• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
zero_ino_node_unused(struct ubifs_ino_node * ino)67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
zero_dent_node_unused(struct ubifs_dent_node * dent)78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 	memset(dent->padding2, 0, 4);
82 }
83 
84 /**
85  * zero_data_node_unused - zero out unused fields of an on-flash data node.
86  * @data: the data node to zero out
87  */
zero_data_node_unused(struct ubifs_data_node * data)88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
89 {
90 	memset(data->padding, 0, 2);
91 }
92 
93 /**
94  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95  *                         node.
96  * @trun: the truncation node to zero out
97  */
zero_trun_node_unused(struct ubifs_trun_node * trun)98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99 {
100 	memset(trun->padding, 0, 12);
101 }
102 
103 /**
104  * reserve_space - reserve space in the journal.
105  * @c: UBIFS file-system description object
106  * @jhead: journal head number
107  * @len: node length
108  *
109  * This function reserves space in journal head @head. If the reservation
110  * succeeded, the journal head stays locked and later has to be unlocked using
111  * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112  * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113  * other negative error codes in case of other failures.
114  */
reserve_space(struct ubifs_info * c,int jhead,int len)115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
116 {
117 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119 
120 	/*
121 	 * Typically, the base head has smaller nodes written to it, so it is
122 	 * better to try to allocate space at the ends of eraseblocks. This is
123 	 * what the squeeze parameter does.
124 	 */
125 	ubifs_assert(!c->ro_media && !c->ro_mount);
126 	squeeze = (jhead == BASEHD);
127 again:
128 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
129 
130 	if (c->ro_error) {
131 		err = -EROFS;
132 		goto out_unlock;
133 	}
134 
135 	avail = c->leb_size - wbuf->offs - wbuf->used;
136 	if (wbuf->lnum != -1 && avail >= len)
137 		return 0;
138 
139 	/*
140 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 	 * LEB with some empty space.
142 	 */
143 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
144 	if (lnum >= 0)
145 		goto out;
146 
147 	err = lnum;
148 	if (err != -ENOSPC)
149 		goto out_unlock;
150 
151 	/*
152 	 * No free space, we have to run garbage collector to make
153 	 * some. But the write-buffer mutex has to be unlocked because
154 	 * GC also takes it.
155 	 */
156 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
157 	mutex_unlock(&wbuf->io_mutex);
158 
159 	lnum = ubifs_garbage_collect(c, 0);
160 	if (lnum < 0) {
161 		err = lnum;
162 		if (err != -ENOSPC)
163 			return err;
164 
165 		/*
166 		 * GC could not make a free LEB. But someone else may
167 		 * have allocated new bud for this journal head,
168 		 * because we dropped @wbuf->io_mutex, so try once
169 		 * again.
170 		 */
171 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
172 			dbg_jhead(jhead));
173 		if (retries++ < 2) {
174 			dbg_jnl("retry (%d)", retries);
175 			goto again;
176 		}
177 
178 		dbg_jnl("return -ENOSPC");
179 		return err;
180 	}
181 
182 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
183 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
184 	avail = c->leb_size - wbuf->offs - wbuf->used;
185 
186 	if (wbuf->lnum != -1 && avail >= len) {
187 		/*
188 		 * Someone else has switched the journal head and we have
189 		 * enough space now. This happens when more than one process is
190 		 * trying to write to the same journal head at the same time.
191 		 */
192 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
193 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
194 		err = ubifs_return_leb(c, lnum);
195 		if (err)
196 			goto out_unlock;
197 		return 0;
198 	}
199 
200 	offs = 0;
201 
202 out:
203 	/*
204 	 * Make sure we synchronize the write-buffer before we add the new bud
205 	 * to the log. Otherwise we may have a power cut after the log
206 	 * reference node for the last bud (@lnum) is written but before the
207 	 * write-buffer data are written to the next-to-last bud
208 	 * (@wbuf->lnum). And the effect would be that the recovery would see
209 	 * that there is corruption in the next-to-last bud.
210 	 */
211 	err = ubifs_wbuf_sync_nolock(wbuf);
212 	if (err)
213 		goto out_return;
214 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
215 	if (err)
216 		goto out_return;
217 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
218 	if (err)
219 		goto out_unlock;
220 
221 	return 0;
222 
223 out_unlock:
224 	mutex_unlock(&wbuf->io_mutex);
225 	return err;
226 
227 out_return:
228 	/* An error occurred and the LEB has to be returned to lprops */
229 	ubifs_assert(err < 0);
230 	err1 = ubifs_return_leb(c, lnum);
231 	if (err1 && err == -EAGAIN)
232 		/*
233 		 * Return original error code only if it is not %-EAGAIN,
234 		 * which is not really an error. Otherwise, return the error
235 		 * code of 'ubifs_return_leb()'.
236 		 */
237 		err = err1;
238 	mutex_unlock(&wbuf->io_mutex);
239 	return err;
240 }
241 
242 /**
243  * write_node - write node to a journal head.
244  * @c: UBIFS file-system description object
245  * @jhead: journal head
246  * @node: node to write
247  * @len: node length
248  * @lnum: LEB number written is returned here
249  * @offs: offset written is returned here
250  *
251  * This function writes a node to reserved space of journal head @jhead.
252  * Returns zero in case of success and a negative error code in case of
253  * failure.
254  */
write_node(struct ubifs_info * c,int jhead,void * node,int len,int * lnum,int * offs)255 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
256 		      int *lnum, int *offs)
257 {
258 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
259 
260 	ubifs_assert(jhead != GCHD);
261 
262 	*lnum = c->jheads[jhead].wbuf.lnum;
263 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
264 
265 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
266 		dbg_jhead(jhead), *lnum, *offs, len);
267 	ubifs_prepare_node(c, node, len, 0);
268 
269 	return ubifs_wbuf_write_nolock(wbuf, node, len);
270 }
271 
272 /**
273  * write_head - write data to a journal head.
274  * @c: UBIFS file-system description object
275  * @jhead: journal head
276  * @buf: buffer to write
277  * @len: length to write
278  * @lnum: LEB number written is returned here
279  * @offs: offset written is returned here
280  * @sync: non-zero if the write-buffer has to by synchronized
281  *
282  * This function is the same as 'write_node()' but it does not assume the
283  * buffer it is writing is a node, so it does not prepare it (which means
284  * initializing common header and calculating CRC).
285  */
write_head(struct ubifs_info * c,int jhead,void * buf,int len,int * lnum,int * offs,int sync)286 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
287 		      int *lnum, int *offs, int sync)
288 {
289 	int err;
290 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
291 
292 	ubifs_assert(jhead != GCHD);
293 
294 	*lnum = c->jheads[jhead].wbuf.lnum;
295 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
296 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
297 		dbg_jhead(jhead), *lnum, *offs, len);
298 
299 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300 	if (err)
301 		return err;
302 	if (sync)
303 		err = ubifs_wbuf_sync_nolock(wbuf);
304 	return err;
305 }
306 
307 /**
308  * make_reservation - reserve journal space.
309  * @c: UBIFS file-system description object
310  * @jhead: journal head
311  * @len: how many bytes to reserve
312  *
313  * This function makes space reservation in journal head @jhead. The function
314  * takes the commit lock and locks the journal head, and the caller has to
315  * unlock the head and finish the reservation with 'finish_reservation()'.
316  * Returns zero in case of success and a negative error code in case of
317  * failure.
318  *
319  * Note, the journal head may be unlocked as soon as the data is written, while
320  * the commit lock has to be released after the data has been added to the
321  * TNC.
322  */
make_reservation(struct ubifs_info * c,int jhead,int len)323 static int make_reservation(struct ubifs_info *c, int jhead, int len)
324 {
325 	int err, cmt_retries = 0, nospc_retries = 0;
326 
327 again:
328 	down_read(&c->commit_sem);
329 	err = reserve_space(c, jhead, len);
330 	if (!err)
331 		return 0;
332 	up_read(&c->commit_sem);
333 
334 	if (err == -ENOSPC) {
335 		/*
336 		 * GC could not make any progress. We should try to commit
337 		 * once because it could make some dirty space and GC would
338 		 * make progress, so make the error -EAGAIN so that the below
339 		 * will commit and re-try.
340 		 */
341 		if (nospc_retries++ < 2) {
342 			dbg_jnl("no space, retry");
343 			err = -EAGAIN;
344 		}
345 
346 		/*
347 		 * This means that the budgeting is incorrect. We always have
348 		 * to be able to write to the media, because all operations are
349 		 * budgeted. Deletions are not budgeted, though, but we reserve
350 		 * an extra LEB for them.
351 		 */
352 	}
353 
354 	if (err != -EAGAIN)
355 		goto out;
356 
357 	/*
358 	 * -EAGAIN means that the journal is full or too large, or the above
359 	 * code wants to do one commit. Do this and re-try.
360 	 */
361 	if (cmt_retries > 128) {
362 		/*
363 		 * This should not happen unless the journal size limitations
364 		 * are too tough.
365 		 */
366 		ubifs_err(c, "stuck in space allocation");
367 		err = -ENOSPC;
368 		goto out;
369 	} else if (cmt_retries > 32)
370 		ubifs_warn(c, "too many space allocation re-tries (%d)",
371 			   cmt_retries);
372 
373 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
374 		cmt_retries);
375 	cmt_retries += 1;
376 
377 	err = ubifs_run_commit(c);
378 	if (err)
379 		return err;
380 	goto again;
381 
382 out:
383 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
384 		  len, jhead, err);
385 	if (err == -ENOSPC) {
386 		/* This are some budgeting problems, print useful information */
387 		down_write(&c->commit_sem);
388 		dump_stack();
389 		ubifs_dump_budg(c, &c->bi);
390 		ubifs_dump_lprops(c);
391 		cmt_retries = dbg_check_lprops(c);
392 		up_write(&c->commit_sem);
393 	}
394 	return err;
395 }
396 
397 /**
398  * release_head - release a journal head.
399  * @c: UBIFS file-system description object
400  * @jhead: journal head
401  *
402  * This function releases journal head @jhead which was locked by
403  * the 'make_reservation()' function. It has to be called after each successful
404  * 'make_reservation()' invocation.
405  */
release_head(struct ubifs_info * c,int jhead)406 static inline void release_head(struct ubifs_info *c, int jhead)
407 {
408 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
409 }
410 
411 /**
412  * finish_reservation - finish a reservation.
413  * @c: UBIFS file-system description object
414  *
415  * This function finishes journal space reservation. It must be called after
416  * 'make_reservation()'.
417  */
finish_reservation(struct ubifs_info * c)418 static void finish_reservation(struct ubifs_info *c)
419 {
420 	up_read(&c->commit_sem);
421 }
422 
423 /**
424  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
425  * @mode: inode mode
426  */
get_dent_type(int mode)427 static int get_dent_type(int mode)
428 {
429 	switch (mode & S_IFMT) {
430 	case S_IFREG:
431 		return UBIFS_ITYPE_REG;
432 	case S_IFDIR:
433 		return UBIFS_ITYPE_DIR;
434 	case S_IFLNK:
435 		return UBIFS_ITYPE_LNK;
436 	case S_IFBLK:
437 		return UBIFS_ITYPE_BLK;
438 	case S_IFCHR:
439 		return UBIFS_ITYPE_CHR;
440 	case S_IFIFO:
441 		return UBIFS_ITYPE_FIFO;
442 	case S_IFSOCK:
443 		return UBIFS_ITYPE_SOCK;
444 	default:
445 		BUG();
446 	}
447 	return 0;
448 }
449 
450 /**
451  * pack_inode - pack an inode node.
452  * @c: UBIFS file-system description object
453  * @ino: buffer in which to pack inode node
454  * @inode: inode to pack
455  * @last: indicates the last node of the group
456  */
pack_inode(struct ubifs_info * c,struct ubifs_ino_node * ino,const struct inode * inode,int last)457 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
458 		       const struct inode *inode, int last)
459 {
460 	int data_len = 0, last_reference = !inode->i_nlink;
461 	struct ubifs_inode *ui = ubifs_inode(inode);
462 
463 	ino->ch.node_type = UBIFS_INO_NODE;
464 	ino_key_init_flash(c, &ino->key, inode->i_ino);
465 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
466 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
467 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
468 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
469 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
470 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
471 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
472 	ino->uid   = cpu_to_le32(i_uid_read(inode));
473 	ino->gid   = cpu_to_le32(i_gid_read(inode));
474 	ino->mode  = cpu_to_le32(inode->i_mode);
475 	ino->flags = cpu_to_le32(ui->flags);
476 	ino->size  = cpu_to_le64(ui->ui_size);
477 	ino->nlink = cpu_to_le32(inode->i_nlink);
478 	ino->compr_type  = cpu_to_le16(ui->compr_type);
479 	ino->data_len    = cpu_to_le32(ui->data_len);
480 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
481 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
482 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
483 	zero_ino_node_unused(ino);
484 
485 	/*
486 	 * Drop the attached data if this is a deletion inode, the data is not
487 	 * needed anymore.
488 	 */
489 	if (!last_reference) {
490 		memcpy(ino->data, ui->data, ui->data_len);
491 		data_len = ui->data_len;
492 	}
493 
494 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
495 }
496 
497 /**
498  * mark_inode_clean - mark UBIFS inode as clean.
499  * @c: UBIFS file-system description object
500  * @ui: UBIFS inode to mark as clean
501  *
502  * This helper function marks UBIFS inode @ui as clean by cleaning the
503  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
504  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
505  * just do nothing.
506  */
mark_inode_clean(struct ubifs_info * c,struct ubifs_inode * ui)507 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
508 {
509 	if (ui->dirty)
510 		ubifs_release_dirty_inode_budget(c, ui);
511 	ui->dirty = 0;
512 }
513 
514 /**
515  * ubifs_jnl_update - update inode.
516  * @c: UBIFS file-system description object
517  * @dir: parent inode or host inode in case of extended attributes
518  * @nm: directory entry name
519  * @inode: inode to update
520  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
521  * @xent: non-zero if the directory entry is an extended attribute entry
522  *
523  * This function updates an inode by writing a directory entry (or extended
524  * attribute entry), the inode itself, and the parent directory inode (or the
525  * host inode) to the journal.
526  *
527  * The function writes the host inode @dir last, which is important in case of
528  * extended attributes. Indeed, then we guarantee that if the host inode gets
529  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
530  * the extended attribute inode gets flushed too. And this is exactly what the
531  * user expects - synchronizing the host inode synchronizes its extended
532  * attributes. Similarly, this guarantees that if @dir is synchronized, its
533  * directory entry corresponding to @nm gets synchronized too.
534  *
535  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
536  * function synchronizes the write-buffer.
537  *
538  * This function marks the @dir and @inode inodes as clean and returns zero on
539  * success. In case of failure, a negative error code is returned.
540  */
ubifs_jnl_update(struct ubifs_info * c,const struct inode * dir,const struct qstr * nm,const struct inode * inode,int deletion,int xent)541 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
542 		     const struct qstr *nm, const struct inode *inode,
543 		     int deletion, int xent)
544 {
545 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
546 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
547 	int last_reference = !!(deletion && inode->i_nlink == 0);
548 	struct ubifs_inode *ui = ubifs_inode(inode);
549 	struct ubifs_inode *host_ui = ubifs_inode(dir);
550 	struct ubifs_dent_node *dent;
551 	struct ubifs_ino_node *ino;
552 	union ubifs_key dent_key, ino_key;
553 
554 	dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
555 		inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
556 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
557 
558 	dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
559 	ilen = UBIFS_INO_NODE_SZ;
560 
561 	/*
562 	 * If the last reference to the inode is being deleted, then there is
563 	 * no need to attach and write inode data, it is being deleted anyway.
564 	 * And if the inode is being deleted, no need to synchronize
565 	 * write-buffer even if the inode is synchronous.
566 	 */
567 	if (!last_reference) {
568 		ilen += ui->data_len;
569 		sync |= IS_SYNC(inode);
570 	}
571 
572 	aligned_dlen = ALIGN(dlen, 8);
573 	aligned_ilen = ALIGN(ilen, 8);
574 
575 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
576 	/* Make sure to also account for extended attributes */
577 	len += host_ui->data_len;
578 
579 	dent = kzalloc(len, GFP_NOFS);
580 	if (!dent)
581 		return -ENOMEM;
582 
583 	/* Make reservation before allocating sequence numbers */
584 	err = make_reservation(c, BASEHD, len);
585 	if (err)
586 		goto out_free;
587 
588 	if (!xent) {
589 		dent->ch.node_type = UBIFS_DENT_NODE;
590 		dent_key_init(c, &dent_key, dir->i_ino, nm);
591 	} else {
592 		dent->ch.node_type = UBIFS_XENT_NODE;
593 		xent_key_init(c, &dent_key, dir->i_ino, nm);
594 	}
595 
596 	key_write(c, &dent_key, dent->key);
597 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
598 	dent->type = get_dent_type(inode->i_mode);
599 	dent->nlen = cpu_to_le16(nm->len);
600 	memcpy(dent->name, nm->name, nm->len);
601 	dent->name[nm->len] = '\0';
602 	zero_dent_node_unused(dent);
603 	ubifs_prep_grp_node(c, dent, dlen, 0);
604 
605 	ino = (void *)dent + aligned_dlen;
606 	pack_inode(c, ino, inode, 0);
607 	ino = (void *)ino + aligned_ilen;
608 	pack_inode(c, ino, dir, 1);
609 
610 	if (last_reference) {
611 		err = ubifs_add_orphan(c, inode->i_ino);
612 		if (err) {
613 			release_head(c, BASEHD);
614 			goto out_finish;
615 		}
616 		ui->del_cmtno = c->cmt_no;
617 	}
618 
619 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
620 	if (err)
621 		goto out_release;
622 	if (!sync) {
623 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
624 
625 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
626 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
627 	}
628 	release_head(c, BASEHD);
629 	kfree(dent);
630 
631 	if (deletion) {
632 		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
633 		if (err)
634 			goto out_ro;
635 		err = ubifs_add_dirt(c, lnum, dlen);
636 	} else
637 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
638 	if (err)
639 		goto out_ro;
640 
641 	/*
642 	 * Note, we do not remove the inode from TNC even if the last reference
643 	 * to it has just been deleted, because the inode may still be opened.
644 	 * Instead, the inode has been added to orphan lists and the orphan
645 	 * subsystem will take further care about it.
646 	 */
647 	ino_key_init(c, &ino_key, inode->i_ino);
648 	ino_offs = dent_offs + aligned_dlen;
649 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
650 	if (err)
651 		goto out_ro;
652 
653 	ino_key_init(c, &ino_key, dir->i_ino);
654 	ino_offs += aligned_ilen;
655 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
656 			    UBIFS_INO_NODE_SZ + host_ui->data_len);
657 	if (err)
658 		goto out_ro;
659 
660 	finish_reservation(c);
661 	spin_lock(&ui->ui_lock);
662 	ui->synced_i_size = ui->ui_size;
663 	spin_unlock(&ui->ui_lock);
664 	mark_inode_clean(c, ui);
665 	mark_inode_clean(c, host_ui);
666 	return 0;
667 
668 out_finish:
669 	finish_reservation(c);
670 out_free:
671 	kfree(dent);
672 	return err;
673 
674 out_release:
675 	release_head(c, BASEHD);
676 	kfree(dent);
677 out_ro:
678 	ubifs_ro_mode(c, err);
679 	if (last_reference)
680 		ubifs_delete_orphan(c, inode->i_ino);
681 	finish_reservation(c);
682 	return err;
683 }
684 
685 /**
686  * ubifs_jnl_write_data - write a data node to the journal.
687  * @c: UBIFS file-system description object
688  * @inode: inode the data node belongs to
689  * @key: node key
690  * @buf: buffer to write
691  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
692  *
693  * This function writes a data node to the journal. Returns %0 if the data node
694  * was successfully written, and a negative error code in case of failure.
695  */
ubifs_jnl_write_data(struct ubifs_info * c,const struct inode * inode,const union ubifs_key * key,const void * buf,int len)696 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
697 			 const union ubifs_key *key, const void *buf, int len)
698 {
699 	struct ubifs_data_node *data;
700 	int err, lnum, offs, compr_type, out_len;
701 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
702 	struct ubifs_inode *ui = ubifs_inode(inode);
703 
704 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
705 		(unsigned long)key_inum(c, key), key_block(c, key), len);
706 	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
707 
708 	data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
709 	if (!data) {
710 		/*
711 		 * Fall-back to the write reserve buffer. Note, we might be
712 		 * currently on the memory reclaim path, when the kernel is
713 		 * trying to free some memory by writing out dirty pages. The
714 		 * write reserve buffer helps us to guarantee that we are
715 		 * always able to write the data.
716 		 */
717 		allocated = 0;
718 		mutex_lock(&c->write_reserve_mutex);
719 		data = c->write_reserve_buf;
720 	}
721 
722 	data->ch.node_type = UBIFS_DATA_NODE;
723 	key_write(c, key, &data->key);
724 	data->size = cpu_to_le32(len);
725 	zero_data_node_unused(data);
726 
727 	if (!(ui->flags & UBIFS_COMPR_FL))
728 		/* Compression is disabled for this inode */
729 		compr_type = UBIFS_COMPR_NONE;
730 	else
731 		compr_type = ui->compr_type;
732 
733 	out_len = dlen - UBIFS_DATA_NODE_SZ;
734 	ubifs_compress(c, buf, len, &data->data, &out_len, &compr_type);
735 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
736 
737 	dlen = UBIFS_DATA_NODE_SZ + out_len;
738 	data->compr_type = cpu_to_le16(compr_type);
739 
740 	/* Make reservation before allocating sequence numbers */
741 	err = make_reservation(c, DATAHD, dlen);
742 	if (err)
743 		goto out_free;
744 
745 	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
746 	if (err)
747 		goto out_release;
748 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
749 	release_head(c, DATAHD);
750 
751 	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
752 	if (err)
753 		goto out_ro;
754 
755 	finish_reservation(c);
756 	if (!allocated)
757 		mutex_unlock(&c->write_reserve_mutex);
758 	else
759 		kfree(data);
760 	return 0;
761 
762 out_release:
763 	release_head(c, DATAHD);
764 out_ro:
765 	ubifs_ro_mode(c, err);
766 	finish_reservation(c);
767 out_free:
768 	if (!allocated)
769 		mutex_unlock(&c->write_reserve_mutex);
770 	else
771 		kfree(data);
772 	return err;
773 }
774 
775 /**
776  * ubifs_jnl_write_inode - flush inode to the journal.
777  * @c: UBIFS file-system description object
778  * @inode: inode to flush
779  *
780  * This function writes inode @inode to the journal. If the inode is
781  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
782  * success and a negative error code in case of failure.
783  */
ubifs_jnl_write_inode(struct ubifs_info * c,const struct inode * inode)784 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
785 {
786 	int err, lnum, offs;
787 	struct ubifs_ino_node *ino;
788 	struct ubifs_inode *ui = ubifs_inode(inode);
789 	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
790 
791 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
792 
793 	/*
794 	 * If the inode is being deleted, do not write the attached data. No
795 	 * need to synchronize the write-buffer either.
796 	 */
797 	if (!last_reference) {
798 		len += ui->data_len;
799 		sync = IS_SYNC(inode);
800 	}
801 	ino = kmalloc(len, GFP_NOFS);
802 	if (!ino)
803 		return -ENOMEM;
804 
805 	/* Make reservation before allocating sequence numbers */
806 	err = make_reservation(c, BASEHD, len);
807 	if (err)
808 		goto out_free;
809 
810 	pack_inode(c, ino, inode, 1);
811 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
812 	if (err)
813 		goto out_release;
814 	if (!sync)
815 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
816 					  inode->i_ino);
817 	release_head(c, BASEHD);
818 
819 	if (last_reference) {
820 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
821 		if (err)
822 			goto out_ro;
823 		ubifs_delete_orphan(c, inode->i_ino);
824 		err = ubifs_add_dirt(c, lnum, len);
825 	} else {
826 		union ubifs_key key;
827 
828 		ino_key_init(c, &key, inode->i_ino);
829 		err = ubifs_tnc_add(c, &key, lnum, offs, len);
830 	}
831 	if (err)
832 		goto out_ro;
833 
834 	finish_reservation(c);
835 	spin_lock(&ui->ui_lock);
836 	ui->synced_i_size = ui->ui_size;
837 	spin_unlock(&ui->ui_lock);
838 	kfree(ino);
839 	return 0;
840 
841 out_release:
842 	release_head(c, BASEHD);
843 out_ro:
844 	ubifs_ro_mode(c, err);
845 	finish_reservation(c);
846 out_free:
847 	kfree(ino);
848 	return err;
849 }
850 
851 /**
852  * ubifs_jnl_delete_inode - delete an inode.
853  * @c: UBIFS file-system description object
854  * @inode: inode to delete
855  *
856  * This function deletes inode @inode which includes removing it from orphans,
857  * deleting it from TNC and, in some cases, writing a deletion inode to the
858  * journal.
859  *
860  * When regular file inodes are unlinked or a directory inode is removed, the
861  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
862  * direntry to the media, and adds the inode to orphans. After this, when the
863  * last reference to this inode has been dropped, this function is called. In
864  * general, it has to write one more deletion inode to the media, because if
865  * a commit happened between 'ubifs_jnl_update()' and
866  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
867  * anymore, and in fact it might not be on the flash anymore, because it might
868  * have been garbage-collected already. And for optimization reasons UBIFS does
869  * not read the orphan area if it has been unmounted cleanly, so it would have
870  * no indication in the journal that there is a deleted inode which has to be
871  * removed from TNC.
872  *
873  * However, if there was no commit between 'ubifs_jnl_update()' and
874  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
875  * inode to the media for the second time. And this is quite a typical case.
876  *
877  * This function returns zero in case of success and a negative error code in
878  * case of failure.
879  */
ubifs_jnl_delete_inode(struct ubifs_info * c,const struct inode * inode)880 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
881 {
882 	int err;
883 	struct ubifs_inode *ui = ubifs_inode(inode);
884 
885 	ubifs_assert(inode->i_nlink == 0);
886 
887 	if (ui->del_cmtno != c->cmt_no)
888 		/* A commit happened for sure */
889 		return ubifs_jnl_write_inode(c, inode);
890 
891 	down_read(&c->commit_sem);
892 	/*
893 	 * Check commit number again, because the first test has been done
894 	 * without @c->commit_sem, so a commit might have happened.
895 	 */
896 	if (ui->del_cmtno != c->cmt_no) {
897 		up_read(&c->commit_sem);
898 		return ubifs_jnl_write_inode(c, inode);
899 	}
900 
901 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
902 	if (err)
903 		ubifs_ro_mode(c, err);
904 	else
905 		ubifs_delete_orphan(c, inode->i_ino);
906 	up_read(&c->commit_sem);
907 	return err;
908 }
909 
910 /**
911  * ubifs_jnl_xrename - cross rename two directory entries.
912  * @c: UBIFS file-system description object
913  * @fst_dir: parent inode of 1st directory entry to exchange
914  * @fst_dentry: 1st directory entry to exchange
915  * @snd_dir: parent inode of 2nd directory entry to exchange
916  * @snd_dentry: 2nd directory entry to exchange
917  * @sync: non-zero if the write-buffer has to be synchronized
918  *
919  * This function implements the cross rename operation which may involve
920  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
921  * and returns zero on success. In case of failure, a negative error code is
922  * returned.
923  */
ubifs_jnl_xrename(struct ubifs_info * c,const struct inode * fst_dir,const struct dentry * fst_dentry,const struct inode * snd_dir,const struct dentry * snd_dentry,int sync)924 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
925 		      const struct dentry *fst_dentry,
926 		      const struct inode *snd_dir,
927 		      const struct dentry *snd_dentry, int sync)
928 {
929 	union ubifs_key key;
930 	struct ubifs_dent_node *dent1, *dent2;
931 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
932 	int aligned_dlen1, aligned_dlen2;
933 	int twoparents = (fst_dir != snd_dir);
934 	const struct inode *fst_inode = d_inode(fst_dentry);
935 	const struct inode *snd_inode = d_inode(snd_dentry);
936 	void *p;
937 
938 	dbg_jnl("dent '%pd' in dir ino %lu between dent '%pd' in dir ino %lu",
939 		fst_dentry, fst_dir->i_ino, snd_dentry, snd_dir->i_ino);
940 
941 	ubifs_assert(ubifs_inode(fst_dir)->data_len == 0);
942 	ubifs_assert(ubifs_inode(snd_dir)->data_len == 0);
943 	ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
944 	ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
945 
946 	dlen1 = UBIFS_DENT_NODE_SZ + snd_dentry->d_name.len + 1;
947 	dlen2 = UBIFS_DENT_NODE_SZ + fst_dentry->d_name.len + 1;
948 	aligned_dlen1 = ALIGN(dlen1, 8);
949 	aligned_dlen2 = ALIGN(dlen2, 8);
950 
951 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
952 	if (twoparents)
953 		len += plen;
954 
955 	dent1 = kzalloc(len, GFP_NOFS);
956 	if (!dent1)
957 		return -ENOMEM;
958 
959 	/* Make reservation before allocating sequence numbers */
960 	err = make_reservation(c, BASEHD, len);
961 	if (err)
962 		goto out_free;
963 
964 	/* Make new dent for 1st entry */
965 	dent1->ch.node_type = UBIFS_DENT_NODE;
966 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, &snd_dentry->d_name);
967 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
968 	dent1->type = get_dent_type(fst_inode->i_mode);
969 	dent1->nlen = cpu_to_le16(snd_dentry->d_name.len);
970 	memcpy(dent1->name, snd_dentry->d_name.name, snd_dentry->d_name.len);
971 	dent1->name[snd_dentry->d_name.len] = '\0';
972 	zero_dent_node_unused(dent1);
973 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
974 
975 	/* Make new dent for 2nd entry */
976 	dent2 = (void *)dent1 + aligned_dlen1;
977 	dent2->ch.node_type = UBIFS_DENT_NODE;
978 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, &fst_dentry->d_name);
979 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
980 	dent2->type = get_dent_type(snd_inode->i_mode);
981 	dent2->nlen = cpu_to_le16(fst_dentry->d_name.len);
982 	memcpy(dent2->name, fst_dentry->d_name.name, fst_dentry->d_name.len);
983 	dent2->name[fst_dentry->d_name.len] = '\0';
984 	zero_dent_node_unused(dent2);
985 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
986 
987 	p = (void *)dent2 + aligned_dlen2;
988 	if (!twoparents)
989 		pack_inode(c, p, fst_dir, 1);
990 	else {
991 		pack_inode(c, p, fst_dir, 0);
992 		p += ALIGN(plen, 8);
993 		pack_inode(c, p, snd_dir, 1);
994 	}
995 
996 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
997 	if (err)
998 		goto out_release;
999 	if (!sync) {
1000 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1001 
1002 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1003 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1004 	}
1005 	release_head(c, BASEHD);
1006 
1007 	dent_key_init(c, &key, snd_dir->i_ino, &snd_dentry->d_name);
1008 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &snd_dentry->d_name);
1009 	if (err)
1010 		goto out_ro;
1011 
1012 	offs += aligned_dlen1;
1013 	dent_key_init(c, &key, fst_dir->i_ino, &fst_dentry->d_name);
1014 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, &fst_dentry->d_name);
1015 	if (err)
1016 		goto out_ro;
1017 
1018 	offs += aligned_dlen2;
1019 
1020 	ino_key_init(c, &key, fst_dir->i_ino);
1021 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1022 	if (err)
1023 		goto out_ro;
1024 
1025 	if (twoparents) {
1026 		offs += ALIGN(plen, 8);
1027 		ino_key_init(c, &key, snd_dir->i_ino);
1028 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1029 		if (err)
1030 			goto out_ro;
1031 	}
1032 
1033 	finish_reservation(c);
1034 
1035 	mark_inode_clean(c, ubifs_inode(fst_dir));
1036 	if (twoparents)
1037 		mark_inode_clean(c, ubifs_inode(snd_dir));
1038 	kfree(dent1);
1039 	return 0;
1040 
1041 out_release:
1042 	release_head(c, BASEHD);
1043 out_ro:
1044 	ubifs_ro_mode(c, err);
1045 	finish_reservation(c);
1046 out_free:
1047 	kfree(dent1);
1048 	return err;
1049 }
1050 
1051 /**
1052  * ubifs_jnl_rename - rename a directory entry.
1053  * @c: UBIFS file-system description object
1054  * @old_dir: parent inode of directory entry to rename
1055  * @old_dentry: directory entry to rename
1056  * @new_dir: parent inode of directory entry to rename
1057  * @new_dentry: new directory entry (or directory entry to replace)
1058  * @sync: non-zero if the write-buffer has to be synchronized
1059  *
1060  * This function implements the re-name operation which may involve writing up
1061  * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1062  * and returns zero on success. In case of failure, a negative error code is
1063  * returned.
1064  */
ubifs_jnl_rename(struct ubifs_info * c,const struct inode * old_dir,const struct dentry * old_dentry,const struct inode * new_dir,const struct dentry * new_dentry,const struct inode * whiteout,int sync)1065 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1066 		     const struct dentry *old_dentry,
1067 		     const struct inode *new_dir,
1068 		     const struct dentry *new_dentry,
1069 		     const struct inode *whiteout, int sync)
1070 {
1071 	void *p;
1072 	union ubifs_key key;
1073 	struct ubifs_dent_node *dent, *dent2;
1074 	int err, dlen1, dlen2, ilen, lnum, offs, len;
1075 	const struct inode *old_inode = d_inode(old_dentry);
1076 	const struct inode *new_inode = d_inode(new_dentry);
1077 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1078 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1079 	int move = (old_dir != new_dir);
1080 	struct ubifs_inode *uninitialized_var(new_ui);
1081 
1082 	dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu",
1083 		old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino);
1084 	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
1085 	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
1086 	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1087 	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1088 
1089 	dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
1090 	dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
1091 	if (new_inode) {
1092 		new_ui = ubifs_inode(new_inode);
1093 		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
1094 		ilen = UBIFS_INO_NODE_SZ;
1095 		if (!last_reference)
1096 			ilen += new_ui->data_len;
1097 	} else
1098 		ilen = 0;
1099 
1100 	aligned_dlen1 = ALIGN(dlen1, 8);
1101 	aligned_dlen2 = ALIGN(dlen2, 8);
1102 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1103 	if (move)
1104 		len += plen;
1105 	dent = kzalloc(len, GFP_NOFS);
1106 	if (!dent)
1107 		return -ENOMEM;
1108 
1109 	/* Make reservation before allocating sequence numbers */
1110 	err = make_reservation(c, BASEHD, len);
1111 	if (err)
1112 		goto out_free;
1113 
1114 	/* Make new dent */
1115 	dent->ch.node_type = UBIFS_DENT_NODE;
1116 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
1117 	dent->inum = cpu_to_le64(old_inode->i_ino);
1118 	dent->type = get_dent_type(old_inode->i_mode);
1119 	dent->nlen = cpu_to_le16(new_dentry->d_name.len);
1120 	memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
1121 	dent->name[new_dentry->d_name.len] = '\0';
1122 	zero_dent_node_unused(dent);
1123 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1124 
1125 	dent2 = (void *)dent + aligned_dlen1;
1126 	dent2->ch.node_type = UBIFS_DENT_NODE;
1127 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
1128 			    &old_dentry->d_name);
1129 
1130 	if (whiteout) {
1131 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1132 		dent2->type = get_dent_type(whiteout->i_mode);
1133 	} else {
1134 		/* Make deletion dent */
1135 		dent2->inum = 0;
1136 		dent2->type = DT_UNKNOWN;
1137 	}
1138 	dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
1139 	memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
1140 	dent2->name[old_dentry->d_name.len] = '\0';
1141 	zero_dent_node_unused(dent2);
1142 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1143 
1144 	p = (void *)dent2 + aligned_dlen2;
1145 	if (new_inode) {
1146 		pack_inode(c, p, new_inode, 0);
1147 		p += ALIGN(ilen, 8);
1148 	}
1149 
1150 	if (!move)
1151 		pack_inode(c, p, old_dir, 1);
1152 	else {
1153 		pack_inode(c, p, old_dir, 0);
1154 		p += ALIGN(plen, 8);
1155 		pack_inode(c, p, new_dir, 1);
1156 	}
1157 
1158 	if (last_reference) {
1159 		err = ubifs_add_orphan(c, new_inode->i_ino);
1160 		if (err) {
1161 			release_head(c, BASEHD);
1162 			goto out_finish;
1163 		}
1164 		new_ui->del_cmtno = c->cmt_no;
1165 	}
1166 
1167 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1168 	if (err)
1169 		goto out_release;
1170 	if (!sync) {
1171 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1172 
1173 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1174 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1175 		if (new_inode)
1176 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1177 						  new_inode->i_ino);
1178 	}
1179 	release_head(c, BASEHD);
1180 
1181 	dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1182 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1183 	if (err)
1184 		goto out_ro;
1185 
1186 	offs += aligned_dlen1;
1187 	if (whiteout) {
1188 		dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1189 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, &old_dentry->d_name);
1190 		if (err)
1191 			goto out_ro;
1192 
1193 		ubifs_delete_orphan(c, whiteout->i_ino);
1194 	} else {
1195 		err = ubifs_add_dirt(c, lnum, dlen2);
1196 		if (err)
1197 			goto out_ro;
1198 
1199 		dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1200 		err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1201 		if (err)
1202 			goto out_ro;
1203 	}
1204 
1205 	offs += aligned_dlen2;
1206 	if (new_inode) {
1207 		ino_key_init(c, &key, new_inode->i_ino);
1208 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1209 		if (err)
1210 			goto out_ro;
1211 		offs += ALIGN(ilen, 8);
1212 	}
1213 
1214 	ino_key_init(c, &key, old_dir->i_ino);
1215 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1216 	if (err)
1217 		goto out_ro;
1218 
1219 	if (move) {
1220 		offs += ALIGN(plen, 8);
1221 		ino_key_init(c, &key, new_dir->i_ino);
1222 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1223 		if (err)
1224 			goto out_ro;
1225 	}
1226 
1227 	finish_reservation(c);
1228 	if (new_inode) {
1229 		mark_inode_clean(c, new_ui);
1230 		spin_lock(&new_ui->ui_lock);
1231 		new_ui->synced_i_size = new_ui->ui_size;
1232 		spin_unlock(&new_ui->ui_lock);
1233 	}
1234 	mark_inode_clean(c, ubifs_inode(old_dir));
1235 	if (move)
1236 		mark_inode_clean(c, ubifs_inode(new_dir));
1237 	kfree(dent);
1238 	return 0;
1239 
1240 out_release:
1241 	release_head(c, BASEHD);
1242 out_ro:
1243 	ubifs_ro_mode(c, err);
1244 	if (last_reference)
1245 		ubifs_delete_orphan(c, new_inode->i_ino);
1246 out_finish:
1247 	finish_reservation(c);
1248 out_free:
1249 	kfree(dent);
1250 	return err;
1251 }
1252 
1253 /**
1254  * recomp_data_node - re-compress a truncated data node.
1255  * @dn: data node to re-compress
1256  * @new_len: new length
1257  *
1258  * This function is used when an inode is truncated and the last data node of
1259  * the inode has to be re-compressed and re-written.
1260  */
recomp_data_node(const struct ubifs_info * c,struct ubifs_data_node * dn,int * new_len)1261 static int recomp_data_node(const struct ubifs_info *c,
1262 			    struct ubifs_data_node *dn, int *new_len)
1263 {
1264 	void *buf;
1265 	int err, len, compr_type, out_len;
1266 
1267 	out_len = le32_to_cpu(dn->size);
1268 	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1269 	if (!buf)
1270 		return -ENOMEM;
1271 
1272 	len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1273 	compr_type = le16_to_cpu(dn->compr_type);
1274 	err = ubifs_decompress(c, &dn->data, len, buf, &out_len, compr_type);
1275 	if (err)
1276 		goto out;
1277 
1278 	ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1279 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1280 	dn->compr_type = cpu_to_le16(compr_type);
1281 	dn->size = cpu_to_le32(*new_len);
1282 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1283 out:
1284 	kfree(buf);
1285 	return err;
1286 }
1287 
1288 /**
1289  * ubifs_jnl_truncate - update the journal for a truncation.
1290  * @c: UBIFS file-system description object
1291  * @inode: inode to truncate
1292  * @old_size: old size
1293  * @new_size: new size
1294  *
1295  * When the size of a file decreases due to truncation, a truncation node is
1296  * written, the journal tree is updated, and the last data block is re-written
1297  * if it has been affected. The inode is also updated in order to synchronize
1298  * the new inode size.
1299  *
1300  * This function marks the inode as clean and returns zero on success. In case
1301  * of failure, a negative error code is returned.
1302  */
ubifs_jnl_truncate(struct ubifs_info * c,const struct inode * inode,loff_t old_size,loff_t new_size)1303 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1304 		       loff_t old_size, loff_t new_size)
1305 {
1306 	union ubifs_key key, to_key;
1307 	struct ubifs_ino_node *ino;
1308 	struct ubifs_trun_node *trun;
1309 	struct ubifs_data_node *uninitialized_var(dn);
1310 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1311 	struct ubifs_inode *ui = ubifs_inode(inode);
1312 	ino_t inum = inode->i_ino;
1313 	unsigned int blk;
1314 
1315 	dbg_jnl("ino %lu, size %lld -> %lld",
1316 		(unsigned long)inum, old_size, new_size);
1317 	ubifs_assert(!ui->data_len);
1318 	ubifs_assert(S_ISREG(inode->i_mode));
1319 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1320 
1321 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1322 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1323 	ino = kmalloc(sz, GFP_NOFS);
1324 	if (!ino)
1325 		return -ENOMEM;
1326 
1327 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1328 	trun->ch.node_type = UBIFS_TRUN_NODE;
1329 	trun->inum = cpu_to_le32(inum);
1330 	trun->old_size = cpu_to_le64(old_size);
1331 	trun->new_size = cpu_to_le64(new_size);
1332 	zero_trun_node_unused(trun);
1333 
1334 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1335 	if (dlen) {
1336 		/* Get last data block so it can be truncated */
1337 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1338 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1339 		data_key_init(c, &key, inum, blk);
1340 		dbg_jnlk(&key, "last block key ");
1341 		err = ubifs_tnc_lookup(c, &key, dn);
1342 		if (err == -ENOENT)
1343 			dlen = 0; /* Not found (so it is a hole) */
1344 		else if (err)
1345 			goto out_free;
1346 		else {
1347 			if (le32_to_cpu(dn->size) <= dlen)
1348 				dlen = 0; /* Nothing to do */
1349 			else {
1350 				int compr_type = le16_to_cpu(dn->compr_type);
1351 
1352 				if (compr_type != UBIFS_COMPR_NONE) {
1353 					err = recomp_data_node(c, dn, &dlen);
1354 					if (err)
1355 						goto out_free;
1356 				} else {
1357 					dn->size = cpu_to_le32(dlen);
1358 					dlen += UBIFS_DATA_NODE_SZ;
1359 				}
1360 				zero_data_node_unused(dn);
1361 			}
1362 		}
1363 	}
1364 
1365 	/* Must make reservation before allocating sequence numbers */
1366 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1367 	if (dlen)
1368 		len += dlen;
1369 	err = make_reservation(c, BASEHD, len);
1370 	if (err)
1371 		goto out_free;
1372 
1373 	pack_inode(c, ino, inode, 0);
1374 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1375 	if (dlen)
1376 		ubifs_prep_grp_node(c, dn, dlen, 1);
1377 
1378 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1379 	if (err)
1380 		goto out_release;
1381 	if (!sync)
1382 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1383 	release_head(c, BASEHD);
1384 
1385 	if (dlen) {
1386 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1387 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1388 		if (err)
1389 			goto out_ro;
1390 	}
1391 
1392 	ino_key_init(c, &key, inum);
1393 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1394 	if (err)
1395 		goto out_ro;
1396 
1397 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1398 	if (err)
1399 		goto out_ro;
1400 
1401 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1402 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1403 	data_key_init(c, &key, inum, blk);
1404 
1405 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1406 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1407 	data_key_init(c, &to_key, inum, blk);
1408 
1409 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1410 	if (err)
1411 		goto out_ro;
1412 
1413 	finish_reservation(c);
1414 	spin_lock(&ui->ui_lock);
1415 	ui->synced_i_size = ui->ui_size;
1416 	spin_unlock(&ui->ui_lock);
1417 	mark_inode_clean(c, ui);
1418 	kfree(ino);
1419 	return 0;
1420 
1421 out_release:
1422 	release_head(c, BASEHD);
1423 out_ro:
1424 	ubifs_ro_mode(c, err);
1425 	finish_reservation(c);
1426 out_free:
1427 	kfree(ino);
1428 	return err;
1429 }
1430 
1431 
1432 /**
1433  * ubifs_jnl_delete_xattr - delete an extended attribute.
1434  * @c: UBIFS file-system description object
1435  * @host: host inode
1436  * @inode: extended attribute inode
1437  * @nm: extended attribute entry name
1438  *
1439  * This function delete an extended attribute which is very similar to
1440  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1441  * updates the target inode. Returns zero in case of success and a negative
1442  * error code in case of failure.
1443  */
ubifs_jnl_delete_xattr(struct ubifs_info * c,const struct inode * host,const struct inode * inode,const struct qstr * nm)1444 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1445 			   const struct inode *inode, const struct qstr *nm)
1446 {
1447 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1448 	struct ubifs_dent_node *xent;
1449 	struct ubifs_ino_node *ino;
1450 	union ubifs_key xent_key, key1, key2;
1451 	int sync = IS_DIRSYNC(host);
1452 	struct ubifs_inode *host_ui = ubifs_inode(host);
1453 
1454 	dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1455 		host->i_ino, inode->i_ino, nm->name,
1456 		ubifs_inode(inode)->data_len);
1457 	ubifs_assert(inode->i_nlink == 0);
1458 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1459 
1460 	/*
1461 	 * Since we are deleting the inode, we do not bother to attach any data
1462 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1463 	 */
1464 	xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1465 	aligned_xlen = ALIGN(xlen, 8);
1466 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1467 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1468 
1469 	xent = kzalloc(len, GFP_NOFS);
1470 	if (!xent)
1471 		return -ENOMEM;
1472 
1473 	/* Make reservation before allocating sequence numbers */
1474 	err = make_reservation(c, BASEHD, len);
1475 	if (err) {
1476 		kfree(xent);
1477 		return err;
1478 	}
1479 
1480 	xent->ch.node_type = UBIFS_XENT_NODE;
1481 	xent_key_init(c, &xent_key, host->i_ino, nm);
1482 	key_write(c, &xent_key, xent->key);
1483 	xent->inum = 0;
1484 	xent->type = get_dent_type(inode->i_mode);
1485 	xent->nlen = cpu_to_le16(nm->len);
1486 	memcpy(xent->name, nm->name, nm->len);
1487 	xent->name[nm->len] = '\0';
1488 	zero_dent_node_unused(xent);
1489 	ubifs_prep_grp_node(c, xent, xlen, 0);
1490 
1491 	ino = (void *)xent + aligned_xlen;
1492 	pack_inode(c, ino, inode, 0);
1493 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1494 	pack_inode(c, ino, host, 1);
1495 
1496 	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1497 	if (!sync && !err)
1498 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1499 	release_head(c, BASEHD);
1500 	kfree(xent);
1501 	if (err)
1502 		goto out_ro;
1503 
1504 	/* Remove the extended attribute entry from TNC */
1505 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1506 	if (err)
1507 		goto out_ro;
1508 	err = ubifs_add_dirt(c, lnum, xlen);
1509 	if (err)
1510 		goto out_ro;
1511 
1512 	/*
1513 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1514 	 * Well, there actually must be only one node - the inode itself.
1515 	 */
1516 	lowest_ino_key(c, &key1, inode->i_ino);
1517 	highest_ino_key(c, &key2, inode->i_ino);
1518 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1519 	if (err)
1520 		goto out_ro;
1521 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1522 	if (err)
1523 		goto out_ro;
1524 
1525 	/* And update TNC with the new host inode position */
1526 	ino_key_init(c, &key1, host->i_ino);
1527 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1528 	if (err)
1529 		goto out_ro;
1530 
1531 	finish_reservation(c);
1532 	spin_lock(&host_ui->ui_lock);
1533 	host_ui->synced_i_size = host_ui->ui_size;
1534 	spin_unlock(&host_ui->ui_lock);
1535 	mark_inode_clean(c, host_ui);
1536 	return 0;
1537 
1538 out_ro:
1539 	ubifs_ro_mode(c, err);
1540 	finish_reservation(c);
1541 	return err;
1542 }
1543 
1544 /**
1545  * ubifs_jnl_change_xattr - change an extended attribute.
1546  * @c: UBIFS file-system description object
1547  * @inode: extended attribute inode
1548  * @host: host inode
1549  *
1550  * This function writes the updated version of an extended attribute inode and
1551  * the host inode to the journal (to the base head). The host inode is written
1552  * after the extended attribute inode in order to guarantee that the extended
1553  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1554  * consequently, the write-buffer is synchronized. This function returns zero
1555  * in case of success and a negative error code in case of failure.
1556  */
ubifs_jnl_change_xattr(struct ubifs_info * c,const struct inode * inode,const struct inode * host)1557 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1558 			   const struct inode *host)
1559 {
1560 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1561 	struct ubifs_inode *host_ui = ubifs_inode(host);
1562 	struct ubifs_ino_node *ino;
1563 	union ubifs_key key;
1564 	int sync = IS_DIRSYNC(host);
1565 
1566 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1567 	ubifs_assert(host->i_nlink > 0);
1568 	ubifs_assert(inode->i_nlink > 0);
1569 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1570 
1571 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1572 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1573 	aligned_len1 = ALIGN(len1, 8);
1574 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1575 
1576 	ino = kzalloc(aligned_len, GFP_NOFS);
1577 	if (!ino)
1578 		return -ENOMEM;
1579 
1580 	/* Make reservation before allocating sequence numbers */
1581 	err = make_reservation(c, BASEHD, aligned_len);
1582 	if (err)
1583 		goto out_free;
1584 
1585 	pack_inode(c, ino, host, 0);
1586 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1587 
1588 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1589 	if (!sync && !err) {
1590 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1591 
1592 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1593 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1594 	}
1595 	release_head(c, BASEHD);
1596 	if (err)
1597 		goto out_ro;
1598 
1599 	ino_key_init(c, &key, host->i_ino);
1600 	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1601 	if (err)
1602 		goto out_ro;
1603 
1604 	ino_key_init(c, &key, inode->i_ino);
1605 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1606 	if (err)
1607 		goto out_ro;
1608 
1609 	finish_reservation(c);
1610 	spin_lock(&host_ui->ui_lock);
1611 	host_ui->synced_i_size = host_ui->ui_size;
1612 	spin_unlock(&host_ui->ui_lock);
1613 	mark_inode_clean(c, host_ui);
1614 	kfree(ino);
1615 	return 0;
1616 
1617 out_ro:
1618 	ubifs_ro_mode(c, err);
1619 	finish_reservation(c);
1620 out_free:
1621 	kfree(ino);
1622 	return err;
1623 }
1624 
1625