1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h" /* audit_signal_info() */
47
48 /*
49 * SLAB caches for signal bits.
50 */
51
52 static struct kmem_cache *sigqueue_cachep;
53
54 int print_fatal_signals __read_mostly;
55
sig_handler(struct task_struct * t,int sig)56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60
sig_handler_ignored(void __user * handler,int sig)61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67
sig_task_ignored(struct task_struct * t,int sig,bool force)68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 void __user *handler;
71
72 handler = sig_handler(t, sig);
73
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
76 return 1;
77
78 return sig_handler_ignored(handler, sig);
79 }
80
sig_ignored(struct task_struct * t,int sig,bool force)81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 /*
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
87 */
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
90
91 /*
92 * Tracers may want to know about even ignored signal unless it
93 * is SIGKILL which can't be reported anyway but can be ignored
94 * by SIGNAL_UNKILLABLE task.
95 */
96 if (t->ptrace && sig != SIGKILL)
97 return 0;
98
99 return sig_task_ignored(t, sig, force);
100 }
101
102 /*
103 * Re-calculate pending state from the set of locally pending
104 * signals, globally pending signals, and blocked signals.
105 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)106 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
107 {
108 unsigned long ready;
109 long i;
110
111 switch (_NSIG_WORDS) {
112 default:
113 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
114 ready |= signal->sig[i] &~ blocked->sig[i];
115 break;
116
117 case 4: ready = signal->sig[3] &~ blocked->sig[3];
118 ready |= signal->sig[2] &~ blocked->sig[2];
119 ready |= signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
122
123 case 2: ready = signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
125 break;
126
127 case 1: ready = signal->sig[0] &~ blocked->sig[0];
128 }
129 return ready != 0;
130 }
131
132 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
133
recalc_sigpending_tsk(struct task_struct * t)134 static int recalc_sigpending_tsk(struct task_struct *t)
135 {
136 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
137 PENDING(&t->pending, &t->blocked) ||
138 PENDING(&t->signal->shared_pending, &t->blocked)) {
139 set_tsk_thread_flag(t, TIF_SIGPENDING);
140 return 1;
141 }
142 /*
143 * We must never clear the flag in another thread, or in current
144 * when it's possible the current syscall is returning -ERESTART*.
145 * So we don't clear it here, and only callers who know they should do.
146 */
147 return 0;
148 }
149
150 /*
151 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
152 * This is superfluous when called on current, the wakeup is a harmless no-op.
153 */
recalc_sigpending_and_wake(struct task_struct * t)154 void recalc_sigpending_and_wake(struct task_struct *t)
155 {
156 if (recalc_sigpending_tsk(t))
157 signal_wake_up(t, 0);
158 }
159
recalc_sigpending(void)160 void recalc_sigpending(void)
161 {
162 if (!recalc_sigpending_tsk(current) && !freezing(current))
163 clear_thread_flag(TIF_SIGPENDING);
164
165 }
166
167 /* Given the mask, find the first available signal that should be serviced. */
168
169 #define SYNCHRONOUS_MASK \
170 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
171 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
172
next_signal(struct sigpending * pending,sigset_t * mask)173 int next_signal(struct sigpending *pending, sigset_t *mask)
174 {
175 unsigned long i, *s, *m, x;
176 int sig = 0;
177
178 s = pending->signal.sig;
179 m = mask->sig;
180
181 /*
182 * Handle the first word specially: it contains the
183 * synchronous signals that need to be dequeued first.
184 */
185 x = *s &~ *m;
186 if (x) {
187 if (x & SYNCHRONOUS_MASK)
188 x &= SYNCHRONOUS_MASK;
189 sig = ffz(~x) + 1;
190 return sig;
191 }
192
193 switch (_NSIG_WORDS) {
194 default:
195 for (i = 1; i < _NSIG_WORDS; ++i) {
196 x = *++s &~ *++m;
197 if (!x)
198 continue;
199 sig = ffz(~x) + i*_NSIG_BPW + 1;
200 break;
201 }
202 break;
203
204 case 2:
205 x = s[1] &~ m[1];
206 if (!x)
207 break;
208 sig = ffz(~x) + _NSIG_BPW + 1;
209 break;
210
211 case 1:
212 /* Nothing to do */
213 break;
214 }
215
216 return sig;
217 }
218
print_dropped_signal(int sig)219 static inline void print_dropped_signal(int sig)
220 {
221 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
222
223 if (!print_fatal_signals)
224 return;
225
226 if (!__ratelimit(&ratelimit_state))
227 return;
228
229 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
230 current->comm, current->pid, sig);
231 }
232
233 /**
234 * task_set_jobctl_pending - set jobctl pending bits
235 * @task: target task
236 * @mask: pending bits to set
237 *
238 * Clear @mask from @task->jobctl. @mask must be subset of
239 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
240 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
241 * cleared. If @task is already being killed or exiting, this function
242 * becomes noop.
243 *
244 * CONTEXT:
245 * Must be called with @task->sighand->siglock held.
246 *
247 * RETURNS:
248 * %true if @mask is set, %false if made noop because @task was dying.
249 */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)250 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
251 {
252 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
253 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
254 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
255
256 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
257 return false;
258
259 if (mask & JOBCTL_STOP_SIGMASK)
260 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
261
262 task->jobctl |= mask;
263 return true;
264 }
265
266 /**
267 * task_clear_jobctl_trapping - clear jobctl trapping bit
268 * @task: target task
269 *
270 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
271 * Clear it and wake up the ptracer. Note that we don't need any further
272 * locking. @task->siglock guarantees that @task->parent points to the
273 * ptracer.
274 *
275 * CONTEXT:
276 * Must be called with @task->sighand->siglock held.
277 */
task_clear_jobctl_trapping(struct task_struct * task)278 void task_clear_jobctl_trapping(struct task_struct *task)
279 {
280 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
281 task->jobctl &= ~JOBCTL_TRAPPING;
282 smp_mb(); /* advised by wake_up_bit() */
283 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
284 }
285 }
286
287 /**
288 * task_clear_jobctl_pending - clear jobctl pending bits
289 * @task: target task
290 * @mask: pending bits to clear
291 *
292 * Clear @mask from @task->jobctl. @mask must be subset of
293 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
294 * STOP bits are cleared together.
295 *
296 * If clearing of @mask leaves no stop or trap pending, this function calls
297 * task_clear_jobctl_trapping().
298 *
299 * CONTEXT:
300 * Must be called with @task->sighand->siglock held.
301 */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)302 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
303 {
304 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
305
306 if (mask & JOBCTL_STOP_PENDING)
307 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
308
309 task->jobctl &= ~mask;
310
311 if (!(task->jobctl & JOBCTL_PENDING_MASK))
312 task_clear_jobctl_trapping(task);
313 }
314
315 /**
316 * task_participate_group_stop - participate in a group stop
317 * @task: task participating in a group stop
318 *
319 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
320 * Group stop states are cleared and the group stop count is consumed if
321 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
322 * stop, the appropriate %SIGNAL_* flags are set.
323 *
324 * CONTEXT:
325 * Must be called with @task->sighand->siglock held.
326 *
327 * RETURNS:
328 * %true if group stop completion should be notified to the parent, %false
329 * otherwise.
330 */
task_participate_group_stop(struct task_struct * task)331 static bool task_participate_group_stop(struct task_struct *task)
332 {
333 struct signal_struct *sig = task->signal;
334 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
335
336 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
337
338 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
339
340 if (!consume)
341 return false;
342
343 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
344 sig->group_stop_count--;
345
346 /*
347 * Tell the caller to notify completion iff we are entering into a
348 * fresh group stop. Read comment in do_signal_stop() for details.
349 */
350 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
351 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
352 return true;
353 }
354 return false;
355 }
356
357 /*
358 * allocate a new signal queue record
359 * - this may be called without locks if and only if t == current, otherwise an
360 * appropriate lock must be held to stop the target task from exiting
361 */
362 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)363 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
364 {
365 struct sigqueue *q = NULL;
366 struct user_struct *user;
367
368 /*
369 * Protect access to @t credentials. This can go away when all
370 * callers hold rcu read lock.
371 */
372 rcu_read_lock();
373 user = get_uid(__task_cred(t)->user);
374 atomic_inc(&user->sigpending);
375 rcu_read_unlock();
376
377 if (override_rlimit ||
378 atomic_read(&user->sigpending) <=
379 task_rlimit(t, RLIMIT_SIGPENDING)) {
380 q = kmem_cache_alloc(sigqueue_cachep, flags);
381 } else {
382 print_dropped_signal(sig);
383 }
384
385 if (unlikely(q == NULL)) {
386 atomic_dec(&user->sigpending);
387 free_uid(user);
388 } else {
389 INIT_LIST_HEAD(&q->list);
390 q->flags = 0;
391 q->user = user;
392 }
393
394 return q;
395 }
396
__sigqueue_free(struct sigqueue * q)397 static void __sigqueue_free(struct sigqueue *q)
398 {
399 if (q->flags & SIGQUEUE_PREALLOC)
400 return;
401 atomic_dec(&q->user->sigpending);
402 free_uid(q->user);
403 kmem_cache_free(sigqueue_cachep, q);
404 }
405
flush_sigqueue(struct sigpending * queue)406 void flush_sigqueue(struct sigpending *queue)
407 {
408 struct sigqueue *q;
409
410 sigemptyset(&queue->signal);
411 while (!list_empty(&queue->list)) {
412 q = list_entry(queue->list.next, struct sigqueue , list);
413 list_del_init(&q->list);
414 __sigqueue_free(q);
415 }
416 }
417
418 /*
419 * Flush all pending signals for this kthread.
420 */
flush_signals(struct task_struct * t)421 void flush_signals(struct task_struct *t)
422 {
423 unsigned long flags;
424
425 spin_lock_irqsave(&t->sighand->siglock, flags);
426 clear_tsk_thread_flag(t, TIF_SIGPENDING);
427 flush_sigqueue(&t->pending);
428 flush_sigqueue(&t->signal->shared_pending);
429 spin_unlock_irqrestore(&t->sighand->siglock, flags);
430 }
431
__flush_itimer_signals(struct sigpending * pending)432 static void __flush_itimer_signals(struct sigpending *pending)
433 {
434 sigset_t signal, retain;
435 struct sigqueue *q, *n;
436
437 signal = pending->signal;
438 sigemptyset(&retain);
439
440 list_for_each_entry_safe(q, n, &pending->list, list) {
441 int sig = q->info.si_signo;
442
443 if (likely(q->info.si_code != SI_TIMER)) {
444 sigaddset(&retain, sig);
445 } else {
446 sigdelset(&signal, sig);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
449 }
450 }
451
452 sigorsets(&pending->signal, &signal, &retain);
453 }
454
flush_itimer_signals(void)455 void flush_itimer_signals(void)
456 {
457 struct task_struct *tsk = current;
458 unsigned long flags;
459
460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 __flush_itimer_signals(&tsk->pending);
462 __flush_itimer_signals(&tsk->signal->shared_pending);
463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
464 }
465
ignore_signals(struct task_struct * t)466 void ignore_signals(struct task_struct *t)
467 {
468 int i;
469
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472
473 flush_signals(t);
474 }
475
476 /*
477 * Flush all handlers for a task.
478 */
479
480 void
flush_signal_handlers(struct task_struct * t,int force_default)481 flush_signal_handlers(struct task_struct *t, int force_default)
482 {
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491 #endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
494 }
495 }
496
unhandled_signal(struct task_struct * tsk,int sig)497 int unhandled_signal(struct task_struct *tsk, int sig)
498 {
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
506 }
507
collect_signal(int sig,struct sigpending * list,siginfo_t * info,bool * resched_timer)508 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
509 bool *resched_timer)
510 {
511 struct sigqueue *q, *first = NULL;
512
513 /*
514 * Collect the siginfo appropriate to this signal. Check if
515 * there is another siginfo for the same signal.
516 */
517 list_for_each_entry(q, &list->list, list) {
518 if (q->info.si_signo == sig) {
519 if (first)
520 goto still_pending;
521 first = q;
522 }
523 }
524
525 sigdelset(&list->signal, sig);
526
527 if (first) {
528 still_pending:
529 list_del_init(&first->list);
530 copy_siginfo(info, &first->info);
531
532 *resched_timer =
533 (first->flags & SIGQUEUE_PREALLOC) &&
534 (info->si_code == SI_TIMER) &&
535 (info->si_sys_private);
536
537 __sigqueue_free(first);
538 } else {
539 /*
540 * Ok, it wasn't in the queue. This must be
541 * a fast-pathed signal or we must have been
542 * out of queue space. So zero out the info.
543 */
544 info->si_signo = sig;
545 info->si_errno = 0;
546 info->si_code = SI_USER;
547 info->si_pid = 0;
548 info->si_uid = 0;
549 }
550 }
551
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info,bool * resched_timer)552 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
553 siginfo_t *info, bool *resched_timer)
554 {
555 int sig = next_signal(pending, mask);
556
557 if (sig)
558 collect_signal(sig, pending, info, resched_timer);
559 return sig;
560 }
561
562 /*
563 * Dequeue a signal and return the element to the caller, which is
564 * expected to free it.
565 *
566 * All callers have to hold the siglock.
567 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)568 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
569 {
570 bool resched_timer = false;
571 int signr;
572
573 /* We only dequeue private signals from ourselves, we don't let
574 * signalfd steal them
575 */
576 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
577 if (!signr) {
578 signr = __dequeue_signal(&tsk->signal->shared_pending,
579 mask, info, &resched_timer);
580 /*
581 * itimer signal ?
582 *
583 * itimers are process shared and we restart periodic
584 * itimers in the signal delivery path to prevent DoS
585 * attacks in the high resolution timer case. This is
586 * compliant with the old way of self-restarting
587 * itimers, as the SIGALRM is a legacy signal and only
588 * queued once. Changing the restart behaviour to
589 * restart the timer in the signal dequeue path is
590 * reducing the timer noise on heavy loaded !highres
591 * systems too.
592 */
593 if (unlikely(signr == SIGALRM)) {
594 struct hrtimer *tmr = &tsk->signal->real_timer;
595
596 if (!hrtimer_is_queued(tmr) &&
597 tsk->signal->it_real_incr.tv64 != 0) {
598 hrtimer_forward(tmr, tmr->base->get_time(),
599 tsk->signal->it_real_incr);
600 hrtimer_restart(tmr);
601 }
602 }
603 }
604
605 recalc_sigpending();
606 if (!signr)
607 return 0;
608
609 if (unlikely(sig_kernel_stop(signr))) {
610 /*
611 * Set a marker that we have dequeued a stop signal. Our
612 * caller might release the siglock and then the pending
613 * stop signal it is about to process is no longer in the
614 * pending bitmasks, but must still be cleared by a SIGCONT
615 * (and overruled by a SIGKILL). So those cases clear this
616 * shared flag after we've set it. Note that this flag may
617 * remain set after the signal we return is ignored or
618 * handled. That doesn't matter because its only purpose
619 * is to alert stop-signal processing code when another
620 * processor has come along and cleared the flag.
621 */
622 current->jobctl |= JOBCTL_STOP_DEQUEUED;
623 }
624 if (resched_timer) {
625 /*
626 * Release the siglock to ensure proper locking order
627 * of timer locks outside of siglocks. Note, we leave
628 * irqs disabled here, since the posix-timers code is
629 * about to disable them again anyway.
630 */
631 spin_unlock(&tsk->sighand->siglock);
632 do_schedule_next_timer(info);
633 spin_lock(&tsk->sighand->siglock);
634 }
635 return signr;
636 }
637
638 /*
639 * Tell a process that it has a new active signal..
640 *
641 * NOTE! we rely on the previous spin_lock to
642 * lock interrupts for us! We can only be called with
643 * "siglock" held, and the local interrupt must
644 * have been disabled when that got acquired!
645 *
646 * No need to set need_resched since signal event passing
647 * goes through ->blocked
648 */
signal_wake_up_state(struct task_struct * t,unsigned int state)649 void signal_wake_up_state(struct task_struct *t, unsigned int state)
650 {
651 set_tsk_thread_flag(t, TIF_SIGPENDING);
652 /*
653 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
654 * case. We don't check t->state here because there is a race with it
655 * executing another processor and just now entering stopped state.
656 * By using wake_up_state, we ensure the process will wake up and
657 * handle its death signal.
658 */
659 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
660 kick_process(t);
661 }
662
663 /*
664 * Remove signals in mask from the pending set and queue.
665 * Returns 1 if any signals were found.
666 *
667 * All callers must be holding the siglock.
668 */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)669 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
670 {
671 struct sigqueue *q, *n;
672 sigset_t m;
673
674 sigandsets(&m, mask, &s->signal);
675 if (sigisemptyset(&m))
676 return 0;
677
678 sigandnsets(&s->signal, &s->signal, mask);
679 list_for_each_entry_safe(q, n, &s->list, list) {
680 if (sigismember(mask, q->info.si_signo)) {
681 list_del_init(&q->list);
682 __sigqueue_free(q);
683 }
684 }
685 return 1;
686 }
687
is_si_special(const struct siginfo * info)688 static inline int is_si_special(const struct siginfo *info)
689 {
690 return info <= SEND_SIG_FORCED;
691 }
692
si_fromuser(const struct siginfo * info)693 static inline bool si_fromuser(const struct siginfo *info)
694 {
695 return info == SEND_SIG_NOINFO ||
696 (!is_si_special(info) && SI_FROMUSER(info));
697 }
698
699 /*
700 * called with RCU read lock from check_kill_permission()
701 */
kill_ok_by_cred(struct task_struct * t)702 static int kill_ok_by_cred(struct task_struct *t)
703 {
704 const struct cred *cred = current_cred();
705 const struct cred *tcred = __task_cred(t);
706
707 if (uid_eq(cred->euid, tcred->suid) ||
708 uid_eq(cred->euid, tcred->uid) ||
709 uid_eq(cred->uid, tcred->suid) ||
710 uid_eq(cred->uid, tcred->uid))
711 return 1;
712
713 if (ns_capable(tcred->user_ns, CAP_KILL))
714 return 1;
715
716 return 0;
717 }
718
719 /*
720 * Bad permissions for sending the signal
721 * - the caller must hold the RCU read lock
722 */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)723 static int check_kill_permission(int sig, struct siginfo *info,
724 struct task_struct *t)
725 {
726 struct pid *sid;
727 int error;
728
729 if (!valid_signal(sig))
730 return -EINVAL;
731
732 if (!si_fromuser(info))
733 return 0;
734
735 error = audit_signal_info(sig, t); /* Let audit system see the signal */
736 if (error)
737 return error;
738
739 if (!same_thread_group(current, t) &&
740 !kill_ok_by_cred(t)) {
741 switch (sig) {
742 case SIGCONT:
743 sid = task_session(t);
744 /*
745 * We don't return the error if sid == NULL. The
746 * task was unhashed, the caller must notice this.
747 */
748 if (!sid || sid == task_session(current))
749 break;
750 default:
751 return -EPERM;
752 }
753 }
754
755 return security_task_kill(t, info, sig, 0);
756 }
757
758 /**
759 * ptrace_trap_notify - schedule trap to notify ptracer
760 * @t: tracee wanting to notify tracer
761 *
762 * This function schedules sticky ptrace trap which is cleared on the next
763 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
764 * ptracer.
765 *
766 * If @t is running, STOP trap will be taken. If trapped for STOP and
767 * ptracer is listening for events, tracee is woken up so that it can
768 * re-trap for the new event. If trapped otherwise, STOP trap will be
769 * eventually taken without returning to userland after the existing traps
770 * are finished by PTRACE_CONT.
771 *
772 * CONTEXT:
773 * Must be called with @task->sighand->siglock held.
774 */
ptrace_trap_notify(struct task_struct * t)775 static void ptrace_trap_notify(struct task_struct *t)
776 {
777 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
778 assert_spin_locked(&t->sighand->siglock);
779
780 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
781 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
782 }
783
784 /*
785 * Handle magic process-wide effects of stop/continue signals. Unlike
786 * the signal actions, these happen immediately at signal-generation
787 * time regardless of blocking, ignoring, or handling. This does the
788 * actual continuing for SIGCONT, but not the actual stopping for stop
789 * signals. The process stop is done as a signal action for SIG_DFL.
790 *
791 * Returns true if the signal should be actually delivered, otherwise
792 * it should be dropped.
793 */
prepare_signal(int sig,struct task_struct * p,bool force)794 static bool prepare_signal(int sig, struct task_struct *p, bool force)
795 {
796 struct signal_struct *signal = p->signal;
797 struct task_struct *t;
798 sigset_t flush;
799
800 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
801 if (!(signal->flags & SIGNAL_GROUP_EXIT))
802 return sig == SIGKILL;
803 /*
804 * The process is in the middle of dying, nothing to do.
805 */
806 } else if (sig_kernel_stop(sig)) {
807 /*
808 * This is a stop signal. Remove SIGCONT from all queues.
809 */
810 siginitset(&flush, sigmask(SIGCONT));
811 flush_sigqueue_mask(&flush, &signal->shared_pending);
812 for_each_thread(p, t)
813 flush_sigqueue_mask(&flush, &t->pending);
814 } else if (sig == SIGCONT) {
815 unsigned int why;
816 /*
817 * Remove all stop signals from all queues, wake all threads.
818 */
819 siginitset(&flush, SIG_KERNEL_STOP_MASK);
820 flush_sigqueue_mask(&flush, &signal->shared_pending);
821 for_each_thread(p, t) {
822 flush_sigqueue_mask(&flush, &t->pending);
823 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
824 if (likely(!(t->ptrace & PT_SEIZED)))
825 wake_up_state(t, __TASK_STOPPED);
826 else
827 ptrace_trap_notify(t);
828 }
829
830 /*
831 * Notify the parent with CLD_CONTINUED if we were stopped.
832 *
833 * If we were in the middle of a group stop, we pretend it
834 * was already finished, and then continued. Since SIGCHLD
835 * doesn't queue we report only CLD_STOPPED, as if the next
836 * CLD_CONTINUED was dropped.
837 */
838 why = 0;
839 if (signal->flags & SIGNAL_STOP_STOPPED)
840 why |= SIGNAL_CLD_CONTINUED;
841 else if (signal->group_stop_count)
842 why |= SIGNAL_CLD_STOPPED;
843
844 if (why) {
845 /*
846 * The first thread which returns from do_signal_stop()
847 * will take ->siglock, notice SIGNAL_CLD_MASK, and
848 * notify its parent. See get_signal_to_deliver().
849 */
850 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
851 signal->group_stop_count = 0;
852 signal->group_exit_code = 0;
853 }
854 }
855
856 return !sig_ignored(p, sig, force);
857 }
858
859 /*
860 * Test if P wants to take SIG. After we've checked all threads with this,
861 * it's equivalent to finding no threads not blocking SIG. Any threads not
862 * blocking SIG were ruled out because they are not running and already
863 * have pending signals. Such threads will dequeue from the shared queue
864 * as soon as they're available, so putting the signal on the shared queue
865 * will be equivalent to sending it to one such thread.
866 */
wants_signal(int sig,struct task_struct * p)867 static inline int wants_signal(int sig, struct task_struct *p)
868 {
869 if (sigismember(&p->blocked, sig))
870 return 0;
871 if (p->flags & PF_EXITING)
872 return 0;
873 if (sig == SIGKILL)
874 return 1;
875 if (task_is_stopped_or_traced(p))
876 return 0;
877 return task_curr(p) || !signal_pending(p);
878 }
879
complete_signal(int sig,struct task_struct * p,int group)880 static void complete_signal(int sig, struct task_struct *p, int group)
881 {
882 struct signal_struct *signal = p->signal;
883 struct task_struct *t;
884
885 /*
886 * Now find a thread we can wake up to take the signal off the queue.
887 *
888 * If the main thread wants the signal, it gets first crack.
889 * Probably the least surprising to the average bear.
890 */
891 if (wants_signal(sig, p))
892 t = p;
893 else if (!group || thread_group_empty(p))
894 /*
895 * There is just one thread and it does not need to be woken.
896 * It will dequeue unblocked signals before it runs again.
897 */
898 return;
899 else {
900 /*
901 * Otherwise try to find a suitable thread.
902 */
903 t = signal->curr_target;
904 while (!wants_signal(sig, t)) {
905 t = next_thread(t);
906 if (t == signal->curr_target)
907 /*
908 * No thread needs to be woken.
909 * Any eligible threads will see
910 * the signal in the queue soon.
911 */
912 return;
913 }
914 signal->curr_target = t;
915 }
916
917 /*
918 * Found a killable thread. If the signal will be fatal,
919 * then start taking the whole group down immediately.
920 */
921 if (sig_fatal(p, sig) &&
922 !(signal->flags & SIGNAL_GROUP_EXIT) &&
923 !sigismember(&t->real_blocked, sig) &&
924 (sig == SIGKILL || !p->ptrace)) {
925 /*
926 * This signal will be fatal to the whole group.
927 */
928 if (!sig_kernel_coredump(sig)) {
929 /*
930 * Start a group exit and wake everybody up.
931 * This way we don't have other threads
932 * running and doing things after a slower
933 * thread has the fatal signal pending.
934 */
935 signal->flags = SIGNAL_GROUP_EXIT;
936 signal->group_exit_code = sig;
937 signal->group_stop_count = 0;
938 t = p;
939 do {
940 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
941 sigaddset(&t->pending.signal, SIGKILL);
942 signal_wake_up(t, 1);
943 } while_each_thread(p, t);
944 return;
945 }
946 }
947
948 /*
949 * The signal is already in the shared-pending queue.
950 * Tell the chosen thread to wake up and dequeue it.
951 */
952 signal_wake_up(t, sig == SIGKILL);
953 return;
954 }
955
legacy_queue(struct sigpending * signals,int sig)956 static inline int legacy_queue(struct sigpending *signals, int sig)
957 {
958 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
959 }
960
961 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)962 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
963 {
964 if (current_user_ns() == task_cred_xxx(t, user_ns))
965 return;
966
967 if (SI_FROMKERNEL(info))
968 return;
969
970 rcu_read_lock();
971 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
972 make_kuid(current_user_ns(), info->si_uid));
973 rcu_read_unlock();
974 }
975 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)976 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
977 {
978 return;
979 }
980 #endif
981
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)982 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
983 int group, int from_ancestor_ns)
984 {
985 struct sigpending *pending;
986 struct sigqueue *q;
987 int override_rlimit;
988 int ret = 0, result;
989
990 assert_spin_locked(&t->sighand->siglock);
991
992 result = TRACE_SIGNAL_IGNORED;
993 if (!prepare_signal(sig, t,
994 from_ancestor_ns || (info == SEND_SIG_FORCED)))
995 goto ret;
996
997 pending = group ? &t->signal->shared_pending : &t->pending;
998 /*
999 * Short-circuit ignored signals and support queuing
1000 * exactly one non-rt signal, so that we can get more
1001 * detailed information about the cause of the signal.
1002 */
1003 result = TRACE_SIGNAL_ALREADY_PENDING;
1004 if (legacy_queue(pending, sig))
1005 goto ret;
1006
1007 result = TRACE_SIGNAL_DELIVERED;
1008 /*
1009 * fast-pathed signals for kernel-internal things like SIGSTOP
1010 * or SIGKILL.
1011 */
1012 if (info == SEND_SIG_FORCED)
1013 goto out_set;
1014
1015 /*
1016 * Real-time signals must be queued if sent by sigqueue, or
1017 * some other real-time mechanism. It is implementation
1018 * defined whether kill() does so. We attempt to do so, on
1019 * the principle of least surprise, but since kill is not
1020 * allowed to fail with EAGAIN when low on memory we just
1021 * make sure at least one signal gets delivered and don't
1022 * pass on the info struct.
1023 */
1024 if (sig < SIGRTMIN)
1025 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1026 else
1027 override_rlimit = 0;
1028
1029 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1030 override_rlimit);
1031 if (q) {
1032 list_add_tail(&q->list, &pending->list);
1033 switch ((unsigned long) info) {
1034 case (unsigned long) SEND_SIG_NOINFO:
1035 q->info.si_signo = sig;
1036 q->info.si_errno = 0;
1037 q->info.si_code = SI_USER;
1038 q->info.si_pid = task_tgid_nr_ns(current,
1039 task_active_pid_ns(t));
1040 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1041 break;
1042 case (unsigned long) SEND_SIG_PRIV:
1043 q->info.si_signo = sig;
1044 q->info.si_errno = 0;
1045 q->info.si_code = SI_KERNEL;
1046 q->info.si_pid = 0;
1047 q->info.si_uid = 0;
1048 break;
1049 default:
1050 copy_siginfo(&q->info, info);
1051 if (from_ancestor_ns)
1052 q->info.si_pid = 0;
1053 break;
1054 }
1055
1056 userns_fixup_signal_uid(&q->info, t);
1057
1058 } else if (!is_si_special(info)) {
1059 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1060 /*
1061 * Queue overflow, abort. We may abort if the
1062 * signal was rt and sent by user using something
1063 * other than kill().
1064 */
1065 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1066 ret = -EAGAIN;
1067 goto ret;
1068 } else {
1069 /*
1070 * This is a silent loss of information. We still
1071 * send the signal, but the *info bits are lost.
1072 */
1073 result = TRACE_SIGNAL_LOSE_INFO;
1074 }
1075 }
1076
1077 out_set:
1078 signalfd_notify(t, sig);
1079 sigaddset(&pending->signal, sig);
1080 complete_signal(sig, t, group);
1081 ret:
1082 trace_signal_generate(sig, info, t, group, result);
1083 return ret;
1084 }
1085
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1086 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1087 int group)
1088 {
1089 int from_ancestor_ns = 0;
1090
1091 #ifdef CONFIG_PID_NS
1092 from_ancestor_ns = si_fromuser(info) &&
1093 !task_pid_nr_ns(current, task_active_pid_ns(t));
1094 #endif
1095
1096 return __send_signal(sig, info, t, group, from_ancestor_ns);
1097 }
1098
print_fatal_signal(int signr)1099 static void print_fatal_signal(int signr)
1100 {
1101 struct pt_regs *regs = signal_pt_regs();
1102 pr_info("potentially unexpected fatal signal %d.\n", signr);
1103
1104 #if defined(__i386__) && !defined(__arch_um__)
1105 pr_info("code at %08lx: ", regs->ip);
1106 {
1107 int i;
1108 for (i = 0; i < 16; i++) {
1109 unsigned char insn;
1110
1111 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1112 break;
1113 pr_cont("%02x ", insn);
1114 }
1115 }
1116 pr_cont("\n");
1117 #endif
1118 preempt_disable();
1119 show_regs(regs);
1120 preempt_enable();
1121 }
1122
setup_print_fatal_signals(char * str)1123 static int __init setup_print_fatal_signals(char *str)
1124 {
1125 get_option (&str, &print_fatal_signals);
1126
1127 return 1;
1128 }
1129
1130 __setup("print-fatal-signals=", setup_print_fatal_signals);
1131
1132 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1133 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1134 {
1135 return send_signal(sig, info, p, 1);
1136 }
1137
1138 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1139 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1140 {
1141 return send_signal(sig, info, t, 0);
1142 }
1143
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1144 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1145 bool group)
1146 {
1147 unsigned long flags;
1148 int ret = -ESRCH;
1149
1150 if (lock_task_sighand(p, &flags)) {
1151 ret = send_signal(sig, info, p, group);
1152 unlock_task_sighand(p, &flags);
1153 }
1154
1155 return ret;
1156 }
1157
1158 /*
1159 * Force a signal that the process can't ignore: if necessary
1160 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1161 *
1162 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1163 * since we do not want to have a signal handler that was blocked
1164 * be invoked when user space had explicitly blocked it.
1165 *
1166 * We don't want to have recursive SIGSEGV's etc, for example,
1167 * that is why we also clear SIGNAL_UNKILLABLE.
1168 */
1169 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1170 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1171 {
1172 unsigned long int flags;
1173 int ret, blocked, ignored;
1174 struct k_sigaction *action;
1175
1176 spin_lock_irqsave(&t->sighand->siglock, flags);
1177 action = &t->sighand->action[sig-1];
1178 ignored = action->sa.sa_handler == SIG_IGN;
1179 blocked = sigismember(&t->blocked, sig);
1180 if (blocked || ignored) {
1181 action->sa.sa_handler = SIG_DFL;
1182 if (blocked) {
1183 sigdelset(&t->blocked, sig);
1184 recalc_sigpending_and_wake(t);
1185 }
1186 }
1187 if (action->sa.sa_handler == SIG_DFL)
1188 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1189 ret = specific_send_sig_info(sig, info, t);
1190 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1191
1192 return ret;
1193 }
1194
1195 /*
1196 * Nuke all other threads in the group.
1197 */
zap_other_threads(struct task_struct * p)1198 int zap_other_threads(struct task_struct *p)
1199 {
1200 struct task_struct *t = p;
1201 int count = 0;
1202
1203 p->signal->group_stop_count = 0;
1204
1205 while_each_thread(p, t) {
1206 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1207 count++;
1208
1209 /* Don't bother with already dead threads */
1210 if (t->exit_state)
1211 continue;
1212 sigaddset(&t->pending.signal, SIGKILL);
1213 signal_wake_up(t, 1);
1214 }
1215
1216 return count;
1217 }
1218
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1219 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1220 unsigned long *flags)
1221 {
1222 struct sighand_struct *sighand;
1223
1224 for (;;) {
1225 /*
1226 * Disable interrupts early to avoid deadlocks.
1227 * See rcu_read_unlock() comment header for details.
1228 */
1229 local_irq_save(*flags);
1230 rcu_read_lock();
1231 sighand = rcu_dereference(tsk->sighand);
1232 if (unlikely(sighand == NULL)) {
1233 rcu_read_unlock();
1234 local_irq_restore(*flags);
1235 break;
1236 }
1237 /*
1238 * This sighand can be already freed and even reused, but
1239 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1240 * initializes ->siglock: this slab can't go away, it has
1241 * the same object type, ->siglock can't be reinitialized.
1242 *
1243 * We need to ensure that tsk->sighand is still the same
1244 * after we take the lock, we can race with de_thread() or
1245 * __exit_signal(). In the latter case the next iteration
1246 * must see ->sighand == NULL.
1247 */
1248 spin_lock(&sighand->siglock);
1249 if (likely(sighand == tsk->sighand)) {
1250 rcu_read_unlock();
1251 break;
1252 }
1253 spin_unlock(&sighand->siglock);
1254 rcu_read_unlock();
1255 local_irq_restore(*flags);
1256 }
1257
1258 return sighand;
1259 }
1260
1261 /*
1262 * send signal info to all the members of a group
1263 */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1264 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1265 {
1266 int ret;
1267
1268 rcu_read_lock();
1269 ret = check_kill_permission(sig, info, p);
1270 rcu_read_unlock();
1271
1272 if (!ret && sig)
1273 ret = do_send_sig_info(sig, info, p, true);
1274
1275 return ret;
1276 }
1277
1278 /*
1279 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1280 * control characters do (^C, ^Z etc)
1281 * - the caller must hold at least a readlock on tasklist_lock
1282 */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1283 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1284 {
1285 struct task_struct *p = NULL;
1286 int retval, success;
1287
1288 success = 0;
1289 retval = -ESRCH;
1290 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1291 int err = group_send_sig_info(sig, info, p);
1292 success |= !err;
1293 retval = err;
1294 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1295 return success ? 0 : retval;
1296 }
1297
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1298 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1299 {
1300 int error = -ESRCH;
1301 struct task_struct *p;
1302
1303 for (;;) {
1304 rcu_read_lock();
1305 p = pid_task(pid, PIDTYPE_PID);
1306 if (p)
1307 error = group_send_sig_info(sig, info, p);
1308 rcu_read_unlock();
1309 if (likely(!p || error != -ESRCH))
1310 return error;
1311
1312 /*
1313 * The task was unhashed in between, try again. If it
1314 * is dead, pid_task() will return NULL, if we race with
1315 * de_thread() it will find the new leader.
1316 */
1317 }
1318 }
1319
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1320 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1321 {
1322 int error;
1323 rcu_read_lock();
1324 error = kill_pid_info(sig, info, find_vpid(pid));
1325 rcu_read_unlock();
1326 return error;
1327 }
1328
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1329 static int kill_as_cred_perm(const struct cred *cred,
1330 struct task_struct *target)
1331 {
1332 const struct cred *pcred = __task_cred(target);
1333 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1334 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1335 return 0;
1336 return 1;
1337 }
1338
1339 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1340 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1341 const struct cred *cred, u32 secid)
1342 {
1343 int ret = -EINVAL;
1344 struct task_struct *p;
1345 unsigned long flags;
1346
1347 if (!valid_signal(sig))
1348 return ret;
1349
1350 rcu_read_lock();
1351 p = pid_task(pid, PIDTYPE_PID);
1352 if (!p) {
1353 ret = -ESRCH;
1354 goto out_unlock;
1355 }
1356 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1357 ret = -EPERM;
1358 goto out_unlock;
1359 }
1360 ret = security_task_kill(p, info, sig, secid);
1361 if (ret)
1362 goto out_unlock;
1363
1364 if (sig) {
1365 if (lock_task_sighand(p, &flags)) {
1366 ret = __send_signal(sig, info, p, 1, 0);
1367 unlock_task_sighand(p, &flags);
1368 } else
1369 ret = -ESRCH;
1370 }
1371 out_unlock:
1372 rcu_read_unlock();
1373 return ret;
1374 }
1375 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1376
1377 /*
1378 * kill_something_info() interprets pid in interesting ways just like kill(2).
1379 *
1380 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1381 * is probably wrong. Should make it like BSD or SYSV.
1382 */
1383
kill_something_info(int sig,struct siginfo * info,pid_t pid)1384 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1385 {
1386 int ret;
1387
1388 if (pid > 0) {
1389 rcu_read_lock();
1390 ret = kill_pid_info(sig, info, find_vpid(pid));
1391 rcu_read_unlock();
1392 return ret;
1393 }
1394
1395 read_lock(&tasklist_lock);
1396 if (pid != -1) {
1397 ret = __kill_pgrp_info(sig, info,
1398 pid ? find_vpid(-pid) : task_pgrp(current));
1399 } else {
1400 int retval = 0, count = 0;
1401 struct task_struct * p;
1402
1403 for_each_process(p) {
1404 if (task_pid_vnr(p) > 1 &&
1405 !same_thread_group(p, current)) {
1406 int err = group_send_sig_info(sig, info, p);
1407 ++count;
1408 if (err != -EPERM)
1409 retval = err;
1410 }
1411 }
1412 ret = count ? retval : -ESRCH;
1413 }
1414 read_unlock(&tasklist_lock);
1415
1416 return ret;
1417 }
1418
1419 /*
1420 * These are for backward compatibility with the rest of the kernel source.
1421 */
1422
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1423 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1424 {
1425 /*
1426 * Make sure legacy kernel users don't send in bad values
1427 * (normal paths check this in check_kill_permission).
1428 */
1429 if (!valid_signal(sig))
1430 return -EINVAL;
1431
1432 return do_send_sig_info(sig, info, p, false);
1433 }
1434
1435 #define __si_special(priv) \
1436 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1437
1438 int
send_sig(int sig,struct task_struct * p,int priv)1439 send_sig(int sig, struct task_struct *p, int priv)
1440 {
1441 return send_sig_info(sig, __si_special(priv), p);
1442 }
1443
1444 void
force_sig(int sig,struct task_struct * p)1445 force_sig(int sig, struct task_struct *p)
1446 {
1447 force_sig_info(sig, SEND_SIG_PRIV, p);
1448 }
1449
1450 /*
1451 * When things go south during signal handling, we
1452 * will force a SIGSEGV. And if the signal that caused
1453 * the problem was already a SIGSEGV, we'll want to
1454 * make sure we don't even try to deliver the signal..
1455 */
1456 int
force_sigsegv(int sig,struct task_struct * p)1457 force_sigsegv(int sig, struct task_struct *p)
1458 {
1459 if (sig == SIGSEGV) {
1460 unsigned long flags;
1461 spin_lock_irqsave(&p->sighand->siglock, flags);
1462 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1463 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1464 }
1465 force_sig(SIGSEGV, p);
1466 return 0;
1467 }
1468
kill_pgrp(struct pid * pid,int sig,int priv)1469 int kill_pgrp(struct pid *pid, int sig, int priv)
1470 {
1471 int ret;
1472
1473 read_lock(&tasklist_lock);
1474 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1475 read_unlock(&tasklist_lock);
1476
1477 return ret;
1478 }
1479 EXPORT_SYMBOL(kill_pgrp);
1480
kill_pid(struct pid * pid,int sig,int priv)1481 int kill_pid(struct pid *pid, int sig, int priv)
1482 {
1483 return kill_pid_info(sig, __si_special(priv), pid);
1484 }
1485 EXPORT_SYMBOL(kill_pid);
1486
1487 /*
1488 * These functions support sending signals using preallocated sigqueue
1489 * structures. This is needed "because realtime applications cannot
1490 * afford to lose notifications of asynchronous events, like timer
1491 * expirations or I/O completions". In the case of POSIX Timers
1492 * we allocate the sigqueue structure from the timer_create. If this
1493 * allocation fails we are able to report the failure to the application
1494 * with an EAGAIN error.
1495 */
sigqueue_alloc(void)1496 struct sigqueue *sigqueue_alloc(void)
1497 {
1498 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1499
1500 if (q)
1501 q->flags |= SIGQUEUE_PREALLOC;
1502
1503 return q;
1504 }
1505
sigqueue_free(struct sigqueue * q)1506 void sigqueue_free(struct sigqueue *q)
1507 {
1508 unsigned long flags;
1509 spinlock_t *lock = ¤t->sighand->siglock;
1510
1511 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1512 /*
1513 * We must hold ->siglock while testing q->list
1514 * to serialize with collect_signal() or with
1515 * __exit_signal()->flush_sigqueue().
1516 */
1517 spin_lock_irqsave(lock, flags);
1518 q->flags &= ~SIGQUEUE_PREALLOC;
1519 /*
1520 * If it is queued it will be freed when dequeued,
1521 * like the "regular" sigqueue.
1522 */
1523 if (!list_empty(&q->list))
1524 q = NULL;
1525 spin_unlock_irqrestore(lock, flags);
1526
1527 if (q)
1528 __sigqueue_free(q);
1529 }
1530
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1531 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1532 {
1533 int sig = q->info.si_signo;
1534 struct sigpending *pending;
1535 unsigned long flags;
1536 int ret, result;
1537
1538 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1539
1540 ret = -1;
1541 if (!likely(lock_task_sighand(t, &flags)))
1542 goto ret;
1543
1544 ret = 1; /* the signal is ignored */
1545 result = TRACE_SIGNAL_IGNORED;
1546 if (!prepare_signal(sig, t, false))
1547 goto out;
1548
1549 ret = 0;
1550 if (unlikely(!list_empty(&q->list))) {
1551 /*
1552 * If an SI_TIMER entry is already queue just increment
1553 * the overrun count.
1554 */
1555 BUG_ON(q->info.si_code != SI_TIMER);
1556 q->info.si_overrun++;
1557 result = TRACE_SIGNAL_ALREADY_PENDING;
1558 goto out;
1559 }
1560 q->info.si_overrun = 0;
1561
1562 signalfd_notify(t, sig);
1563 pending = group ? &t->signal->shared_pending : &t->pending;
1564 list_add_tail(&q->list, &pending->list);
1565 sigaddset(&pending->signal, sig);
1566 complete_signal(sig, t, group);
1567 result = TRACE_SIGNAL_DELIVERED;
1568 out:
1569 trace_signal_generate(sig, &q->info, t, group, result);
1570 unlock_task_sighand(t, &flags);
1571 ret:
1572 return ret;
1573 }
1574
1575 /*
1576 * Let a parent know about the death of a child.
1577 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1578 *
1579 * Returns true if our parent ignored us and so we've switched to
1580 * self-reaping.
1581 */
do_notify_parent(struct task_struct * tsk,int sig)1582 bool do_notify_parent(struct task_struct *tsk, int sig)
1583 {
1584 struct siginfo info;
1585 unsigned long flags;
1586 struct sighand_struct *psig;
1587 bool autoreap = false;
1588 cputime_t utime, stime;
1589
1590 BUG_ON(sig == -1);
1591
1592 /* do_notify_parent_cldstop should have been called instead. */
1593 BUG_ON(task_is_stopped_or_traced(tsk));
1594
1595 BUG_ON(!tsk->ptrace &&
1596 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1597
1598 if (sig != SIGCHLD) {
1599 /*
1600 * This is only possible if parent == real_parent.
1601 * Check if it has changed security domain.
1602 */
1603 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1604 sig = SIGCHLD;
1605 }
1606
1607 info.si_signo = sig;
1608 info.si_errno = 0;
1609 /*
1610 * We are under tasklist_lock here so our parent is tied to
1611 * us and cannot change.
1612 *
1613 * task_active_pid_ns will always return the same pid namespace
1614 * until a task passes through release_task.
1615 *
1616 * write_lock() currently calls preempt_disable() which is the
1617 * same as rcu_read_lock(), but according to Oleg, this is not
1618 * correct to rely on this
1619 */
1620 rcu_read_lock();
1621 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1622 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1623 task_uid(tsk));
1624 rcu_read_unlock();
1625
1626 task_cputime(tsk, &utime, &stime);
1627 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1628 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1629
1630 info.si_status = tsk->exit_code & 0x7f;
1631 if (tsk->exit_code & 0x80)
1632 info.si_code = CLD_DUMPED;
1633 else if (tsk->exit_code & 0x7f)
1634 info.si_code = CLD_KILLED;
1635 else {
1636 info.si_code = CLD_EXITED;
1637 info.si_status = tsk->exit_code >> 8;
1638 }
1639
1640 psig = tsk->parent->sighand;
1641 spin_lock_irqsave(&psig->siglock, flags);
1642 if (!tsk->ptrace && sig == SIGCHLD &&
1643 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1644 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1645 /*
1646 * We are exiting and our parent doesn't care. POSIX.1
1647 * defines special semantics for setting SIGCHLD to SIG_IGN
1648 * or setting the SA_NOCLDWAIT flag: we should be reaped
1649 * automatically and not left for our parent's wait4 call.
1650 * Rather than having the parent do it as a magic kind of
1651 * signal handler, we just set this to tell do_exit that we
1652 * can be cleaned up without becoming a zombie. Note that
1653 * we still call __wake_up_parent in this case, because a
1654 * blocked sys_wait4 might now return -ECHILD.
1655 *
1656 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1657 * is implementation-defined: we do (if you don't want
1658 * it, just use SIG_IGN instead).
1659 */
1660 autoreap = true;
1661 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1662 sig = 0;
1663 }
1664 if (valid_signal(sig) && sig)
1665 __group_send_sig_info(sig, &info, tsk->parent);
1666 __wake_up_parent(tsk, tsk->parent);
1667 spin_unlock_irqrestore(&psig->siglock, flags);
1668
1669 return autoreap;
1670 }
1671
1672 /**
1673 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1674 * @tsk: task reporting the state change
1675 * @for_ptracer: the notification is for ptracer
1676 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1677 *
1678 * Notify @tsk's parent that the stopped/continued state has changed. If
1679 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1680 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1681 *
1682 * CONTEXT:
1683 * Must be called with tasklist_lock at least read locked.
1684 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1685 static void do_notify_parent_cldstop(struct task_struct *tsk,
1686 bool for_ptracer, int why)
1687 {
1688 struct siginfo info;
1689 unsigned long flags;
1690 struct task_struct *parent;
1691 struct sighand_struct *sighand;
1692 cputime_t utime, stime;
1693
1694 if (for_ptracer) {
1695 parent = tsk->parent;
1696 } else {
1697 tsk = tsk->group_leader;
1698 parent = tsk->real_parent;
1699 }
1700
1701 info.si_signo = SIGCHLD;
1702 info.si_errno = 0;
1703 /*
1704 * see comment in do_notify_parent() about the following 4 lines
1705 */
1706 rcu_read_lock();
1707 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1708 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1709 rcu_read_unlock();
1710
1711 task_cputime(tsk, &utime, &stime);
1712 info.si_utime = cputime_to_clock_t(utime);
1713 info.si_stime = cputime_to_clock_t(stime);
1714
1715 info.si_code = why;
1716 switch (why) {
1717 case CLD_CONTINUED:
1718 info.si_status = SIGCONT;
1719 break;
1720 case CLD_STOPPED:
1721 info.si_status = tsk->signal->group_exit_code & 0x7f;
1722 break;
1723 case CLD_TRAPPED:
1724 info.si_status = tsk->exit_code & 0x7f;
1725 break;
1726 default:
1727 BUG();
1728 }
1729
1730 sighand = parent->sighand;
1731 spin_lock_irqsave(&sighand->siglock, flags);
1732 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1733 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1734 __group_send_sig_info(SIGCHLD, &info, parent);
1735 /*
1736 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1737 */
1738 __wake_up_parent(tsk, parent);
1739 spin_unlock_irqrestore(&sighand->siglock, flags);
1740 }
1741
may_ptrace_stop(void)1742 static inline int may_ptrace_stop(void)
1743 {
1744 if (!likely(current->ptrace))
1745 return 0;
1746 /*
1747 * Are we in the middle of do_coredump?
1748 * If so and our tracer is also part of the coredump stopping
1749 * is a deadlock situation, and pointless because our tracer
1750 * is dead so don't allow us to stop.
1751 * If SIGKILL was already sent before the caller unlocked
1752 * ->siglock we must see ->core_state != NULL. Otherwise it
1753 * is safe to enter schedule().
1754 *
1755 * This is almost outdated, a task with the pending SIGKILL can't
1756 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1757 * after SIGKILL was already dequeued.
1758 */
1759 if (unlikely(current->mm->core_state) &&
1760 unlikely(current->mm == current->parent->mm))
1761 return 0;
1762
1763 return 1;
1764 }
1765
1766 /*
1767 * Return non-zero if there is a SIGKILL that should be waking us up.
1768 * Called with the siglock held.
1769 */
sigkill_pending(struct task_struct * tsk)1770 static int sigkill_pending(struct task_struct *tsk)
1771 {
1772 return sigismember(&tsk->pending.signal, SIGKILL) ||
1773 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1774 }
1775
1776 /*
1777 * This must be called with current->sighand->siglock held.
1778 *
1779 * This should be the path for all ptrace stops.
1780 * We always set current->last_siginfo while stopped here.
1781 * That makes it a way to test a stopped process for
1782 * being ptrace-stopped vs being job-control-stopped.
1783 *
1784 * If we actually decide not to stop at all because the tracer
1785 * is gone, we keep current->exit_code unless clear_code.
1786 */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1787 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1788 __releases(¤t->sighand->siglock)
1789 __acquires(¤t->sighand->siglock)
1790 {
1791 bool gstop_done = false;
1792
1793 if (arch_ptrace_stop_needed(exit_code, info)) {
1794 /*
1795 * The arch code has something special to do before a
1796 * ptrace stop. This is allowed to block, e.g. for faults
1797 * on user stack pages. We can't keep the siglock while
1798 * calling arch_ptrace_stop, so we must release it now.
1799 * To preserve proper semantics, we must do this before
1800 * any signal bookkeeping like checking group_stop_count.
1801 * Meanwhile, a SIGKILL could come in before we retake the
1802 * siglock. That must prevent us from sleeping in TASK_TRACED.
1803 * So after regaining the lock, we must check for SIGKILL.
1804 */
1805 spin_unlock_irq(¤t->sighand->siglock);
1806 arch_ptrace_stop(exit_code, info);
1807 spin_lock_irq(¤t->sighand->siglock);
1808 if (sigkill_pending(current))
1809 return;
1810 }
1811
1812 /*
1813 * We're committing to trapping. TRACED should be visible before
1814 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1815 * Also, transition to TRACED and updates to ->jobctl should be
1816 * atomic with respect to siglock and should be done after the arch
1817 * hook as siglock is released and regrabbed across it.
1818 */
1819 set_current_state(TASK_TRACED);
1820
1821 current->last_siginfo = info;
1822 current->exit_code = exit_code;
1823
1824 /*
1825 * If @why is CLD_STOPPED, we're trapping to participate in a group
1826 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1827 * across siglock relocks since INTERRUPT was scheduled, PENDING
1828 * could be clear now. We act as if SIGCONT is received after
1829 * TASK_TRACED is entered - ignore it.
1830 */
1831 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1832 gstop_done = task_participate_group_stop(current);
1833
1834 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1835 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1836 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1837 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1838
1839 /* entering a trap, clear TRAPPING */
1840 task_clear_jobctl_trapping(current);
1841
1842 spin_unlock_irq(¤t->sighand->siglock);
1843 read_lock(&tasklist_lock);
1844 if (may_ptrace_stop()) {
1845 /*
1846 * Notify parents of the stop.
1847 *
1848 * While ptraced, there are two parents - the ptracer and
1849 * the real_parent of the group_leader. The ptracer should
1850 * know about every stop while the real parent is only
1851 * interested in the completion of group stop. The states
1852 * for the two don't interact with each other. Notify
1853 * separately unless they're gonna be duplicates.
1854 */
1855 do_notify_parent_cldstop(current, true, why);
1856 if (gstop_done && ptrace_reparented(current))
1857 do_notify_parent_cldstop(current, false, why);
1858
1859 /*
1860 * Don't want to allow preemption here, because
1861 * sys_ptrace() needs this task to be inactive.
1862 *
1863 * XXX: implement read_unlock_no_resched().
1864 */
1865 preempt_disable();
1866 read_unlock(&tasklist_lock);
1867 preempt_enable_no_resched();
1868 freezable_schedule();
1869 } else {
1870 /*
1871 * By the time we got the lock, our tracer went away.
1872 * Don't drop the lock yet, another tracer may come.
1873 *
1874 * If @gstop_done, the ptracer went away between group stop
1875 * completion and here. During detach, it would have set
1876 * JOBCTL_STOP_PENDING on us and we'll re-enter
1877 * TASK_STOPPED in do_signal_stop() on return, so notifying
1878 * the real parent of the group stop completion is enough.
1879 */
1880 if (gstop_done)
1881 do_notify_parent_cldstop(current, false, why);
1882
1883 /* tasklist protects us from ptrace_freeze_traced() */
1884 __set_current_state(TASK_RUNNING);
1885 if (clear_code)
1886 current->exit_code = 0;
1887 read_unlock(&tasklist_lock);
1888 }
1889
1890 /*
1891 * We are back. Now reacquire the siglock before touching
1892 * last_siginfo, so that we are sure to have synchronized with
1893 * any signal-sending on another CPU that wants to examine it.
1894 */
1895 spin_lock_irq(¤t->sighand->siglock);
1896 current->last_siginfo = NULL;
1897
1898 /* LISTENING can be set only during STOP traps, clear it */
1899 current->jobctl &= ~JOBCTL_LISTENING;
1900
1901 /*
1902 * Queued signals ignored us while we were stopped for tracing.
1903 * So check for any that we should take before resuming user mode.
1904 * This sets TIF_SIGPENDING, but never clears it.
1905 */
1906 recalc_sigpending_tsk(current);
1907 }
1908
ptrace_do_notify(int signr,int exit_code,int why)1909 static void ptrace_do_notify(int signr, int exit_code, int why)
1910 {
1911 siginfo_t info;
1912
1913 memset(&info, 0, sizeof info);
1914 info.si_signo = signr;
1915 info.si_code = exit_code;
1916 info.si_pid = task_pid_vnr(current);
1917 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1918
1919 /* Let the debugger run. */
1920 ptrace_stop(exit_code, why, 1, &info);
1921 }
1922
ptrace_notify(int exit_code)1923 void ptrace_notify(int exit_code)
1924 {
1925 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1926 if (unlikely(current->task_works))
1927 task_work_run();
1928
1929 spin_lock_irq(¤t->sighand->siglock);
1930 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1931 spin_unlock_irq(¤t->sighand->siglock);
1932 }
1933
1934 /**
1935 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1936 * @signr: signr causing group stop if initiating
1937 *
1938 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1939 * and participate in it. If already set, participate in the existing
1940 * group stop. If participated in a group stop (and thus slept), %true is
1941 * returned with siglock released.
1942 *
1943 * If ptraced, this function doesn't handle stop itself. Instead,
1944 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1945 * untouched. The caller must ensure that INTERRUPT trap handling takes
1946 * places afterwards.
1947 *
1948 * CONTEXT:
1949 * Must be called with @current->sighand->siglock held, which is released
1950 * on %true return.
1951 *
1952 * RETURNS:
1953 * %false if group stop is already cancelled or ptrace trap is scheduled.
1954 * %true if participated in group stop.
1955 */
do_signal_stop(int signr)1956 static bool do_signal_stop(int signr)
1957 __releases(¤t->sighand->siglock)
1958 {
1959 struct signal_struct *sig = current->signal;
1960
1961 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1962 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1963 struct task_struct *t;
1964
1965 /* signr will be recorded in task->jobctl for retries */
1966 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1967
1968 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1969 unlikely(signal_group_exit(sig)))
1970 return false;
1971 /*
1972 * There is no group stop already in progress. We must
1973 * initiate one now.
1974 *
1975 * While ptraced, a task may be resumed while group stop is
1976 * still in effect and then receive a stop signal and
1977 * initiate another group stop. This deviates from the
1978 * usual behavior as two consecutive stop signals can't
1979 * cause two group stops when !ptraced. That is why we
1980 * also check !task_is_stopped(t) below.
1981 *
1982 * The condition can be distinguished by testing whether
1983 * SIGNAL_STOP_STOPPED is already set. Don't generate
1984 * group_exit_code in such case.
1985 *
1986 * This is not necessary for SIGNAL_STOP_CONTINUED because
1987 * an intervening stop signal is required to cause two
1988 * continued events regardless of ptrace.
1989 */
1990 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1991 sig->group_exit_code = signr;
1992
1993 sig->group_stop_count = 0;
1994
1995 if (task_set_jobctl_pending(current, signr | gstop))
1996 sig->group_stop_count++;
1997
1998 t = current;
1999 while_each_thread(current, t) {
2000 /*
2001 * Setting state to TASK_STOPPED for a group
2002 * stop is always done with the siglock held,
2003 * so this check has no races.
2004 */
2005 if (!task_is_stopped(t) &&
2006 task_set_jobctl_pending(t, signr | gstop)) {
2007 sig->group_stop_count++;
2008 if (likely(!(t->ptrace & PT_SEIZED)))
2009 signal_wake_up(t, 0);
2010 else
2011 ptrace_trap_notify(t);
2012 }
2013 }
2014 }
2015
2016 if (likely(!current->ptrace)) {
2017 int notify = 0;
2018
2019 /*
2020 * If there are no other threads in the group, or if there
2021 * is a group stop in progress and we are the last to stop,
2022 * report to the parent.
2023 */
2024 if (task_participate_group_stop(current))
2025 notify = CLD_STOPPED;
2026
2027 __set_current_state(TASK_STOPPED);
2028 spin_unlock_irq(¤t->sighand->siglock);
2029
2030 /*
2031 * Notify the parent of the group stop completion. Because
2032 * we're not holding either the siglock or tasklist_lock
2033 * here, ptracer may attach inbetween; however, this is for
2034 * group stop and should always be delivered to the real
2035 * parent of the group leader. The new ptracer will get
2036 * its notification when this task transitions into
2037 * TASK_TRACED.
2038 */
2039 if (notify) {
2040 read_lock(&tasklist_lock);
2041 do_notify_parent_cldstop(current, false, notify);
2042 read_unlock(&tasklist_lock);
2043 }
2044
2045 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2046 freezable_schedule();
2047 return true;
2048 } else {
2049 /*
2050 * While ptraced, group stop is handled by STOP trap.
2051 * Schedule it and let the caller deal with it.
2052 */
2053 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2054 return false;
2055 }
2056 }
2057
2058 /**
2059 * do_jobctl_trap - take care of ptrace jobctl traps
2060 *
2061 * When PT_SEIZED, it's used for both group stop and explicit
2062 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2063 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2064 * the stop signal; otherwise, %SIGTRAP.
2065 *
2066 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2067 * number as exit_code and no siginfo.
2068 *
2069 * CONTEXT:
2070 * Must be called with @current->sighand->siglock held, which may be
2071 * released and re-acquired before returning with intervening sleep.
2072 */
do_jobctl_trap(void)2073 static void do_jobctl_trap(void)
2074 {
2075 struct signal_struct *signal = current->signal;
2076 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2077
2078 if (current->ptrace & PT_SEIZED) {
2079 if (!signal->group_stop_count &&
2080 !(signal->flags & SIGNAL_STOP_STOPPED))
2081 signr = SIGTRAP;
2082 WARN_ON_ONCE(!signr);
2083 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2084 CLD_STOPPED);
2085 } else {
2086 WARN_ON_ONCE(!signr);
2087 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2088 current->exit_code = 0;
2089 }
2090 }
2091
ptrace_signal(int signr,siginfo_t * info)2092 static int ptrace_signal(int signr, siginfo_t *info)
2093 {
2094 ptrace_signal_deliver();
2095 /*
2096 * We do not check sig_kernel_stop(signr) but set this marker
2097 * unconditionally because we do not know whether debugger will
2098 * change signr. This flag has no meaning unless we are going
2099 * to stop after return from ptrace_stop(). In this case it will
2100 * be checked in do_signal_stop(), we should only stop if it was
2101 * not cleared by SIGCONT while we were sleeping. See also the
2102 * comment in dequeue_signal().
2103 */
2104 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107 /* We're back. Did the debugger cancel the sig? */
2108 signr = current->exit_code;
2109 if (signr == 0)
2110 return signr;
2111
2112 current->exit_code = 0;
2113
2114 /*
2115 * Update the siginfo structure if the signal has
2116 * changed. If the debugger wanted something
2117 * specific in the siginfo structure then it should
2118 * have updated *info via PTRACE_SETSIGINFO.
2119 */
2120 if (signr != info->si_signo) {
2121 info->si_signo = signr;
2122 info->si_errno = 0;
2123 info->si_code = SI_USER;
2124 rcu_read_lock();
2125 info->si_pid = task_pid_vnr(current->parent);
2126 info->si_uid = from_kuid_munged(current_user_ns(),
2127 task_uid(current->parent));
2128 rcu_read_unlock();
2129 }
2130
2131 /* If the (new) signal is now blocked, requeue it. */
2132 if (sigismember(¤t->blocked, signr)) {
2133 specific_send_sig_info(signr, info, current);
2134 signr = 0;
2135 }
2136
2137 return signr;
2138 }
2139
get_signal(struct ksignal * ksig)2140 int get_signal(struct ksignal *ksig)
2141 {
2142 struct sighand_struct *sighand = current->sighand;
2143 struct signal_struct *signal = current->signal;
2144 int signr;
2145
2146 if (unlikely(current->task_works))
2147 task_work_run();
2148
2149 if (unlikely(uprobe_deny_signal()))
2150 return 0;
2151
2152 /*
2153 * Do this once, we can't return to user-mode if freezing() == T.
2154 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2155 * thus do not need another check after return.
2156 */
2157 try_to_freeze();
2158
2159 relock:
2160 spin_lock_irq(&sighand->siglock);
2161 /*
2162 * Every stopped thread goes here after wakeup. Check to see if
2163 * we should notify the parent, prepare_signal(SIGCONT) encodes
2164 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2165 */
2166 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2167 int why;
2168
2169 if (signal->flags & SIGNAL_CLD_CONTINUED)
2170 why = CLD_CONTINUED;
2171 else
2172 why = CLD_STOPPED;
2173
2174 signal->flags &= ~SIGNAL_CLD_MASK;
2175
2176 spin_unlock_irq(&sighand->siglock);
2177
2178 /*
2179 * Notify the parent that we're continuing. This event is
2180 * always per-process and doesn't make whole lot of sense
2181 * for ptracers, who shouldn't consume the state via
2182 * wait(2) either, but, for backward compatibility, notify
2183 * the ptracer of the group leader too unless it's gonna be
2184 * a duplicate.
2185 */
2186 read_lock(&tasklist_lock);
2187 do_notify_parent_cldstop(current, false, why);
2188
2189 if (ptrace_reparented(current->group_leader))
2190 do_notify_parent_cldstop(current->group_leader,
2191 true, why);
2192 read_unlock(&tasklist_lock);
2193
2194 goto relock;
2195 }
2196
2197 for (;;) {
2198 struct k_sigaction *ka;
2199
2200 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2201 do_signal_stop(0))
2202 goto relock;
2203
2204 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2205 do_jobctl_trap();
2206 spin_unlock_irq(&sighand->siglock);
2207 goto relock;
2208 }
2209
2210 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2211
2212 if (!signr)
2213 break; /* will return 0 */
2214
2215 if (unlikely(current->ptrace) && signr != SIGKILL) {
2216 signr = ptrace_signal(signr, &ksig->info);
2217 if (!signr)
2218 continue;
2219 }
2220
2221 ka = &sighand->action[signr-1];
2222
2223 /* Trace actually delivered signals. */
2224 trace_signal_deliver(signr, &ksig->info, ka);
2225
2226 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2227 continue;
2228 if (ka->sa.sa_handler != SIG_DFL) {
2229 /* Run the handler. */
2230 ksig->ka = *ka;
2231
2232 if (ka->sa.sa_flags & SA_ONESHOT)
2233 ka->sa.sa_handler = SIG_DFL;
2234
2235 break; /* will return non-zero "signr" value */
2236 }
2237
2238 /*
2239 * Now we are doing the default action for this signal.
2240 */
2241 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2242 continue;
2243
2244 /*
2245 * Global init gets no signals it doesn't want.
2246 * Container-init gets no signals it doesn't want from same
2247 * container.
2248 *
2249 * Note that if global/container-init sees a sig_kernel_only()
2250 * signal here, the signal must have been generated internally
2251 * or must have come from an ancestor namespace. In either
2252 * case, the signal cannot be dropped.
2253 */
2254 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2255 !sig_kernel_only(signr))
2256 continue;
2257
2258 if (sig_kernel_stop(signr)) {
2259 /*
2260 * The default action is to stop all threads in
2261 * the thread group. The job control signals
2262 * do nothing in an orphaned pgrp, but SIGSTOP
2263 * always works. Note that siglock needs to be
2264 * dropped during the call to is_orphaned_pgrp()
2265 * because of lock ordering with tasklist_lock.
2266 * This allows an intervening SIGCONT to be posted.
2267 * We need to check for that and bail out if necessary.
2268 */
2269 if (signr != SIGSTOP) {
2270 spin_unlock_irq(&sighand->siglock);
2271
2272 /* signals can be posted during this window */
2273
2274 if (is_current_pgrp_orphaned())
2275 goto relock;
2276
2277 spin_lock_irq(&sighand->siglock);
2278 }
2279
2280 if (likely(do_signal_stop(ksig->info.si_signo))) {
2281 /* It released the siglock. */
2282 goto relock;
2283 }
2284
2285 /*
2286 * We didn't actually stop, due to a race
2287 * with SIGCONT or something like that.
2288 */
2289 continue;
2290 }
2291
2292 spin_unlock_irq(&sighand->siglock);
2293
2294 /*
2295 * Anything else is fatal, maybe with a core dump.
2296 */
2297 current->flags |= PF_SIGNALED;
2298
2299 if (sig_kernel_coredump(signr)) {
2300 if (print_fatal_signals)
2301 print_fatal_signal(ksig->info.si_signo);
2302 proc_coredump_connector(current);
2303 /*
2304 * If it was able to dump core, this kills all
2305 * other threads in the group and synchronizes with
2306 * their demise. If we lost the race with another
2307 * thread getting here, it set group_exit_code
2308 * first and our do_group_exit call below will use
2309 * that value and ignore the one we pass it.
2310 */
2311 do_coredump(&ksig->info);
2312 }
2313
2314 /*
2315 * Death signals, no core dump.
2316 */
2317 do_group_exit(ksig->info.si_signo);
2318 /* NOTREACHED */
2319 }
2320 spin_unlock_irq(&sighand->siglock);
2321
2322 ksig->sig = signr;
2323 return ksig->sig > 0;
2324 }
2325
2326 /**
2327 * signal_delivered -
2328 * @ksig: kernel signal struct
2329 * @stepping: nonzero if debugger single-step or block-step in use
2330 *
2331 * This function should be called when a signal has successfully been
2332 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2333 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2334 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2335 */
signal_delivered(struct ksignal * ksig,int stepping)2336 static void signal_delivered(struct ksignal *ksig, int stepping)
2337 {
2338 sigset_t blocked;
2339
2340 /* A signal was successfully delivered, and the
2341 saved sigmask was stored on the signal frame,
2342 and will be restored by sigreturn. So we can
2343 simply clear the restore sigmask flag. */
2344 clear_restore_sigmask();
2345
2346 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2347 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2348 sigaddset(&blocked, ksig->sig);
2349 set_current_blocked(&blocked);
2350 tracehook_signal_handler(stepping);
2351 }
2352
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2353 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2354 {
2355 if (failed)
2356 force_sigsegv(ksig->sig, current);
2357 else
2358 signal_delivered(ksig, stepping);
2359 }
2360
2361 /*
2362 * It could be that complete_signal() picked us to notify about the
2363 * group-wide signal. Other threads should be notified now to take
2364 * the shared signals in @which since we will not.
2365 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2366 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2367 {
2368 sigset_t retarget;
2369 struct task_struct *t;
2370
2371 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2372 if (sigisemptyset(&retarget))
2373 return;
2374
2375 t = tsk;
2376 while_each_thread(tsk, t) {
2377 if (t->flags & PF_EXITING)
2378 continue;
2379
2380 if (!has_pending_signals(&retarget, &t->blocked))
2381 continue;
2382 /* Remove the signals this thread can handle. */
2383 sigandsets(&retarget, &retarget, &t->blocked);
2384
2385 if (!signal_pending(t))
2386 signal_wake_up(t, 0);
2387
2388 if (sigisemptyset(&retarget))
2389 break;
2390 }
2391 }
2392
exit_signals(struct task_struct * tsk)2393 void exit_signals(struct task_struct *tsk)
2394 {
2395 int group_stop = 0;
2396 sigset_t unblocked;
2397
2398 /*
2399 * @tsk is about to have PF_EXITING set - lock out users which
2400 * expect stable threadgroup.
2401 */
2402 threadgroup_change_begin(tsk);
2403
2404 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2405 tsk->flags |= PF_EXITING;
2406 threadgroup_change_end(tsk);
2407 return;
2408 }
2409
2410 spin_lock_irq(&tsk->sighand->siglock);
2411 /*
2412 * From now this task is not visible for group-wide signals,
2413 * see wants_signal(), do_signal_stop().
2414 */
2415 tsk->flags |= PF_EXITING;
2416
2417 threadgroup_change_end(tsk);
2418
2419 if (!signal_pending(tsk))
2420 goto out;
2421
2422 unblocked = tsk->blocked;
2423 signotset(&unblocked);
2424 retarget_shared_pending(tsk, &unblocked);
2425
2426 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2427 task_participate_group_stop(tsk))
2428 group_stop = CLD_STOPPED;
2429 out:
2430 spin_unlock_irq(&tsk->sighand->siglock);
2431
2432 /*
2433 * If group stop has completed, deliver the notification. This
2434 * should always go to the real parent of the group leader.
2435 */
2436 if (unlikely(group_stop)) {
2437 read_lock(&tasklist_lock);
2438 do_notify_parent_cldstop(tsk, false, group_stop);
2439 read_unlock(&tasklist_lock);
2440 }
2441 }
2442
2443 EXPORT_SYMBOL(recalc_sigpending);
2444 EXPORT_SYMBOL_GPL(dequeue_signal);
2445 EXPORT_SYMBOL(flush_signals);
2446 EXPORT_SYMBOL(force_sig);
2447 EXPORT_SYMBOL(send_sig);
2448 EXPORT_SYMBOL(send_sig_info);
2449 EXPORT_SYMBOL(sigprocmask);
2450
2451 /*
2452 * System call entry points.
2453 */
2454
2455 /**
2456 * sys_restart_syscall - restart a system call
2457 */
SYSCALL_DEFINE0(restart_syscall)2458 SYSCALL_DEFINE0(restart_syscall)
2459 {
2460 struct restart_block *restart = ¤t->restart_block;
2461 return restart->fn(restart);
2462 }
2463
do_no_restart_syscall(struct restart_block * param)2464 long do_no_restart_syscall(struct restart_block *param)
2465 {
2466 return -EINTR;
2467 }
2468
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2469 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2470 {
2471 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2472 sigset_t newblocked;
2473 /* A set of now blocked but previously unblocked signals. */
2474 sigandnsets(&newblocked, newset, ¤t->blocked);
2475 retarget_shared_pending(tsk, &newblocked);
2476 }
2477 tsk->blocked = *newset;
2478 recalc_sigpending();
2479 }
2480
2481 /**
2482 * set_current_blocked - change current->blocked mask
2483 * @newset: new mask
2484 *
2485 * It is wrong to change ->blocked directly, this helper should be used
2486 * to ensure the process can't miss a shared signal we are going to block.
2487 */
set_current_blocked(sigset_t * newset)2488 void set_current_blocked(sigset_t *newset)
2489 {
2490 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2491 __set_current_blocked(newset);
2492 }
2493
__set_current_blocked(const sigset_t * newset)2494 void __set_current_blocked(const sigset_t *newset)
2495 {
2496 struct task_struct *tsk = current;
2497
2498 spin_lock_irq(&tsk->sighand->siglock);
2499 __set_task_blocked(tsk, newset);
2500 spin_unlock_irq(&tsk->sighand->siglock);
2501 }
2502
2503 /*
2504 * This is also useful for kernel threads that want to temporarily
2505 * (or permanently) block certain signals.
2506 *
2507 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2508 * interface happily blocks "unblockable" signals like SIGKILL
2509 * and friends.
2510 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2511 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2512 {
2513 struct task_struct *tsk = current;
2514 sigset_t newset;
2515
2516 /* Lockless, only current can change ->blocked, never from irq */
2517 if (oldset)
2518 *oldset = tsk->blocked;
2519
2520 switch (how) {
2521 case SIG_BLOCK:
2522 sigorsets(&newset, &tsk->blocked, set);
2523 break;
2524 case SIG_UNBLOCK:
2525 sigandnsets(&newset, &tsk->blocked, set);
2526 break;
2527 case SIG_SETMASK:
2528 newset = *set;
2529 break;
2530 default:
2531 return -EINVAL;
2532 }
2533
2534 __set_current_blocked(&newset);
2535 return 0;
2536 }
2537
2538 /**
2539 * sys_rt_sigprocmask - change the list of currently blocked signals
2540 * @how: whether to add, remove, or set signals
2541 * @nset: stores pending signals
2542 * @oset: previous value of signal mask if non-null
2543 * @sigsetsize: size of sigset_t type
2544 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2545 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2546 sigset_t __user *, oset, size_t, sigsetsize)
2547 {
2548 sigset_t old_set, new_set;
2549 int error;
2550
2551 /* XXX: Don't preclude handling different sized sigset_t's. */
2552 if (sigsetsize != sizeof(sigset_t))
2553 return -EINVAL;
2554
2555 old_set = current->blocked;
2556
2557 if (nset) {
2558 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2559 return -EFAULT;
2560 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2561
2562 error = sigprocmask(how, &new_set, NULL);
2563 if (error)
2564 return error;
2565 }
2566
2567 if (oset) {
2568 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2569 return -EFAULT;
2570 }
2571
2572 return 0;
2573 }
2574
2575 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)2576 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2577 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2578 {
2579 #ifdef __BIG_ENDIAN
2580 sigset_t old_set = current->blocked;
2581
2582 /* XXX: Don't preclude handling different sized sigset_t's. */
2583 if (sigsetsize != sizeof(sigset_t))
2584 return -EINVAL;
2585
2586 if (nset) {
2587 compat_sigset_t new32;
2588 sigset_t new_set;
2589 int error;
2590 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2591 return -EFAULT;
2592
2593 sigset_from_compat(&new_set, &new32);
2594 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2595
2596 error = sigprocmask(how, &new_set, NULL);
2597 if (error)
2598 return error;
2599 }
2600 if (oset) {
2601 compat_sigset_t old32;
2602 sigset_to_compat(&old32, &old_set);
2603 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2604 return -EFAULT;
2605 }
2606 return 0;
2607 #else
2608 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2609 (sigset_t __user *)oset, sigsetsize);
2610 #endif
2611 }
2612 #endif
2613
do_sigpending(void * set,unsigned long sigsetsize)2614 static int do_sigpending(void *set, unsigned long sigsetsize)
2615 {
2616 if (sigsetsize > sizeof(sigset_t))
2617 return -EINVAL;
2618
2619 spin_lock_irq(¤t->sighand->siglock);
2620 sigorsets(set, ¤t->pending.signal,
2621 ¤t->signal->shared_pending.signal);
2622 spin_unlock_irq(¤t->sighand->siglock);
2623
2624 /* Outside the lock because only this thread touches it. */
2625 sigandsets(set, ¤t->blocked, set);
2626 return 0;
2627 }
2628
2629 /**
2630 * sys_rt_sigpending - examine a pending signal that has been raised
2631 * while blocked
2632 * @uset: stores pending signals
2633 * @sigsetsize: size of sigset_t type or larger
2634 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)2635 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2636 {
2637 sigset_t set;
2638 int err = do_sigpending(&set, sigsetsize);
2639 if (!err && copy_to_user(uset, &set, sigsetsize))
2640 err = -EFAULT;
2641 return err;
2642 }
2643
2644 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)2645 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2646 compat_size_t, sigsetsize)
2647 {
2648 #ifdef __BIG_ENDIAN
2649 sigset_t set;
2650 int err = do_sigpending(&set, sigsetsize);
2651 if (!err) {
2652 compat_sigset_t set32;
2653 sigset_to_compat(&set32, &set);
2654 /* we can get here only if sigsetsize <= sizeof(set) */
2655 if (copy_to_user(uset, &set32, sigsetsize))
2656 err = -EFAULT;
2657 }
2658 return err;
2659 #else
2660 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2661 #endif
2662 }
2663 #endif
2664
2665 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2666
copy_siginfo_to_user(siginfo_t __user * to,const siginfo_t * from)2667 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2668 {
2669 int err;
2670
2671 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2672 return -EFAULT;
2673 if (from->si_code < 0)
2674 return __copy_to_user(to, from, sizeof(siginfo_t))
2675 ? -EFAULT : 0;
2676 /*
2677 * If you change siginfo_t structure, please be sure
2678 * this code is fixed accordingly.
2679 * Please remember to update the signalfd_copyinfo() function
2680 * inside fs/signalfd.c too, in case siginfo_t changes.
2681 * It should never copy any pad contained in the structure
2682 * to avoid security leaks, but must copy the generic
2683 * 3 ints plus the relevant union member.
2684 */
2685 err = __put_user(from->si_signo, &to->si_signo);
2686 err |= __put_user(from->si_errno, &to->si_errno);
2687 err |= __put_user((short)from->si_code, &to->si_code);
2688 switch (from->si_code & __SI_MASK) {
2689 case __SI_KILL:
2690 err |= __put_user(from->si_pid, &to->si_pid);
2691 err |= __put_user(from->si_uid, &to->si_uid);
2692 break;
2693 case __SI_TIMER:
2694 err |= __put_user(from->si_tid, &to->si_tid);
2695 err |= __put_user(from->si_overrun, &to->si_overrun);
2696 err |= __put_user(from->si_ptr, &to->si_ptr);
2697 break;
2698 case __SI_POLL:
2699 err |= __put_user(from->si_band, &to->si_band);
2700 err |= __put_user(from->si_fd, &to->si_fd);
2701 break;
2702 case __SI_FAULT:
2703 err |= __put_user(from->si_addr, &to->si_addr);
2704 #ifdef __ARCH_SI_TRAPNO
2705 err |= __put_user(from->si_trapno, &to->si_trapno);
2706 #endif
2707 #ifdef BUS_MCEERR_AO
2708 /*
2709 * Other callers might not initialize the si_lsb field,
2710 * so check explicitly for the right codes here.
2711 */
2712 if (from->si_signo == SIGBUS &&
2713 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2714 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2715 #endif
2716 #ifdef SEGV_BNDERR
2717 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2718 err |= __put_user(from->si_lower, &to->si_lower);
2719 err |= __put_user(from->si_upper, &to->si_upper);
2720 }
2721 #endif
2722 #ifdef SEGV_PKUERR
2723 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2724 err |= __put_user(from->si_pkey, &to->si_pkey);
2725 #endif
2726 break;
2727 case __SI_CHLD:
2728 err |= __put_user(from->si_pid, &to->si_pid);
2729 err |= __put_user(from->si_uid, &to->si_uid);
2730 err |= __put_user(from->si_status, &to->si_status);
2731 err |= __put_user(from->si_utime, &to->si_utime);
2732 err |= __put_user(from->si_stime, &to->si_stime);
2733 break;
2734 case __SI_RT: /* This is not generated by the kernel as of now. */
2735 case __SI_MESGQ: /* But this is */
2736 err |= __put_user(from->si_pid, &to->si_pid);
2737 err |= __put_user(from->si_uid, &to->si_uid);
2738 err |= __put_user(from->si_ptr, &to->si_ptr);
2739 break;
2740 #ifdef __ARCH_SIGSYS
2741 case __SI_SYS:
2742 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2743 err |= __put_user(from->si_syscall, &to->si_syscall);
2744 err |= __put_user(from->si_arch, &to->si_arch);
2745 break;
2746 #endif
2747 default: /* this is just in case for now ... */
2748 err |= __put_user(from->si_pid, &to->si_pid);
2749 err |= __put_user(from->si_uid, &to->si_uid);
2750 break;
2751 }
2752 return err;
2753 }
2754
2755 #endif
2756
2757 /**
2758 * do_sigtimedwait - wait for queued signals specified in @which
2759 * @which: queued signals to wait for
2760 * @info: if non-null, the signal's siginfo is returned here
2761 * @ts: upper bound on process time suspension
2762 */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2763 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2764 const struct timespec *ts)
2765 {
2766 ktime_t *to = NULL, timeout = { .tv64 = KTIME_MAX };
2767 struct task_struct *tsk = current;
2768 sigset_t mask = *which;
2769 int sig, ret = 0;
2770
2771 if (ts) {
2772 if (!timespec_valid(ts))
2773 return -EINVAL;
2774 timeout = timespec_to_ktime(*ts);
2775 to = &timeout;
2776 }
2777
2778 /*
2779 * Invert the set of allowed signals to get those we want to block.
2780 */
2781 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2782 signotset(&mask);
2783
2784 spin_lock_irq(&tsk->sighand->siglock);
2785 sig = dequeue_signal(tsk, &mask, info);
2786 if (!sig && timeout.tv64) {
2787 /*
2788 * None ready, temporarily unblock those we're interested
2789 * while we are sleeping in so that we'll be awakened when
2790 * they arrive. Unblocking is always fine, we can avoid
2791 * set_current_blocked().
2792 */
2793 tsk->real_blocked = tsk->blocked;
2794 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2795 recalc_sigpending();
2796 spin_unlock_irq(&tsk->sighand->siglock);
2797
2798 __set_current_state(TASK_INTERRUPTIBLE);
2799 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2800 HRTIMER_MODE_REL);
2801 spin_lock_irq(&tsk->sighand->siglock);
2802 __set_task_blocked(tsk, &tsk->real_blocked);
2803 sigemptyset(&tsk->real_blocked);
2804 sig = dequeue_signal(tsk, &mask, info);
2805 }
2806 spin_unlock_irq(&tsk->sighand->siglock);
2807
2808 if (sig)
2809 return sig;
2810 return ret ? -EINTR : -EAGAIN;
2811 }
2812
2813 /**
2814 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2815 * in @uthese
2816 * @uthese: queued signals to wait for
2817 * @uinfo: if non-null, the signal's siginfo is returned here
2818 * @uts: upper bound on process time suspension
2819 * @sigsetsize: size of sigset_t type
2820 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2821 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2822 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2823 size_t, sigsetsize)
2824 {
2825 sigset_t these;
2826 struct timespec ts;
2827 siginfo_t info;
2828 int ret;
2829
2830 /* XXX: Don't preclude handling different sized sigset_t's. */
2831 if (sigsetsize != sizeof(sigset_t))
2832 return -EINVAL;
2833
2834 if (copy_from_user(&these, uthese, sizeof(these)))
2835 return -EFAULT;
2836
2837 if (uts) {
2838 if (copy_from_user(&ts, uts, sizeof(ts)))
2839 return -EFAULT;
2840 }
2841
2842 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2843
2844 if (ret > 0 && uinfo) {
2845 if (copy_siginfo_to_user(uinfo, &info))
2846 ret = -EFAULT;
2847 }
2848
2849 return ret;
2850 }
2851
2852 /**
2853 * sys_kill - send a signal to a process
2854 * @pid: the PID of the process
2855 * @sig: signal to be sent
2856 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2857 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2858 {
2859 struct siginfo info;
2860
2861 info.si_signo = sig;
2862 info.si_errno = 0;
2863 info.si_code = SI_USER;
2864 info.si_pid = task_tgid_vnr(current);
2865 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2866
2867 return kill_something_info(sig, &info, pid);
2868 }
2869
2870 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2871 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2872 {
2873 struct task_struct *p;
2874 int error = -ESRCH;
2875
2876 rcu_read_lock();
2877 p = find_task_by_vpid(pid);
2878 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2879 error = check_kill_permission(sig, info, p);
2880 /*
2881 * The null signal is a permissions and process existence
2882 * probe. No signal is actually delivered.
2883 */
2884 if (!error && sig) {
2885 error = do_send_sig_info(sig, info, p, false);
2886 /*
2887 * If lock_task_sighand() failed we pretend the task
2888 * dies after receiving the signal. The window is tiny,
2889 * and the signal is private anyway.
2890 */
2891 if (unlikely(error == -ESRCH))
2892 error = 0;
2893 }
2894 }
2895 rcu_read_unlock();
2896
2897 return error;
2898 }
2899
do_tkill(pid_t tgid,pid_t pid,int sig)2900 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2901 {
2902 struct siginfo info = {};
2903
2904 info.si_signo = sig;
2905 info.si_errno = 0;
2906 info.si_code = SI_TKILL;
2907 info.si_pid = task_tgid_vnr(current);
2908 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2909
2910 return do_send_specific(tgid, pid, sig, &info);
2911 }
2912
2913 /**
2914 * sys_tgkill - send signal to one specific thread
2915 * @tgid: the thread group ID of the thread
2916 * @pid: the PID of the thread
2917 * @sig: signal to be sent
2918 *
2919 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2920 * exists but it's not belonging to the target process anymore. This
2921 * method solves the problem of threads exiting and PIDs getting reused.
2922 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2923 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2924 {
2925 /* This is only valid for single tasks */
2926 if (pid <= 0 || tgid <= 0)
2927 return -EINVAL;
2928
2929 return do_tkill(tgid, pid, sig);
2930 }
2931
2932 /**
2933 * sys_tkill - send signal to one specific task
2934 * @pid: the PID of the task
2935 * @sig: signal to be sent
2936 *
2937 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2938 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2939 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2940 {
2941 /* This is only valid for single tasks */
2942 if (pid <= 0)
2943 return -EINVAL;
2944
2945 return do_tkill(0, pid, sig);
2946 }
2947
do_rt_sigqueueinfo(pid_t pid,int sig,siginfo_t * info)2948 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2949 {
2950 /* Not even root can pretend to send signals from the kernel.
2951 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2952 */
2953 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2954 (task_pid_vnr(current) != pid))
2955 return -EPERM;
2956
2957 info->si_signo = sig;
2958
2959 /* POSIX.1b doesn't mention process groups. */
2960 return kill_proc_info(sig, info, pid);
2961 }
2962
2963 /**
2964 * sys_rt_sigqueueinfo - send signal information to a signal
2965 * @pid: the PID of the thread
2966 * @sig: signal to be sent
2967 * @uinfo: signal info to be sent
2968 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2969 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2970 siginfo_t __user *, uinfo)
2971 {
2972 siginfo_t info;
2973 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2974 return -EFAULT;
2975 return do_rt_sigqueueinfo(pid, sig, &info);
2976 }
2977
2978 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)2979 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2980 compat_pid_t, pid,
2981 int, sig,
2982 struct compat_siginfo __user *, uinfo)
2983 {
2984 siginfo_t info = {};
2985 int ret = copy_siginfo_from_user32(&info, uinfo);
2986 if (unlikely(ret))
2987 return ret;
2988 return do_rt_sigqueueinfo(pid, sig, &info);
2989 }
2990 #endif
2991
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)2992 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2993 {
2994 /* This is only valid for single tasks */
2995 if (pid <= 0 || tgid <= 0)
2996 return -EINVAL;
2997
2998 /* Not even root can pretend to send signals from the kernel.
2999 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3000 */
3001 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3002 (task_pid_vnr(current) != pid))
3003 return -EPERM;
3004
3005 info->si_signo = sig;
3006
3007 return do_send_specific(tgid, pid, sig, info);
3008 }
3009
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3010 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3011 siginfo_t __user *, uinfo)
3012 {
3013 siginfo_t info;
3014
3015 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3016 return -EFAULT;
3017
3018 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3019 }
3020
3021 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3022 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3023 compat_pid_t, tgid,
3024 compat_pid_t, pid,
3025 int, sig,
3026 struct compat_siginfo __user *, uinfo)
3027 {
3028 siginfo_t info = {};
3029
3030 if (copy_siginfo_from_user32(&info, uinfo))
3031 return -EFAULT;
3032 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3033 }
3034 #endif
3035
3036 /*
3037 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3038 */
kernel_sigaction(int sig,__sighandler_t action)3039 void kernel_sigaction(int sig, __sighandler_t action)
3040 {
3041 spin_lock_irq(¤t->sighand->siglock);
3042 current->sighand->action[sig - 1].sa.sa_handler = action;
3043 if (action == SIG_IGN) {
3044 sigset_t mask;
3045
3046 sigemptyset(&mask);
3047 sigaddset(&mask, sig);
3048
3049 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3050 flush_sigqueue_mask(&mask, ¤t->pending);
3051 recalc_sigpending();
3052 }
3053 spin_unlock_irq(¤t->sighand->siglock);
3054 }
3055 EXPORT_SYMBOL(kernel_sigaction);
3056
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)3057 void __weak sigaction_compat_abi(struct k_sigaction *act,
3058 struct k_sigaction *oact)
3059 {
3060 }
3061
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)3062 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3063 {
3064 struct task_struct *p = current, *t;
3065 struct k_sigaction *k;
3066 sigset_t mask;
3067
3068 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3069 return -EINVAL;
3070
3071 k = &p->sighand->action[sig-1];
3072
3073 spin_lock_irq(&p->sighand->siglock);
3074 if (oact)
3075 *oact = *k;
3076
3077 sigaction_compat_abi(act, oact);
3078
3079 if (act) {
3080 sigdelsetmask(&act->sa.sa_mask,
3081 sigmask(SIGKILL) | sigmask(SIGSTOP));
3082 *k = *act;
3083 /*
3084 * POSIX 3.3.1.3:
3085 * "Setting a signal action to SIG_IGN for a signal that is
3086 * pending shall cause the pending signal to be discarded,
3087 * whether or not it is blocked."
3088 *
3089 * "Setting a signal action to SIG_DFL for a signal that is
3090 * pending and whose default action is to ignore the signal
3091 * (for example, SIGCHLD), shall cause the pending signal to
3092 * be discarded, whether or not it is blocked"
3093 */
3094 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3095 sigemptyset(&mask);
3096 sigaddset(&mask, sig);
3097 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3098 for_each_thread(p, t)
3099 flush_sigqueue_mask(&mask, &t->pending);
3100 }
3101 }
3102
3103 spin_unlock_irq(&p->sighand->siglock);
3104 return 0;
3105 }
3106
3107 static int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)3108 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3109 {
3110 stack_t oss;
3111 int error;
3112
3113 oss.ss_sp = (void __user *) current->sas_ss_sp;
3114 oss.ss_size = current->sas_ss_size;
3115 oss.ss_flags = sas_ss_flags(sp) |
3116 (current->sas_ss_flags & SS_FLAG_BITS);
3117
3118 if (uss) {
3119 void __user *ss_sp;
3120 size_t ss_size;
3121 unsigned ss_flags;
3122 int ss_mode;
3123
3124 error = -EFAULT;
3125 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3126 goto out;
3127 error = __get_user(ss_sp, &uss->ss_sp) |
3128 __get_user(ss_flags, &uss->ss_flags) |
3129 __get_user(ss_size, &uss->ss_size);
3130 if (error)
3131 goto out;
3132
3133 error = -EPERM;
3134 if (on_sig_stack(sp))
3135 goto out;
3136
3137 ss_mode = ss_flags & ~SS_FLAG_BITS;
3138 error = -EINVAL;
3139 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3140 ss_mode != 0)
3141 goto out;
3142
3143 if (ss_mode == SS_DISABLE) {
3144 ss_size = 0;
3145 ss_sp = NULL;
3146 } else {
3147 error = -ENOMEM;
3148 if (ss_size < MINSIGSTKSZ)
3149 goto out;
3150 }
3151
3152 current->sas_ss_sp = (unsigned long) ss_sp;
3153 current->sas_ss_size = ss_size;
3154 current->sas_ss_flags = ss_flags;
3155 }
3156
3157 error = 0;
3158 if (uoss) {
3159 error = -EFAULT;
3160 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3161 goto out;
3162 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3163 __put_user(oss.ss_size, &uoss->ss_size) |
3164 __put_user(oss.ss_flags, &uoss->ss_flags);
3165 }
3166
3167 out:
3168 return error;
3169 }
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)3170 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3171 {
3172 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3173 }
3174
restore_altstack(const stack_t __user * uss)3175 int restore_altstack(const stack_t __user *uss)
3176 {
3177 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3178 /* squash all but EFAULT for now */
3179 return err == -EFAULT ? err : 0;
3180 }
3181
__save_altstack(stack_t __user * uss,unsigned long sp)3182 int __save_altstack(stack_t __user *uss, unsigned long sp)
3183 {
3184 struct task_struct *t = current;
3185 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3186 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3187 __put_user(t->sas_ss_size, &uss->ss_size);
3188 if (err)
3189 return err;
3190 if (t->sas_ss_flags & SS_AUTODISARM)
3191 sas_ss_reset(t);
3192 return 0;
3193 }
3194
3195 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)3196 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3197 const compat_stack_t __user *, uss_ptr,
3198 compat_stack_t __user *, uoss_ptr)
3199 {
3200 stack_t uss, uoss;
3201 int ret;
3202 mm_segment_t seg;
3203
3204 if (uss_ptr) {
3205 compat_stack_t uss32;
3206
3207 memset(&uss, 0, sizeof(stack_t));
3208 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3209 return -EFAULT;
3210 uss.ss_sp = compat_ptr(uss32.ss_sp);
3211 uss.ss_flags = uss32.ss_flags;
3212 uss.ss_size = uss32.ss_size;
3213 }
3214 seg = get_fs();
3215 set_fs(KERNEL_DS);
3216 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3217 (stack_t __force __user *) &uoss,
3218 compat_user_stack_pointer());
3219 set_fs(seg);
3220 if (ret >= 0 && uoss_ptr) {
3221 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3222 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3223 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3224 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3225 ret = -EFAULT;
3226 }
3227 return ret;
3228 }
3229
compat_restore_altstack(const compat_stack_t __user * uss)3230 int compat_restore_altstack(const compat_stack_t __user *uss)
3231 {
3232 int err = compat_sys_sigaltstack(uss, NULL);
3233 /* squash all but -EFAULT for now */
3234 return err == -EFAULT ? err : 0;
3235 }
3236
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)3237 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3238 {
3239 int err;
3240 struct task_struct *t = current;
3241 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3242 &uss->ss_sp) |
3243 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3244 __put_user(t->sas_ss_size, &uss->ss_size);
3245 if (err)
3246 return err;
3247 if (t->sas_ss_flags & SS_AUTODISARM)
3248 sas_ss_reset(t);
3249 return 0;
3250 }
3251 #endif
3252
3253 #ifdef __ARCH_WANT_SYS_SIGPENDING
3254
3255 /**
3256 * sys_sigpending - examine pending signals
3257 * @set: where mask of pending signal is returned
3258 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3259 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3260 {
3261 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3262 }
3263
3264 #endif
3265
3266 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3267 /**
3268 * sys_sigprocmask - examine and change blocked signals
3269 * @how: whether to add, remove, or set signals
3270 * @nset: signals to add or remove (if non-null)
3271 * @oset: previous value of signal mask if non-null
3272 *
3273 * Some platforms have their own version with special arguments;
3274 * others support only sys_rt_sigprocmask.
3275 */
3276
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3277 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3278 old_sigset_t __user *, oset)
3279 {
3280 old_sigset_t old_set, new_set;
3281 sigset_t new_blocked;
3282
3283 old_set = current->blocked.sig[0];
3284
3285 if (nset) {
3286 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3287 return -EFAULT;
3288
3289 new_blocked = current->blocked;
3290
3291 switch (how) {
3292 case SIG_BLOCK:
3293 sigaddsetmask(&new_blocked, new_set);
3294 break;
3295 case SIG_UNBLOCK:
3296 sigdelsetmask(&new_blocked, new_set);
3297 break;
3298 case SIG_SETMASK:
3299 new_blocked.sig[0] = new_set;
3300 break;
3301 default:
3302 return -EINVAL;
3303 }
3304
3305 set_current_blocked(&new_blocked);
3306 }
3307
3308 if (oset) {
3309 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3310 return -EFAULT;
3311 }
3312
3313 return 0;
3314 }
3315 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3316
3317 #ifndef CONFIG_ODD_RT_SIGACTION
3318 /**
3319 * sys_rt_sigaction - alter an action taken by a process
3320 * @sig: signal to be sent
3321 * @act: new sigaction
3322 * @oact: used to save the previous sigaction
3323 * @sigsetsize: size of sigset_t type
3324 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3325 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3326 const struct sigaction __user *, act,
3327 struct sigaction __user *, oact,
3328 size_t, sigsetsize)
3329 {
3330 struct k_sigaction new_sa, old_sa;
3331 int ret = -EINVAL;
3332
3333 /* XXX: Don't preclude handling different sized sigset_t's. */
3334 if (sigsetsize != sizeof(sigset_t))
3335 goto out;
3336
3337 if (act) {
3338 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3339 return -EFAULT;
3340 }
3341
3342 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3343
3344 if (!ret && oact) {
3345 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3346 return -EFAULT;
3347 }
3348 out:
3349 return ret;
3350 }
3351 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)3352 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3353 const struct compat_sigaction __user *, act,
3354 struct compat_sigaction __user *, oact,
3355 compat_size_t, sigsetsize)
3356 {
3357 struct k_sigaction new_ka, old_ka;
3358 compat_sigset_t mask;
3359 #ifdef __ARCH_HAS_SA_RESTORER
3360 compat_uptr_t restorer;
3361 #endif
3362 int ret;
3363
3364 /* XXX: Don't preclude handling different sized sigset_t's. */
3365 if (sigsetsize != sizeof(compat_sigset_t))
3366 return -EINVAL;
3367
3368 if (act) {
3369 compat_uptr_t handler;
3370 ret = get_user(handler, &act->sa_handler);
3371 new_ka.sa.sa_handler = compat_ptr(handler);
3372 #ifdef __ARCH_HAS_SA_RESTORER
3373 ret |= get_user(restorer, &act->sa_restorer);
3374 new_ka.sa.sa_restorer = compat_ptr(restorer);
3375 #endif
3376 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3377 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3378 if (ret)
3379 return -EFAULT;
3380 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3381 }
3382
3383 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3384 if (!ret && oact) {
3385 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3386 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3387 &oact->sa_handler);
3388 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3389 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3390 #ifdef __ARCH_HAS_SA_RESTORER
3391 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3392 &oact->sa_restorer);
3393 #endif
3394 }
3395 return ret;
3396 }
3397 #endif
3398 #endif /* !CONFIG_ODD_RT_SIGACTION */
3399
3400 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)3401 SYSCALL_DEFINE3(sigaction, int, sig,
3402 const struct old_sigaction __user *, act,
3403 struct old_sigaction __user *, oact)
3404 {
3405 struct k_sigaction new_ka, old_ka;
3406 int ret;
3407
3408 if (act) {
3409 old_sigset_t mask;
3410 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3411 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3412 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3413 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3414 __get_user(mask, &act->sa_mask))
3415 return -EFAULT;
3416 #ifdef __ARCH_HAS_KA_RESTORER
3417 new_ka.ka_restorer = NULL;
3418 #endif
3419 siginitset(&new_ka.sa.sa_mask, mask);
3420 }
3421
3422 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3423
3424 if (!ret && oact) {
3425 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3426 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3427 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3428 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3429 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3430 return -EFAULT;
3431 }
3432
3433 return ret;
3434 }
3435 #endif
3436 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)3437 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3438 const struct compat_old_sigaction __user *, act,
3439 struct compat_old_sigaction __user *, oact)
3440 {
3441 struct k_sigaction new_ka, old_ka;
3442 int ret;
3443 compat_old_sigset_t mask;
3444 compat_uptr_t handler, restorer;
3445
3446 if (act) {
3447 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3448 __get_user(handler, &act->sa_handler) ||
3449 __get_user(restorer, &act->sa_restorer) ||
3450 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3451 __get_user(mask, &act->sa_mask))
3452 return -EFAULT;
3453
3454 #ifdef __ARCH_HAS_KA_RESTORER
3455 new_ka.ka_restorer = NULL;
3456 #endif
3457 new_ka.sa.sa_handler = compat_ptr(handler);
3458 new_ka.sa.sa_restorer = compat_ptr(restorer);
3459 siginitset(&new_ka.sa.sa_mask, mask);
3460 }
3461
3462 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3463
3464 if (!ret && oact) {
3465 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3466 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3467 &oact->sa_handler) ||
3468 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3469 &oact->sa_restorer) ||
3470 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3471 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3472 return -EFAULT;
3473 }
3474 return ret;
3475 }
3476 #endif
3477
3478 #ifdef CONFIG_SGETMASK_SYSCALL
3479
3480 /*
3481 * For backwards compatibility. Functionality superseded by sigprocmask.
3482 */
SYSCALL_DEFINE0(sgetmask)3483 SYSCALL_DEFINE0(sgetmask)
3484 {
3485 /* SMP safe */
3486 return current->blocked.sig[0];
3487 }
3488
SYSCALL_DEFINE1(ssetmask,int,newmask)3489 SYSCALL_DEFINE1(ssetmask, int, newmask)
3490 {
3491 int old = current->blocked.sig[0];
3492 sigset_t newset;
3493
3494 siginitset(&newset, newmask);
3495 set_current_blocked(&newset);
3496
3497 return old;
3498 }
3499 #endif /* CONFIG_SGETMASK_SYSCALL */
3500
3501 #ifdef __ARCH_WANT_SYS_SIGNAL
3502 /*
3503 * For backwards compatibility. Functionality superseded by sigaction.
3504 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3505 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3506 {
3507 struct k_sigaction new_sa, old_sa;
3508 int ret;
3509
3510 new_sa.sa.sa_handler = handler;
3511 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3512 sigemptyset(&new_sa.sa.sa_mask);
3513
3514 ret = do_sigaction(sig, &new_sa, &old_sa);
3515
3516 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3517 }
3518 #endif /* __ARCH_WANT_SYS_SIGNAL */
3519
3520 #ifdef __ARCH_WANT_SYS_PAUSE
3521
SYSCALL_DEFINE0(pause)3522 SYSCALL_DEFINE0(pause)
3523 {
3524 while (!signal_pending(current)) {
3525 __set_current_state(TASK_INTERRUPTIBLE);
3526 schedule();
3527 }
3528 return -ERESTARTNOHAND;
3529 }
3530
3531 #endif
3532
sigsuspend(sigset_t * set)3533 static int sigsuspend(sigset_t *set)
3534 {
3535 current->saved_sigmask = current->blocked;
3536 set_current_blocked(set);
3537
3538 while (!signal_pending(current)) {
3539 __set_current_state(TASK_INTERRUPTIBLE);
3540 schedule();
3541 }
3542 set_restore_sigmask();
3543 return -ERESTARTNOHAND;
3544 }
3545
3546 /**
3547 * sys_rt_sigsuspend - replace the signal mask for a value with the
3548 * @unewset value until a signal is received
3549 * @unewset: new signal mask value
3550 * @sigsetsize: size of sigset_t type
3551 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3552 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3553 {
3554 sigset_t newset;
3555
3556 /* XXX: Don't preclude handling different sized sigset_t's. */
3557 if (sigsetsize != sizeof(sigset_t))
3558 return -EINVAL;
3559
3560 if (copy_from_user(&newset, unewset, sizeof(newset)))
3561 return -EFAULT;
3562 return sigsuspend(&newset);
3563 }
3564
3565 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)3566 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3567 {
3568 #ifdef __BIG_ENDIAN
3569 sigset_t newset;
3570 compat_sigset_t newset32;
3571
3572 /* XXX: Don't preclude handling different sized sigset_t's. */
3573 if (sigsetsize != sizeof(sigset_t))
3574 return -EINVAL;
3575
3576 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3577 return -EFAULT;
3578 sigset_from_compat(&newset, &newset32);
3579 return sigsuspend(&newset);
3580 #else
3581 /* on little-endian bitmaps don't care about granularity */
3582 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3583 #endif
3584 }
3585 #endif
3586
3587 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)3588 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3589 {
3590 sigset_t blocked;
3591 siginitset(&blocked, mask);
3592 return sigsuspend(&blocked);
3593 }
3594 #endif
3595 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)3596 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3597 {
3598 sigset_t blocked;
3599 siginitset(&blocked, mask);
3600 return sigsuspend(&blocked);
3601 }
3602 #endif
3603
arch_vma_name(struct vm_area_struct * vma)3604 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3605 {
3606 return NULL;
3607 }
3608
signals_init(void)3609 void __init signals_init(void)
3610 {
3611 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3612 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3613 != offsetof(struct siginfo, _sifields._pad));
3614
3615 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3616 }
3617
3618 #ifdef CONFIG_KGDB_KDB
3619 #include <linux/kdb.h>
3620 /*
3621 * kdb_send_sig_info - Allows kdb to send signals without exposing
3622 * signal internals. This function checks if the required locks are
3623 * available before calling the main signal code, to avoid kdb
3624 * deadlocks.
3625 */
3626 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3627 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3628 {
3629 static struct task_struct *kdb_prev_t;
3630 int sig, new_t;
3631 if (!spin_trylock(&t->sighand->siglock)) {
3632 kdb_printf("Can't do kill command now.\n"
3633 "The sigmask lock is held somewhere else in "
3634 "kernel, try again later\n");
3635 return;
3636 }
3637 spin_unlock(&t->sighand->siglock);
3638 new_t = kdb_prev_t != t;
3639 kdb_prev_t = t;
3640 if (t->state != TASK_RUNNING && new_t) {
3641 kdb_printf("Process is not RUNNING, sending a signal from "
3642 "kdb risks deadlock\n"
3643 "on the run queue locks. "
3644 "The signal has _not_ been sent.\n"
3645 "Reissue the kill command if you want to risk "
3646 "the deadlock.\n");
3647 return;
3648 }
3649 sig = info->si_signo;
3650 if (send_sig_info(sig, info, t))
3651 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3652 sig, t->pid);
3653 else
3654 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3655 }
3656 #endif /* CONFIG_KGDB_KDB */
3657