1 /*
2 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
3 *
4 * Copyright (C) 2012 Freescale Semiconductor, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/spinlock.h>
36 #include <linux/workqueue.h>
37 #include <linux/bitops.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/clk.h>
41 #include <linux/platform_device.h>
42 #include <linux/phy.h>
43 #include <linux/fec.h>
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <linux/of_gpio.h>
47 #include <linux/of_net.h>
48
49 #include "fec.h"
50
51 /* FEC 1588 register bits */
52 #define FEC_T_CTRL_SLAVE 0x00002000
53 #define FEC_T_CTRL_CAPTURE 0x00000800
54 #define FEC_T_CTRL_RESTART 0x00000200
55 #define FEC_T_CTRL_PERIOD_RST 0x00000030
56 #define FEC_T_CTRL_PERIOD_EN 0x00000010
57 #define FEC_T_CTRL_ENABLE 0x00000001
58
59 #define FEC_T_INC_MASK 0x0000007f
60 #define FEC_T_INC_OFFSET 0
61 #define FEC_T_INC_CORR_MASK 0x00007f00
62 #define FEC_T_INC_CORR_OFFSET 8
63
64 #define FEC_T_CTRL_PINPER 0x00000080
65 #define FEC_T_TF0_MASK 0x00000001
66 #define FEC_T_TF0_OFFSET 0
67 #define FEC_T_TF1_MASK 0x00000002
68 #define FEC_T_TF1_OFFSET 1
69 #define FEC_T_TF2_MASK 0x00000004
70 #define FEC_T_TF2_OFFSET 2
71 #define FEC_T_TF3_MASK 0x00000008
72 #define FEC_T_TF3_OFFSET 3
73 #define FEC_T_TDRE_MASK 0x00000001
74 #define FEC_T_TDRE_OFFSET 0
75 #define FEC_T_TMODE_MASK 0x0000003C
76 #define FEC_T_TMODE_OFFSET 2
77 #define FEC_T_TIE_MASK 0x00000040
78 #define FEC_T_TIE_OFFSET 6
79 #define FEC_T_TF_MASK 0x00000080
80 #define FEC_T_TF_OFFSET 7
81
82 #define FEC_ATIME_CTRL 0x400
83 #define FEC_ATIME 0x404
84 #define FEC_ATIME_EVT_OFFSET 0x408
85 #define FEC_ATIME_EVT_PERIOD 0x40c
86 #define FEC_ATIME_CORR 0x410
87 #define FEC_ATIME_INC 0x414
88 #define FEC_TS_TIMESTAMP 0x418
89
90 #define FEC_TGSR 0x604
91 #define FEC_TCSR(n) (0x608 + n * 0x08)
92 #define FEC_TCCR(n) (0x60C + n * 0x08)
93 #define MAX_TIMER_CHANNEL 3
94 #define FEC_TMODE_TOGGLE 0x05
95 #define FEC_HIGH_PULSE 0x0F
96
97 #define FEC_CC_MULT (1 << 31)
98 #define FEC_COUNTER_PERIOD (1 << 31)
99 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
100 #define FEC_CHANNLE_0 0
101 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0
102
103 /**
104 * fec_ptp_enable_pps
105 * @fep: the fec_enet_private structure handle
106 * @enable: enable the channel pps output
107 *
108 * This function enble the PPS ouput on the timer channel.
109 */
fec_ptp_enable_pps(struct fec_enet_private * fep,uint enable)110 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
111 {
112 unsigned long flags;
113 u32 val, tempval;
114 int inc;
115 struct timespec64 ts;
116 u64 ns;
117 val = 0;
118
119 if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
120 dev_err(&fep->pdev->dev, "No ptp stack is running\n");
121 return -EINVAL;
122 }
123
124 if (fep->pps_enable == enable)
125 return 0;
126
127 fep->pps_channel = DEFAULT_PPS_CHANNEL;
128 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
129 inc = fep->ptp_inc;
130
131 spin_lock_irqsave(&fep->tmreg_lock, flags);
132
133 if (enable) {
134 /* clear capture or output compare interrupt status if have.
135 */
136 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
137
138 /* It is recommended to double check the TMODE field in the
139 * TCSR register to be cleared before the first compare counter
140 * is written into TCCR register. Just add a double check.
141 */
142 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
143 do {
144 val &= ~(FEC_T_TMODE_MASK);
145 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
146 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
147 } while (val & FEC_T_TMODE_MASK);
148
149 /* Dummy read counter to update the counter */
150 timecounter_read(&fep->tc);
151 /* We want to find the first compare event in the next
152 * second point. So we need to know what the ptp time
153 * is now and how many nanoseconds is ahead to get next second.
154 * The remaining nanosecond ahead before the next second would be
155 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
156 * to current timer would be next second.
157 */
158 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
159 tempval |= FEC_T_CTRL_CAPTURE;
160 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
161
162 tempval = readl(fep->hwp + FEC_ATIME);
163 /* Convert the ptp local counter to 1588 timestamp */
164 ns = timecounter_cyc2time(&fep->tc, tempval);
165 ts = ns_to_timespec64(ns);
166
167 /* The tempval is less than 3 seconds, and so val is less than
168 * 4 seconds. No overflow for 32bit calculation.
169 */
170 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
171
172 /* Need to consider the situation that the current time is
173 * very close to the second point, which means NSEC_PER_SEC
174 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
175 * is still running when we calculate the first compare event, it is
176 * possible that the remaining nanoseonds run out before the compare
177 * counter is calculated and written into TCCR register. To avoid
178 * this possibility, we will set the compare event to be the next
179 * of next second. The current setting is 31-bit timer and wrap
180 * around over 2 seconds. So it is okay to set the next of next
181 * seond for the timer.
182 */
183 val += NSEC_PER_SEC;
184
185 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
186 * ptp counter, which maybe cause 32-bit wrap. Since the
187 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
188 * We can ensure the wrap will not cause issue. If the offset
189 * is bigger than fep->cc.mask would be a error.
190 */
191 val &= fep->cc.mask;
192 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
193
194 /* Calculate the second the compare event timestamp */
195 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
196
197 /* * Enable compare event when overflow */
198 val = readl(fep->hwp + FEC_ATIME_CTRL);
199 val |= FEC_T_CTRL_PINPER;
200 writel(val, fep->hwp + FEC_ATIME_CTRL);
201
202 /* Compare channel setting. */
203 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
204 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
205 val &= ~(1 << FEC_T_TDRE_OFFSET);
206 val &= ~(FEC_T_TMODE_MASK);
207 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
208 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
209
210 /* Write the second compare event timestamp and calculate
211 * the third timestamp. Refer the TCCR register detail in the spec.
212 */
213 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
214 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
215 } else {
216 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
217 }
218
219 fep->pps_enable = enable;
220 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
221
222 return 0;
223 }
224
225 /**
226 * fec_ptp_read - read raw cycle counter (to be used by time counter)
227 * @cc: the cyclecounter structure
228 *
229 * this function reads the cyclecounter registers and is called by the
230 * cyclecounter structure used to construct a ns counter from the
231 * arbitrary fixed point registers
232 */
fec_ptp_read(const struct cyclecounter * cc)233 static cycle_t fec_ptp_read(const struct cyclecounter *cc)
234 {
235 struct fec_enet_private *fep =
236 container_of(cc, struct fec_enet_private, cc);
237 const struct platform_device_id *id_entry =
238 platform_get_device_id(fep->pdev);
239 u32 tempval;
240
241 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
242 tempval |= FEC_T_CTRL_CAPTURE;
243 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
244
245 if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
246 udelay(1);
247
248 return readl(fep->hwp + FEC_ATIME);
249 }
250
251 /**
252 * fec_ptp_start_cyclecounter - create the cycle counter from hw
253 * @ndev: network device
254 *
255 * this function initializes the timecounter and cyclecounter
256 * structures for use in generated a ns counter from the arbitrary
257 * fixed point cycles registers in the hardware.
258 */
fec_ptp_start_cyclecounter(struct net_device * ndev)259 void fec_ptp_start_cyclecounter(struct net_device *ndev)
260 {
261 struct fec_enet_private *fep = netdev_priv(ndev);
262 unsigned long flags;
263 int inc;
264
265 inc = 1000000000 / fep->cycle_speed;
266
267 /* grab the ptp lock */
268 spin_lock_irqsave(&fep->tmreg_lock, flags);
269
270 /* 1ns counter */
271 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
272
273 /* use 31-bit timer counter */
274 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
275
276 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
277 fep->hwp + FEC_ATIME_CTRL);
278
279 memset(&fep->cc, 0, sizeof(fep->cc));
280 fep->cc.read = fec_ptp_read;
281 fep->cc.mask = CLOCKSOURCE_MASK(31);
282 fep->cc.shift = 31;
283 fep->cc.mult = FEC_CC_MULT;
284
285 /* reset the ns time counter */
286 timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
287
288 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
289 }
290
291 /**
292 * fec_ptp_adjfreq - adjust ptp cycle frequency
293 * @ptp: the ptp clock structure
294 * @ppb: parts per billion adjustment from base
295 *
296 * Adjust the frequency of the ptp cycle counter by the
297 * indicated ppb from the base frequency.
298 *
299 * Because ENET hardware frequency adjust is complex,
300 * using software method to do that.
301 */
fec_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)302 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
303 {
304 unsigned long flags;
305 int neg_adj = 0;
306 u32 i, tmp;
307 u32 corr_inc, corr_period;
308 u32 corr_ns;
309 u64 lhs, rhs;
310
311 struct fec_enet_private *fep =
312 container_of(ptp, struct fec_enet_private, ptp_caps);
313
314 if (ppb == 0)
315 return 0;
316
317 if (ppb < 0) {
318 ppb = -ppb;
319 neg_adj = 1;
320 }
321
322 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
323 * Try to find the corr_inc between 1 to fep->ptp_inc to
324 * meet adjustment requirement.
325 */
326 lhs = NSEC_PER_SEC;
327 rhs = (u64)ppb * (u64)fep->ptp_inc;
328 for (i = 1; i <= fep->ptp_inc; i++) {
329 if (lhs >= rhs) {
330 corr_inc = i;
331 corr_period = div_u64(lhs, rhs);
332 break;
333 }
334 lhs += NSEC_PER_SEC;
335 }
336 /* Not found? Set it to high value - double speed
337 * correct in every clock step.
338 */
339 if (i > fep->ptp_inc) {
340 corr_inc = fep->ptp_inc;
341 corr_period = 1;
342 }
343
344 if (neg_adj)
345 corr_ns = fep->ptp_inc - corr_inc;
346 else
347 corr_ns = fep->ptp_inc + corr_inc;
348
349 spin_lock_irqsave(&fep->tmreg_lock, flags);
350
351 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
352 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
353 writel(tmp, fep->hwp + FEC_ATIME_INC);
354 corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
355 writel(corr_period, fep->hwp + FEC_ATIME_CORR);
356 /* dummy read to update the timer. */
357 timecounter_read(&fep->tc);
358
359 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
360
361 return 0;
362 }
363
364 /**
365 * fec_ptp_adjtime
366 * @ptp: the ptp clock structure
367 * @delta: offset to adjust the cycle counter by
368 *
369 * adjust the timer by resetting the timecounter structure.
370 */
fec_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)371 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
372 {
373 struct fec_enet_private *fep =
374 container_of(ptp, struct fec_enet_private, ptp_caps);
375 unsigned long flags;
376
377 spin_lock_irqsave(&fep->tmreg_lock, flags);
378 timecounter_adjtime(&fep->tc, delta);
379 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
380
381 return 0;
382 }
383
384 /**
385 * fec_ptp_gettime
386 * @ptp: the ptp clock structure
387 * @ts: timespec structure to hold the current time value
388 *
389 * read the timecounter and return the correct value on ns,
390 * after converting it into a struct timespec.
391 */
fec_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)392 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
393 {
394 struct fec_enet_private *adapter =
395 container_of(ptp, struct fec_enet_private, ptp_caps);
396 u64 ns;
397 unsigned long flags;
398
399 spin_lock_irqsave(&adapter->tmreg_lock, flags);
400 ns = timecounter_read(&adapter->tc);
401 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
402
403 *ts = ns_to_timespec64(ns);
404
405 return 0;
406 }
407
408 /**
409 * fec_ptp_settime
410 * @ptp: the ptp clock structure
411 * @ts: the timespec containing the new time for the cycle counter
412 *
413 * reset the timecounter to use a new base value instead of the kernel
414 * wall timer value.
415 */
fec_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)416 static int fec_ptp_settime(struct ptp_clock_info *ptp,
417 const struct timespec64 *ts)
418 {
419 struct fec_enet_private *fep =
420 container_of(ptp, struct fec_enet_private, ptp_caps);
421
422 u64 ns;
423 unsigned long flags;
424 u32 counter;
425
426 mutex_lock(&fep->ptp_clk_mutex);
427 /* Check the ptp clock */
428 if (!fep->ptp_clk_on) {
429 mutex_unlock(&fep->ptp_clk_mutex);
430 return -EINVAL;
431 }
432
433 ns = timespec64_to_ns(ts);
434 /* Get the timer value based on timestamp.
435 * Update the counter with the masked value.
436 */
437 counter = ns & fep->cc.mask;
438
439 spin_lock_irqsave(&fep->tmreg_lock, flags);
440 writel(counter, fep->hwp + FEC_ATIME);
441 timecounter_init(&fep->tc, &fep->cc, ns);
442 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
443 mutex_unlock(&fep->ptp_clk_mutex);
444 return 0;
445 }
446
447 /**
448 * fec_ptp_enable
449 * @ptp: the ptp clock structure
450 * @rq: the requested feature to change
451 * @on: whether to enable or disable the feature
452 *
453 */
fec_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)454 static int fec_ptp_enable(struct ptp_clock_info *ptp,
455 struct ptp_clock_request *rq, int on)
456 {
457 struct fec_enet_private *fep =
458 container_of(ptp, struct fec_enet_private, ptp_caps);
459 int ret = 0;
460
461 if (rq->type == PTP_CLK_REQ_PPS) {
462 ret = fec_ptp_enable_pps(fep, on);
463
464 return ret;
465 }
466 return -EOPNOTSUPP;
467 }
468
469 /**
470 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
471 * @ndev: pointer to net_device
472 * @ifreq: ioctl data
473 * @cmd: particular ioctl requested
474 */
fec_ptp_set(struct net_device * ndev,struct ifreq * ifr)475 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
476 {
477 struct fec_enet_private *fep = netdev_priv(ndev);
478
479 struct hwtstamp_config config;
480
481 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
482 return -EFAULT;
483
484 /* reserved for future extensions */
485 if (config.flags)
486 return -EINVAL;
487
488 switch (config.tx_type) {
489 case HWTSTAMP_TX_OFF:
490 fep->hwts_tx_en = 0;
491 break;
492 case HWTSTAMP_TX_ON:
493 fep->hwts_tx_en = 1;
494 break;
495 default:
496 return -ERANGE;
497 }
498
499 switch (config.rx_filter) {
500 case HWTSTAMP_FILTER_NONE:
501 if (fep->hwts_rx_en)
502 fep->hwts_rx_en = 0;
503 config.rx_filter = HWTSTAMP_FILTER_NONE;
504 break;
505
506 default:
507 fep->hwts_rx_en = 1;
508 config.rx_filter = HWTSTAMP_FILTER_ALL;
509 break;
510 }
511
512 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
513 -EFAULT : 0;
514 }
515
fec_ptp_get(struct net_device * ndev,struct ifreq * ifr)516 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
517 {
518 struct fec_enet_private *fep = netdev_priv(ndev);
519 struct hwtstamp_config config;
520
521 config.flags = 0;
522 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
523 config.rx_filter = (fep->hwts_rx_en ?
524 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
525
526 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
527 -EFAULT : 0;
528 }
529
530 /**
531 * fec_time_keep - call timecounter_read every second to avoid timer overrun
532 * because ENET just support 32bit counter, will timeout in 4s
533 */
fec_time_keep(struct work_struct * work)534 static void fec_time_keep(struct work_struct *work)
535 {
536 struct delayed_work *dwork = to_delayed_work(work);
537 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
538 u64 ns;
539 unsigned long flags;
540
541 mutex_lock(&fep->ptp_clk_mutex);
542 if (fep->ptp_clk_on) {
543 spin_lock_irqsave(&fep->tmreg_lock, flags);
544 ns = timecounter_read(&fep->tc);
545 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
546 }
547 mutex_unlock(&fep->ptp_clk_mutex);
548
549 schedule_delayed_work(&fep->time_keep, HZ);
550 }
551
552 /**
553 * fec_ptp_init
554 * @ndev: The FEC network adapter
555 *
556 * This function performs the required steps for enabling ptp
557 * support. If ptp support has already been loaded it simply calls the
558 * cyclecounter init routine and exits.
559 */
560
fec_ptp_init(struct platform_device * pdev)561 void fec_ptp_init(struct platform_device *pdev)
562 {
563 struct net_device *ndev = platform_get_drvdata(pdev);
564 struct fec_enet_private *fep = netdev_priv(ndev);
565
566 fep->ptp_caps.owner = THIS_MODULE;
567 snprintf(fep->ptp_caps.name, 16, "fec ptp");
568
569 fep->ptp_caps.max_adj = 250000000;
570 fep->ptp_caps.n_alarm = 0;
571 fep->ptp_caps.n_ext_ts = 0;
572 fep->ptp_caps.n_per_out = 0;
573 fep->ptp_caps.n_pins = 0;
574 fep->ptp_caps.pps = 1;
575 fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
576 fep->ptp_caps.adjtime = fec_ptp_adjtime;
577 fep->ptp_caps.gettime64 = fec_ptp_gettime;
578 fep->ptp_caps.settime64 = fec_ptp_settime;
579 fep->ptp_caps.enable = fec_ptp_enable;
580
581 fep->cycle_speed = clk_get_rate(fep->clk_ptp);
582 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
583
584 spin_lock_init(&fep->tmreg_lock);
585
586 fec_ptp_start_cyclecounter(ndev);
587
588 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
589
590 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
591 if (IS_ERR(fep->ptp_clock)) {
592 fep->ptp_clock = NULL;
593 pr_err("ptp_clock_register failed\n");
594 }
595
596 schedule_delayed_work(&fep->time_keep, HZ);
597 }
598
fec_ptp_stop(struct platform_device * pdev)599 void fec_ptp_stop(struct platform_device *pdev)
600 {
601 struct net_device *ndev = platform_get_drvdata(pdev);
602 struct fec_enet_private *fep = netdev_priv(ndev);
603
604 cancel_delayed_work_sync(&fep->time_keep);
605 if (fep->ptp_clock)
606 ptp_clock_unregister(fep->ptp_clock);
607 }
608
609 /**
610 * fec_ptp_check_pps_event
611 * @fep: the fec_enet_private structure handle
612 *
613 * This function check the pps event and reload the timer compare counter.
614 */
fec_ptp_check_pps_event(struct fec_enet_private * fep)615 uint fec_ptp_check_pps_event(struct fec_enet_private *fep)
616 {
617 u32 val;
618 u8 channel = fep->pps_channel;
619 struct ptp_clock_event event;
620
621 val = readl(fep->hwp + FEC_TCSR(channel));
622 if (val & FEC_T_TF_MASK) {
623 /* Write the next next compare(not the next according the spec)
624 * value to the register
625 */
626 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
627 do {
628 writel(val, fep->hwp + FEC_TCSR(channel));
629 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
630
631 /* Update the counter; */
632 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
633
634 event.type = PTP_CLOCK_PPS;
635 ptp_clock_event(fep->ptp_clock, &event);
636 return 1;
637 }
638
639 return 0;
640 }
641