• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
19 
20 /*
21  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22  * depending on the FPU hardware format:
23  */
24 union fpregs_state init_fpstate __read_mostly;
25 
26 /*
27  * Track whether the kernel is using the FPU state
28  * currently.
29  *
30  * This flag is used:
31  *
32  *   - by IRQ context code to potentially use the FPU
33  *     if it's unused.
34  *
35  *   - to debug kernel_fpu_begin()/end() correctness
36  */
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
38 
39 /*
40  * Track which context is using the FPU on the CPU:
41  */
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43 
kernel_fpu_disable(void)44 static void kernel_fpu_disable(void)
45 {
46 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 	this_cpu_write(in_kernel_fpu, true);
48 }
49 
kernel_fpu_enable(void)50 static void kernel_fpu_enable(void)
51 {
52 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 	this_cpu_write(in_kernel_fpu, false);
54 }
55 
kernel_fpu_disabled(void)56 static bool kernel_fpu_disabled(void)
57 {
58 	return this_cpu_read(in_kernel_fpu);
59 }
60 
61 /*
62  * Were we in an interrupt that interrupted kernel mode?
63  *
64  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
65  * pair does nothing at all: the thread must not have fpu (so
66  * that we don't try to save the FPU state), and TS must
67  * be set (so that the clts/stts pair does nothing that is
68  * visible in the interrupted kernel thread).
69  *
70  * Except for the eagerfpu case when we return true; in the likely case
71  * the thread has FPU but we are not going to set/clear TS.
72  */
interrupted_kernel_fpu_idle(void)73 static bool interrupted_kernel_fpu_idle(void)
74 {
75 	if (kernel_fpu_disabled())
76 		return false;
77 
78 	if (use_eager_fpu())
79 		return true;
80 
81 	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
82 }
83 
84 /*
85  * Were we in user mode (or vm86 mode) when we were
86  * interrupted?
87  *
88  * Doing kernel_fpu_begin/end() is ok if we are running
89  * in an interrupt context from user mode - we'll just
90  * save the FPU state as required.
91  */
interrupted_user_mode(void)92 static bool interrupted_user_mode(void)
93 {
94 	struct pt_regs *regs = get_irq_regs();
95 	return regs && user_mode(regs);
96 }
97 
98 /*
99  * Can we use the FPU in kernel mode with the
100  * whole "kernel_fpu_begin/end()" sequence?
101  *
102  * It's always ok in process context (ie "not interrupt")
103  * but it is sometimes ok even from an irq.
104  */
irq_fpu_usable(void)105 bool irq_fpu_usable(void)
106 {
107 	return !in_interrupt() ||
108 		interrupted_user_mode() ||
109 		interrupted_kernel_fpu_idle();
110 }
111 EXPORT_SYMBOL(irq_fpu_usable);
112 
__kernel_fpu_begin(void)113 void __kernel_fpu_begin(void)
114 {
115 	struct fpu *fpu = &current->thread.fpu;
116 
117 	WARN_ON_FPU(!irq_fpu_usable());
118 
119 	kernel_fpu_disable();
120 
121 	if (fpu->fpregs_active) {
122 		/*
123 		 * Ignore return value -- we don't care if reg state
124 		 * is clobbered.
125 		 */
126 		copy_fpregs_to_fpstate(fpu);
127 	} else {
128 		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
129 		__fpregs_activate_hw();
130 	}
131 }
132 EXPORT_SYMBOL(__kernel_fpu_begin);
133 
__kernel_fpu_end(void)134 void __kernel_fpu_end(void)
135 {
136 	struct fpu *fpu = &current->thread.fpu;
137 
138 	if (fpu->fpregs_active)
139 		copy_kernel_to_fpregs(&fpu->state);
140 	else
141 		__fpregs_deactivate_hw();
142 
143 	kernel_fpu_enable();
144 }
145 EXPORT_SYMBOL(__kernel_fpu_end);
146 
kernel_fpu_begin(void)147 void kernel_fpu_begin(void)
148 {
149 	preempt_disable();
150 	__kernel_fpu_begin();
151 }
152 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
153 
kernel_fpu_end(void)154 void kernel_fpu_end(void)
155 {
156 	__kernel_fpu_end();
157 	preempt_enable();
158 }
159 EXPORT_SYMBOL_GPL(kernel_fpu_end);
160 
161 /*
162  * CR0::TS save/restore functions:
163  */
irq_ts_save(void)164 int irq_ts_save(void)
165 {
166 	/*
167 	 * If in process context and not atomic, we can take a spurious DNA fault.
168 	 * Otherwise, doing clts() in process context requires disabling preemption
169 	 * or some heavy lifting like kernel_fpu_begin()
170 	 */
171 	if (!in_atomic())
172 		return 0;
173 
174 	if (read_cr0() & X86_CR0_TS) {
175 		clts();
176 		return 1;
177 	}
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(irq_ts_save);
182 
irq_ts_restore(int TS_state)183 void irq_ts_restore(int TS_state)
184 {
185 	if (TS_state)
186 		stts();
187 }
188 EXPORT_SYMBOL_GPL(irq_ts_restore);
189 
190 /*
191  * Save the FPU state (mark it for reload if necessary):
192  *
193  * This only ever gets called for the current task.
194  */
fpu__save(struct fpu * fpu)195 void fpu__save(struct fpu *fpu)
196 {
197 	WARN_ON_FPU(fpu != &current->thread.fpu);
198 
199 	preempt_disable();
200 	trace_x86_fpu_before_save(fpu);
201 	if (fpu->fpregs_active) {
202 		if (!copy_fpregs_to_fpstate(fpu)) {
203 			if (use_eager_fpu())
204 				copy_kernel_to_fpregs(&fpu->state);
205 			else
206 				fpregs_deactivate(fpu);
207 		}
208 	}
209 	trace_x86_fpu_after_save(fpu);
210 	preempt_enable();
211 }
212 EXPORT_SYMBOL_GPL(fpu__save);
213 
214 /*
215  * Legacy x87 fpstate state init:
216  */
fpstate_init_fstate(struct fregs_state * fp)217 static inline void fpstate_init_fstate(struct fregs_state *fp)
218 {
219 	fp->cwd = 0xffff037fu;
220 	fp->swd = 0xffff0000u;
221 	fp->twd = 0xffffffffu;
222 	fp->fos = 0xffff0000u;
223 }
224 
fpstate_init(union fpregs_state * state)225 void fpstate_init(union fpregs_state *state)
226 {
227 	if (!static_cpu_has(X86_FEATURE_FPU)) {
228 		fpstate_init_soft(&state->soft);
229 		return;
230 	}
231 
232 	memset(state, 0, fpu_kernel_xstate_size);
233 
234 	/*
235 	 * XRSTORS requires that this bit is set in xcomp_bv, or
236 	 * it will #GP. Make sure it is replaced after the memset().
237 	 */
238 	if (static_cpu_has(X86_FEATURE_XSAVES))
239 		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT |
240 					       xfeatures_mask;
241 
242 	if (static_cpu_has(X86_FEATURE_FXSR))
243 		fpstate_init_fxstate(&state->fxsave);
244 	else
245 		fpstate_init_fstate(&state->fsave);
246 }
247 EXPORT_SYMBOL_GPL(fpstate_init);
248 
fpu__copy(struct fpu * dst_fpu,struct fpu * src_fpu)249 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
250 {
251 	dst_fpu->counter = 0;
252 	dst_fpu->fpregs_active = 0;
253 	dst_fpu->last_cpu = -1;
254 
255 	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
256 		return 0;
257 
258 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
259 
260 	/*
261 	 * Don't let 'init optimized' areas of the XSAVE area
262 	 * leak into the child task:
263 	 */
264 	if (use_eager_fpu())
265 		memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
266 
267 	/*
268 	 * Save current FPU registers directly into the child
269 	 * FPU context, without any memory-to-memory copying.
270 	 * In lazy mode, if the FPU context isn't loaded into
271 	 * fpregs, CR0.TS will be set and do_device_not_available
272 	 * will load the FPU context.
273 	 *
274 	 * We have to do all this with preemption disabled,
275 	 * mostly because of the FNSAVE case, because in that
276 	 * case we must not allow preemption in the window
277 	 * between the FNSAVE and us marking the context lazy.
278 	 *
279 	 * It shouldn't be an issue as even FNSAVE is plenty
280 	 * fast in terms of critical section length.
281 	 */
282 	preempt_disable();
283 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
284 		memcpy(&src_fpu->state, &dst_fpu->state,
285 		       fpu_kernel_xstate_size);
286 
287 		if (use_eager_fpu())
288 			copy_kernel_to_fpregs(&src_fpu->state);
289 		else
290 			fpregs_deactivate(src_fpu);
291 	}
292 	preempt_enable();
293 
294 	trace_x86_fpu_copy_src(src_fpu);
295 	trace_x86_fpu_copy_dst(dst_fpu);
296 
297 	return 0;
298 }
299 
300 /*
301  * Activate the current task's in-memory FPU context,
302  * if it has not been used before:
303  */
fpu__activate_curr(struct fpu * fpu)304 void fpu__activate_curr(struct fpu *fpu)
305 {
306 	WARN_ON_FPU(fpu != &current->thread.fpu);
307 
308 	if (!fpu->fpstate_active) {
309 		fpstate_init(&fpu->state);
310 		trace_x86_fpu_init_state(fpu);
311 
312 		trace_x86_fpu_activate_state(fpu);
313 		/* Safe to do for the current task: */
314 		fpu->fpstate_active = 1;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(fpu__activate_curr);
318 
319 /*
320  * This function must be called before we read a task's fpstate.
321  *
322  * If the task has not used the FPU before then initialize its
323  * fpstate.
324  *
325  * If the task has used the FPU before then save it.
326  */
fpu__activate_fpstate_read(struct fpu * fpu)327 void fpu__activate_fpstate_read(struct fpu *fpu)
328 {
329 	/*
330 	 * If fpregs are active (in the current CPU), then
331 	 * copy them to the fpstate:
332 	 */
333 	if (fpu->fpregs_active) {
334 		fpu__save(fpu);
335 	} else {
336 		if (!fpu->fpstate_active) {
337 			fpstate_init(&fpu->state);
338 			trace_x86_fpu_init_state(fpu);
339 
340 			trace_x86_fpu_activate_state(fpu);
341 			/* Safe to do for current and for stopped child tasks: */
342 			fpu->fpstate_active = 1;
343 		}
344 	}
345 }
346 
347 /*
348  * This function must be called before we write a task's fpstate.
349  *
350  * If the task has used the FPU before then unlazy it.
351  * If the task has not used the FPU before then initialize its fpstate.
352  *
353  * After this function call, after registers in the fpstate are
354  * modified and the child task has woken up, the child task will
355  * restore the modified FPU state from the modified context. If we
356  * didn't clear its lazy status here then the lazy in-registers
357  * state pending on its former CPU could be restored, corrupting
358  * the modifications.
359  */
fpu__activate_fpstate_write(struct fpu * fpu)360 void fpu__activate_fpstate_write(struct fpu *fpu)
361 {
362 	/*
363 	 * Only stopped child tasks can be used to modify the FPU
364 	 * state in the fpstate buffer:
365 	 */
366 	WARN_ON_FPU(fpu == &current->thread.fpu);
367 
368 	if (fpu->fpstate_active) {
369 		/* Invalidate any lazy state: */
370 		fpu->last_cpu = -1;
371 	} else {
372 		fpstate_init(&fpu->state);
373 		trace_x86_fpu_init_state(fpu);
374 
375 		trace_x86_fpu_activate_state(fpu);
376 		/* Safe to do for stopped child tasks: */
377 		fpu->fpstate_active = 1;
378 	}
379 }
380 
381 /*
382  * This function must be called before we write the current
383  * task's fpstate.
384  *
385  * This call gets the current FPU register state and moves
386  * it in to the 'fpstate'.  Preemption is disabled so that
387  * no writes to the 'fpstate' can occur from context
388  * swiches.
389  *
390  * Must be followed by a fpu__current_fpstate_write_end().
391  */
fpu__current_fpstate_write_begin(void)392 void fpu__current_fpstate_write_begin(void)
393 {
394 	struct fpu *fpu = &current->thread.fpu;
395 
396 	/*
397 	 * Ensure that the context-switching code does not write
398 	 * over the fpstate while we are doing our update.
399 	 */
400 	preempt_disable();
401 
402 	/*
403 	 * Move the fpregs in to the fpu's 'fpstate'.
404 	 */
405 	fpu__activate_fpstate_read(fpu);
406 
407 	/*
408 	 * The caller is about to write to 'fpu'.  Ensure that no
409 	 * CPU thinks that its fpregs match the fpstate.  This
410 	 * ensures we will not be lazy and skip a XRSTOR in the
411 	 * future.
412 	 */
413 	fpu->last_cpu = -1;
414 }
415 
416 /*
417  * This function must be paired with fpu__current_fpstate_write_begin()
418  *
419  * This will ensure that the modified fpstate gets placed back in
420  * the fpregs if necessary.
421  *
422  * Note: This function may be called whether or not an _actual_
423  * write to the fpstate occurred.
424  */
fpu__current_fpstate_write_end(void)425 void fpu__current_fpstate_write_end(void)
426 {
427 	struct fpu *fpu = &current->thread.fpu;
428 
429 	/*
430 	 * 'fpu' now has an updated copy of the state, but the
431 	 * registers may still be out of date.  Update them with
432 	 * an XRSTOR if they are active.
433 	 */
434 	if (fpregs_active())
435 		copy_kernel_to_fpregs(&fpu->state);
436 
437 	/*
438 	 * Our update is done and the fpregs/fpstate are in sync
439 	 * if necessary.  Context switches can happen again.
440 	 */
441 	preempt_enable();
442 }
443 
444 /*
445  * 'fpu__restore()' is called to copy FPU registers from
446  * the FPU fpstate to the live hw registers and to activate
447  * access to the hardware registers, so that FPU instructions
448  * can be used afterwards.
449  *
450  * Must be called with kernel preemption disabled (for example
451  * with local interrupts disabled, as it is in the case of
452  * do_device_not_available()).
453  */
fpu__restore(struct fpu * fpu)454 void fpu__restore(struct fpu *fpu)
455 {
456 	fpu__activate_curr(fpu);
457 
458 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
459 	kernel_fpu_disable();
460 	trace_x86_fpu_before_restore(fpu);
461 	fpregs_activate(fpu);
462 	copy_kernel_to_fpregs(&fpu->state);
463 	fpu->counter++;
464 	trace_x86_fpu_after_restore(fpu);
465 	kernel_fpu_enable();
466 }
467 EXPORT_SYMBOL_GPL(fpu__restore);
468 
469 /*
470  * Drops current FPU state: deactivates the fpregs and
471  * the fpstate. NOTE: it still leaves previous contents
472  * in the fpregs in the eager-FPU case.
473  *
474  * This function can be used in cases where we know that
475  * a state-restore is coming: either an explicit one,
476  * or a reschedule.
477  */
fpu__drop(struct fpu * fpu)478 void fpu__drop(struct fpu *fpu)
479 {
480 	preempt_disable();
481 	fpu->counter = 0;
482 
483 	if (fpu->fpregs_active) {
484 		/* Ignore delayed exceptions from user space */
485 		asm volatile("1: fwait\n"
486 			     "2:\n"
487 			     _ASM_EXTABLE(1b, 2b));
488 		fpregs_deactivate(fpu);
489 	}
490 
491 	fpu->fpstate_active = 0;
492 
493 	trace_x86_fpu_dropped(fpu);
494 
495 	preempt_enable();
496 }
497 
498 /*
499  * Clear FPU registers by setting them up from
500  * the init fpstate:
501  */
copy_init_fpstate_to_fpregs(void)502 static inline void copy_init_fpstate_to_fpregs(void)
503 {
504 	if (use_xsave())
505 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
506 	else if (static_cpu_has(X86_FEATURE_FXSR))
507 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
508 	else
509 		copy_kernel_to_fregs(&init_fpstate.fsave);
510 
511 	if (boot_cpu_has(X86_FEATURE_OSPKE))
512 		copy_init_pkru_to_fpregs();
513 }
514 
515 /*
516  * Clear the FPU state back to init state.
517  *
518  * Called by sys_execve(), by the signal handler code and by various
519  * error paths.
520  */
fpu__clear(struct fpu * fpu)521 void fpu__clear(struct fpu *fpu)
522 {
523 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
524 
525 	fpu__drop(fpu);
526 
527 	/*
528 	 * Make sure fpstate is cleared and initialized.
529 	 */
530 	if (static_cpu_has(X86_FEATURE_FPU)) {
531 		fpu__activate_curr(fpu);
532 		user_fpu_begin();
533 		copy_init_fpstate_to_fpregs();
534 	}
535 }
536 
537 /*
538  * x87 math exception handling:
539  */
540 
fpu__exception_code(struct fpu * fpu,int trap_nr)541 int fpu__exception_code(struct fpu *fpu, int trap_nr)
542 {
543 	int err;
544 
545 	if (trap_nr == X86_TRAP_MF) {
546 		unsigned short cwd, swd;
547 		/*
548 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
549 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
550 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
551 		 * fault bit.  We should only be taking one exception at a time,
552 		 * so if this combination doesn't produce any single exception,
553 		 * then we have a bad program that isn't synchronizing its FPU usage
554 		 * and it will suffer the consequences since we won't be able to
555 		 * fully reproduce the context of the exception.
556 		 */
557 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
558 			cwd = fpu->state.fxsave.cwd;
559 			swd = fpu->state.fxsave.swd;
560 		} else {
561 			cwd = (unsigned short)fpu->state.fsave.cwd;
562 			swd = (unsigned short)fpu->state.fsave.swd;
563 		}
564 
565 		err = swd & ~cwd;
566 	} else {
567 		/*
568 		 * The SIMD FPU exceptions are handled a little differently, as there
569 		 * is only a single status/control register.  Thus, to determine which
570 		 * unmasked exception was caught we must mask the exception mask bits
571 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
572 		 */
573 		unsigned short mxcsr = MXCSR_DEFAULT;
574 
575 		if (boot_cpu_has(X86_FEATURE_XMM))
576 			mxcsr = fpu->state.fxsave.mxcsr;
577 
578 		err = ~(mxcsr >> 7) & mxcsr;
579 	}
580 
581 	if (err & 0x001) {	/* Invalid op */
582 		/*
583 		 * swd & 0x240 == 0x040: Stack Underflow
584 		 * swd & 0x240 == 0x240: Stack Overflow
585 		 * User must clear the SF bit (0x40) if set
586 		 */
587 		return FPE_FLTINV;
588 	} else if (err & 0x004) { /* Divide by Zero */
589 		return FPE_FLTDIV;
590 	} else if (err & 0x008) { /* Overflow */
591 		return FPE_FLTOVF;
592 	} else if (err & 0x012) { /* Denormal, Underflow */
593 		return FPE_FLTUND;
594 	} else if (err & 0x020) { /* Precision */
595 		return FPE_FLTRES;
596 	}
597 
598 	/*
599 	 * If we're using IRQ 13, or supposedly even some trap
600 	 * X86_TRAP_MF implementations, it's possible
601 	 * we get a spurious trap, which is not an error.
602 	 */
603 	return 0;
604 }
605