• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
page_cache_tree_insert(struct address_space * mapping,struct page * page,void ** shadowp)113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 			if (node)
136 				workingset_node_shadows_dec(node);
137 		} else {
138 			/* DAX can replace empty locked entry with a hole */
139 			WARN_ON_ONCE(p !=
140 				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 					 RADIX_DAX_ENTRY_LOCK));
142 			/* DAX accounts exceptional entries as normal pages */
143 			if (node)
144 				workingset_node_pages_dec(node);
145 			/* Wakeup waiters for exceptional entry lock */
146 			dax_wake_mapping_entry_waiter(mapping, page->index,
147 						      true);
148 		}
149 	}
150 	radix_tree_replace_slot(slot, page);
151 	mapping->nrpages++;
152 	if (node) {
153 		workingset_node_pages_inc(node);
154 		/*
155 		 * Don't track node that contains actual pages.
156 		 *
157 		 * Avoid acquiring the list_lru lock if already
158 		 * untracked.  The list_empty() test is safe as
159 		 * node->private_list is protected by
160 		 * mapping->tree_lock.
161 		 */
162 		if (!list_empty(&node->private_list))
163 			list_lru_del(&workingset_shadow_nodes,
164 				     &node->private_list);
165 	}
166 	return 0;
167 }
168 
page_cache_tree_delete(struct address_space * mapping,struct page * page,void * shadow)169 static void page_cache_tree_delete(struct address_space *mapping,
170 				   struct page *page, void *shadow)
171 {
172 	int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173 
174 	VM_BUG_ON_PAGE(!PageLocked(page), page);
175 	VM_BUG_ON_PAGE(PageTail(page), page);
176 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177 
178 	for (i = 0; i < nr; i++) {
179 		struct radix_tree_node *node;
180 		void **slot;
181 
182 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
183 				    &node, &slot);
184 
185 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
186 
187 		if (!node) {
188 			VM_BUG_ON_PAGE(nr != 1, page);
189 			/*
190 			 * We need a node to properly account shadow
191 			 * entries. Don't plant any without. XXX
192 			 */
193 			shadow = NULL;
194 		}
195 
196 		radix_tree_replace_slot(slot, shadow);
197 
198 		if (!node)
199 			break;
200 
201 		workingset_node_pages_dec(node);
202 		if (shadow)
203 			workingset_node_shadows_inc(node);
204 		else
205 			if (__radix_tree_delete_node(&mapping->page_tree, node))
206 				continue;
207 
208 		/*
209 		 * Track node that only contains shadow entries. DAX mappings
210 		 * contain no shadow entries and may contain other exceptional
211 		 * entries so skip those.
212 		 *
213 		 * Avoid acquiring the list_lru lock if already tracked.
214 		 * The list_empty() test is safe as node->private_list is
215 		 * protected by mapping->tree_lock.
216 		 */
217 		if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218 				list_empty(&node->private_list)) {
219 			node->private_data = mapping;
220 			list_lru_add(&workingset_shadow_nodes,
221 					&node->private_list);
222 		}
223 	}
224 
225 	if (shadow) {
226 		mapping->nrexceptional += nr;
227 		/*
228 		 * Make sure the nrexceptional update is committed before
229 		 * the nrpages update so that final truncate racing
230 		 * with reclaim does not see both counters 0 at the
231 		 * same time and miss a shadow entry.
232 		 */
233 		smp_wmb();
234 	}
235 	mapping->nrpages -= nr;
236 }
237 
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
__delete_from_page_cache(struct page * page,void * shadow)243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245 	struct address_space *mapping = page->mapping;
246 	int nr = hpage_nr_pages(page);
247 
248 	trace_mm_filemap_delete_from_page_cache(page);
249 	/*
250 	 * if we're uptodate, flush out into the cleancache, otherwise
251 	 * invalidate any existing cleancache entries.  We can't leave
252 	 * stale data around in the cleancache once our page is gone
253 	 */
254 	if (PageUptodate(page) && PageMappedToDisk(page))
255 		cleancache_put_page(page);
256 	else
257 		cleancache_invalidate_page(mapping, page);
258 
259 	VM_BUG_ON_PAGE(PageTail(page), page);
260 	VM_BUG_ON_PAGE(page_mapped(page), page);
261 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262 		int mapcount;
263 
264 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265 			 current->comm, page_to_pfn(page));
266 		dump_page(page, "still mapped when deleted");
267 		dump_stack();
268 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269 
270 		mapcount = page_mapcount(page);
271 		if (mapping_exiting(mapping) &&
272 		    page_count(page) >= mapcount + 2) {
273 			/*
274 			 * All vmas have already been torn down, so it's
275 			 * a good bet that actually the page is unmapped,
276 			 * and we'd prefer not to leak it: if we're wrong,
277 			 * some other bad page check should catch it later.
278 			 */
279 			page_mapcount_reset(page);
280 			page_ref_sub(page, mapcount);
281 		}
282 	}
283 
284 	page_cache_tree_delete(mapping, page, shadow);
285 
286 	page->mapping = NULL;
287 	/* Leave page->index set: truncation lookup relies upon it */
288 
289 	/* hugetlb pages do not participate in page cache accounting. */
290 	if (!PageHuge(page))
291 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292 	if (PageSwapBacked(page)) {
293 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294 		if (PageTransHuge(page))
295 			__dec_node_page_state(page, NR_SHMEM_THPS);
296 	} else {
297 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298 	}
299 
300 	/*
301 	 * At this point page must be either written or cleaned by truncate.
302 	 * Dirty page here signals a bug and loss of unwritten data.
303 	 *
304 	 * This fixes dirty accounting after removing the page entirely but
305 	 * leaves PageDirty set: it has no effect for truncated page and
306 	 * anyway will be cleared before returning page into buddy allocator.
307 	 */
308 	if (WARN_ON_ONCE(PageDirty(page)))
309 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311 
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
delete_from_page_cache(struct page * page)320 void delete_from_page_cache(struct page *page)
321 {
322 	struct address_space *mapping = page_mapping(page);
323 	unsigned long flags;
324 	void (*freepage)(struct page *);
325 
326 	BUG_ON(!PageLocked(page));
327 
328 	freepage = mapping->a_ops->freepage;
329 
330 	spin_lock_irqsave(&mapping->tree_lock, flags);
331 	__delete_from_page_cache(page, NULL);
332 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
333 
334 	if (freepage)
335 		freepage(page);
336 
337 	if (PageTransHuge(page) && !PageHuge(page)) {
338 		page_ref_sub(page, HPAGE_PMD_NR);
339 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340 	} else {
341 		put_page(page);
342 	}
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345 
filemap_check_errors(struct address_space * mapping)346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:	address space structure to write
363  * @start:	offset in bytes where the range starts
364  * @end:	offset in bytes where the range ends (inclusive)
365  * @sync_mode:	enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376 				loff_t end, int sync_mode)
377 {
378 	int ret;
379 	struct writeback_control wbc = {
380 		.sync_mode = sync_mode,
381 		.nr_to_write = LONG_MAX,
382 		.range_start = start,
383 		.range_end = end,
384 	};
385 
386 	if (!mapping_cap_writeback_dirty(mapping))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390 	ret = do_writepages(mapping, &wbc);
391 	wbc_detach_inode(&wbc);
392 	return ret;
393 }
394 
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396 	int sync_mode)
397 {
398 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400 
filemap_fdatawrite(struct address_space * mapping)401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406 
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408 				loff_t end)
409 {
410 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413 
414 /**
415  * filemap_flush - mostly a non-blocking flush
416  * @mapping:	target address_space
417  *
418  * This is a mostly non-blocking flush.  Not suitable for data-integrity
419  * purposes - I/O may not be started against all dirty pages.
420  */
filemap_flush(struct address_space * mapping)421 int filemap_flush(struct address_space *mapping)
422 {
423 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426 
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)427 static int __filemap_fdatawait_range(struct address_space *mapping,
428 				     loff_t start_byte, loff_t end_byte)
429 {
430 	pgoff_t index = start_byte >> PAGE_SHIFT;
431 	pgoff_t end = end_byte >> PAGE_SHIFT;
432 	struct pagevec pvec;
433 	int nr_pages;
434 	int ret = 0;
435 
436 	if (end_byte < start_byte)
437 		goto out;
438 
439 	pagevec_init(&pvec, 0);
440 	while ((index <= end) &&
441 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442 			PAGECACHE_TAG_WRITEBACK,
443 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444 		unsigned i;
445 
446 		for (i = 0; i < nr_pages; i++) {
447 			struct page *page = pvec.pages[i];
448 
449 			/* until radix tree lookup accepts end_index */
450 			if (page->index > end)
451 				continue;
452 
453 			wait_on_page_writeback(page);
454 			if (TestClearPageError(page))
455 				ret = -EIO;
456 		}
457 		pagevec_release(&pvec);
458 		cond_resched();
459 	}
460 out:
461 	return ret;
462 }
463 
464 /**
465  * filemap_fdatawait_range - wait for writeback to complete
466  * @mapping:		address space structure to wait for
467  * @start_byte:		offset in bytes where the range starts
468  * @end_byte:		offset in bytes where the range ends (inclusive)
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * in the given range and wait for all of them.  Check error status of
472  * the address space and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479 			    loff_t end_byte)
480 {
481 	int ret, ret2;
482 
483 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484 	ret2 = filemap_check_errors(mapping);
485 	if (!ret)
486 		ret = ret2;
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491 
492 /**
493  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494  * @mapping: address space structure to wait for
495  *
496  * Walk the list of under-writeback pages of the given address space
497  * and wait for all of them.  Unlike filemap_fdatawait(), this function
498  * does not clear error status of the address space.
499  *
500  * Use this function if callers don't handle errors themselves.  Expected
501  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502  * fsfreeze(8)
503  */
filemap_fdatawait_keep_errors(struct address_space * mapping)504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506 	loff_t i_size = i_size_read(mapping->host);
507 
508 	if (i_size == 0)
509 		return;
510 
511 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513 
514 /**
515  * filemap_fdatawait - wait for all under-writeback pages to complete
516  * @mapping: address space structure to wait for
517  *
518  * Walk the list of under-writeback pages of the given address space
519  * and wait for all of them.  Check error status of the address space
520  * and return it.
521  *
522  * Since the error status of the address space is cleared by this function,
523  * callers are responsible for checking the return value and handling and/or
524  * reporting the error.
525  */
filemap_fdatawait(struct address_space * mapping)526 int filemap_fdatawait(struct address_space *mapping)
527 {
528 	loff_t i_size = i_size_read(mapping->host);
529 
530 	if (i_size == 0)
531 		return 0;
532 
533 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536 
filemap_write_and_wait(struct address_space * mapping)537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 	int err = 0;
540 
541 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
542 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
543 		err = filemap_fdatawrite(mapping);
544 		/*
545 		 * Even if the above returned error, the pages may be
546 		 * written partially (e.g. -ENOSPC), so we wait for it.
547 		 * But the -EIO is special case, it may indicate the worst
548 		 * thing (e.g. bug) happened, so we avoid waiting for it.
549 		 */
550 		if (err != -EIO) {
551 			int err2 = filemap_fdatawait(mapping);
552 			if (!err)
553 				err = err2;
554 		}
555 	} else {
556 		err = filemap_check_errors(mapping);
557 	}
558 	return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561 
562 /**
563  * filemap_write_and_wait_range - write out & wait on a file range
564  * @mapping:	the address_space for the pages
565  * @lstart:	offset in bytes where the range starts
566  * @lend:	offset in bytes where the range ends (inclusive)
567  *
568  * Write out and wait upon file offsets lstart->lend, inclusive.
569  *
570  * Note that `lend' is inclusive (describes the last byte to be written) so
571  * that this function can be used to write to the very end-of-file (end = -1).
572  */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)573 int filemap_write_and_wait_range(struct address_space *mapping,
574 				 loff_t lstart, loff_t lend)
575 {
576 	int err = 0;
577 
578 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
579 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
580 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
581 						 WB_SYNC_ALL);
582 		/* See comment of filemap_write_and_wait() */
583 		if (err != -EIO) {
584 			int err2 = filemap_fdatawait_range(mapping,
585 						lstart, lend);
586 			if (!err)
587 				err = err2;
588 		}
589 	} else {
590 		err = filemap_check_errors(mapping);
591 	}
592 	return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595 
596 /**
597  * replace_page_cache_page - replace a pagecache page with a new one
598  * @old:	page to be replaced
599  * @new:	page to replace with
600  * @gfp_mask:	allocation mode
601  *
602  * This function replaces a page in the pagecache with a new one.  On
603  * success it acquires the pagecache reference for the new page and
604  * drops it for the old page.  Both the old and new pages must be
605  * locked.  This function does not add the new page to the LRU, the
606  * caller must do that.
607  *
608  * The remove + add is atomic.  The only way this function can fail is
609  * memory allocation failure.
610  */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613 	int error;
614 
615 	VM_BUG_ON_PAGE(!PageLocked(old), old);
616 	VM_BUG_ON_PAGE(!PageLocked(new), new);
617 	VM_BUG_ON_PAGE(new->mapping, new);
618 
619 	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
620 	if (!error) {
621 		struct address_space *mapping = old->mapping;
622 		void (*freepage)(struct page *);
623 		unsigned long flags;
624 
625 		pgoff_t offset = old->index;
626 		freepage = mapping->a_ops->freepage;
627 
628 		get_page(new);
629 		new->mapping = mapping;
630 		new->index = offset;
631 
632 		spin_lock_irqsave(&mapping->tree_lock, flags);
633 		__delete_from_page_cache(old, NULL);
634 		error = page_cache_tree_insert(mapping, new, NULL);
635 		BUG_ON(error);
636 
637 		/*
638 		 * hugetlb pages do not participate in page cache accounting.
639 		 */
640 		if (!PageHuge(new))
641 			__inc_node_page_state(new, NR_FILE_PAGES);
642 		if (PageSwapBacked(new))
643 			__inc_node_page_state(new, NR_SHMEM);
644 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
645 		mem_cgroup_migrate(old, new);
646 		radix_tree_preload_end();
647 		if (freepage)
648 			freepage(old);
649 		put_page(old);
650 	}
651 
652 	return error;
653 }
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
655 
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask,void ** shadowp)656 static int __add_to_page_cache_locked(struct page *page,
657 				      struct address_space *mapping,
658 				      pgoff_t offset, gfp_t gfp_mask,
659 				      void **shadowp)
660 {
661 	int huge = PageHuge(page);
662 	struct mem_cgroup *memcg;
663 	int error;
664 
665 	VM_BUG_ON_PAGE(!PageLocked(page), page);
666 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667 
668 	if (!huge) {
669 		error = mem_cgroup_try_charge(page, current->mm,
670 					      gfp_mask, &memcg, false);
671 		if (error)
672 			return error;
673 	}
674 
675 	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
676 	if (error) {
677 		if (!huge)
678 			mem_cgroup_cancel_charge(page, memcg, false);
679 		return error;
680 	}
681 
682 	get_page(page);
683 	page->mapping = mapping;
684 	page->index = offset;
685 
686 	spin_lock_irq(&mapping->tree_lock);
687 	error = page_cache_tree_insert(mapping, page, shadowp);
688 	radix_tree_preload_end();
689 	if (unlikely(error))
690 		goto err_insert;
691 
692 	/* hugetlb pages do not participate in page cache accounting. */
693 	if (!huge)
694 		__inc_node_page_state(page, NR_FILE_PAGES);
695 	spin_unlock_irq(&mapping->tree_lock);
696 	if (!huge)
697 		mem_cgroup_commit_charge(page, memcg, false, false);
698 	trace_mm_filemap_add_to_page_cache(page);
699 	return 0;
700 err_insert:
701 	page->mapping = NULL;
702 	/* Leave page->index set: truncation relies upon it */
703 	spin_unlock_irq(&mapping->tree_lock);
704 	if (!huge)
705 		mem_cgroup_cancel_charge(page, memcg, false);
706 	put_page(page);
707 	return error;
708 }
709 
710 /**
711  * add_to_page_cache_locked - add a locked page to the pagecache
712  * @page:	page to add
713  * @mapping:	the page's address_space
714  * @offset:	page index
715  * @gfp_mask:	page allocation mode
716  *
717  * This function is used to add a page to the pagecache. It must be locked.
718  * This function does not add the page to the LRU.  The caller must do that.
719  */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721 		pgoff_t offset, gfp_t gfp_mask)
722 {
723 	return __add_to_page_cache_locked(page, mapping, offset,
724 					  gfp_mask, NULL);
725 }
726 EXPORT_SYMBOL(add_to_page_cache_locked);
727 
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729 				pgoff_t offset, gfp_t gfp_mask)
730 {
731 	void *shadow = NULL;
732 	int ret;
733 
734 	__SetPageLocked(page);
735 	ret = __add_to_page_cache_locked(page, mapping, offset,
736 					 gfp_mask, &shadow);
737 	if (unlikely(ret))
738 		__ClearPageLocked(page);
739 	else {
740 		/*
741 		 * The page might have been evicted from cache only
742 		 * recently, in which case it should be activated like
743 		 * any other repeatedly accessed page.
744 		 * The exception is pages getting rewritten; evicting other
745 		 * data from the working set, only to cache data that will
746 		 * get overwritten with something else, is a waste of memory.
747 		 */
748 		if (!(gfp_mask & __GFP_WRITE) &&
749 		    shadow && workingset_refault(shadow)) {
750 			SetPageActive(page);
751 			workingset_activation(page);
752 		} else
753 			ClearPageActive(page);
754 		lru_cache_add(page);
755 	}
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759 
760 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)761 struct page *__page_cache_alloc(gfp_t gfp)
762 {
763 	int n;
764 	struct page *page;
765 
766 	if (cpuset_do_page_mem_spread()) {
767 		unsigned int cpuset_mems_cookie;
768 		do {
769 			cpuset_mems_cookie = read_mems_allowed_begin();
770 			n = cpuset_mem_spread_node();
771 			page = __alloc_pages_node(n, gfp, 0);
772 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773 
774 		return page;
775 	}
776 	return alloc_pages(gfp, 0);
777 }
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
780 
781 /*
782  * In order to wait for pages to become available there must be
783  * waitqueues associated with pages. By using a hash table of
784  * waitqueues where the bucket discipline is to maintain all
785  * waiters on the same queue and wake all when any of the pages
786  * become available, and for the woken contexts to check to be
787  * sure the appropriate page became available, this saves space
788  * at a cost of "thundering herd" phenomena during rare hash
789  * collisions.
790  */
page_waitqueue(struct page * page)791 wait_queue_head_t *page_waitqueue(struct page *page)
792 {
793 	return bit_waitqueue(page, 0);
794 }
795 EXPORT_SYMBOL(page_waitqueue);
796 
wait_on_page_bit(struct page * page,int bit_nr)797 void wait_on_page_bit(struct page *page, int bit_nr)
798 {
799 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
800 
801 	if (test_bit(bit_nr, &page->flags))
802 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
803 							TASK_UNINTERRUPTIBLE);
804 }
805 EXPORT_SYMBOL(wait_on_page_bit);
806 
wait_on_page_bit_killable(struct page * page,int bit_nr)807 int wait_on_page_bit_killable(struct page *page, int bit_nr)
808 {
809 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
810 
811 	if (!test_bit(bit_nr, &page->flags))
812 		return 0;
813 
814 	return __wait_on_bit(page_waitqueue(page), &wait,
815 			     bit_wait_io, TASK_KILLABLE);
816 }
817 
wait_on_page_bit_killable_timeout(struct page * page,int bit_nr,unsigned long timeout)818 int wait_on_page_bit_killable_timeout(struct page *page,
819 				       int bit_nr, unsigned long timeout)
820 {
821 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
822 
823 	wait.key.timeout = jiffies + timeout;
824 	if (!test_bit(bit_nr, &page->flags))
825 		return 0;
826 	return __wait_on_bit(page_waitqueue(page), &wait,
827 			     bit_wait_io_timeout, TASK_KILLABLE);
828 }
829 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
830 
831 /**
832  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
833  * @page: Page defining the wait queue of interest
834  * @waiter: Waiter to add to the queue
835  *
836  * Add an arbitrary @waiter to the wait queue for the nominated @page.
837  */
add_page_wait_queue(struct page * page,wait_queue_t * waiter)838 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
839 {
840 	wait_queue_head_t *q = page_waitqueue(page);
841 	unsigned long flags;
842 
843 	spin_lock_irqsave(&q->lock, flags);
844 	__add_wait_queue(q, waiter);
845 	spin_unlock_irqrestore(&q->lock, flags);
846 }
847 EXPORT_SYMBOL_GPL(add_page_wait_queue);
848 
849 /**
850  * unlock_page - unlock a locked page
851  * @page: the page
852  *
853  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
854  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
855  * mechanism between PageLocked pages and PageWriteback pages is shared.
856  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
857  *
858  * The mb is necessary to enforce ordering between the clear_bit and the read
859  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
860  */
unlock_page(struct page * page)861 void unlock_page(struct page *page)
862 {
863 	page = compound_head(page);
864 	VM_BUG_ON_PAGE(!PageLocked(page), page);
865 	clear_bit_unlock(PG_locked, &page->flags);
866 	smp_mb__after_atomic();
867 	wake_up_page(page, PG_locked);
868 }
869 EXPORT_SYMBOL(unlock_page);
870 
871 /**
872  * end_page_writeback - end writeback against a page
873  * @page: the page
874  */
end_page_writeback(struct page * page)875 void end_page_writeback(struct page *page)
876 {
877 	/*
878 	 * TestClearPageReclaim could be used here but it is an atomic
879 	 * operation and overkill in this particular case. Failing to
880 	 * shuffle a page marked for immediate reclaim is too mild to
881 	 * justify taking an atomic operation penalty at the end of
882 	 * ever page writeback.
883 	 */
884 	if (PageReclaim(page)) {
885 		ClearPageReclaim(page);
886 		rotate_reclaimable_page(page);
887 	}
888 
889 	if (!test_clear_page_writeback(page))
890 		BUG();
891 
892 	smp_mb__after_atomic();
893 	wake_up_page(page, PG_writeback);
894 }
895 EXPORT_SYMBOL(end_page_writeback);
896 
897 /*
898  * After completing I/O on a page, call this routine to update the page
899  * flags appropriately
900  */
page_endio(struct page * page,bool is_write,int err)901 void page_endio(struct page *page, bool is_write, int err)
902 {
903 	if (!is_write) {
904 		if (!err) {
905 			SetPageUptodate(page);
906 		} else {
907 			ClearPageUptodate(page);
908 			SetPageError(page);
909 		}
910 		unlock_page(page);
911 	} else {
912 		if (err) {
913 			struct address_space *mapping;
914 
915 			SetPageError(page);
916 			mapping = page_mapping(page);
917 			if (mapping)
918 				mapping_set_error(mapping, err);
919 		}
920 		end_page_writeback(page);
921 	}
922 }
923 EXPORT_SYMBOL_GPL(page_endio);
924 
925 /**
926  * __lock_page - get a lock on the page, assuming we need to sleep to get it
927  * @page: the page to lock
928  */
__lock_page(struct page * page)929 void __lock_page(struct page *page)
930 {
931 	struct page *page_head = compound_head(page);
932 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
933 
934 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
935 							TASK_UNINTERRUPTIBLE);
936 }
937 EXPORT_SYMBOL(__lock_page);
938 
__lock_page_killable(struct page * page)939 int __lock_page_killable(struct page *page)
940 {
941 	struct page *page_head = compound_head(page);
942 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
943 
944 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
945 					bit_wait_io, TASK_KILLABLE);
946 }
947 EXPORT_SYMBOL_GPL(__lock_page_killable);
948 
949 /*
950  * Return values:
951  * 1 - page is locked; mmap_sem is still held.
952  * 0 - page is not locked.
953  *     mmap_sem has been released (up_read()), unless flags had both
954  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
955  *     which case mmap_sem is still held.
956  *
957  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
958  * with the page locked and the mmap_sem unperturbed.
959  */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)960 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
961 			 unsigned int flags)
962 {
963 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
964 		/*
965 		 * CAUTION! In this case, mmap_sem is not released
966 		 * even though return 0.
967 		 */
968 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
969 			return 0;
970 
971 		up_read(&mm->mmap_sem);
972 		if (flags & FAULT_FLAG_KILLABLE)
973 			wait_on_page_locked_killable(page);
974 		else
975 			wait_on_page_locked(page);
976 		return 0;
977 	} else {
978 		if (flags & FAULT_FLAG_KILLABLE) {
979 			int ret;
980 
981 			ret = __lock_page_killable(page);
982 			if (ret) {
983 				up_read(&mm->mmap_sem);
984 				return 0;
985 			}
986 		} else
987 			__lock_page(page);
988 		return 1;
989 	}
990 }
991 
992 /**
993  * page_cache_next_hole - find the next hole (not-present entry)
994  * @mapping: mapping
995  * @index: index
996  * @max_scan: maximum range to search
997  *
998  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
999  * lowest indexed hole.
1000  *
1001  * Returns: the index of the hole if found, otherwise returns an index
1002  * outside of the set specified (in which case 'return - index >=
1003  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1004  * be returned.
1005  *
1006  * page_cache_next_hole may be called under rcu_read_lock. However,
1007  * like radix_tree_gang_lookup, this will not atomically search a
1008  * snapshot of the tree at a single point in time. For example, if a
1009  * hole is created at index 5, then subsequently a hole is created at
1010  * index 10, page_cache_next_hole covering both indexes may return 10
1011  * if called under rcu_read_lock.
1012  */
page_cache_next_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1013 pgoff_t page_cache_next_hole(struct address_space *mapping,
1014 			     pgoff_t index, unsigned long max_scan)
1015 {
1016 	unsigned long i;
1017 
1018 	for (i = 0; i < max_scan; i++) {
1019 		struct page *page;
1020 
1021 		page = radix_tree_lookup(&mapping->page_tree, index);
1022 		if (!page || radix_tree_exceptional_entry(page))
1023 			break;
1024 		index++;
1025 		if (index == 0)
1026 			break;
1027 	}
1028 
1029 	return index;
1030 }
1031 EXPORT_SYMBOL(page_cache_next_hole);
1032 
1033 /**
1034  * page_cache_prev_hole - find the prev hole (not-present entry)
1035  * @mapping: mapping
1036  * @index: index
1037  * @max_scan: maximum range to search
1038  *
1039  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1040  * the first hole.
1041  *
1042  * Returns: the index of the hole if found, otherwise returns an index
1043  * outside of the set specified (in which case 'index - return >=
1044  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1045  * will be returned.
1046  *
1047  * page_cache_prev_hole may be called under rcu_read_lock. However,
1048  * like radix_tree_gang_lookup, this will not atomically search a
1049  * snapshot of the tree at a single point in time. For example, if a
1050  * hole is created at index 10, then subsequently a hole is created at
1051  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1052  * called under rcu_read_lock.
1053  */
page_cache_prev_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1054 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1055 			     pgoff_t index, unsigned long max_scan)
1056 {
1057 	unsigned long i;
1058 
1059 	for (i = 0; i < max_scan; i++) {
1060 		struct page *page;
1061 
1062 		page = radix_tree_lookup(&mapping->page_tree, index);
1063 		if (!page || radix_tree_exceptional_entry(page))
1064 			break;
1065 		index--;
1066 		if (index == ULONG_MAX)
1067 			break;
1068 	}
1069 
1070 	return index;
1071 }
1072 EXPORT_SYMBOL(page_cache_prev_hole);
1073 
1074 /**
1075  * find_get_entry - find and get a page cache entry
1076  * @mapping: the address_space to search
1077  * @offset: the page cache index
1078  *
1079  * Looks up the page cache slot at @mapping & @offset.  If there is a
1080  * page cache page, it is returned with an increased refcount.
1081  *
1082  * If the slot holds a shadow entry of a previously evicted page, or a
1083  * swap entry from shmem/tmpfs, it is returned.
1084  *
1085  * Otherwise, %NULL is returned.
1086  */
find_get_entry(struct address_space * mapping,pgoff_t offset)1087 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1088 {
1089 	void **pagep;
1090 	struct page *head, *page;
1091 
1092 	rcu_read_lock();
1093 repeat:
1094 	page = NULL;
1095 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1096 	if (pagep) {
1097 		page = radix_tree_deref_slot(pagep);
1098 		if (unlikely(!page))
1099 			goto out;
1100 		if (radix_tree_exception(page)) {
1101 			if (radix_tree_deref_retry(page))
1102 				goto repeat;
1103 			/*
1104 			 * A shadow entry of a recently evicted page,
1105 			 * or a swap entry from shmem/tmpfs.  Return
1106 			 * it without attempting to raise page count.
1107 			 */
1108 			goto out;
1109 		}
1110 
1111 		head = compound_head(page);
1112 		if (!page_cache_get_speculative(head))
1113 			goto repeat;
1114 
1115 		/* The page was split under us? */
1116 		if (compound_head(page) != head) {
1117 			put_page(head);
1118 			goto repeat;
1119 		}
1120 
1121 		/*
1122 		 * Has the page moved?
1123 		 * This is part of the lockless pagecache protocol. See
1124 		 * include/linux/pagemap.h for details.
1125 		 */
1126 		if (unlikely(page != *pagep)) {
1127 			put_page(head);
1128 			goto repeat;
1129 		}
1130 	}
1131 out:
1132 	rcu_read_unlock();
1133 
1134 	return page;
1135 }
1136 EXPORT_SYMBOL(find_get_entry);
1137 
1138 /**
1139  * find_lock_entry - locate, pin and lock a page cache entry
1140  * @mapping: the address_space to search
1141  * @offset: the page cache index
1142  *
1143  * Looks up the page cache slot at @mapping & @offset.  If there is a
1144  * page cache page, it is returned locked and with an increased
1145  * refcount.
1146  *
1147  * If the slot holds a shadow entry of a previously evicted page, or a
1148  * swap entry from shmem/tmpfs, it is returned.
1149  *
1150  * Otherwise, %NULL is returned.
1151  *
1152  * find_lock_entry() may sleep.
1153  */
find_lock_entry(struct address_space * mapping,pgoff_t offset)1154 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1155 {
1156 	struct page *page;
1157 
1158 repeat:
1159 	page = find_get_entry(mapping, offset);
1160 	if (page && !radix_tree_exception(page)) {
1161 		lock_page(page);
1162 		/* Has the page been truncated? */
1163 		if (unlikely(page_mapping(page) != mapping)) {
1164 			unlock_page(page);
1165 			put_page(page);
1166 			goto repeat;
1167 		}
1168 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1169 	}
1170 	return page;
1171 }
1172 EXPORT_SYMBOL(find_lock_entry);
1173 
1174 /**
1175  * pagecache_get_page - find and get a page reference
1176  * @mapping: the address_space to search
1177  * @offset: the page index
1178  * @fgp_flags: PCG flags
1179  * @gfp_mask: gfp mask to use for the page cache data page allocation
1180  *
1181  * Looks up the page cache slot at @mapping & @offset.
1182  *
1183  * PCG flags modify how the page is returned.
1184  *
1185  * FGP_ACCESSED: the page will be marked accessed
1186  * FGP_LOCK: Page is return locked
1187  * FGP_CREAT: If page is not present then a new page is allocated using
1188  *		@gfp_mask and added to the page cache and the VM's LRU
1189  *		list. The page is returned locked and with an increased
1190  *		refcount. Otherwise, %NULL is returned.
1191  *
1192  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1193  * if the GFP flags specified for FGP_CREAT are atomic.
1194  *
1195  * If there is a page cache page, it is returned with an increased refcount.
1196  */
pagecache_get_page(struct address_space * mapping,pgoff_t offset,int fgp_flags,gfp_t gfp_mask)1197 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1198 	int fgp_flags, gfp_t gfp_mask)
1199 {
1200 	struct page *page;
1201 
1202 repeat:
1203 	page = find_get_entry(mapping, offset);
1204 	if (radix_tree_exceptional_entry(page))
1205 		page = NULL;
1206 	if (!page)
1207 		goto no_page;
1208 
1209 	if (fgp_flags & FGP_LOCK) {
1210 		if (fgp_flags & FGP_NOWAIT) {
1211 			if (!trylock_page(page)) {
1212 				put_page(page);
1213 				return NULL;
1214 			}
1215 		} else {
1216 			lock_page(page);
1217 		}
1218 
1219 		/* Has the page been truncated? */
1220 		if (unlikely(page->mapping != mapping)) {
1221 			unlock_page(page);
1222 			put_page(page);
1223 			goto repeat;
1224 		}
1225 		VM_BUG_ON_PAGE(page->index != offset, page);
1226 	}
1227 
1228 	if (page && (fgp_flags & FGP_ACCESSED))
1229 		mark_page_accessed(page);
1230 
1231 no_page:
1232 	if (!page && (fgp_flags & FGP_CREAT)) {
1233 		int err;
1234 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1235 			gfp_mask |= __GFP_WRITE;
1236 		if (fgp_flags & FGP_NOFS)
1237 			gfp_mask &= ~__GFP_FS;
1238 
1239 		page = __page_cache_alloc(gfp_mask);
1240 		if (!page)
1241 			return NULL;
1242 
1243 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1244 			fgp_flags |= FGP_LOCK;
1245 
1246 		/* Init accessed so avoid atomic mark_page_accessed later */
1247 		if (fgp_flags & FGP_ACCESSED)
1248 			__SetPageReferenced(page);
1249 
1250 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1251 		if (unlikely(err)) {
1252 			put_page(page);
1253 			page = NULL;
1254 			if (err == -EEXIST)
1255 				goto repeat;
1256 		}
1257 	}
1258 
1259 	return page;
1260 }
1261 EXPORT_SYMBOL(pagecache_get_page);
1262 
1263 /**
1264  * find_get_entries - gang pagecache lookup
1265  * @mapping:	The address_space to search
1266  * @start:	The starting page cache index
1267  * @nr_entries:	The maximum number of entries
1268  * @entries:	Where the resulting entries are placed
1269  * @indices:	The cache indices corresponding to the entries in @entries
1270  *
1271  * find_get_entries() will search for and return a group of up to
1272  * @nr_entries entries in the mapping.  The entries are placed at
1273  * @entries.  find_get_entries() takes a reference against any actual
1274  * pages it returns.
1275  *
1276  * The search returns a group of mapping-contiguous page cache entries
1277  * with ascending indexes.  There may be holes in the indices due to
1278  * not-present pages.
1279  *
1280  * Any shadow entries of evicted pages, or swap entries from
1281  * shmem/tmpfs, are included in the returned array.
1282  *
1283  * find_get_entries() returns the number of pages and shadow entries
1284  * which were found.
1285  */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1286 unsigned find_get_entries(struct address_space *mapping,
1287 			  pgoff_t start, unsigned int nr_entries,
1288 			  struct page **entries, pgoff_t *indices)
1289 {
1290 	void **slot;
1291 	unsigned int ret = 0;
1292 	struct radix_tree_iter iter;
1293 
1294 	if (!nr_entries)
1295 		return 0;
1296 
1297 	rcu_read_lock();
1298 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1299 		struct page *head, *page;
1300 repeat:
1301 		page = radix_tree_deref_slot(slot);
1302 		if (unlikely(!page))
1303 			continue;
1304 		if (radix_tree_exception(page)) {
1305 			if (radix_tree_deref_retry(page)) {
1306 				slot = radix_tree_iter_retry(&iter);
1307 				continue;
1308 			}
1309 			/*
1310 			 * A shadow entry of a recently evicted page, a swap
1311 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1312 			 * without attempting to raise page count.
1313 			 */
1314 			goto export;
1315 		}
1316 
1317 		head = compound_head(page);
1318 		if (!page_cache_get_speculative(head))
1319 			goto repeat;
1320 
1321 		/* The page was split under us? */
1322 		if (compound_head(page) != head) {
1323 			put_page(head);
1324 			goto repeat;
1325 		}
1326 
1327 		/* Has the page moved? */
1328 		if (unlikely(page != *slot)) {
1329 			put_page(head);
1330 			goto repeat;
1331 		}
1332 export:
1333 		indices[ret] = iter.index;
1334 		entries[ret] = page;
1335 		if (++ret == nr_entries)
1336 			break;
1337 	}
1338 	rcu_read_unlock();
1339 	return ret;
1340 }
1341 
1342 /**
1343  * find_get_pages - gang pagecache lookup
1344  * @mapping:	The address_space to search
1345  * @start:	The starting page index
1346  * @nr_pages:	The maximum number of pages
1347  * @pages:	Where the resulting pages are placed
1348  *
1349  * find_get_pages() will search for and return a group of up to
1350  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1351  * find_get_pages() takes a reference against the returned pages.
1352  *
1353  * The search returns a group of mapping-contiguous pages with ascending
1354  * indexes.  There may be holes in the indices due to not-present pages.
1355  *
1356  * find_get_pages() returns the number of pages which were found.
1357  */
find_get_pages(struct address_space * mapping,pgoff_t start,unsigned int nr_pages,struct page ** pages)1358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1359 			    unsigned int nr_pages, struct page **pages)
1360 {
1361 	struct radix_tree_iter iter;
1362 	void **slot;
1363 	unsigned ret = 0;
1364 
1365 	if (unlikely(!nr_pages))
1366 		return 0;
1367 
1368 	rcu_read_lock();
1369 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1370 		struct page *head, *page;
1371 repeat:
1372 		page = radix_tree_deref_slot(slot);
1373 		if (unlikely(!page))
1374 			continue;
1375 
1376 		if (radix_tree_exception(page)) {
1377 			if (radix_tree_deref_retry(page)) {
1378 				slot = radix_tree_iter_retry(&iter);
1379 				continue;
1380 			}
1381 			/*
1382 			 * A shadow entry of a recently evicted page,
1383 			 * or a swap entry from shmem/tmpfs.  Skip
1384 			 * over it.
1385 			 */
1386 			continue;
1387 		}
1388 
1389 		head = compound_head(page);
1390 		if (!page_cache_get_speculative(head))
1391 			goto repeat;
1392 
1393 		/* The page was split under us? */
1394 		if (compound_head(page) != head) {
1395 			put_page(head);
1396 			goto repeat;
1397 		}
1398 
1399 		/* Has the page moved? */
1400 		if (unlikely(page != *slot)) {
1401 			put_page(head);
1402 			goto repeat;
1403 		}
1404 
1405 		pages[ret] = page;
1406 		if (++ret == nr_pages)
1407 			break;
1408 	}
1409 
1410 	rcu_read_unlock();
1411 	return ret;
1412 }
1413 
1414 /**
1415  * find_get_pages_contig - gang contiguous pagecache lookup
1416  * @mapping:	The address_space to search
1417  * @index:	The starting page index
1418  * @nr_pages:	The maximum number of pages
1419  * @pages:	Where the resulting pages are placed
1420  *
1421  * find_get_pages_contig() works exactly like find_get_pages(), except
1422  * that the returned number of pages are guaranteed to be contiguous.
1423  *
1424  * find_get_pages_contig() returns the number of pages which were found.
1425  */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)1426 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1427 			       unsigned int nr_pages, struct page **pages)
1428 {
1429 	struct radix_tree_iter iter;
1430 	void **slot;
1431 	unsigned int ret = 0;
1432 
1433 	if (unlikely(!nr_pages))
1434 		return 0;
1435 
1436 	rcu_read_lock();
1437 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1438 		struct page *head, *page;
1439 repeat:
1440 		page = radix_tree_deref_slot(slot);
1441 		/* The hole, there no reason to continue */
1442 		if (unlikely(!page))
1443 			break;
1444 
1445 		if (radix_tree_exception(page)) {
1446 			if (radix_tree_deref_retry(page)) {
1447 				slot = radix_tree_iter_retry(&iter);
1448 				continue;
1449 			}
1450 			/*
1451 			 * A shadow entry of a recently evicted page,
1452 			 * or a swap entry from shmem/tmpfs.  Stop
1453 			 * looking for contiguous pages.
1454 			 */
1455 			break;
1456 		}
1457 
1458 		head = compound_head(page);
1459 		if (!page_cache_get_speculative(head))
1460 			goto repeat;
1461 
1462 		/* The page was split under us? */
1463 		if (compound_head(page) != head) {
1464 			put_page(head);
1465 			goto repeat;
1466 		}
1467 
1468 		/* Has the page moved? */
1469 		if (unlikely(page != *slot)) {
1470 			put_page(head);
1471 			goto repeat;
1472 		}
1473 
1474 		/*
1475 		 * must check mapping and index after taking the ref.
1476 		 * otherwise we can get both false positives and false
1477 		 * negatives, which is just confusing to the caller.
1478 		 */
1479 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1480 			put_page(page);
1481 			break;
1482 		}
1483 
1484 		pages[ret] = page;
1485 		if (++ret == nr_pages)
1486 			break;
1487 	}
1488 	rcu_read_unlock();
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(find_get_pages_contig);
1492 
1493 /**
1494  * find_get_pages_tag - find and return pages that match @tag
1495  * @mapping:	the address_space to search
1496  * @index:	the starting page index
1497  * @tag:	the tag index
1498  * @nr_pages:	the maximum number of pages
1499  * @pages:	where the resulting pages are placed
1500  *
1501  * Like find_get_pages, except we only return pages which are tagged with
1502  * @tag.   We update @index to index the next page for the traversal.
1503  */
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,int tag,unsigned int nr_pages,struct page ** pages)1504 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1505 			int tag, unsigned int nr_pages, struct page **pages)
1506 {
1507 	struct radix_tree_iter iter;
1508 	void **slot;
1509 	unsigned ret = 0;
1510 
1511 	if (unlikely(!nr_pages))
1512 		return 0;
1513 
1514 	rcu_read_lock();
1515 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1516 				   &iter, *index, tag) {
1517 		struct page *head, *page;
1518 repeat:
1519 		page = radix_tree_deref_slot(slot);
1520 		if (unlikely(!page))
1521 			continue;
1522 
1523 		if (radix_tree_exception(page)) {
1524 			if (radix_tree_deref_retry(page)) {
1525 				slot = radix_tree_iter_retry(&iter);
1526 				continue;
1527 			}
1528 			/*
1529 			 * A shadow entry of a recently evicted page.
1530 			 *
1531 			 * Those entries should never be tagged, but
1532 			 * this tree walk is lockless and the tags are
1533 			 * looked up in bulk, one radix tree node at a
1534 			 * time, so there is a sizable window for page
1535 			 * reclaim to evict a page we saw tagged.
1536 			 *
1537 			 * Skip over it.
1538 			 */
1539 			continue;
1540 		}
1541 
1542 		head = compound_head(page);
1543 		if (!page_cache_get_speculative(head))
1544 			goto repeat;
1545 
1546 		/* The page was split under us? */
1547 		if (compound_head(page) != head) {
1548 			put_page(head);
1549 			goto repeat;
1550 		}
1551 
1552 		/* Has the page moved? */
1553 		if (unlikely(page != *slot)) {
1554 			put_page(head);
1555 			goto repeat;
1556 		}
1557 
1558 		pages[ret] = page;
1559 		if (++ret == nr_pages)
1560 			break;
1561 	}
1562 
1563 	rcu_read_unlock();
1564 
1565 	if (ret)
1566 		*index = pages[ret - 1]->index + 1;
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL(find_get_pages_tag);
1571 
1572 /**
1573  * find_get_entries_tag - find and return entries that match @tag
1574  * @mapping:	the address_space to search
1575  * @start:	the starting page cache index
1576  * @tag:	the tag index
1577  * @nr_entries:	the maximum number of entries
1578  * @entries:	where the resulting entries are placed
1579  * @indices:	the cache indices corresponding to the entries in @entries
1580  *
1581  * Like find_get_entries, except we only return entries which are tagged with
1582  * @tag.
1583  */
find_get_entries_tag(struct address_space * mapping,pgoff_t start,int tag,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1584 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1585 			int tag, unsigned int nr_entries,
1586 			struct page **entries, pgoff_t *indices)
1587 {
1588 	void **slot;
1589 	unsigned int ret = 0;
1590 	struct radix_tree_iter iter;
1591 
1592 	if (!nr_entries)
1593 		return 0;
1594 
1595 	rcu_read_lock();
1596 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1597 				   &iter, start, tag) {
1598 		struct page *head, *page;
1599 repeat:
1600 		page = radix_tree_deref_slot(slot);
1601 		if (unlikely(!page))
1602 			continue;
1603 		if (radix_tree_exception(page)) {
1604 			if (radix_tree_deref_retry(page)) {
1605 				slot = radix_tree_iter_retry(&iter);
1606 				continue;
1607 			}
1608 
1609 			/*
1610 			 * A shadow entry of a recently evicted page, a swap
1611 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1612 			 * without attempting to raise page count.
1613 			 */
1614 			goto export;
1615 		}
1616 
1617 		head = compound_head(page);
1618 		if (!page_cache_get_speculative(head))
1619 			goto repeat;
1620 
1621 		/* The page was split under us? */
1622 		if (compound_head(page) != head) {
1623 			put_page(head);
1624 			goto repeat;
1625 		}
1626 
1627 		/* Has the page moved? */
1628 		if (unlikely(page != *slot)) {
1629 			put_page(head);
1630 			goto repeat;
1631 		}
1632 export:
1633 		indices[ret] = iter.index;
1634 		entries[ret] = page;
1635 		if (++ret == nr_entries)
1636 			break;
1637 	}
1638 	rcu_read_unlock();
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL(find_get_entries_tag);
1642 
1643 /*
1644  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1645  * a _large_ part of the i/o request. Imagine the worst scenario:
1646  *
1647  *      ---R__________________________________________B__________
1648  *         ^ reading here                             ^ bad block(assume 4k)
1649  *
1650  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1651  * => failing the whole request => read(R) => read(R+1) =>
1652  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1653  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1654  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1655  *
1656  * It is going insane. Fix it by quickly scaling down the readahead size.
1657  */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)1658 static void shrink_readahead_size_eio(struct file *filp,
1659 					struct file_ra_state *ra)
1660 {
1661 	ra->ra_pages /= 4;
1662 }
1663 
1664 /**
1665  * do_generic_file_read - generic file read routine
1666  * @filp:	the file to read
1667  * @ppos:	current file position
1668  * @iter:	data destination
1669  * @written:	already copied
1670  *
1671  * This is a generic file read routine, and uses the
1672  * mapping->a_ops->readpage() function for the actual low-level stuff.
1673  *
1674  * This is really ugly. But the goto's actually try to clarify some
1675  * of the logic when it comes to error handling etc.
1676  */
do_generic_file_read(struct file * filp,loff_t * ppos,struct iov_iter * iter,ssize_t written)1677 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1678 		struct iov_iter *iter, ssize_t written)
1679 {
1680 	struct address_space *mapping = filp->f_mapping;
1681 	struct inode *inode = mapping->host;
1682 	struct file_ra_state *ra = &filp->f_ra;
1683 	pgoff_t index;
1684 	pgoff_t last_index;
1685 	pgoff_t prev_index;
1686 	unsigned long offset;      /* offset into pagecache page */
1687 	unsigned int prev_offset;
1688 	int error = 0;
1689 
1690 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1691 		return 0;
1692 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1693 
1694 	index = *ppos >> PAGE_SHIFT;
1695 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1696 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1697 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1698 	offset = *ppos & ~PAGE_MASK;
1699 
1700 	for (;;) {
1701 		struct page *page;
1702 		pgoff_t end_index;
1703 		loff_t isize;
1704 		unsigned long nr, ret;
1705 
1706 		cond_resched();
1707 find_page:
1708 		if (fatal_signal_pending(current)) {
1709 			error = -EINTR;
1710 			goto out;
1711 		}
1712 
1713 		page = find_get_page(mapping, index);
1714 		if (!page) {
1715 			page_cache_sync_readahead(mapping,
1716 					ra, filp,
1717 					index, last_index - index);
1718 			page = find_get_page(mapping, index);
1719 			if (unlikely(page == NULL))
1720 				goto no_cached_page;
1721 		}
1722 		if (PageReadahead(page)) {
1723 			page_cache_async_readahead(mapping,
1724 					ra, filp, page,
1725 					index, last_index - index);
1726 		}
1727 		if (!PageUptodate(page)) {
1728 			/*
1729 			 * See comment in do_read_cache_page on why
1730 			 * wait_on_page_locked is used to avoid unnecessarily
1731 			 * serialisations and why it's safe.
1732 			 */
1733 			error = wait_on_page_locked_killable(page);
1734 			if (unlikely(error))
1735 				goto readpage_error;
1736 			if (PageUptodate(page))
1737 				goto page_ok;
1738 
1739 			if (inode->i_blkbits == PAGE_SHIFT ||
1740 					!mapping->a_ops->is_partially_uptodate)
1741 				goto page_not_up_to_date;
1742 			/* pipes can't handle partially uptodate pages */
1743 			if (unlikely(iter->type & ITER_PIPE))
1744 				goto page_not_up_to_date;
1745 			if (!trylock_page(page))
1746 				goto page_not_up_to_date;
1747 			/* Did it get truncated before we got the lock? */
1748 			if (!page->mapping)
1749 				goto page_not_up_to_date_locked;
1750 			if (!mapping->a_ops->is_partially_uptodate(page,
1751 							offset, iter->count))
1752 				goto page_not_up_to_date_locked;
1753 			unlock_page(page);
1754 		}
1755 page_ok:
1756 		/*
1757 		 * i_size must be checked after we know the page is Uptodate.
1758 		 *
1759 		 * Checking i_size after the check allows us to calculate
1760 		 * the correct value for "nr", which means the zero-filled
1761 		 * part of the page is not copied back to userspace (unless
1762 		 * another truncate extends the file - this is desired though).
1763 		 */
1764 
1765 		isize = i_size_read(inode);
1766 		end_index = (isize - 1) >> PAGE_SHIFT;
1767 		if (unlikely(!isize || index > end_index)) {
1768 			put_page(page);
1769 			goto out;
1770 		}
1771 
1772 		/* nr is the maximum number of bytes to copy from this page */
1773 		nr = PAGE_SIZE;
1774 		if (index == end_index) {
1775 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1776 			if (nr <= offset) {
1777 				put_page(page);
1778 				goto out;
1779 			}
1780 		}
1781 		nr = nr - offset;
1782 
1783 		/* If users can be writing to this page using arbitrary
1784 		 * virtual addresses, take care about potential aliasing
1785 		 * before reading the page on the kernel side.
1786 		 */
1787 		if (mapping_writably_mapped(mapping))
1788 			flush_dcache_page(page);
1789 
1790 		/*
1791 		 * When a sequential read accesses a page several times,
1792 		 * only mark it as accessed the first time.
1793 		 */
1794 		if (prev_index != index || offset != prev_offset)
1795 			mark_page_accessed(page);
1796 		prev_index = index;
1797 
1798 		/*
1799 		 * Ok, we have the page, and it's up-to-date, so
1800 		 * now we can copy it to user space...
1801 		 */
1802 
1803 		ret = copy_page_to_iter(page, offset, nr, iter);
1804 		offset += ret;
1805 		index += offset >> PAGE_SHIFT;
1806 		offset &= ~PAGE_MASK;
1807 		prev_offset = offset;
1808 
1809 		put_page(page);
1810 		written += ret;
1811 		if (!iov_iter_count(iter))
1812 			goto out;
1813 		if (ret < nr) {
1814 			error = -EFAULT;
1815 			goto out;
1816 		}
1817 		continue;
1818 
1819 page_not_up_to_date:
1820 		/* Get exclusive access to the page ... */
1821 		error = lock_page_killable(page);
1822 		if (unlikely(error))
1823 			goto readpage_error;
1824 
1825 page_not_up_to_date_locked:
1826 		/* Did it get truncated before we got the lock? */
1827 		if (!page->mapping) {
1828 			unlock_page(page);
1829 			put_page(page);
1830 			continue;
1831 		}
1832 
1833 		/* Did somebody else fill it already? */
1834 		if (PageUptodate(page)) {
1835 			unlock_page(page);
1836 			goto page_ok;
1837 		}
1838 
1839 readpage:
1840 		/*
1841 		 * A previous I/O error may have been due to temporary
1842 		 * failures, eg. multipath errors.
1843 		 * PG_error will be set again if readpage fails.
1844 		 */
1845 		ClearPageError(page);
1846 		/* Start the actual read. The read will unlock the page. */
1847 		error = mapping->a_ops->readpage(filp, page);
1848 
1849 		if (unlikely(error)) {
1850 			if (error == AOP_TRUNCATED_PAGE) {
1851 				put_page(page);
1852 				error = 0;
1853 				goto find_page;
1854 			}
1855 			goto readpage_error;
1856 		}
1857 
1858 		if (!PageUptodate(page)) {
1859 			error = lock_page_killable(page);
1860 			if (unlikely(error))
1861 				goto readpage_error;
1862 			if (!PageUptodate(page)) {
1863 				if (page->mapping == NULL) {
1864 					/*
1865 					 * invalidate_mapping_pages got it
1866 					 */
1867 					unlock_page(page);
1868 					put_page(page);
1869 					goto find_page;
1870 				}
1871 				unlock_page(page);
1872 				shrink_readahead_size_eio(filp, ra);
1873 				error = -EIO;
1874 				goto readpage_error;
1875 			}
1876 			unlock_page(page);
1877 		}
1878 
1879 		goto page_ok;
1880 
1881 readpage_error:
1882 		/* UHHUH! A synchronous read error occurred. Report it */
1883 		put_page(page);
1884 		goto out;
1885 
1886 no_cached_page:
1887 		/*
1888 		 * Ok, it wasn't cached, so we need to create a new
1889 		 * page..
1890 		 */
1891 		page = page_cache_alloc_cold(mapping);
1892 		if (!page) {
1893 			error = -ENOMEM;
1894 			goto out;
1895 		}
1896 		error = add_to_page_cache_lru(page, mapping, index,
1897 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1898 		if (error) {
1899 			put_page(page);
1900 			if (error == -EEXIST) {
1901 				error = 0;
1902 				goto find_page;
1903 			}
1904 			goto out;
1905 		}
1906 		goto readpage;
1907 	}
1908 
1909 out:
1910 	ra->prev_pos = prev_index;
1911 	ra->prev_pos <<= PAGE_SHIFT;
1912 	ra->prev_pos |= prev_offset;
1913 
1914 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1915 	file_accessed(filp);
1916 	return written ? written : error;
1917 }
1918 
1919 /**
1920  * generic_file_read_iter - generic filesystem read routine
1921  * @iocb:	kernel I/O control block
1922  * @iter:	destination for the data read
1923  *
1924  * This is the "read_iter()" routine for all filesystems
1925  * that can use the page cache directly.
1926  */
1927 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)1928 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1929 {
1930 	struct file *file = iocb->ki_filp;
1931 	ssize_t retval = 0;
1932 	size_t count = iov_iter_count(iter);
1933 
1934 	if (!count)
1935 		goto out; /* skip atime */
1936 
1937 	if (iocb->ki_flags & IOCB_DIRECT) {
1938 		struct address_space *mapping = file->f_mapping;
1939 		struct inode *inode = mapping->host;
1940 		struct iov_iter data = *iter;
1941 		loff_t size;
1942 
1943 		size = i_size_read(inode);
1944 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1945 					iocb->ki_pos + count - 1);
1946 		if (retval < 0)
1947 			goto out;
1948 
1949 		file_accessed(file);
1950 
1951 		retval = mapping->a_ops->direct_IO(iocb, &data);
1952 		if (retval >= 0) {
1953 			iocb->ki_pos += retval;
1954 			iov_iter_advance(iter, retval);
1955 		}
1956 
1957 		/*
1958 		 * Btrfs can have a short DIO read if we encounter
1959 		 * compressed extents, so if there was an error, or if
1960 		 * we've already read everything we wanted to, or if
1961 		 * there was a short read because we hit EOF, go ahead
1962 		 * and return.  Otherwise fallthrough to buffered io for
1963 		 * the rest of the read.  Buffered reads will not work for
1964 		 * DAX files, so don't bother trying.
1965 		 */
1966 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1967 		    IS_DAX(inode))
1968 			goto out;
1969 	}
1970 
1971 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1972 out:
1973 	return retval;
1974 }
1975 EXPORT_SYMBOL(generic_file_read_iter);
1976 
1977 #ifdef CONFIG_MMU
1978 /**
1979  * page_cache_read - adds requested page to the page cache if not already there
1980  * @file:	file to read
1981  * @offset:	page index
1982  * @gfp_mask:	memory allocation flags
1983  *
1984  * This adds the requested page to the page cache if it isn't already there,
1985  * and schedules an I/O to read in its contents from disk.
1986  */
page_cache_read(struct file * file,pgoff_t offset,gfp_t gfp_mask)1987 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1988 {
1989 	struct address_space *mapping = file->f_mapping;
1990 	struct page *page;
1991 	int ret;
1992 
1993 	do {
1994 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1995 		if (!page)
1996 			return -ENOMEM;
1997 
1998 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1999 		if (ret == 0)
2000 			ret = mapping->a_ops->readpage(file, page);
2001 		else if (ret == -EEXIST)
2002 			ret = 0; /* losing race to add is OK */
2003 
2004 		put_page(page);
2005 
2006 	} while (ret == AOP_TRUNCATED_PAGE);
2007 
2008 	return ret;
2009 }
2010 
2011 #define MMAP_LOTSAMISS  (100)
2012 
2013 /*
2014  * Synchronous readahead happens when we don't even find
2015  * a page in the page cache at all.
2016  */
do_sync_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,pgoff_t offset)2017 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2018 				   struct file_ra_state *ra,
2019 				   struct file *file,
2020 				   pgoff_t offset)
2021 {
2022 	struct address_space *mapping = file->f_mapping;
2023 
2024 	/* If we don't want any read-ahead, don't bother */
2025 	if (vma->vm_flags & VM_RAND_READ)
2026 		return;
2027 	if (!ra->ra_pages)
2028 		return;
2029 
2030 	if (vma->vm_flags & VM_SEQ_READ) {
2031 		page_cache_sync_readahead(mapping, ra, file, offset,
2032 					  ra->ra_pages);
2033 		return;
2034 	}
2035 
2036 	/* Avoid banging the cache line if not needed */
2037 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2038 		ra->mmap_miss++;
2039 
2040 	/*
2041 	 * Do we miss much more than hit in this file? If so,
2042 	 * stop bothering with read-ahead. It will only hurt.
2043 	 */
2044 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2045 		return;
2046 
2047 	/*
2048 	 * mmap read-around
2049 	 */
2050 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2051 	ra->size = ra->ra_pages;
2052 	ra->async_size = ra->ra_pages / 4;
2053 	ra_submit(ra, mapping, file);
2054 }
2055 
2056 /*
2057  * Asynchronous readahead happens when we find the page and PG_readahead,
2058  * so we want to possibly extend the readahead further..
2059  */
do_async_mmap_readahead(struct vm_area_struct * vma,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t offset)2060 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2061 				    struct file_ra_state *ra,
2062 				    struct file *file,
2063 				    struct page *page,
2064 				    pgoff_t offset)
2065 {
2066 	struct address_space *mapping = file->f_mapping;
2067 
2068 	/* If we don't want any read-ahead, don't bother */
2069 	if (vma->vm_flags & VM_RAND_READ)
2070 		return;
2071 	if (ra->mmap_miss > 0)
2072 		ra->mmap_miss--;
2073 	if (PageReadahead(page))
2074 		page_cache_async_readahead(mapping, ra, file,
2075 					   page, offset, ra->ra_pages);
2076 }
2077 
2078 /**
2079  * filemap_fault - read in file data for page fault handling
2080  * @vma:	vma in which the fault was taken
2081  * @vmf:	struct vm_fault containing details of the fault
2082  *
2083  * filemap_fault() is invoked via the vma operations vector for a
2084  * mapped memory region to read in file data during a page fault.
2085  *
2086  * The goto's are kind of ugly, but this streamlines the normal case of having
2087  * it in the page cache, and handles the special cases reasonably without
2088  * having a lot of duplicated code.
2089  *
2090  * vma->vm_mm->mmap_sem must be held on entry.
2091  *
2092  * If our return value has VM_FAULT_RETRY set, it's because
2093  * lock_page_or_retry() returned 0.
2094  * The mmap_sem has usually been released in this case.
2095  * See __lock_page_or_retry() for the exception.
2096  *
2097  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2098  * has not been released.
2099  *
2100  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2101  */
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2102 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2103 {
2104 	int error;
2105 	struct file *file = vma->vm_file;
2106 	struct address_space *mapping = file->f_mapping;
2107 	struct file_ra_state *ra = &file->f_ra;
2108 	struct inode *inode = mapping->host;
2109 	pgoff_t offset = vmf->pgoff;
2110 	struct page *page;
2111 	loff_t size;
2112 	int ret = 0;
2113 
2114 	size = round_up(i_size_read(inode), PAGE_SIZE);
2115 	if (offset >= size >> PAGE_SHIFT)
2116 		return VM_FAULT_SIGBUS;
2117 
2118 	/*
2119 	 * Do we have something in the page cache already?
2120 	 */
2121 	page = find_get_page(mapping, offset);
2122 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2123 		/*
2124 		 * We found the page, so try async readahead before
2125 		 * waiting for the lock.
2126 		 */
2127 		do_async_mmap_readahead(vma, ra, file, page, offset);
2128 	} else if (!page) {
2129 		/* No page in the page cache at all */
2130 		do_sync_mmap_readahead(vma, ra, file, offset);
2131 		count_vm_event(PGMAJFAULT);
2132 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2133 		ret = VM_FAULT_MAJOR;
2134 retry_find:
2135 		page = find_get_page(mapping, offset);
2136 		if (!page)
2137 			goto no_cached_page;
2138 	}
2139 
2140 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2141 		put_page(page);
2142 		return ret | VM_FAULT_RETRY;
2143 	}
2144 
2145 	/* Did it get truncated? */
2146 	if (unlikely(page->mapping != mapping)) {
2147 		unlock_page(page);
2148 		put_page(page);
2149 		goto retry_find;
2150 	}
2151 	VM_BUG_ON_PAGE(page->index != offset, page);
2152 
2153 	/*
2154 	 * We have a locked page in the page cache, now we need to check
2155 	 * that it's up-to-date. If not, it is going to be due to an error.
2156 	 */
2157 	if (unlikely(!PageUptodate(page)))
2158 		goto page_not_uptodate;
2159 
2160 	/*
2161 	 * Found the page and have a reference on it.
2162 	 * We must recheck i_size under page lock.
2163 	 */
2164 	size = round_up(i_size_read(inode), PAGE_SIZE);
2165 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2166 		unlock_page(page);
2167 		put_page(page);
2168 		return VM_FAULT_SIGBUS;
2169 	}
2170 
2171 	vmf->page = page;
2172 	return ret | VM_FAULT_LOCKED;
2173 
2174 no_cached_page:
2175 	/*
2176 	 * We're only likely to ever get here if MADV_RANDOM is in
2177 	 * effect.
2178 	 */
2179 	error = page_cache_read(file, offset, vmf->gfp_mask);
2180 
2181 	/*
2182 	 * The page we want has now been added to the page cache.
2183 	 * In the unlikely event that someone removed it in the
2184 	 * meantime, we'll just come back here and read it again.
2185 	 */
2186 	if (error >= 0)
2187 		goto retry_find;
2188 
2189 	/*
2190 	 * An error return from page_cache_read can result if the
2191 	 * system is low on memory, or a problem occurs while trying
2192 	 * to schedule I/O.
2193 	 */
2194 	if (error == -ENOMEM)
2195 		return VM_FAULT_OOM;
2196 	return VM_FAULT_SIGBUS;
2197 
2198 page_not_uptodate:
2199 	/*
2200 	 * Umm, take care of errors if the page isn't up-to-date.
2201 	 * Try to re-read it _once_. We do this synchronously,
2202 	 * because there really aren't any performance issues here
2203 	 * and we need to check for errors.
2204 	 */
2205 	ClearPageError(page);
2206 	error = mapping->a_ops->readpage(file, page);
2207 	if (!error) {
2208 		wait_on_page_locked(page);
2209 		if (!PageUptodate(page))
2210 			error = -EIO;
2211 	}
2212 	put_page(page);
2213 
2214 	if (!error || error == AOP_TRUNCATED_PAGE)
2215 		goto retry_find;
2216 
2217 	/* Things didn't work out. Return zero to tell the mm layer so. */
2218 	shrink_readahead_size_eio(file, ra);
2219 	return VM_FAULT_SIGBUS;
2220 }
2221 EXPORT_SYMBOL(filemap_fault);
2222 
filemap_map_pages(struct fault_env * fe,pgoff_t start_pgoff,pgoff_t end_pgoff)2223 void filemap_map_pages(struct fault_env *fe,
2224 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2225 {
2226 	struct radix_tree_iter iter;
2227 	void **slot;
2228 	struct file *file = fe->vma->vm_file;
2229 	struct address_space *mapping = file->f_mapping;
2230 	pgoff_t last_pgoff = start_pgoff;
2231 	loff_t size;
2232 	struct page *head, *page;
2233 
2234 	rcu_read_lock();
2235 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2236 			start_pgoff) {
2237 		if (iter.index > end_pgoff)
2238 			break;
2239 repeat:
2240 		page = radix_tree_deref_slot(slot);
2241 		if (unlikely(!page))
2242 			goto next;
2243 		if (radix_tree_exception(page)) {
2244 			if (radix_tree_deref_retry(page)) {
2245 				slot = radix_tree_iter_retry(&iter);
2246 				continue;
2247 			}
2248 			goto next;
2249 		}
2250 
2251 		head = compound_head(page);
2252 		if (!page_cache_get_speculative(head))
2253 			goto repeat;
2254 
2255 		/* The page was split under us? */
2256 		if (compound_head(page) != head) {
2257 			put_page(head);
2258 			goto repeat;
2259 		}
2260 
2261 		/* Has the page moved? */
2262 		if (unlikely(page != *slot)) {
2263 			put_page(head);
2264 			goto repeat;
2265 		}
2266 
2267 		if (!PageUptodate(page) ||
2268 				PageReadahead(page) ||
2269 				PageHWPoison(page))
2270 			goto skip;
2271 		if (!trylock_page(page))
2272 			goto skip;
2273 
2274 		if (page->mapping != mapping || !PageUptodate(page))
2275 			goto unlock;
2276 
2277 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2278 		if (page->index >= size >> PAGE_SHIFT)
2279 			goto unlock;
2280 
2281 		if (file->f_ra.mmap_miss > 0)
2282 			file->f_ra.mmap_miss--;
2283 
2284 		fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2285 		if (fe->pte)
2286 			fe->pte += iter.index - last_pgoff;
2287 		last_pgoff = iter.index;
2288 		if (alloc_set_pte(fe, NULL, page))
2289 			goto unlock;
2290 		unlock_page(page);
2291 		goto next;
2292 unlock:
2293 		unlock_page(page);
2294 skip:
2295 		put_page(page);
2296 next:
2297 		/* Huge page is mapped? No need to proceed. */
2298 		if (pmd_trans_huge(*fe->pmd))
2299 			break;
2300 		if (iter.index == end_pgoff)
2301 			break;
2302 	}
2303 	rcu_read_unlock();
2304 }
2305 EXPORT_SYMBOL(filemap_map_pages);
2306 
filemap_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)2307 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2308 {
2309 	struct page *page = vmf->page;
2310 	struct inode *inode = file_inode(vma->vm_file);
2311 	int ret = VM_FAULT_LOCKED;
2312 
2313 	sb_start_pagefault(inode->i_sb);
2314 	file_update_time(vma->vm_file);
2315 	lock_page(page);
2316 	if (page->mapping != inode->i_mapping) {
2317 		unlock_page(page);
2318 		ret = VM_FAULT_NOPAGE;
2319 		goto out;
2320 	}
2321 	/*
2322 	 * We mark the page dirty already here so that when freeze is in
2323 	 * progress, we are guaranteed that writeback during freezing will
2324 	 * see the dirty page and writeprotect it again.
2325 	 */
2326 	set_page_dirty(page);
2327 	wait_for_stable_page(page);
2328 out:
2329 	sb_end_pagefault(inode->i_sb);
2330 	return ret;
2331 }
2332 EXPORT_SYMBOL(filemap_page_mkwrite);
2333 
2334 const struct vm_operations_struct generic_file_vm_ops = {
2335 	.fault		= filemap_fault,
2336 	.map_pages	= filemap_map_pages,
2337 	.page_mkwrite	= filemap_page_mkwrite,
2338 };
2339 
2340 /* This is used for a general mmap of a disk file */
2341 
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2342 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2343 {
2344 	struct address_space *mapping = file->f_mapping;
2345 
2346 	if (!mapping->a_ops->readpage)
2347 		return -ENOEXEC;
2348 	file_accessed(file);
2349 	vma->vm_ops = &generic_file_vm_ops;
2350 	return 0;
2351 }
2352 
2353 /*
2354  * This is for filesystems which do not implement ->writepage.
2355  */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2356 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2357 {
2358 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2359 		return -EINVAL;
2360 	return generic_file_mmap(file, vma);
2361 }
2362 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2363 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2364 {
2365 	return -ENOSYS;
2366 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2367 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2368 {
2369 	return -ENOSYS;
2370 }
2371 #endif /* CONFIG_MMU */
2372 
2373 EXPORT_SYMBOL(generic_file_mmap);
2374 EXPORT_SYMBOL(generic_file_readonly_mmap);
2375 
wait_on_page_read(struct page * page)2376 static struct page *wait_on_page_read(struct page *page)
2377 {
2378 	if (!IS_ERR(page)) {
2379 		wait_on_page_locked(page);
2380 		if (!PageUptodate(page)) {
2381 			put_page(page);
2382 			page = ERR_PTR(-EIO);
2383 		}
2384 	}
2385 	return page;
2386 }
2387 
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(struct file *,struct page *),void * data,gfp_t gfp)2388 static struct page *do_read_cache_page(struct address_space *mapping,
2389 				pgoff_t index,
2390 				int (*filler)(struct file *, struct page *),
2391 				void *data,
2392 				gfp_t gfp)
2393 {
2394 	struct page *page;
2395 	int err;
2396 repeat:
2397 	page = find_get_page(mapping, index);
2398 	if (!page) {
2399 		page = __page_cache_alloc(gfp | __GFP_COLD);
2400 		if (!page)
2401 			return ERR_PTR(-ENOMEM);
2402 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2403 		if (unlikely(err)) {
2404 			put_page(page);
2405 			if (err == -EEXIST)
2406 				goto repeat;
2407 			/* Presumably ENOMEM for radix tree node */
2408 			return ERR_PTR(err);
2409 		}
2410 
2411 filler:
2412 		err = filler(data, page);
2413 		if (err < 0) {
2414 			put_page(page);
2415 			return ERR_PTR(err);
2416 		}
2417 
2418 		page = wait_on_page_read(page);
2419 		if (IS_ERR(page))
2420 			return page;
2421 		goto out;
2422 	}
2423 	if (PageUptodate(page))
2424 		goto out;
2425 
2426 	/*
2427 	 * Page is not up to date and may be locked due one of the following
2428 	 * case a: Page is being filled and the page lock is held
2429 	 * case b: Read/write error clearing the page uptodate status
2430 	 * case c: Truncation in progress (page locked)
2431 	 * case d: Reclaim in progress
2432 	 *
2433 	 * Case a, the page will be up to date when the page is unlocked.
2434 	 *    There is no need to serialise on the page lock here as the page
2435 	 *    is pinned so the lock gives no additional protection. Even if the
2436 	 *    the page is truncated, the data is still valid if PageUptodate as
2437 	 *    it's a race vs truncate race.
2438 	 * Case b, the page will not be up to date
2439 	 * Case c, the page may be truncated but in itself, the data may still
2440 	 *    be valid after IO completes as it's a read vs truncate race. The
2441 	 *    operation must restart if the page is not uptodate on unlock but
2442 	 *    otherwise serialising on page lock to stabilise the mapping gives
2443 	 *    no additional guarantees to the caller as the page lock is
2444 	 *    released before return.
2445 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2446 	 *    will be a race with remove_mapping that determines if the mapping
2447 	 *    is valid on unlock but otherwise the data is valid and there is
2448 	 *    no need to serialise with page lock.
2449 	 *
2450 	 * As the page lock gives no additional guarantee, we optimistically
2451 	 * wait on the page to be unlocked and check if it's up to date and
2452 	 * use the page if it is. Otherwise, the page lock is required to
2453 	 * distinguish between the different cases. The motivation is that we
2454 	 * avoid spurious serialisations and wakeups when multiple processes
2455 	 * wait on the same page for IO to complete.
2456 	 */
2457 	wait_on_page_locked(page);
2458 	if (PageUptodate(page))
2459 		goto out;
2460 
2461 	/* Distinguish between all the cases under the safety of the lock */
2462 	lock_page(page);
2463 
2464 	/* Case c or d, restart the operation */
2465 	if (!page->mapping) {
2466 		unlock_page(page);
2467 		put_page(page);
2468 		goto repeat;
2469 	}
2470 
2471 	/* Someone else locked and filled the page in a very small window */
2472 	if (PageUptodate(page)) {
2473 		unlock_page(page);
2474 		goto out;
2475 	}
2476 	goto filler;
2477 
2478 out:
2479 	mark_page_accessed(page);
2480 	return page;
2481 }
2482 
2483 /**
2484  * read_cache_page - read into page cache, fill it if needed
2485  * @mapping:	the page's address_space
2486  * @index:	the page index
2487  * @filler:	function to perform the read
2488  * @data:	first arg to filler(data, page) function, often left as NULL
2489  *
2490  * Read into the page cache. If a page already exists, and PageUptodate() is
2491  * not set, try to fill the page and wait for it to become unlocked.
2492  *
2493  * If the page does not get brought uptodate, return -EIO.
2494  */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(struct file *,struct page *),void * data)2495 struct page *read_cache_page(struct address_space *mapping,
2496 				pgoff_t index,
2497 				int (*filler)(struct file *, struct page *),
2498 				void *data)
2499 {
2500 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2501 }
2502 EXPORT_SYMBOL(read_cache_page);
2503 
2504 /**
2505  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2506  * @mapping:	the page's address_space
2507  * @index:	the page index
2508  * @gfp:	the page allocator flags to use if allocating
2509  *
2510  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2511  * any new page allocations done using the specified allocation flags.
2512  *
2513  * If the page does not get brought uptodate, return -EIO.
2514  */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)2515 struct page *read_cache_page_gfp(struct address_space *mapping,
2516 				pgoff_t index,
2517 				gfp_t gfp)
2518 {
2519 	filler_t *filler = mapping->a_ops->readpage;
2520 
2521 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2522 }
2523 EXPORT_SYMBOL(read_cache_page_gfp);
2524 
2525 /*
2526  * Performs necessary checks before doing a write
2527  *
2528  * Can adjust writing position or amount of bytes to write.
2529  * Returns appropriate error code that caller should return or
2530  * zero in case that write should be allowed.
2531  */
generic_write_checks(struct kiocb * iocb,struct iov_iter * from)2532 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2533 {
2534 	struct file *file = iocb->ki_filp;
2535 	struct inode *inode = file->f_mapping->host;
2536 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2537 	loff_t pos;
2538 
2539 	if (!iov_iter_count(from))
2540 		return 0;
2541 
2542 	/* FIXME: this is for backwards compatibility with 2.4 */
2543 	if (iocb->ki_flags & IOCB_APPEND)
2544 		iocb->ki_pos = i_size_read(inode);
2545 
2546 	pos = iocb->ki_pos;
2547 
2548 	if (limit != RLIM_INFINITY) {
2549 		if (iocb->ki_pos >= limit) {
2550 			send_sig(SIGXFSZ, current, 0);
2551 			return -EFBIG;
2552 		}
2553 		iov_iter_truncate(from, limit - (unsigned long)pos);
2554 	}
2555 
2556 	/*
2557 	 * LFS rule
2558 	 */
2559 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2560 				!(file->f_flags & O_LARGEFILE))) {
2561 		if (pos >= MAX_NON_LFS)
2562 			return -EFBIG;
2563 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2564 	}
2565 
2566 	/*
2567 	 * Are we about to exceed the fs block limit ?
2568 	 *
2569 	 * If we have written data it becomes a short write.  If we have
2570 	 * exceeded without writing data we send a signal and return EFBIG.
2571 	 * Linus frestrict idea will clean these up nicely..
2572 	 */
2573 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2574 		return -EFBIG;
2575 
2576 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2577 	return iov_iter_count(from);
2578 }
2579 EXPORT_SYMBOL(generic_write_checks);
2580 
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2581 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2582 				loff_t pos, unsigned len, unsigned flags,
2583 				struct page **pagep, void **fsdata)
2584 {
2585 	const struct address_space_operations *aops = mapping->a_ops;
2586 
2587 	return aops->write_begin(file, mapping, pos, len, flags,
2588 							pagep, fsdata);
2589 }
2590 EXPORT_SYMBOL(pagecache_write_begin);
2591 
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2592 int pagecache_write_end(struct file *file, struct address_space *mapping,
2593 				loff_t pos, unsigned len, unsigned copied,
2594 				struct page *page, void *fsdata)
2595 {
2596 	const struct address_space_operations *aops = mapping->a_ops;
2597 
2598 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2599 }
2600 EXPORT_SYMBOL(pagecache_write_end);
2601 
2602 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)2603 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2604 {
2605 	struct file	*file = iocb->ki_filp;
2606 	struct address_space *mapping = file->f_mapping;
2607 	struct inode	*inode = mapping->host;
2608 	loff_t		pos = iocb->ki_pos;
2609 	ssize_t		written;
2610 	size_t		write_len;
2611 	pgoff_t		end;
2612 	struct iov_iter data;
2613 
2614 	write_len = iov_iter_count(from);
2615 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2616 
2617 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2618 	if (written)
2619 		goto out;
2620 
2621 	/*
2622 	 * After a write we want buffered reads to be sure to go to disk to get
2623 	 * the new data.  We invalidate clean cached page from the region we're
2624 	 * about to write.  We do this *before* the write so that we can return
2625 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2626 	 */
2627 	if (mapping->nrpages) {
2628 		written = invalidate_inode_pages2_range(mapping,
2629 					pos >> PAGE_SHIFT, end);
2630 		/*
2631 		 * If a page can not be invalidated, return 0 to fall back
2632 		 * to buffered write.
2633 		 */
2634 		if (written) {
2635 			if (written == -EBUSY)
2636 				return 0;
2637 			goto out;
2638 		}
2639 	}
2640 
2641 	data = *from;
2642 	written = mapping->a_ops->direct_IO(iocb, &data);
2643 
2644 	/*
2645 	 * Finally, try again to invalidate clean pages which might have been
2646 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2647 	 * if the source of the write was an mmap'ed region of the file
2648 	 * we're writing.  Either one is a pretty crazy thing to do,
2649 	 * so we don't support it 100%.  If this invalidation
2650 	 * fails, tough, the write still worked...
2651 	 */
2652 	if (mapping->nrpages) {
2653 		invalidate_inode_pages2_range(mapping,
2654 					      pos >> PAGE_SHIFT, end);
2655 	}
2656 
2657 	if (written > 0) {
2658 		pos += written;
2659 		iov_iter_advance(from, written);
2660 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2661 			i_size_write(inode, pos);
2662 			mark_inode_dirty(inode);
2663 		}
2664 		iocb->ki_pos = pos;
2665 	}
2666 out:
2667 	return written;
2668 }
2669 EXPORT_SYMBOL(generic_file_direct_write);
2670 
2671 /*
2672  * Find or create a page at the given pagecache position. Return the locked
2673  * page. This function is specifically for buffered writes.
2674  */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)2675 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2676 					pgoff_t index, unsigned flags)
2677 {
2678 	struct page *page;
2679 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2680 
2681 	if (flags & AOP_FLAG_NOFS)
2682 		fgp_flags |= FGP_NOFS;
2683 
2684 	page = pagecache_get_page(mapping, index, fgp_flags,
2685 			mapping_gfp_mask(mapping));
2686 	if (page)
2687 		wait_for_stable_page(page);
2688 
2689 	return page;
2690 }
2691 EXPORT_SYMBOL(grab_cache_page_write_begin);
2692 
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)2693 ssize_t generic_perform_write(struct file *file,
2694 				struct iov_iter *i, loff_t pos)
2695 {
2696 	struct address_space *mapping = file->f_mapping;
2697 	const struct address_space_operations *a_ops = mapping->a_ops;
2698 	long status = 0;
2699 	ssize_t written = 0;
2700 	unsigned int flags = 0;
2701 
2702 	/*
2703 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2704 	 */
2705 	if (!iter_is_iovec(i))
2706 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2707 
2708 	do {
2709 		struct page *page;
2710 		unsigned long offset;	/* Offset into pagecache page */
2711 		unsigned long bytes;	/* Bytes to write to page */
2712 		size_t copied;		/* Bytes copied from user */
2713 		void *fsdata;
2714 
2715 		offset = (pos & (PAGE_SIZE - 1));
2716 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2717 						iov_iter_count(i));
2718 
2719 again:
2720 		/*
2721 		 * Bring in the user page that we will copy from _first_.
2722 		 * Otherwise there's a nasty deadlock on copying from the
2723 		 * same page as we're writing to, without it being marked
2724 		 * up-to-date.
2725 		 *
2726 		 * Not only is this an optimisation, but it is also required
2727 		 * to check that the address is actually valid, when atomic
2728 		 * usercopies are used, below.
2729 		 */
2730 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2731 			status = -EFAULT;
2732 			break;
2733 		}
2734 
2735 		if (fatal_signal_pending(current)) {
2736 			status = -EINTR;
2737 			break;
2738 		}
2739 
2740 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2741 						&page, &fsdata);
2742 		if (unlikely(status < 0))
2743 			break;
2744 
2745 		if (mapping_writably_mapped(mapping))
2746 			flush_dcache_page(page);
2747 
2748 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2749 		flush_dcache_page(page);
2750 
2751 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2752 						page, fsdata);
2753 		if (unlikely(status < 0))
2754 			break;
2755 		copied = status;
2756 
2757 		cond_resched();
2758 
2759 		iov_iter_advance(i, copied);
2760 		if (unlikely(copied == 0)) {
2761 			/*
2762 			 * If we were unable to copy any data at all, we must
2763 			 * fall back to a single segment length write.
2764 			 *
2765 			 * If we didn't fallback here, we could livelock
2766 			 * because not all segments in the iov can be copied at
2767 			 * once without a pagefault.
2768 			 */
2769 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2770 						iov_iter_single_seg_count(i));
2771 			goto again;
2772 		}
2773 		pos += copied;
2774 		written += copied;
2775 
2776 		balance_dirty_pages_ratelimited(mapping);
2777 	} while (iov_iter_count(i));
2778 
2779 	return written ? written : status;
2780 }
2781 EXPORT_SYMBOL(generic_perform_write);
2782 
2783 /**
2784  * __generic_file_write_iter - write data to a file
2785  * @iocb:	IO state structure (file, offset, etc.)
2786  * @from:	iov_iter with data to write
2787  *
2788  * This function does all the work needed for actually writing data to a
2789  * file. It does all basic checks, removes SUID from the file, updates
2790  * modification times and calls proper subroutines depending on whether we
2791  * do direct IO or a standard buffered write.
2792  *
2793  * It expects i_mutex to be grabbed unless we work on a block device or similar
2794  * object which does not need locking at all.
2795  *
2796  * This function does *not* take care of syncing data in case of O_SYNC write.
2797  * A caller has to handle it. This is mainly due to the fact that we want to
2798  * avoid syncing under i_mutex.
2799  */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2800 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2801 {
2802 	struct file *file = iocb->ki_filp;
2803 	struct address_space * mapping = file->f_mapping;
2804 	struct inode 	*inode = mapping->host;
2805 	ssize_t		written = 0;
2806 	ssize_t		err;
2807 	ssize_t		status;
2808 
2809 	/* We can write back this queue in page reclaim */
2810 	current->backing_dev_info = inode_to_bdi(inode);
2811 	err = file_remove_privs(file);
2812 	if (err)
2813 		goto out;
2814 
2815 	err = file_update_time(file);
2816 	if (err)
2817 		goto out;
2818 
2819 	if (iocb->ki_flags & IOCB_DIRECT) {
2820 		loff_t pos, endbyte;
2821 
2822 		written = generic_file_direct_write(iocb, from);
2823 		/*
2824 		 * If the write stopped short of completing, fall back to
2825 		 * buffered writes.  Some filesystems do this for writes to
2826 		 * holes, for example.  For DAX files, a buffered write will
2827 		 * not succeed (even if it did, DAX does not handle dirty
2828 		 * page-cache pages correctly).
2829 		 */
2830 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2831 			goto out;
2832 
2833 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2834 		/*
2835 		 * If generic_perform_write() returned a synchronous error
2836 		 * then we want to return the number of bytes which were
2837 		 * direct-written, or the error code if that was zero.  Note
2838 		 * that this differs from normal direct-io semantics, which
2839 		 * will return -EFOO even if some bytes were written.
2840 		 */
2841 		if (unlikely(status < 0)) {
2842 			err = status;
2843 			goto out;
2844 		}
2845 		/*
2846 		 * We need to ensure that the page cache pages are written to
2847 		 * disk and invalidated to preserve the expected O_DIRECT
2848 		 * semantics.
2849 		 */
2850 		endbyte = pos + status - 1;
2851 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2852 		if (err == 0) {
2853 			iocb->ki_pos = endbyte + 1;
2854 			written += status;
2855 			invalidate_mapping_pages(mapping,
2856 						 pos >> PAGE_SHIFT,
2857 						 endbyte >> PAGE_SHIFT);
2858 		} else {
2859 			/*
2860 			 * We don't know how much we wrote, so just return
2861 			 * the number of bytes which were direct-written
2862 			 */
2863 		}
2864 	} else {
2865 		written = generic_perform_write(file, from, iocb->ki_pos);
2866 		if (likely(written > 0))
2867 			iocb->ki_pos += written;
2868 	}
2869 out:
2870 	current->backing_dev_info = NULL;
2871 	return written ? written : err;
2872 }
2873 EXPORT_SYMBOL(__generic_file_write_iter);
2874 
2875 /**
2876  * generic_file_write_iter - write data to a file
2877  * @iocb:	IO state structure
2878  * @from:	iov_iter with data to write
2879  *
2880  * This is a wrapper around __generic_file_write_iter() to be used by most
2881  * filesystems. It takes care of syncing the file in case of O_SYNC file
2882  * and acquires i_mutex as needed.
2883  */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2884 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2885 {
2886 	struct file *file = iocb->ki_filp;
2887 	struct inode *inode = file->f_mapping->host;
2888 	ssize_t ret;
2889 
2890 	inode_lock(inode);
2891 	ret = generic_write_checks(iocb, from);
2892 	if (ret > 0)
2893 		ret = __generic_file_write_iter(iocb, from);
2894 	inode_unlock(inode);
2895 
2896 	if (ret > 0)
2897 		ret = generic_write_sync(iocb, ret);
2898 	return ret;
2899 }
2900 EXPORT_SYMBOL(generic_file_write_iter);
2901 
2902 /**
2903  * try_to_release_page() - release old fs-specific metadata on a page
2904  *
2905  * @page: the page which the kernel is trying to free
2906  * @gfp_mask: memory allocation flags (and I/O mode)
2907  *
2908  * The address_space is to try to release any data against the page
2909  * (presumably at page->private).  If the release was successful, return `1'.
2910  * Otherwise return zero.
2911  *
2912  * This may also be called if PG_fscache is set on a page, indicating that the
2913  * page is known to the local caching routines.
2914  *
2915  * The @gfp_mask argument specifies whether I/O may be performed to release
2916  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2917  *
2918  */
try_to_release_page(struct page * page,gfp_t gfp_mask)2919 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2920 {
2921 	struct address_space * const mapping = page->mapping;
2922 
2923 	BUG_ON(!PageLocked(page));
2924 	if (PageWriteback(page))
2925 		return 0;
2926 
2927 	if (mapping && mapping->a_ops->releasepage)
2928 		return mapping->a_ops->releasepage(page, gfp_mask);
2929 	return try_to_free_buffers(page);
2930 }
2931 
2932 EXPORT_SYMBOL(try_to_release_page);
2933