efx_nic *efx = (struct efx_nic *)data;
350 	efx_oword_t reg;
351 
352 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355 
falcon_getscl(void * data)356 static int falcon_getscl(void *data)
357 {
358 	struct efx_nic *efx = (struct efx_nic *)data;
359 	efx_oword_t reg;
360 
361 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364 
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366 	.setsda		= falcon_setsda,
367 	.setscl		= falcon_setscl,
368 	.getsda		= falcon_getsda,
369 	.getscl		= falcon_getscl,
370 	.udelay		= 5,
371 	/* Wait up to 50 ms for slave to let us pull SCL high */
372 	.timeout	= DIV_ROUND_UP(HZ, 20),
373 };
374 
falcon_push_irq_moderation(struct efx_channel * channel)375 static void falcon_push_irq_moderation(struct efx_channel *channel)
376 {
377 	efx_dword_t timer_cmd;
378 	struct efx_nic *efx = channel->efx;
379 
380 	/* Set timer register */
381 	if (channel->irq_moderation_us) {
382 		unsigned int ticks;
383 
384 		ticks = efx_usecs_to_ticks(efx, channel->irq_moderation_us);
385 		EFX_POPULATE_DWORD_2(timer_cmd,
386 				     FRF_AB_TC_TIMER_MODE,
387 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
388 				     FRF_AB_TC_TIMER_VAL,
389 				     ticks - 1);
390 	} else {
391 		EFX_POPULATE_DWORD_2(timer_cmd,
392 				     FRF_AB_TC_TIMER_MODE,
393 				     FFE_BB_TIMER_MODE_DIS,
394 				     FRF_AB_TC_TIMER_VAL, 0);
395 	}
396 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
397 	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
398 			       channel->channel);
399 }
400 
401 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
402 
falcon_prepare_flush(struct efx_nic * efx)403 static void falcon_prepare_flush(struct efx_nic *efx)
404 {
405 	falcon_deconfigure_mac_wrapper(efx);
406 
407 	/* Wait for the tx and rx fifo's to get to the next packet boundary
408 	 * (~1ms without back-pressure), then to drain the remainder of the
409 	 * fifo's at data path speeds (negligible), with a healthy margin. */
410 	msleep(10);
411 }
412 
413 /* Acknowledge a legacy interrupt from Falcon
414  *
415  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
416  *
417  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
418  * BIU. Interrupt acknowledge is read sensitive so must write instead
419  * (then read to ensure the BIU collector is flushed)
420  *
421  * NB most hardware supports MSI interrupts
422  */
falcon_irq_ack_a1(struct efx_nic * efx)423 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
424 {
425 	efx_dword_t reg;
426 
427 	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
428 	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
429 	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
430 }
431 
falcon_legacy_interrupt_a1(int irq,void * dev_id)432 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
433 {
434 	struct efx_nic *efx = dev_id;
435 	efx_oword_t *int_ker = efx->irq_status.addr;
436 	int syserr;
437 	int queues;
438 
439 	/* Check to see if this is our interrupt.  If it isn't, we
440 	 * exit without having touched the hardware.
441 	 */
442 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
443 		netif_vdbg(efx, intr, efx->net_dev,
444 			   "IRQ %d on CPU %d not for me\n", irq,
445 			   raw_smp_processor_id());
446 		return IRQ_NONE;
447 	}
448 	efx->last_irq_cpu = raw_smp_processor_id();
449 	netif_vdbg(efx, intr, efx->net_dev,
450 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
451 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
452 
453 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
454 		return IRQ_HANDLED;
455 
456 	/* Check to see if we have a serious error condition */
457 	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
458 	if (unlikely(syserr))
459 		return efx_farch_fatal_interrupt(efx);
460 
461 	/* Determine interrupting queues, clear interrupt status
462 	 * register and acknowledge the device interrupt.
463 	 */
464 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
465 	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
466 	EFX_ZERO_OWORD(*int_ker);
467 	wmb(); /* Ensure the vector is cleared before interrupt ack */
468 	falcon_irq_ack_a1(efx);
469 
470 	if (queues & 1)
471 		efx_schedule_channel_irq(efx_get_channel(efx, 0));
472 	if (queues & 2)
473 		efx_schedule_channel_irq(efx_get_channel(efx, 1));
474 	return IRQ_HANDLED;
475 }
476 
477 /**************************************************************************
478  *
479  * RSS
480  *
481  **************************************************************************
482  */
dummy_rx_push_rss_config(struct efx_nic * efx,bool user,const u32 * rx_indir_table)483 static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
484 				    const u32 *rx_indir_table)
485 {
486 	(void) efx;
487 	(void) user;
488 	(void) rx_indir_table;
489 	return -ENOSYS;
490 }
491 
falcon_b0_rx_push_rss_config(struct efx_nic * efx,bool user,const u32 * rx_indir_table)492 static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
493 					const u32 *rx_indir_table)
494 {
495 	efx_oword_t temp;
496 
497 	(void) user;
498 	/* Set hash key for IPv4 */
499 	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
500 	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
501 
502 	memcpy(efx->rx_indir_table, rx_indir_table,
503 	       sizeof(efx->rx_indir_table));
504 	efx_farch_rx_push_indir_table(efx);
505 	return 0;
506 }
507 
508 /**************************************************************************
509  *
510  * EEPROM/flash
511  *
512  **************************************************************************
513  */
514 
515 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
516 
falcon_spi_poll(struct efx_nic * efx)517 static int falcon_spi_poll(struct efx_nic *efx)
518 {
519 	efx_oword_t reg;
520 	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
521 	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
522 }
523 
524 /* Wait for SPI command completion */
falcon_spi_wait(struct efx_nic * efx)525 static int falcon_spi_wait(struct efx_nic *efx)
526 {
527 	/* Most commands will finish quickly, so we start polling at
528 	 * very short intervals.  Sometimes the command may have to
529 	 * wait for VPD or expansion ROM access outside of our
530 	 * control, so we allow up to 100 ms. */
531 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
532 	int i;
533 
534 	for (i = 0; i < 10; i++) {
535 		if (!falcon_spi_poll(efx))
536 			return 0;
537 		udelay(10);
538 	}
539 
540 	for (;;) {
541 		if (!falcon_spi_poll(efx))
542 			return 0;
543 		if (time_after_eq(jiffies, timeout)) {
544 			netif_err(efx, hw, efx->net_dev,
545 				  "timed out waiting for SPI\n");
546 			return -ETIMEDOUT;
547 		}
548 		schedule_timeout_uninterruptible(1);
549 	}
550 }
551 
552 static int
falcon_spi_cmd(struct efx_nic * efx,const struct falcon_spi_device * spi,unsigned int command,int address,const void * in,void * out,size_t len)553 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
554 	       unsigned int command, int address,
555 	       const void *in, void *out, size_t len)
556 {
557 	bool addressed = (address >= 0);
558 	bool reading = (out != NULL);
559 	efx_oword_t reg;
560 	int rc;
561 
562 	/* Input validation */
563 	if (len > FALCON_SPI_MAX_LEN)
564 		return -EINVAL;
565 
566 	/* Check that previous command is not still running */
567 	rc = falcon_spi_poll(efx);
568 	if (rc)
569 		return rc;
570 
571 	/* Program address register, if we have an address */
572 	if (addressed) {
573 		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
574 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
575 	}
576 
577 	/* Program data register, if we have data */
578 	if (in != NULL) {
579 		memcpy(&reg, in, len);
580 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
581 	}
582 
583 	/* Issue read/write command */
584 	EFX_POPULATE_OWORD_7(reg,
585 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
586 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
587 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
588 			     FRF_AB_EE_SPI_HCMD_READ, reading,
589 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
590 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
591 			     (addressed ? spi->addr_len : 0),
592 			     FRF_AB_EE_SPI_HCMD_ENC, command);
593 	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
594 
595 	/* Wait for read/write to complete */
596 	rc = falcon_spi_wait(efx);
597 	if (rc)
598 		return rc;
599 
600 	/* Read data */
601 	if (out != NULL) {
602 		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
603 		memcpy(out, &reg, len);
604 	}
605 
606 	return 0;
607 }
608 
609 static inline u8
falcon_spi_munge_command(const struct falcon_spi_device * spi,const u8 command,const unsigned int address)610 falcon_spi_munge_command(const struct falcon_spi_device *spi,
611 			 const u8 command, const unsigned int address)
612 {
613 	return command | (((address >> 8) & spi->munge_address) << 3);
614 }
615 
616 static int
falcon_spi_read(struct efx_nic * efx,const struct falcon_spi_device * spi,loff_t start,size_t len,size_t * retlen,u8 * buffer)617 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
618 		loff_t start, size_t len, size_t *retlen, u8 *buffer)
619 {
620 	size_t block_len, pos = 0;
621 	unsigned int command;
622 	int rc = 0;
623 
624 	while (pos < len) {
625 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
626 
627 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
628 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
629 				    buffer + pos, block_len);
630 		if (rc)
631 			break;
632 		pos += block_len;
633 
634 		/* Avoid locking up the system */
635 		cond_resched();
636 		if (signal_pending(current)) {
637 			rc = -EINTR;
638 			break;
639 		}
640 	}
641 
642 	if (retlen)
643 		*retlen = pos;
644 	return rc;
645 }
646 
647 #ifdef CONFIG_SFC_MTD
648 
649 struct falcon_mtd_partition {
650 	struct efx_mtd_partition common;
651 	const struct falcon_spi_device *spi;
652 	size_t offset;
653 };
654 
655 #define to_falcon_mtd_partition(mtd)				\
656 	container_of(mtd, struct falcon_mtd_partition, common.mtd)
657 
658 static size_t
falcon_spi_write_limit(const struct falcon_spi_device * spi,size_t start)659 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
660 {
661 	return min(FALCON_SPI_MAX_LEN,
662 		   (spi->block_size - (start & (spi->block_size - 1))));
663 }
664 
665 /* Wait up to 10 ms for buffered write completion */
666 static int
falcon_spi_wait_write(struct efx_nic * efx,const struct falcon_spi_device * spi)667 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
668 {
669 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
670 	u8 status;
671 	int rc;
672 
673 	for (;;) {
674 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
675 				    &status, sizeof(status));
676 		if (rc)
677 			return rc;
678 		if (!(status & SPI_STATUS_NRDY))
679 			return 0;
680 		if (time_after_eq(jiffies, timeout)) {
681 			netif_err(efx, hw, efx->net_dev,
682 				  "SPI write timeout on device %d"
683 				  " last status=0x%02x\n",
684 				  spi->device_id, status);
685 			return -ETIMEDOUT;
686 		}
687 		schedule_timeout_uninterruptible(1);
688 	}
689 }
690 
691 static int
falcon_spi_write(struct efx_nic * efx,const struct falcon_spi_device * spi,loff_t start,size_t len,size_t * retlen,const u8 * buffer)692 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
693 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
694 {
695 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
696 	size_t block_len, pos = 0;
697 	unsigned int command;
698 	int rc = 0;
699 
700 	while (pos < len) {
701 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
702 		if (rc)
703 			break;
704 
705 		block_len = min(len - pos,
706 				falcon_spi_write_limit(spi, start + pos));
707 		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
708 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
709 				    buffer + pos, NULL, block_len);
710 		if (rc)
711 			break;
712 
713 		rc = falcon_spi_wait_write(efx, spi);
714 		if (rc)
715 			break;
716 
717 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
718 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
719 				    NULL, verify_buffer, block_len);
720 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
721 			rc = -EIO;
722 			break;
723 		}
724 
725 		pos += block_len;
726 
727 		/* Avoid locking up the system */
728 		cond_resched();
729 		if (signal_pending(current)) {
730 			rc = -EINTR;
731 			break;
732 		}
733 	}
734 
735 	if (retlen)
736 		*retlen = pos;
737 	return rc;
738 }
739 
740 static int
falcon_spi_slow_wait(struct falcon_mtd_partition * part,bool uninterruptible)741 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
742 {
743 	const struct falcon_spi_device *spi = part->spi;
744 	struct efx_nic *efx = part->common.mtd.priv;
745 	u8 status;
746 	int rc, i;
747 
748 	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
749 	for (i = 0; i < 40; i++) {
750 		__set_current_state(uninterruptible ?
751 				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
752 		schedule_timeout(HZ / 10);
753 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
754 				    &status, sizeof(status));
755 		if (rc)
756 			return rc;
757 		if (!(status & SPI_STATUS_NRDY))
758 			return 0;
759 		if (signal_pending(current))
760 			return -EINTR;
761 	}
762 	pr_err("%s: timed out waiting for %s\n",
763 	       part->common.name, part->common.dev_type_name);
764 	return -ETIMEDOUT;
765 }
766 
767 static int
falcon_spi_unlock(struct efx_nic * efx,const struct falcon_spi_device * spi)768 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
769 {
770 	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
771 				SPI_STATUS_BP0);
772 	u8 status;
773 	int rc;
774 
775 	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
776 			    &status, sizeof(status));
777 	if (rc)
778 		return rc;
779 
780 	if (!(status & unlock_mask))
781 		return 0; /* already unlocked */
782 
783 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
784 	if (rc)
785 		return rc;
786 	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
787 	if (rc)
788 		return rc;
789 
790 	status &= ~unlock_mask;
791 	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
792 			    NULL, sizeof(status));
793 	if (rc)
794 		return rc;
795 	rc = falcon_spi_wait_write(efx, spi);
796 	if (rc)
797 		return rc;
798 
799 	return 0;
800 }
801 
802 #define FALCON_SPI_VERIFY_BUF_LEN 16
803 
804 static int
falcon_spi_erase(struct falcon_mtd_partition * part,loff_t start,size_t len)805 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
806 {
807 	const struct falcon_spi_device *spi = part->spi;
808 	struct efx_nic *efx = part->common.mtd.priv;
809 	unsigned pos, block_len;
810 	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
811 	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
812 	int rc;
813 
814 	if (len != spi->erase_size)
815 		return -EINVAL;
816 
817 	if (spi->erase_command == 0)
818 		return -EOPNOTSUPP;
819 
820 	rc = falcon_spi_unlock(efx, spi);
821 	if (rc)
822 		return rc;
823 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
824 	if (rc)
825 		return rc;
826 	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
827 			    NULL, 0);
828 	if (rc)
829 		return rc;
830 	rc = falcon_spi_slow_wait(part, false);
831 
832 	/* Verify the entire region has been wiped */
833 	memset(empty, 0xff, sizeof(empty));
834 	for (pos = 0; pos < len; pos += block_len) {
835 		block_len = min(len - pos, sizeof(buffer));
836 		rc = falcon_spi_read(efx, spi, start + pos, block_len,
837 				     NULL, buffer);
838 		if (rc)
839 			return rc;
840 		if (memcmp(empty, buffer, block_len))
841 			return -EIO;
842 
843 		/* Avoid locking up the system */
844 		cond_resched();
845 		if (signal_pending(current))
846 			return -EINTR;
847 	}
848 
849 	return rc;
850 }
851 
falcon_mtd_rename(struct efx_mtd_partition * part)852 static void falcon_mtd_rename(struct efx_mtd_partition *part)
853 {
854 	struct efx_nic *efx = part->mtd.priv;
855 
856 	snprintf(part->name, sizeof(part->name), "%s %s",
857 		 efx->name, part->type_name);
858 }
859 
falcon_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)860 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
861 			   size_t len, size_t *retlen, u8 *buffer)
862 {
863 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
864 	struct efx_nic *efx = mtd->priv;
865 	struct falcon_nic_data *nic_data = efx->nic_data;
866 	int rc;
867 
868 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
869 	if (rc)
870 		return rc;
871 	rc = falcon_spi_read(efx, part->spi, part->offset + start,
872 			     len, retlen, buffer);
873 	mutex_unlock(&nic_data->spi_lock);
874 	return rc;
875 }
876 
falcon_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)877 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
878 {
879 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
880 	struct efx_nic *efx = mtd->priv;
881 	struct falcon_nic_data *nic_data = efx->nic_data;
882 	int rc;
883 
884 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
885 	if (rc)
886 		return rc;
887 	rc = falcon_spi_erase(part, part->offset + start, len);
888 	mutex_unlock(&nic_data->spi_lock);
889 	return rc;
890 }
891 
falcon_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)892 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
893 			    size_t len, size_t *retlen, const u8 *buffer)
894 {
895 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
896 	struct efx_nic *efx = mtd->priv;
897 	struct falcon_nic_data *nic_data = efx->nic_data;
898 	int rc;
899 
900 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
901 	if (rc)
902 		return rc;
903 	rc = falcon_spi_write(efx, part->spi, part->offset + start,
904 			      len, retlen, buffer);
905 	mutex_unlock(&nic_data->spi_lock);
906 	return rc;
907 }
908 
falcon_mtd_sync(struct mtd_info * mtd)909 static int falcon_mtd_sync(struct mtd_info *mtd)
910 {
911 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
912 	struct efx_nic *efx = mtd->priv;
913 	struct falcon_nic_data *nic_data = efx->nic_data;
914 	int rc;
915 
916 	mutex_lock(&nic_data->spi_lock);
917 	rc = falcon_spi_slow_wait(part, true);
918 	mutex_unlock(&nic_data->spi_lock);
919 	return rc;
920 }
921 
falcon_mtd_probe(struct efx_nic * efx)922 static int falcon_mtd_probe(struct efx_nic *efx)
923 {
924 	struct falcon_nic_data *nic_data = efx->nic_data;
925 	struct falcon_mtd_partition *parts;
926 	struct falcon_spi_device *spi;
927 	size_t n_parts;
928 	int rc = -ENODEV;
929 
930 	ASSERT_RTNL();
931 
932 	/* Allocate space for maximum number of partitions */
933 	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
934 	if (!parts)
935 		return -ENOMEM;
936 	n_parts = 0;
937 
938 	spi = &nic_data->spi_flash;
939 	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
940 		parts[n_parts].spi = spi;
941 		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
942 		parts[n_parts].common.dev_type_name = "flash";
943 		parts[n_parts].common.type_name = "sfc_flash_bootrom";
944 		parts[n_parts].common.mtd.type = MTD_NORFLASH;
945 		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
946 		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
947 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
948 		n_parts++;
949 	}
950 
951 	spi = &nic_data->spi_eeprom;
952 	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
953 		parts[n_parts].spi = spi;
954 		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
955 		parts[n_parts].common.dev_type_name = "EEPROM";
956 		parts[n_parts].common.type_name = "sfc_bootconfig";
957 		parts[n_parts].common.mtd.type = MTD_RAM;
958 		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
959 		parts[n_parts].common.mtd.size =
960 			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
961 			FALCON_EEPROM_BOOTCONFIG_START;
962 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
963 		n_parts++;
964 	}
965 
966 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
967 	if (rc)
968 		kfree(parts);
969 	return rc;
970 }
971 
972 #endif /* CONFIG_SFC_MTD */
973 
974 /**************************************************************************
975  *
976  * XMAC operations
977  *
978  **************************************************************************
979  */
980 
981 /* Configure the XAUI driver that is an output from Falcon */
falcon_setup_xaui(struct efx_nic * efx)982 static void falcon_setup_xaui(struct efx_nic *efx)
983 {
984 	efx_oword_t sdctl, txdrv;
985 
986 	/* Move the XAUI into low power, unless there is no PHY, in
987 	 * which case the XAUI will have to drive a cable. */
988 	if (efx->phy_type == PHY_TYPE_NONE)
989 		return;
990 
991 	efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
992 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
993 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
994 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
995 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
996 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
997 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
998 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
999 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1000 	efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1001 
1002 	EFX_POPULATE_OWORD_8(txdrv,
1003 			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1004 			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1005 			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1007 			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1008 			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1009 			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1010 			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1011 	efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1012 }
1013 
falcon_reset_xaui(struct efx_nic * efx)1014 int falcon_reset_xaui(struct efx_nic *efx)
1015 {
1016 	struct falcon_nic_data *nic_data = efx->nic_data;
1017 	efx_oword_t reg;
1018 	int count;
1019 
1020 	/* Don't fetch MAC statistics over an XMAC reset */
1021 	WARN_ON(nic_data->stats_disable_count == 0);
1022 
1023 	/* Start reset sequence */
1024 	EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1025 	efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1026 
1027 	/* Wait up to 10 ms for completion, then reinitialise */
1028 	for (count = 0; count < 1000; count++) {
1029 		efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1030 		if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1031 		    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1032 			falcon_setup_xaui(efx);
1033 			return 0;
1034 		}
1035 		udelay(10);
1036 	}
1037 	netif_err(efx, hw, efx->net_dev,
1038 		  "timed out waiting for XAUI/XGXS reset\n");
1039 	return -ETIMEDOUT;
1040 }
1041 
falcon_ack_status_intr(struct efx_nic * efx)1042 static void falcon_ack_status_intr(struct efx_nic *efx)
1043 {
1044 	struct falcon_nic_data *nic_data = efx->nic_data;
1045 	efx_oword_t reg;
1046 
1047 	if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1048 		return;
1049 
1050 	/* We expect xgmii faults if the wireside link is down */
1051 	if (!efx->link_state.up)
1052 		return;
1053 
1054 	/* We can only use this interrupt to signal the negative edge of
1055 	 * xaui_align [we have to poll the positive edge]. */
1056 	if (nic_data->xmac_poll_required)
1057 		return;
1058 
1059 	efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1060 }
1061 
falcon_xgxs_link_ok(struct efx_nic * efx)1062 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1063 {
1064 	efx_oword_t reg;
1065 	bool align_done, link_ok = false;
1066 	int sync_status;
1067 
1068 	/* Read link status */
1069 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1070 
1071 	align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1072 	sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1073 	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1074 		link_ok = true;
1075 
1076 	/* Clear link status ready for next read */
1077 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1078 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1079 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1080 	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1081 
1082 	return link_ok;
1083 }
1084 
falcon_xmac_link_ok(struct efx_nic * efx)1085 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1086 {
1087 	/*
1088 	 * Check MAC's XGXS link status except when using XGMII loopback
1089 	 * which bypasses the XGXS block.
1090 	 * If possible, check PHY's XGXS link status except when using
1091 	 * MAC loopback.
1092 	 */
1093 	return (efx->loopback_mode == LOOPBACK_XGMII ||
1094 		falcon_xgxs_link_ok(efx)) &&
1095 		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1096 		 LOOPBACK_INTERNAL(efx) ||
1097 		 efx_mdio_phyxgxs_lane_sync(efx));
1098 }
1099 
falcon_reconfigure_xmac_core(struct efx_nic * efx)1100 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1101 {
1102 	unsigned int max_frame_len;
1103 	efx_oword_t reg;
1104 	bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1105 	bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1106 
1107 	/* Configure MAC  - cut-thru mode is hard wired on */
1108 	EFX_POPULATE_OWORD_3(reg,
1109 			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1110 			     FRF_AB_XM_TX_STAT_EN, 1,
1111 			     FRF_AB_XM_RX_STAT_EN, 1);
1112 	efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1113 
1114 	/* Configure TX */
1115 	EFX_POPULATE_OWORD_6(reg,
1116 			     FRF_AB_XM_TXEN, 1,
1117 			     FRF_AB_XM_TX_PRMBL, 1,
1118 			     FRF_AB_XM_AUTO_PAD, 1,
1119 			     FRF_AB_XM_TXCRC, 1,
1120 			     FRF_AB_XM_FCNTL, tx_fc,
1121 			     FRF_AB_XM_IPG, 0x3);
1122 	efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1123 
1124 	/* Configure RX */
1125 	EFX_POPULATE_OWORD_5(reg,
1126 			     FRF_AB_XM_RXEN, 1,
1127 			     FRF_AB_XM_AUTO_DEPAD, 0,
1128 			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1129 			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1130 			     FRF_AB_XM_PASS_CRC_ERR, 1);
1131 	efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1132 
1133 	/* Set frame length */
1134 	max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1135 	EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1136 	efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1137 	EFX_POPULATE_OWORD_2(reg,
1138 			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1139 			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1140 	efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1141 
1142 	EFX_POPULATE_OWORD_2(reg,
1143 			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1144 			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1145 	efx_writeo(efx, &reg, FR_AB_XM_FC);
1146 
1147 	/* Set MAC address */
1148 	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1149 	efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1150 	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1151 	efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1152 }
1153 
falcon_reconfigure_xgxs_core(struct efx_nic * efx)1154 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1155 {
1156 	efx_oword_t reg;
1157 	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1158 	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1159 	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1160 	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1161 
1162 	/* XGXS block is flaky and will need to be reset if moving
1163 	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1164 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1165 	old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1166 	old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1167 
1168 	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1169 	old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1170 
1171 	/* The PHY driver may have turned XAUI off */
1172 	if ((xgxs_loopback != old_xgxs_loopback) ||
1173 	    (xaui_loopback != old_xaui_loopback) ||
1174 	    (xgmii_loopback != old_xgmii_loopback))
1175 		falcon_reset_xaui(efx);
1176 
1177 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1178 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1179 			    (xgxs_loopback || xaui_loopback) ?
1180 			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1181 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1182 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1183 	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1184 
1185 	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1186 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1187 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1188 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1189 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1190 	efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1191 }
1192 
1193 
1194 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
falcon_xmac_link_ok_retry(struct efx_nic * efx,int tries)1195 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1196 {
1197 	bool mac_up = falcon_xmac_link_ok(efx);
1198 
1199 	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1200 	    efx_phy_mode_disabled(efx->phy_mode))
1201 		/* XAUI link is expected to be down */
1202 		return mac_up;
1203 
1204 	falcon_stop_nic_stats(efx);
1205 
1206 	while (!mac_up && tries) {
1207 		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1208 		falcon_reset_xaui(efx);
1209 		udelay(200);
1210 
1211 		mac_up = falcon_xmac_link_ok(efx);
1212 		--tries;
1213 	}
1214 
1215 	falcon_start_nic_stats(efx);
1216 
1217 	return mac_up;
1218 }
1219 
falcon_xmac_check_fault(struct efx_nic * efx)1220 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1221 {
1222 	return !falcon_xmac_link_ok_retry(efx, 5);
1223 }
1224 
falcon_reconfigure_xmac(struct efx_nic * efx)1225 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1226 {
1227 	struct falcon_nic_data *nic_data = efx->nic_data;
1228 
1229 	efx_farch_filter_sync_rx_mode(efx);
1230 
1231 	falcon_reconfigure_xgxs_core(efx);
1232 	falcon_reconfigure_xmac_core(efx);
1233 
1234 	falcon_reconfigure_mac_wrapper(efx);
1235 
1236 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1237 	falcon_ack_status_intr(efx);
1238 
1239 	return 0;
1240 }
1241 
falcon_poll_xmac(struct efx_nic * efx)1242 static void falcon_poll_xmac(struct efx_nic *efx)
1243 {
1244 	struct falcon_nic_data *nic_data = efx->nic_data;
1245 
1246 	/* We expect xgmii faults if the wireside link is down */
1247 	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1248 		return;
1249 
1250 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1251 	falcon_ack_status_intr(efx);
1252 }
1253 
1254 /**************************************************************************
1255  *
1256  * MAC wrapper
1257  *
1258  **************************************************************************
1259  */
1260 
falcon_push_multicast_hash(struct efx_nic * efx)1261 static void falcon_push_multicast_hash(struct efx_nic *efx)
1262 {
1263 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1264 
1265 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1266 
1267 	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1268 	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1269 }
1270 
falcon_reset_macs(struct efx_nic * efx)1271 static void falcon_reset_macs(struct efx_nic *efx)
1272 {
1273 	struct falcon_nic_data *nic_data = efx->nic_data;
1274 	efx_oword_t reg, mac_ctrl;
1275 	int count;
1276 
1277 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1278 		/* It's not safe to use GLB_CTL_REG to reset the
1279 		 * macs, so instead use the internal MAC resets
1280 		 */
1281 		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1282 		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1283 
1284 		for (count = 0; count < 10000; count++) {
1285 			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1286 			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1287 			    0)
1288 				return;
1289 			udelay(10);
1290 		}
1291 
1292 		netif_err(efx, hw, efx->net_dev,
1293 			  "timed out waiting for XMAC core reset\n");
1294 	}
1295 
1296 	/* Mac stats will fail whist the TX fifo is draining */
1297 	WARN_ON(nic_data->stats_disable_count == 0);
1298 
1299 	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1300 	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1301 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302 
1303 	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1304 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1305 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1306 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1307 	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1308 
1309 	count = 0;
1310 	while (1) {
1311 		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1312 		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1313 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1314 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1315 			netif_dbg(efx, hw, efx->net_dev,
1316 				  "Completed MAC reset after %d loops\n",
1317 				  count);
1318 			break;
1319 		}
1320 		if (count > 20) {
1321 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1322 			break;
1323 		}
1324 		count++;
1325 		udelay(10);
1326 	}
1327 
1328 	/* Ensure the correct MAC is selected before statistics
1329 	 * are re-enabled by the caller */
1330 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1331 
1332 	falcon_setup_xaui(efx);
1333 }
1334 
falcon_drain_tx_fifo(struct efx_nic * efx)1335 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1336 {
1337 	efx_oword_t reg;
1338 
1339 	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1340 	    (efx->loopback_mode != LOOPBACK_NONE))
1341 		return;
1342 
1343 	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1344 	/* There is no point in draining more than once */
1345 	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1346 		return;
1347 
1348 	falcon_reset_macs(efx);
1349 }
1350 
falcon_deconfigure_mac_wrapper(struct efx_nic * efx)1351 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1352 {
1353 	efx_oword_t reg;
1354 
1355 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1356 		return;
1357 
1358 	/* Isolate the MAC -> RX */
1359 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1360 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1361 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1362 
1363 	/* Isolate TX -> MAC */
1364 	falcon_drain_tx_fifo(efx);
1365 }
1366 
falcon_reconfigure_mac_wrapper(struct efx_nic * efx)1367 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1368 {
1369 	struct efx_link_state *link_state = &efx->link_state;
1370 	efx_oword_t reg;
1371 	int link_speed, isolate;
1372 
1373 	isolate = !!ACCESS_ONCE(efx->reset_pending);
1374 
1375 	switch (link_state->speed) {
1376 	case 10000: link_speed = 3; break;
1377 	case 1000:  link_speed = 2; break;
1378 	case 100:   link_speed = 1; break;
1379 	default:    link_speed = 0; break;
1380 	}
1381 
1382 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1383 	 * as advertised.  Disable to ensure packets are not
1384 	 * indefinitely held and TX queue can be flushed at any point
1385 	 * while the link is down. */
1386 	EFX_POPULATE_OWORD_5(reg,
1387 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1388 			     FRF_AB_MAC_BCAD_ACPT, 1,
1389 			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1390 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1391 			     FRF_AB_MAC_SPEED, link_speed);
1392 	/* On B0, MAC backpressure can be disabled and packets get
1393 	 * discarded. */
1394 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1395 		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1396 				    !link_state->up || isolate);
1397 	}
1398 
1399 	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1400 
1401 	/* Restore the multicast hash registers. */
1402 	falcon_push_multicast_hash(efx);
1403 
1404 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1405 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1406 	 * initialisation but it may read back as 0) */
1407 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1408 	/* Unisolate the MAC -> RX */
1409 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1410 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1411 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1412 }
1413 
falcon_stats_request(struct efx_nic * efx)1414 static void falcon_stats_request(struct efx_nic *efx)
1415 {
1416 	struct falcon_nic_data *nic_data = efx->nic_data;
1417 	efx_oword_t reg;
1418 
1419 	WARN_ON(nic_data->stats_pending);
1420 	WARN_ON(nic_data->stats_disable_count);
1421 
1422 	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1423 	nic_data->stats_pending = true;
1424 	wmb(); /* ensure done flag is clear */
1425 
1426 	/* Initiate DMA transfer of stats */
1427 	EFX_POPULATE_OWORD_2(reg,
1428 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1429 			     FRF_AB_MAC_STAT_DMA_ADR,
1430 			     efx->stats_buffer.dma_addr);
1431 	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1432 
1433 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1434 }
1435 
falcon_stats_complete(struct efx_nic * efx)1436 static void falcon_stats_complete(struct efx_nic *efx)
1437 {
1438 	struct falcon_nic_data *nic_data = efx->nic_data;
1439 
1440 	if (!nic_data->stats_pending)
1441 		return;
1442 
1443 	nic_data->stats_pending = false;
1444 	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1445 		rmb(); /* read the done flag before the stats */
1446 		efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1447 				     falcon_stat_mask, nic_data->stats,
1448 				     efx->stats_buffer.addr, true);
1449 	} else {
1450 		netif_err(efx, hw, efx->net_dev,
1451 			  "timed out waiting for statistics\n");
1452 	}
1453 }
1454 
falcon_stats_timer_func(unsigned long context)1455 static void falcon_stats_timer_func(unsigned long context)
1456 {
1457 	struct efx_nic *efx = (struct efx_nic *)context;
1458 	struct falcon_nic_data *nic_data = efx->nic_data;
1459 
1460 	spin_lock(&efx->stats_lock);
1461 
1462 	falcon_stats_complete(efx);
1463 	if (nic_data->stats_disable_count == 0)
1464 		falcon_stats_request(efx);
1465 
1466 	spin_unlock(&efx->stats_lock);
1467 }
1468 
falcon_loopback_link_poll(struct efx_nic * efx)1469 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1470 {
1471 	struct efx_link_state old_state = efx->link_state;
1472 
1473 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474 	WARN_ON(!LOOPBACK_INTERNAL(efx));
1475 
1476 	efx->link_state.fd = true;
1477 	efx->link_state.fc = efx->wanted_fc;
1478 	efx->link_state.up = true;
1479 	efx->link_state.speed = 10000;
1480 
1481 	return !efx_link_state_equal(&efx->link_state, &old_state);
1482 }
1483 
falcon_reconfigure_port(struct efx_nic * efx)1484 static int falcon_reconfigure_port(struct efx_nic *efx)
1485 {
1486 	int rc;
1487 
1488 	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1489 
1490 	/* Poll the PHY link state *before* reconfiguring it. This means we
1491 	 * will pick up the correct speed (in loopback) to select the correct
1492 	 * MAC.
1493 	 */
1494 	if (LOOPBACK_INTERNAL(efx))
1495 		falcon_loopback_link_poll(efx);
1496 	else
1497 		efx->phy_op->poll(efx);
1498 
1499 	falcon_stop_nic_stats(efx);
1500 	falcon_deconfigure_mac_wrapper(efx);
1501 
1502 	falcon_reset_macs(efx);
1503 
1504 	efx->phy_op->reconfigure(efx);
1505 	rc = falcon_reconfigure_xmac(efx);
1506 	BUG_ON(rc);
1507 
1508 	falcon_start_nic_stats(efx);
1509 
1510 	/* Synchronise efx->link_state with the kernel */
1511 	efx_link_status_changed(efx);
1512 
1513 	return 0;
1514 }
1515 
1516 /* TX flow control may automatically turn itself off if the link
1517  * partner (intermittently) stops responding to pause frames. There
1518  * isn't any indication that this has happened, so the best we do is
1519  * leave it up to the user to spot this and fix it by cycling transmit
1520  * flow control on this end.
1521  */
1522 
falcon_a1_prepare_enable_fc_tx(struct efx_nic * efx)1523 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1524 {
1525 	/* Schedule a reset to recover */
1526 	efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527 }
1528 
falcon_b0_prepare_enable_fc_tx(struct efx_nic * efx)1529 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1530 {
1531 	/* Recover by resetting the EM block */
1532 	falcon_stop_nic_stats(efx);
1533 	falcon_drain_tx_fifo(efx);
1534 	falcon_reconfigure_xmac(efx);
1535 	falcon_start_nic_stats(efx);
1536 }
1537 
1538 /**************************************************************************
1539  *
1540  * PHY access via GMII
1541  *
1542  **************************************************************************
1543  */
1544 
1545 /* Wait for GMII access to complete */
falcon_gmii_wait(struct efx_nic * efx)1546 static int falcon_gmii_wait(struct efx_nic *efx)
1547 {
1548 	efx_oword_t md_stat;
1549 	int count;
1550 
1551 	/* wait up to 50ms - taken max from datasheet */
1552 	for (count = 0; count < 5000; count++) {
1553 		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1554 		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555 			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556 			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557 				netif_err(efx, hw, efx->net_dev,
1558 					  "error from GMII access "
1559 					  EFX_OWORD_FMT"\n",
1560 					  EFX_OWORD_VAL(md_stat));
1561 				return -EIO;
1562 			}
1563 			return 0;
1564 		}
1565 		udelay(10);
1566 	}
1567 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568 	return -ETIMEDOUT;
1569 }
1570 
1571 /* Write an MDIO register of a PHY connected to Falcon. */
falcon_mdio_write(struct net_device * net_dev,int prtad,int devad,u16 addr,u16 value)1572 static int falcon_mdio_write(struct net_device *net_dev,
1573 			     int prtad, int devad, u16 addr, u16 value)
1574 {
1575 	struct efx_nic *efx = netdev_priv(net_dev);
1576 	struct falcon_nic_data *nic_data = efx->nic_data;
1577 	efx_oword_t reg;
1578 	int rc;
1579 
1580 	netif_vdbg(efx, hw, efx->net_dev,
1581 		   "writing MDIO %d register %d.%d with 0x%04x\n",
1582 		    prtad, devad, addr, value);
1583 
1584 	mutex_lock(&nic_data->mdio_lock);
1585 
1586 	/* Check MDIO not currently being accessed */
1587 	rc = falcon_gmii_wait(efx);
1588 	if (rc)
1589 		goto out;
1590 
1591 	/* Write the address/ID register */
1592 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594 
1595 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596 			     FRF_AB_MD_DEV_ADR, devad);
1597 	efx_writeo(efx, &reg, FR_AB_MD_ID);
1598 
1599 	/* Write data */
1600 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601 	efx_writeo(efx, &reg, FR_AB_MD_TXD);
1602 
1603 	EFX_POPULATE_OWORD_2(reg,
1604 			     FRF_AB_MD_WRC, 1,
1605 			     FRF_AB_MD_GC, 0);
1606 	efx_writeo(efx, &reg, FR_AB_MD_CS);
1607 
1608 	/* Wait for data to be written */
1609 	rc = falcon_gmii_wait(efx);
1610 	if (rc) {
1611 		/* Abort the write operation */
1612 		EFX_POPULATE_OWORD_2(reg,
1613 				     FRF_AB_MD_WRC, 0,
1614 				     FRF_AB_MD_GC, 1);
1615 		efx_writeo(efx, &reg, FR_AB_MD_CS);
1616 		udelay(10);
1617 	}
1618 
1619 out:
1620 	mutex_unlock(&nic_data->mdio_lock);
1621 	return rc;
1622 }
1623 
1624 /* Read an MDIO register of a PHY connected to Falcon. */
falcon_mdio_read(struct net_device * net_dev,int prtad,int devad,u16 addr)1625 static int falcon_mdio_read(struct net_device *net_dev,
1626 			    int prtad, int devad, u16 addr)
1627 {
1628 	struct efx_nic *efx = netdev_priv(net_dev);
1629 	struct falcon_nic_data *nic_data = efx->nic_data;
1630 	efx_oword_t reg;
1631 	int rc;
1632 
1633 	mutex_lock(&nic_data->mdio_lock);
1634 
1635 	/* Check MDIO not currently being accessed */
1636 	rc = falcon_gmii_wait(efx);
1637 	if (rc)
1638 		goto out;
1639 
1640 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642 
1643 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644 			     FRF_AB_MD_DEV_ADR, devad);
1645 	efx_writeo(efx, &reg, FR_AB_MD_ID);
1646 
1647 	/* Request data to be read */
1648 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649 	efx_writeo(efx, &reg, FR_AB_MD_CS);
1650 
1651 	/* Wait for data to become available */
1652 	rc = falcon_gmii_wait(efx);
1653 	if (rc == 0) {
1654 		efx_reado(efx, &reg, FR_AB_MD_RXD);
1655 		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656 		netif_vdbg(efx, hw, efx->net_dev,
1657 			   "read from MDIO %d register %d.%d, got %04x\n",
1658 			   prtad, devad, addr, rc);
1659 	} else {
1660 		/* Abort the read operation */
1661 		EFX_POPULATE_OWORD_2(reg,
1662 				     FRF_AB_MD_RIC, 0,
1663 				     FRF_AB_MD_GC, 1);
1664 		efx_writeo(efx, &reg, FR_AB_MD_CS);
1665 
1666 		netif_dbg(efx, hw, efx->net_dev,
1667 			  "read from MDIO %d register %d.%d, got error %d\n",
1668 			  prtad, devad, addr, rc);
1669 	}
1670 
1671 out:
1672 	mutex_unlock(&nic_data->mdio_lock);
1673 	return rc;
1674 }
1675 
1676 /* This call is responsible for hooking in the MAC and PHY operations */
falcon_probe_port(struct efx_nic * efx)1677 static int falcon_probe_port(struct efx_nic *efx)
1678 {
1679 	struct falcon_nic_data *nic_data = efx->nic_data;
1680 	int rc;
1681 
1682 	switch (efx->phy_type) {
1683 	case PHY_TYPE_SFX7101:
1684 		efx->phy_op = &falcon_sfx7101_phy_ops;
1685 		break;
1686 	case PHY_TYPE_QT2022C2:
1687 	case PHY_TYPE_QT2025C:
1688 		efx->phy_op = &falcon_qt202x_phy_ops;
1689 		break;
1690 	case PHY_TYPE_TXC43128:
1691 		efx->phy_op = &falcon_txc_phy_ops;
1692 		break;
1693 	default:
1694 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695 			  efx->phy_type);
1696 		return -ENODEV;
1697 	}
1698 
1699 	/* Fill out MDIO structure and loopback modes */
1700 	mutex_init(&nic_data->mdio_lock);
1701 	efx->mdio.mdio_read = falcon_mdio_read;
1702 	efx->mdio.mdio_write = falcon_mdio_write;
1703 	rc = efx->phy_op->probe(efx);
1704 	if (rc != 0)
1705 		return rc;
1706 
1707 	/* Initial assumption */
1708 	efx->link_state.speed = 10000;
1709 	efx->link_state.fd = true;
1710 
1711 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1713 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1714 	else
1715 		efx->wanted_fc = EFX_FC_RX;
1716 	if (efx->mdio.mmds & MDIO_DEVS_AN)
1717 		efx->wanted_fc |= EFX_FC_AUTO;
1718 
1719 	/* Allocate buffer for stats */
1720 	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1721 				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722 	if (rc)
1723 		return rc;
1724 	netif_dbg(efx, probe, efx->net_dev,
1725 		  "stats buffer at %llx (virt %p phys %llx)\n",
1726 		  (u64)efx->stats_buffer.dma_addr,
1727 		  efx->stats_buffer.addr,
1728 		  (u64)virt_to_phys(efx->stats_buffer.addr));
1729 
1730 	return 0;
1731 }
1732 
falcon_remove_port(struct efx_nic * efx)1733 static void falcon_remove_port(struct efx_nic *efx)
1734 {
1735 	efx->phy_op->remove(efx);
1736 	efx_nic_free_buffer(efx, &efx->stats_buffer);
1737 }
1738 
1739 /* Global events are basically PHY events */
1740 static bool
falcon_handle_global_event(struct efx_channel * channel,efx_qword_t * event)1741 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1742 {
1743 	struct efx_nic *efx = channel->efx;
1744 	struct falcon_nic_data *nic_data = efx->nic_data;
1745 
1746 	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749 		/* Ignored */
1750 		return true;
1751 
1752 	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1753 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754 		nic_data->xmac_poll_required = true;
1755 		return true;
1756 	}
1757 
1758 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1759 	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761 		netif_err(efx, rx_err, efx->net_dev,
1762 			  "channel %d seen global RX_RESET event. Resetting.\n",
1763 			  channel->channel);
1764 
1765 		atomic_inc(&efx->rx_reset);
1766 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1767 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768 		return true;
1769 	}
1770 
1771 	return false;
1772 }
1773 
1774 /**************************************************************************
1775  *
1776  * Falcon test code
1777  *
1778  **************************************************************************/
1779 
1780 static int
falcon_read_nvram(struct efx_nic * efx,struct falcon_nvconfig * nvconfig_out)1781 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782 {
1783 	struct falcon_nic_data *nic_data = efx->nic_data;
1784 	struct falcon_nvconfig *nvconfig;
1785 	struct falcon_spi_device *spi;
1786 	void *region;
1787 	int rc, magic_num, struct_ver;
1788 	__le16 *word, *limit;
1789 	u32 csum;
1790 
1791 	if (falcon_spi_present(&nic_data->spi_flash))
1792 		spi = &nic_data->spi_flash;
1793 	else if (falcon_spi_present(&nic_data->spi_eeprom))
1794 		spi = &nic_data->spi_eeprom;
1795 	else
1796 		return -EINVAL;
1797 
1798 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799 	if (!region)
1800 		return -ENOMEM;
1801 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802 
1803 	mutex_lock(&nic_data->spi_lock);
1804 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805 	mutex_unlock(&nic_data->spi_lock);
1806 	if (rc) {
1807 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808 			  falcon_spi_present(&nic_data->spi_flash) ?
1809 			  "flash" : "EEPROM");
1810 		rc = -EIO;
1811 		goto out;
1812 	}
1813 
1814 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816 
1817 	rc = -EINVAL;
1818 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819 		netif_err(efx, hw, efx->net_dev,
1820 			  "NVRAM bad magic 0x%x\n", magic_num);
1821 		goto out;
1822 	}
1823 	if (struct_ver < 2) {
1824 		netif_err(efx, hw, efx->net_dev,
1825 			  "NVRAM has ancient version 0x%x\n", struct_ver);
1826 		goto out;
1827 	} else if (struct_ver < 4) {
1828 		word = &nvconfig->board_magic_num;
1829 		limit = (__le16 *) (nvconfig + 1);
1830 	} else {
1831 		word = region;
1832 		limit = region + FALCON_NVCONFIG_END;
1833 	}
1834 	for (csum = 0; word < limit; ++word)
1835 		csum += le16_to_cpu(*word);
1836 
1837 	if (~csum & 0xffff) {
1838 		netif_err(efx, hw, efx->net_dev,
1839 			  "NVRAM has incorrect checksum\n");
1840 		goto out;
1841 	}
1842 
1843 	rc = 0;
1844 	if (nvconfig_out)
1845 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846 
1847  out:
1848 	kfree(region);
1849 	return rc;
1850 }
1851 
falcon_test_nvram(struct efx_nic * efx)1852 static int falcon_test_nvram(struct efx_nic *efx)
1853 {
1854 	return falcon_read_nvram(efx, NULL);
1855 }
1856 
1857 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1858 	{ FR_AZ_ADR_REGION,
1859 	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860 	{ FR_AZ_RX_CFG,
1861 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862 	{ FR_AZ_TX_CFG,
1863 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864 	{ FR_AZ_TX_RESERVED,
1865 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866 	{ FR_AB_MAC_CTRL,
1867 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868 	{ FR_AZ_SRM_TX_DC_CFG,
1869 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870 	{ FR_AZ_RX_DC_CFG,
1871 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872 	{ FR_AZ_RX_DC_PF_WM,
1873 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874 	{ FR_BZ_DP_CTRL,
1875 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876 	{ FR_AB_GM_CFG2,
1877 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878 	{ FR_AB_GMF_CFG0,
1879 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880 	{ FR_AB_XM_GLB_CFG,
1881 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882 	{ FR_AB_XM_TX_CFG,
1883 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884 	{ FR_AB_XM_RX_CFG,
1885 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886 	{ FR_AB_XM_RX_PARAM,
1887 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888 	{ FR_AB_XM_FC,
1889 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890 	{ FR_AB_XM_ADR_LO,
1891 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892 	{ FR_AB_XX_SD_CTL,
1893 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 };
1895 
1896 static int
falcon_b0_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)1897 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1898 {
1899 	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900 	int rc, rc2;
1901 
1902 	mutex_lock(&efx->mac_lock);
1903 	if (efx->loopback_modes) {
1904 		/* We need the 312 clock from the PHY to test the XMAC
1905 		 * registers, so move into XGMII loopback if available */
1906 		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907 			efx->loopback_mode = LOOPBACK_XGMII;
1908 		else
1909 			efx->loopback_mode = __ffs(efx->loopback_modes);
1910 	}
1911 	__efx_reconfigure_port(efx);
1912 	mutex_unlock(&efx->mac_lock);
1913 
1914 	efx_reset_down(efx, reset_method);
1915 
1916 	tests->registers =
1917 		efx_farch_test_registers(efx, falcon_b0_register_tests,
1918 					 ARRAY_SIZE(falcon_b0_register_tests))
1919 		? -1 : 1;
1920 
1921 	rc = falcon_reset_hw(efx, reset_method);
1922 	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1923 	return rc ? rc : rc2;
1924 }
1925 
1926 /**************************************************************************
1927  *
1928  * Device reset
1929  *
1930  **************************************************************************
1931  */
1932 
falcon_map_reset_reason(enum reset_type reason)1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934 {
1935 	switch (reason) {
1936 	case RESET_TYPE_RX_RECOVERY:
1937 	case RESET_TYPE_DMA_ERROR:
1938 	case RESET_TYPE_TX_SKIP:
1939 		/* These can occasionally occur due to hardware bugs.
1940 		 * We try to reset without disrupting the link.
1941 		 */
1942 		return RESET_TYPE_INVISIBLE;
1943 	default:
1944 		return RESET_TYPE_ALL;
1945 	}
1946 }
1947 
falcon_map_reset_flags(u32 * flags)1948 static int falcon_map_reset_flags(u32 *flags)
1949 {
1950 	enum {
1951 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955 	};
1956 
1957 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958 		*flags &= ~FALCON_RESET_WORLD;
1959 		return RESET_TYPE_WORLD;
1960 	}
1961 
1962 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963 		*flags &= ~FALCON_RESET_ALL;
1964 		return RESET_TYPE_ALL;
1965 	}
1966 
1967 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968 		*flags &= ~FALCON_RESET_INVISIBLE;
1969 		return RESET_TYPE_INVISIBLE;
1970 	}
1971 
1972 	return -EINVAL;
1973 }
1974 
1975 /* Resets NIC to known state.  This routine must be called in process
1976  * context and is allowed to sleep. */
__falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1977 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1978 {
1979 	struct falcon_nic_data *nic_data = efx->nic_data;
1980 	efx_oword_t glb_ctl_reg_ker;
1981 	int rc;
1982 
1983 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984 		  RESET_TYPE(method));
1985 
1986 	/* Initiate device reset */
1987 	if (method == RESET_TYPE_WORLD) {
1988 		rc = pci_save_state(efx->pci_dev);
1989 		if (rc) {
1990 			netif_err(efx, drv, efx->net_dev,
1991 				  "failed to backup PCI state of primary "
1992 				  "function prior to hardware reset\n");
1993 			goto fail1;
1994 		}
1995 		if (efx_nic_is_dual_func(efx)) {
1996 			rc = pci_save_state(nic_data->pci_dev2);
1997 			if (rc) {
1998 				netif_err(efx, drv, efx->net_dev,
1999 					  "failed to backup PCI state of "
2000 					  "secondary function prior to "
2001 					  "hardware reset\n");
2002 				goto fail2;
2003 			}
2004 		}
2005 
2006 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007 				     FRF_AB_EXT_PHY_RST_DUR,
2008 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2009 				     FRF_AB_SWRST, 1);
2010 	} else {
2011 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012 				     /* exclude PHY from "invisible" reset */
2013 				     FRF_AB_EXT_PHY_RST_CTL,
2014 				     method == RESET_TYPE_INVISIBLE,
2015 				     /* exclude EEPROM/flash and PCIe */
2016 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2017 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018 				     FRF_AB_PCIE_SD_RST_CTL, 1,
2019 				     FRF_AB_EE_RST_CTL, 1,
2020 				     FRF_AB_EXT_PHY_RST_DUR,
2021 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2022 				     FRF_AB_SWRST, 1);
2023 	}
2024 	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025 
2026 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027 	schedule_timeout_uninterruptible(HZ / 20);
2028 
2029 	/* Restore PCI configuration if needed */
2030 	if (method == RESET_TYPE_WORLD) {
2031 		if (efx_nic_is_dual_func(efx))
2032 			pci_restore_state(nic_data->pci_dev2);
2033 		pci_restore_state(efx->pci_dev);
2034 		netif_dbg(efx, drv, efx->net_dev,
2035 			  "successfully restored PCI config\n");
2036 	}
2037 
2038 	/* Assert that reset complete */
2039 	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041 		rc = -ETIMEDOUT;
2042 		netif_err(efx, hw, efx->net_dev,
2043 			  "timed out waiting for hardware reset\n");
2044 		goto fail3;
2045 	}
2046 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047 
2048 	return 0;
2049 
2050 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052 	pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055 	return rc;
2056 }
2057 
falcon_reset_hw(struct efx_nic * efx,enum reset_type method)2058 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2059 {
2060 	struct falcon_nic_data *nic_data = efx->nic_data;
2061 	int rc;
2062 
2063 	mutex_lock(&nic_data->spi_lock);
2064 	rc = __falcon_reset_hw(efx, method);
2065 	mutex_unlock(&nic_data->spi_lock);
2066 
2067 	return rc;
2068 }
2069 
falcon_monitor(struct efx_nic * efx)2070 static void falcon_monitor(struct efx_nic *efx)
2071 {
2072 	bool link_changed;
2073 	int rc;
2074 
2075 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076 
2077 	rc = falcon_board(efx)->type->monitor(efx);
2078 	if (rc) {
2079 		netif_err(efx, hw, efx->net_dev,
2080 			  "Board sensor %s; shutting down PHY\n",
2081 			  (rc == -ERANGE) ? "reported fault" : "failed");
2082 		efx->phy_mode |= PHY_MODE_LOW_POWER;
2083 		rc = __efx_reconfigure_port(efx);
2084 		WARN_ON(rc);
2085 	}
2086 
2087 	if (LOOPBACK_INTERNAL(efx))
2088 		link_changed = falcon_loopback_link_poll(efx);
2089 	else
2090 		link_changed = efx->phy_op->poll(efx);
2091 
2092 	if (link_changed) {
2093 		falcon_stop_nic_stats(efx);
2094 		falcon_deconfigure_mac_wrapper(efx);
2095 
2096 		falcon_reset_macs(efx);
2097 		rc = falcon_reconfigure_xmac(efx);
2098 		BUG_ON(rc);
2099 
2100 		falcon_start_nic_stats(efx);
2101 
2102 		efx_link_status_changed(efx);
2103 	}
2104 
2105 	falcon_poll_xmac(efx);
2106 }
2107 
2108 /* Zeroes out the SRAM contents.  This routine must be called in
2109  * process context and is allowed to sleep.
2110  */
falcon_reset_sram(struct efx_nic * efx)2111 static int falcon_reset_sram(struct efx_nic *efx)
2112 {
2113 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114 	int count;
2115 
2116 	/* Set the SRAM wake/sleep GPIO appropriately. */
2117 	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120 	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121 
2122 	/* Initiate SRAM reset */
2123 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124 			     FRF_AZ_SRM_INIT_EN, 1,
2125 			     FRF_AZ_SRM_NB_SZ, 0);
2126 	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127 
2128 	/* Wait for SRAM reset to complete */
2129 	count = 0;
2130 	do {
2131 		netif_dbg(efx, hw, efx->net_dev,
2132 			  "waiting for SRAM reset (attempt %d)...\n", count);
2133 
2134 		/* SRAM reset is slow; expect around 16ms */
2135 		schedule_timeout_uninterruptible(HZ / 50);
2136 
2137 		/* Check for reset complete */
2138 		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140 			netif_dbg(efx, hw, efx->net_dev,
2141 				  "SRAM reset complete\n");
2142 
2143 			return 0;
2144 		}
2145 	} while (++count < 20);	/* wait up to 0.4 sec */
2146 
2147 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148 	return -ETIMEDOUT;
2149 }
2150 
falcon_spi_device_init(struct efx_nic * efx,struct falcon_spi_device * spi_device,unsigned int device_id,u32 device_type)2151 static void falcon_spi_device_init(struct efx_nic *efx,
2152 				  struct falcon_spi_device *spi_device,
2153 				  unsigned int device_id, u32 device_type)
2154 {
2155 	if (device_type != 0) {
2156 		spi_device->device_id = device_id;
2157 		spi_device->size =
2158 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159 		spi_device->addr_len =
2160 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162 					     spi_device->addr_len == 1);
2163 		spi_device->erase_command =
2164 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165 		spi_device->erase_size =
2166 			1 << SPI_DEV_TYPE_FIELD(device_type,
2167 						SPI_DEV_TYPE_ERASE_SIZE);
2168 		spi_device->block_size =
2169 			1 << SPI_DEV_TYPE_FIELD(device_type,
2170 						SPI_DEV_TYPE_BLOCK_SIZE);
2171 	} else {
2172 		spi_device->size = 0;
2173 	}
2174 }
2175 
2176 /* Extract non-volatile configuration */
falcon_probe_nvconfig(struct efx_nic * efx)2177 static int falcon_probe_nvconfig(struct efx_nic *efx)
2178 {
2179 	struct falcon_nic_data *nic_data = efx->nic_data;
2180 	struct falcon_nvconfig *nvconfig;
2181 	int rc;
2182 
2183 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184 	if (!nvconfig)
2185 		return -ENOMEM;
2186 
2187 	rc = falcon_read_nvram(efx, nvconfig);
2188 	if (rc)
2189 		goto out;
2190 
2191 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193 
2194 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195 		falcon_spi_device_init(
2196 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197 			le32_to_cpu(nvconfig->board_v3
2198 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199 		falcon_spi_device_init(
2200 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201 			le32_to_cpu(nvconfig->board_v3
2202 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203 	}
2204 
2205 	/* Read the MAC addresses */
2206 	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207 
2208 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209 		  efx->phy_type, efx->mdio.prtad);
2210 
2211 	rc = falcon_probe_board(efx,
2212 				le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214 	kfree(nvconfig);
2215 	return rc;
2216 }
2217 
falcon_dimension_resources(struct efx_nic * efx)2218 static int falcon_dimension_resources(struct efx_nic *efx)
2219 {
2220 	efx->rx_dc_base = 0x20000;
2221 	efx->tx_dc_base = 0x26000;
2222 	return 0;
2223 }
2224 
2225 /* Probe all SPI devices on the NIC */
falcon_probe_spi_devices(struct efx_nic * efx)2226 static void falcon_probe_spi_devices(struct efx_nic *efx)
2227 {
2228 	struct falcon_nic_data *nic_data = efx->nic_data;
2229 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230 	int boot_dev;
2231 
2232 	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234 	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235 
2236 	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237 		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241 			  "flash" : "EEPROM");
2242 	} else {
2243 		/* Disable VPD and set clock dividers to safe
2244 		 * values for initial programming. */
2245 		boot_dev = -1;
2246 		netif_dbg(efx, probe, efx->net_dev,
2247 			  "Booted from internal ASIC settings;"
2248 			  " setting SPI config\n");
2249 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250 				     /* 125 MHz / 7 ~= 20 MHz */
2251 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2252 				     /* 125 MHz / 63 ~= 2 MHz */
2253 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2254 		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255 	}
2256 
2257 	mutex_init(&nic_data->spi_lock);
2258 
2259 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260 		falcon_spi_device_init(efx, &nic_data->spi_flash,
2261 				       FFE_AB_SPI_DEVICE_FLASH,
2262 				       default_flash_type);
2263 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265 				       FFE_AB_SPI_DEVICE_EEPROM,
2266 				       large_eeprom_type);
2267 }
2268 
falcon_a1_mem_map_size(struct efx_nic * efx)2269 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2270 {
2271 	return 0x20000;
2272 }
2273 
falcon_b0_mem_map_size(struct efx_nic * efx)2274 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2275 {
2276 	/* Map everything up to and including the RSS indirection table.
2277 	 * The PCI core takes care of mapping the MSI-X tables.
2278 	 */
2279 	return FR_BZ_RX_INDIRECTION_TBL +
2280 		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281 }
2282 
falcon_probe_nic(struct efx_nic * efx)2283 static int falcon_probe_nic(struct efx_nic *efx)
2284 {
2285 	struct falcon_nic_data *nic_data;
2286 	struct falcon_board *board;
2287 	int rc;
2288 
2289 	efx->primary = efx; /* only one usable function per controller */
2290 
2291 	/* Allocate storage for hardware specific data */
2292 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293 	if (!nic_data)
2294 		return -ENOMEM;
2295 	efx->nic_data = nic_data;
2296 
2297 	rc = -ENODEV;
2298 
2299 	if (efx_farch_fpga_ver(efx) != 0) {
2300 		netif_err(efx, probe, efx->net_dev,
2301 			  "Falcon FPGA not supported\n");
2302 		goto fail1;
2303 	}
2304 
2305 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2306 		efx_oword_t nic_stat;
2307 		struct pci_dev *dev;
2308 		u8 pci_rev = efx->pci_dev->revision;
2309 
2310 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2311 			netif_err(efx, probe, efx->net_dev,
2312 				  "Falcon rev A0 not supported\n");
2313 			goto fail1;
2314 		}
2315 		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2316 		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2317 			netif_err(efx, probe, efx->net_dev,
2318 				  "Falcon rev A1 1G not supported\n");
2319 			goto fail1;
2320 		}
2321 		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2322 			netif_err(efx, probe, efx->net_dev,
2323 				  "Falcon rev A1 PCI-X not supported\n");
2324 			goto fail1;
2325 		}
2326 
2327 		dev = pci_dev_get(efx->pci_dev);
2328 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2329 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2330 					     dev))) {
2331 			if (dev->bus == efx->pci_dev->bus &&
2332 			    dev->devfn == efx->pci_dev->devfn + 1) {
2333 				nic_data->pci_dev2 = dev;
2334 				break;
2335 			}
2336 		}
2337 		if (!nic_data->pci_dev2) {
2338 			netif_err(efx, probe, efx->net_dev,
2339 				  "failed to find secondary function\n");
2340 			rc = -ENODEV;
2341 			goto fail2;
2342 		}
2343 	}
2344 
2345 	/* Now we can reset the NIC */
2346 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2347 	if (rc) {
2348 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2349 		goto fail3;
2350 	}
2351 
2352 	/* Allocate memory for INT_KER */
2353 	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2354 				  GFP_KERNEL);
2355 	if (rc)
2356 		goto fail4;
2357 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2358 
2359 	netif_dbg(efx, probe, efx->net_dev,
2360 		  "INT_KER at %llx (virt %p phys %llx)\n",
2361 		  (u64)efx->irq_status.dma_addr,
2362 		  efx->irq_status.addr,
2363 		  (u64)virt_to_phys(efx->irq_status.addr));
2364 
2365 	falcon_probe_spi_devices(efx);
2366 
2367 	/* Read in the non-volatile configuration */
2368 	rc = falcon_probe_nvconfig(efx);
2369 	if (rc) {
2370 		if (rc == -EINVAL)
2371 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2372 		goto fail5;
2373 	}
2374 
2375 	efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2376 			     EFX_MAX_CHANNELS);
2377 	efx->max_tx_channels = efx->max_channels;
2378 	efx->timer_quantum_ns = 4968; /* 621 cycles */
2379 	efx->timer_max_ns = efx->type->timer_period_max *
2380 			    efx->timer_quantum_ns;
2381 
2382 	/* Initialise I2C adapter */
2383 	board = falcon_board(efx);
2384 	board->i2c_adap.owner = THIS_MODULE;
2385 	board->i2c_data = falcon_i2c_bit_operations;
2386 	board->i2c_data.data = efx;
2387 	board->i2c_adap.algo_data = &board->i2c_data;
2388 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2389 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2390 		sizeof(board->i2c_adap.name));
2391 	rc = i2c_bit_add_bus(&board->i2c_adap);
2392 	if (rc)
2393 		goto fail5;
2394 
2395 	rc = falcon_board(efx)->type->init(efx);
2396 	if (rc) {
2397 		netif_err(efx, probe, efx->net_dev,
2398 			  "failed to initialise board\n");
2399 		goto fail6;
2400 	}
2401 
2402 	nic_data->stats_disable_count = 1;
2403 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2404 		    (unsigned long)efx);
2405 
2406 	return 0;
2407 
2408  fail6:
2409 	i2c_del_adapter(&board->i2c_adap);
2410 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411  fail5:
2412 	efx_nic_free_buffer(efx, &efx->irq_status);
2413  fail4:
2414  fail3:
2415 	if (nic_data->pci_dev2) {
2416 		pci_dev_put(nic_data->pci_dev2);
2417 		nic_data->pci_dev2 = NULL;
2418 	}
2419  fail2:
2420  fail1:
2421 	kfree(efx->nic_data);
2422 	return rc;
2423 }
2424 
falcon_init_rx_cfg(struct efx_nic * efx)2425 static void falcon_init_rx_cfg(struct efx_nic *efx)
2426 {
2427 	/* RX control FIFO thresholds (32 entries) */
2428 	const unsigned ctrl_xon_thr = 20;
2429 	const unsigned ctrl_xoff_thr = 25;
2430 	efx_oword_t reg;
2431 
2432 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2433 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2434 		/* Data FIFO size is 5.5K.  The RX DMA engine only
2435 		 * supports scattering for user-mode queues, but will
2436 		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2437 		 * (32-byte units) even for kernel-mode queues.  We
2438 		 * set it to be so large that that never happens.
2439 		 */
2440 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442 				    (3 * 4096) >> 5);
2443 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447 	} else {
2448 		/* Data FIFO size is 80K; register fields moved */
2449 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451 				    EFX_RX_USR_BUF_SIZE >> 5);
2452 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458 
2459 		/* Enable hash insertion. This is broken for the
2460 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461 		 * IPv4 hashes. */
2462 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465 	}
2466 	/* Always enable XOFF signal from RX FIFO.  We enable
2467 	 * or disable transmission of pause frames at the MAC. */
2468 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2470 }
2471 
2472 /* This call performs hardware-specific global initialisation, such as
2473  * defining the descriptor cache sizes and number of RSS channels.
2474  * It does not set up any buffers, descriptor rings or event queues.
2475  */
falcon_init_nic(struct efx_nic * efx)2476 static int falcon_init_nic(struct efx_nic *efx)
2477 {
2478 	efx_oword_t temp;
2479 	int rc;
2480 
2481 	/* Use on-chip SRAM */
2482 	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2483 	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484 	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2485 
2486 	rc = falcon_reset_sram(efx);
2487 	if (rc)
2488 		return rc;
2489 
2490 	/* Clear the parity enables on the TX data fifos as
2491 	 * they produce false parity errors because of timing issues
2492 	 */
2493 	if (EFX_WORKAROUND_5129(efx)) {
2494 		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495 		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496 		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497 	}
2498 
2499 	if (EFX_WORKAROUND_7244(efx)) {
2500 		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505 		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506 	}
2507 
2508 	/* XXX This is documented only for Falcon A0/A1 */
2509 	/* Setup RX.  Wait for descriptor is broken and must
2510 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2511 	 */
2512 	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515 	if (EFX_WORKAROUND_5583(efx))
2516 		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517 	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518 
2519 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520 	 * descriptors (which is bad).
2521 	 */
2522 	efx_reado(efx, &temp, FR_AZ_TX_CFG);
2523 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524 	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2525 
2526 	falcon_init_rx_cfg(efx);
2527 
2528 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2529 		falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530 
2531 		/* Set destination of both TX and RX Flush events */
2532 		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533 		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534 	}
2535 
2536 	efx_farch_init_common(efx);
2537 
2538 	return 0;
2539 }
2540 
falcon_remove_nic(struct efx_nic * efx)2541 static void falcon_remove_nic(struct efx_nic *efx)
2542 {
2543 	struct falcon_nic_data *nic_data = efx->nic_data;
2544 	struct falcon_board *board = falcon_board(efx);
2545 
2546 	board->type->fini(efx);
2547 
2548 	/* Remove I2C adapter and clear it in preparation for a retry */
2549 	i2c_del_adapter(&board->i2c_adap);
2550 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551 
2552 	efx_nic_free_buffer(efx, &efx->irq_status);
2553 
2554 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2555 
2556 	/* Release the second function after the reset */
2557 	if (nic_data->pci_dev2) {
2558 		pci_dev_put(nic_data->pci_dev2);
2559 		nic_data->pci_dev2 = NULL;
2560 	}
2561 
2562 	/* Tear down the private nic state */
2563 	kfree(efx->nic_data);
2564 	efx->nic_data = NULL;
2565 }
2566 
falcon_describe_nic_stats(struct efx_nic * efx,u8 * names)2567 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2568 {
2569 	return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570 				      falcon_stat_mask, names);
2571 }
2572 
falcon_update_nic_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)2573 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2574 				      struct rtnl_link_stats64 *core_stats)
2575 {
2576 	struct falcon_nic_data *nic_data = efx->nic_data;
2577 	u64 *stats = nic_data->stats;
2578 	efx_oword_t cnt;
2579 
2580 	if (!nic_data->stats_disable_count) {
2581 		efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582 		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583 			EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584 
2585 		if (nic_data->stats_pending &&
2586 		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587 			nic_data->stats_pending = false;
2588 			rmb(); /* read the done flag before the stats */
2589 			efx_nic_update_stats(
2590 				falcon_stat_desc, FALCON_STAT_COUNT,
2591 				falcon_stat_mask,
2592 				stats, efx->stats_buffer.addr, true);
2593 		}
2594 
2595 		/* Update derived statistic */
2596 		efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597 				     stats[FALCON_STAT_rx_bytes] -
2598 				     stats[FALCON_STAT_rx_good_bytes] -
2599 				     stats[FALCON_STAT_rx_control] * 64);
2600 		efx_update_sw_stats(efx, stats);
2601 	}
2602 
2603 	if (full_stats)
2604 		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605 
2606 	if (core_stats) {
2607 		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608 		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609 		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610 		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611 		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2613 					 stats[GENERIC_STAT_rx_noskb_drops];
2614 		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615 		core_stats->rx_length_errors =
2616 			stats[FALCON_STAT_rx_gtjumbo] +
2617 			stats[FALCON_STAT_rx_length_error];
2618 		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619 		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620 		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621 
2622 		core_stats->rx_errors = (core_stats->rx_length_errors +
2623 					 core_stats->rx_crc_errors +
2624 					 core_stats->rx_frame_errors +
2625 					 stats[FALCON_STAT_rx_symbol_error]);
2626 	}
2627 
2628 	return FALCON_STAT_COUNT;
2629 }
2630 
falcon_start_nic_stats(struct efx_nic * efx)2631 void falcon_start_nic_stats(struct efx_nic *efx)
2632 {
2633 	struct falcon_nic_data *nic_data = efx->nic_data;
2634 
2635 	spin_lock_bh(&efx->stats_lock);
2636 	if (--nic_data->stats_disable_count == 0)
2637 		falcon_stats_request(efx);
2638 	spin_unlock_bh(&efx->stats_lock);
2639 }
2640 
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642  * they arrive when we call this just after start_stats
2643  */
falcon_pull_nic_stats(struct efx_nic * efx)2644 static void falcon_pull_nic_stats(struct efx_nic *efx)
2645 {
2646 	msleep(10);
2647 }
2648 
falcon_stop_nic_stats(struct efx_nic * efx)2649 void falcon_stop_nic_stats(struct efx_nic *efx)
2650 {
2651 	struct falcon_nic_data *nic_data = efx->nic_data;
2652 	int i;
2653 
2654 	might_sleep();
2655 
2656 	spin_lock_bh(&efx->stats_lock);
2657 	++nic_data->stats_disable_count;
2658 	spin_unlock_bh(&efx->stats_lock);
2659 
2660 	del_timer_sync(&nic_data->stats_timer);
2661 
2662 	/* Wait enough time for the most recent transfer to
2663 	 * complete. */
2664 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665 		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666 			break;
2667 		msleep(1);
2668 	}
2669 
2670 	spin_lock_bh(&efx->stats_lock);
2671 	falcon_stats_complete(efx);
2672 	spin_unlock_bh(&efx->stats_lock);
2673 }
2674 
falcon_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)2675 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2676 {
2677 	falcon_board(efx)->type->set_id_led(efx, mode);
2678 }
2679 
2680 /**************************************************************************
2681  *
2682  * Wake on LAN
2683  *
2684  **************************************************************************
2685  */
2686 
falcon_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)2687 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2688 {
2689 	wol->supported = 0;
2690 	wol->wolopts = 0;
2691 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2692 }
2693 
falcon_set_wol(struct efx_nic * efx,u32 type)2694 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2695 {
2696 	if (type != 0)
2697 		return -EINVAL;
2698 	return 0;
2699 }
2700 
2701 /**************************************************************************
2702  *
2703  * Revision-dependent attributes used by efx.c and nic.c
2704  *
2705  **************************************************************************
2706  */
2707 
2708 const struct efx_nic_type falcon_a1_nic_type = {
2709 	.is_vf = false,
2710 	.mem_bar = EFX_MEM_BAR,
2711 	.mem_map_size = falcon_a1_mem_map_size,
2712 	.probe = falcon_probe_nic,
2713 	.remove = falcon_remove_nic,
2714 	.init = falcon_init_nic,
2715 	.dimension_resources = falcon_dimension_resources,
2716 	.fini = falcon_irq_ack_a1,
2717 	.monitor = falcon_monitor,
2718 	.map_reset_reason = falcon_map_reset_reason,
2719 	.map_reset_flags = falcon_map_reset_flags,
2720 	.reset = falcon_reset_hw,
2721 	.probe_port = falcon_probe_port,
2722 	.remove_port = falcon_remove_port,
2723 	.handle_global_event = falcon_handle_global_event,
2724 	.fini_dmaq = efx_farch_fini_dmaq,
2725 	.prepare_flush = falcon_prepare_flush,
2726 	.finish_flush = efx_port_dummy_op_void,
2727 	.prepare_flr = efx_port_dummy_op_void,
2728 	.finish_flr = efx_farch_finish_flr,
2729 	.describe_stats = falcon_describe_nic_stats,
2730 	.update_stats = falcon_update_nic_stats,
2731 	.start_stats = falcon_start_nic_stats,
2732 	.pull_stats = falcon_pull_nic_stats,
2733 	.stop_stats = falcon_stop_nic_stats,
2734 	.set_id_led = falcon_set_id_led,
2735 	.push_irq_moderation = falcon_push_irq_moderation,
2736 	.reconfigure_port = falcon_reconfigure_port,
2737 	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2738 	.reconfigure_mac = falcon_reconfigure_xmac,
2739 	.check_mac_fault = falcon_xmac_check_fault,
2740 	.get_wol = falcon_get_wol,
2741 	.set_wol = falcon_set_wol,
2742 	.resume_wol = efx_port_dummy_op_void,
2743 	.test_nvram = falcon_test_nvram,
2744 	.irq_enable_master = efx_farch_irq_enable_master,
2745 	.irq_test_generate = efx_farch_irq_test_generate,
2746 	.irq_disable_non_ev = efx_farch_irq_disable_master,
2747 	.irq_handle_msi = efx_farch_msi_interrupt,
2748 	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2749 	.tx_probe = efx_farch_tx_probe,
2750 	.tx_init = efx_farch_tx_init,
2751 	.tx_remove = efx_farch_tx_remove,
2752 	.tx_write = efx_farch_tx_write,
2753 	.rx_push_rss_config = dummy_rx_push_rss_config,
2754 	.rx_probe = efx_farch_rx_probe,
2755 	.rx_init = efx_farch_rx_init,
2756 	.rx_remove = efx_farch_rx_remove,
2757 	.rx_write = efx_farch_rx_write,
2758 	.rx_defer_refill = efx_farch_rx_defer_refill,
2759 	.ev_probe = efx_farch_ev_probe,
2760 	.ev_init = efx_farch_ev_init,
2761 	.ev_fini = efx_farch_ev_fini,
2762 	.ev_remove = efx_farch_ev_remove,
2763 	.ev_process = efx_farch_ev_process,
2764 	.ev_read_ack = efx_farch_ev_read_ack,
2765 	.ev_test_generate = efx_farch_ev_test_generate,
2766 
2767 	/* We don't expose the filter table on Falcon A1 as it is not
2768 	 * mapped into function 0, but these implementations still
2769 	 * work with a degenerate case of all tables set to size 0.
2770 	 */
2771 	.filter_table_probe = efx_farch_filter_table_probe,
2772 	.filter_table_restore = efx_farch_filter_table_restore,
2773 	.filter_table_remove = efx_farch_filter_table_remove,
2774 	.filter_insert = efx_farch_filter_insert,
2775 	.filter_remove_safe = efx_farch_filter_remove_safe,
2776 	.filter_get_safe = efx_farch_filter_get_safe,
2777 	.filter_clear_rx = efx_farch_filter_clear_rx,
2778 	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2779 	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2780 	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2781 
2782 #ifdef CONFIG_SFC_MTD
2783 	.mtd_probe = falcon_mtd_probe,
2784 	.mtd_rename = falcon_mtd_rename,
2785 	.mtd_read = falcon_mtd_read,
2786 	.mtd_erase = falcon_mtd_erase,
2787 	.mtd_write = falcon_mtd_write,
2788 	.mtd_sync = falcon_mtd_sync,
2789 #endif
2790 
2791 	.revision = EFX_REV_FALCON_A1,
2792 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798 	.rx_buffer_padding = 0x24,
2799 	.can_rx_scatter = false,
2800 	.max_interrupt_mode = EFX_INT_MODE_MSI,
2801 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802 	.offload_features = NETIF_F_IP_CSUM,
2803 	.mcdi_max_ver = -1,
2804 #ifdef CONFIG_SFC_SRIOV
2805 	.vswitching_probe = efx_port_dummy_op_int,
2806 	.vswitching_restore = efx_port_dummy_op_int,
2807 	.vswitching_remove = efx_port_dummy_op_void,
2808 #endif
2809 };
2810 
2811 const struct efx_nic_type falcon_b0_nic_type = {
2812 	.is_vf = false,
2813 	.mem_bar = EFX_MEM_BAR,
2814 	.mem_map_size = falcon_b0_mem_map_size,
2815 	.probe = falcon_probe_nic,
2816 	.remove = falcon_remove_nic,
2817 	.init = falcon_init_nic,
2818 	.dimension_resources = falcon_dimension_resources,
2819 	.fini = efx_port_dummy_op_void,
2820 	.monitor = falcon_monitor,
2821 	.map_reset_reason = falcon_map_reset_reason,
2822 	.map_reset_flags = falcon_map_reset_flags,
2823 	.reset = falcon_reset_hw,
2824 	.probe_port = falcon_probe_port,
2825 	.remove_port = falcon_remove_port,
2826 	.handle_global_event = falcon_handle_global_event,
2827 	.fini_dmaq = efx_farch_fini_dmaq,
2828 	.prepare_flush = falcon_prepare_flush,
2829 	.finish_flush = efx_port_dummy_op_void,
2830 	.prepare_flr = efx_port_dummy_op_void,
2831 	.finish_flr = efx_farch_finish_flr,
2832 	.describe_stats = falcon_describe_nic_stats,
2833 	.update_stats = falcon_update_nic_stats,
2834 	.start_stats = falcon_start_nic_stats,
2835 	.pull_stats = falcon_pull_nic_stats,
2836 	.stop_stats = falcon_stop_nic_stats,
2837 	.set_id_led = falcon_set_id_led,
2838 	.push_irq_moderation = falcon_push_irq_moderation,
2839 	.reconfigure_port = falcon_reconfigure_port,
2840 	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2841 	.reconfigure_mac = falcon_reconfigure_xmac,
2842 	.check_mac_fault = falcon_xmac_check_fault,
2843 	.get_wol = falcon_get_wol,
2844 	.set_wol = falcon_set_wol,
2845 	.resume_wol = efx_port_dummy_op_void,
2846 	.test_chip = falcon_b0_test_chip,
2847 	.test_nvram = falcon_test_nvram,
2848 	.irq_enable_master = efx_farch_irq_enable_master,
2849 	.irq_test_generate = efx_farch_irq_test_generate,
2850 	.irq_disable_non_ev = efx_farch_irq_disable_master,
2851 	.irq_handle_msi = efx_farch_msi_interrupt,
2852 	.irq_handle_legacy = efx_farch_legacy_interrupt,
2853 	.tx_probe = efx_farch_tx_probe,
2854 	.tx_init = efx_farch_tx_init,
2855 	.tx_remove = efx_farch_tx_remove,
2856 	.tx_write = efx_farch_tx_write,
2857 	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2858 	.rx_probe = efx_farch_rx_probe,
2859 	.rx_init = efx_farch_rx_init,
2860 	.rx_remove = efx_farch_rx_remove,
2861 	.rx_write = efx_farch_rx_write,
2862 	.rx_defer_refill = efx_farch_rx_defer_refill,
2863 	.ev_probe = efx_farch_ev_probe,
2864 	.ev_init = efx_farch_ev_init,
2865 	.ev_fini = efx_farch_ev_fini,
2866 	.ev_remove = efx_farch_ev_remove,
2867 	.ev_process = efx_farch_ev_process,
2868 	.ev_read_ack = efx_farch_ev_read_ack,
2869 	.ev_test_generate = efx_farch_ev_test_generate,
2870 	.filter_table_probe = efx_farch_filter_table_probe,
2871 	.filter_table_restore = efx_farch_filter_table_restore,
2872 	.filter_table_remove = efx_farch_filter_table_remove,
2873 	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2874 	.filter_insert = efx_farch_filter_insert,
2875 	.filter_remove_safe = efx_farch_filter_remove_safe,
2876 	.filter_get_safe = efx_farch_filter_get_safe,
2877 	.filter_clear_rx = efx_farch_filter_clear_rx,
2878 	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2879 	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2880 	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2881 #ifdef CONFIG_RFS_ACCEL
2882 	.filter_rfs_insert = efx_farch_filter_rfs_insert,
2883 	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2884 #endif
2885 #ifdef CONFIG_SFC_MTD
2886 	.mtd_probe = falcon_mtd_probe,
2887 	.mtd_rename = falcon_mtd_rename,
2888 	.mtd_read = falcon_mtd_read,
2889 	.mtd_erase = falcon_mtd_erase,
2890 	.mtd_write = falcon_mtd_write,
2891 	.mtd_sync = falcon_mtd_sync,
2892 #endif
2893 
2894 	.revision = EFX_REV_FALCON_B0,
2895 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2896 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2897 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2898 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2899 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2900 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2901 	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2902 	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2903 	.rx_buffer_padding = 0,
2904 	.can_rx_scatter = true,
2905 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
2906 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2907 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2908 	.mcdi_max_ver = -1,
2909 	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2910 #ifdef CONFIG_SFC_SRIOV
2911 	.vswitching_probe = efx_port_dummy_op_int,
2912 	.vswitching_restore = efx_port_dummy_op_int,
2913 	.vswitching_remove = efx_port_dummy_op_void,
2914 #endif
2915 };
2916