1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
83 */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32 __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 int i;
203 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
kvm_on_user_return(struct user_return_notifier * urn)207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 unsigned slot;
210 struct kvm_shared_msrs *locals
211 = container_of(urn, struct kvm_shared_msrs, urn);
212 struct kvm_shared_msr_values *values;
213 unsigned long flags;
214
215 /*
216 * Disabling irqs at this point since the following code could be
217 * interrupted and executed through kvm_arch_hardware_disable()
218 */
219 local_irq_save(flags);
220 if (locals->registered) {
221 locals->registered = false;
222 user_return_notifier_unregister(urn);
223 }
224 local_irq_restore(flags);
225 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226 values = &locals->values[slot];
227 if (values->host != values->curr) {
228 wrmsrl(shared_msrs_global.msrs[slot], values->host);
229 values->curr = values->host;
230 }
231 }
232 }
233
shared_msr_update(unsigned slot,u32 msr)234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236 u64 value;
237 unsigned int cpu = smp_processor_id();
238 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240 /* only read, and nobody should modify it at this time,
241 * so don't need lock */
242 if (slot >= shared_msrs_global.nr) {
243 printk(KERN_ERR "kvm: invalid MSR slot!");
244 return;
245 }
246 rdmsrl_safe(msr, &value);
247 smsr->values[slot].host = value;
248 smsr->values[slot].curr = value;
249 }
250
kvm_define_shared_msr(unsigned slot,u32 msr)251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254 shared_msrs_global.msrs[slot] = msr;
255 if (slot >= shared_msrs_global.nr)
256 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
kvm_shared_msr_cpu_online(void)260 static void kvm_shared_msr_cpu_online(void)
261 {
262 unsigned i;
263
264 for (i = 0; i < shared_msrs_global.nr; ++i)
265 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270 unsigned int cpu = smp_processor_id();
271 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272 int err;
273
274 if (((value ^ smsr->values[slot].curr) & mask) == 0)
275 return 0;
276 smsr->values[slot].curr = value;
277 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278 if (err)
279 return 1;
280
281 if (!smsr->registered) {
282 smsr->urn.on_user_return = kvm_on_user_return;
283 user_return_notifier_register(&smsr->urn);
284 smsr->registered = true;
285 }
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
drop_user_return_notifiers(void)290 static void drop_user_return_notifiers(void)
291 {
292 unsigned int cpu = smp_processor_id();
293 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295 if (smsr->registered)
296 kvm_on_user_return(&smsr->urn);
297 }
298
kvm_get_apic_base(struct kvm_vcpu * vcpu)299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307 u64 old_state = vcpu->arch.apic_base &
308 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309 u64 new_state = msr_info->data &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314 if (!msr_info->host_initiated &&
315 ((msr_info->data & reserved_bits) != 0 ||
316 new_state == X2APIC_ENABLE ||
317 (new_state == MSR_IA32_APICBASE_ENABLE &&
318 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320 old_state == 0)))
321 return 1;
322
323 kvm_lapic_set_base(vcpu, msr_info->data);
324 return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
kvm_spurious_fault(void)328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330 /* Fault while not rebooting. We want the trace. */
331 BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN 0
336 #define EXCPT_CONTRIBUTORY 1
337 #define EXCPT_PF 2
338
exception_class(int vector)339 static int exception_class(int vector)
340 {
341 switch (vector) {
342 case PF_VECTOR:
343 return EXCPT_PF;
344 case DE_VECTOR:
345 case TS_VECTOR:
346 case NP_VECTOR:
347 case SS_VECTOR:
348 case GP_VECTOR:
349 return EXCPT_CONTRIBUTORY;
350 default:
351 break;
352 }
353 return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT 0
357 #define EXCPT_TRAP 1
358 #define EXCPT_ABORT 2
359 #define EXCPT_INTERRUPT 3
360
exception_type(int vector)361 static int exception_type(int vector)
362 {
363 unsigned int mask;
364
365 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366 return EXCPT_INTERRUPT;
367
368 mask = 1 << vector;
369
370 /* #DB is trap, as instruction watchpoints are handled elsewhere */
371 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372 return EXCPT_TRAP;
373
374 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375 return EXCPT_ABORT;
376
377 /* Reserved exceptions will result in fault */
378 return EXCPT_FAULT;
379 }
380
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382 unsigned nr, bool has_error, u32 error_code,
383 bool reinject)
384 {
385 u32 prev_nr;
386 int class1, class2;
387
388 kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390 if (!vcpu->arch.exception.pending) {
391 queue:
392 if (has_error && !is_protmode(vcpu))
393 has_error = false;
394 vcpu->arch.exception.pending = true;
395 vcpu->arch.exception.has_error_code = has_error;
396 vcpu->arch.exception.nr = nr;
397 vcpu->arch.exception.error_code = error_code;
398 vcpu->arch.exception.reinject = reinject;
399 return;
400 }
401
402 /* to check exception */
403 prev_nr = vcpu->arch.exception.nr;
404 if (prev_nr == DF_VECTOR) {
405 /* triple fault -> shutdown */
406 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407 return;
408 }
409 class1 = exception_class(prev_nr);
410 class2 = exception_class(nr);
411 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413 /* generate double fault per SDM Table 5-5 */
414 vcpu->arch.exception.pending = true;
415 vcpu->arch.exception.has_error_code = true;
416 vcpu->arch.exception.nr = DF_VECTOR;
417 vcpu->arch.exception.error_code = 0;
418 } else
419 /* replace previous exception with a new one in a hope
420 that instruction re-execution will regenerate lost
421 exception */
422 goto queue;
423 }
424
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427 kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433 kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)437 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439 if (err)
440 kvm_inject_gp(vcpu, 0);
441 else
442 kvm_x86_ops->skip_emulated_instruction(vcpu);
443 }
444 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
445
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)446 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
447 {
448 ++vcpu->stat.pf_guest;
449 vcpu->arch.cr2 = fault->address;
450 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
453
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)454 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
455 {
456 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
457 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
458 else
459 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
460
461 return fault->nested_page_fault;
462 }
463
kvm_inject_nmi(struct kvm_vcpu * vcpu)464 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
465 {
466 atomic_inc(&vcpu->arch.nmi_queued);
467 kvm_make_request(KVM_REQ_NMI, vcpu);
468 }
469 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
470
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)471 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
472 {
473 kvm_multiple_exception(vcpu, nr, true, error_code, false);
474 }
475 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
476
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)477 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 kvm_multiple_exception(vcpu, nr, true, error_code, true);
480 }
481 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
482
483 /*
484 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
485 * a #GP and return false.
486 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)487 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
488 {
489 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
490 return true;
491 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
492 return false;
493 }
494 EXPORT_SYMBOL_GPL(kvm_require_cpl);
495
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)496 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
497 {
498 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
499 return true;
500
501 kvm_queue_exception(vcpu, UD_VECTOR);
502 return false;
503 }
504 EXPORT_SYMBOL_GPL(kvm_require_dr);
505
506 /*
507 * This function will be used to read from the physical memory of the currently
508 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
509 * can read from guest physical or from the guest's guest physical memory.
510 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)511 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
512 gfn_t ngfn, void *data, int offset, int len,
513 u32 access)
514 {
515 struct x86_exception exception;
516 gfn_t real_gfn;
517 gpa_t ngpa;
518
519 ngpa = gfn_to_gpa(ngfn);
520 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
521 if (real_gfn == UNMAPPED_GVA)
522 return -EFAULT;
523
524 real_gfn = gpa_to_gfn(real_gfn);
525
526 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
527 }
528 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
529
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)530 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
531 void *data, int offset, int len, u32 access)
532 {
533 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
534 data, offset, len, access);
535 }
536
537 /*
538 * Load the pae pdptrs. Return true is they are all valid.
539 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)540 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
541 {
542 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
543 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
544 int i;
545 int ret;
546 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
547
548 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
549 offset * sizeof(u64), sizeof(pdpte),
550 PFERR_USER_MASK|PFERR_WRITE_MASK);
551 if (ret < 0) {
552 ret = 0;
553 goto out;
554 }
555 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
556 if ((pdpte[i] & PT_PRESENT_MASK) &&
557 (pdpte[i] &
558 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
559 ret = 0;
560 goto out;
561 }
562 }
563 ret = 1;
564
565 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
566 __set_bit(VCPU_EXREG_PDPTR,
567 (unsigned long *)&vcpu->arch.regs_avail);
568 __set_bit(VCPU_EXREG_PDPTR,
569 (unsigned long *)&vcpu->arch.regs_dirty);
570 out:
571
572 return ret;
573 }
574 EXPORT_SYMBOL_GPL(load_pdptrs);
575
pdptrs_changed(struct kvm_vcpu * vcpu)576 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
577 {
578 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
579 bool changed = true;
580 int offset;
581 gfn_t gfn;
582 int r;
583
584 if (is_long_mode(vcpu) || !is_pae(vcpu))
585 return false;
586
587 if (!test_bit(VCPU_EXREG_PDPTR,
588 (unsigned long *)&vcpu->arch.regs_avail))
589 return true;
590
591 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
592 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
593 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
594 PFERR_USER_MASK | PFERR_WRITE_MASK);
595 if (r < 0)
596 goto out;
597 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
598 out:
599
600 return changed;
601 }
602
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)603 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
604 {
605 unsigned long old_cr0 = kvm_read_cr0(vcpu);
606 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
607
608 cr0 |= X86_CR0_ET;
609
610 #ifdef CONFIG_X86_64
611 if (cr0 & 0xffffffff00000000UL)
612 return 1;
613 #endif
614
615 cr0 &= ~CR0_RESERVED_BITS;
616
617 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
618 return 1;
619
620 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
621 return 1;
622
623 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
624 #ifdef CONFIG_X86_64
625 if ((vcpu->arch.efer & EFER_LME)) {
626 int cs_db, cs_l;
627
628 if (!is_pae(vcpu))
629 return 1;
630 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
631 if (cs_l)
632 return 1;
633 } else
634 #endif
635 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
636 kvm_read_cr3(vcpu)))
637 return 1;
638 }
639
640 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
641 return 1;
642
643 kvm_x86_ops->set_cr0(vcpu, cr0);
644
645 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
646 kvm_clear_async_pf_completion_queue(vcpu);
647 kvm_async_pf_hash_reset(vcpu);
648 }
649
650 if ((cr0 ^ old_cr0) & update_bits)
651 kvm_mmu_reset_context(vcpu);
652
653 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
654 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
655 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
656 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
657
658 return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_cr0);
661
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)662 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
663 {
664 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
665 }
666 EXPORT_SYMBOL_GPL(kvm_lmsw);
667
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)668 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
669 {
670 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
671 !vcpu->guest_xcr0_loaded) {
672 /* kvm_set_xcr() also depends on this */
673 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
674 vcpu->guest_xcr0_loaded = 1;
675 }
676 }
677
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)678 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680 if (vcpu->guest_xcr0_loaded) {
681 if (vcpu->arch.xcr0 != host_xcr0)
682 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
683 vcpu->guest_xcr0_loaded = 0;
684 }
685 }
686
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)687 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
688 {
689 u64 xcr0 = xcr;
690 u64 old_xcr0 = vcpu->arch.xcr0;
691 u64 valid_bits;
692
693 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
694 if (index != XCR_XFEATURE_ENABLED_MASK)
695 return 1;
696 if (!(xcr0 & XFEATURE_MASK_FP))
697 return 1;
698 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
699 return 1;
700
701 /*
702 * Do not allow the guest to set bits that we do not support
703 * saving. However, xcr0 bit 0 is always set, even if the
704 * emulated CPU does not support XSAVE (see fx_init).
705 */
706 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
707 if (xcr0 & ~valid_bits)
708 return 1;
709
710 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
711 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
712 return 1;
713
714 if (xcr0 & XFEATURE_MASK_AVX512) {
715 if (!(xcr0 & XFEATURE_MASK_YMM))
716 return 1;
717 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
718 return 1;
719 }
720 vcpu->arch.xcr0 = xcr0;
721
722 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
723 kvm_update_cpuid(vcpu);
724 return 0;
725 }
726
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)727 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
728 {
729 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
730 __kvm_set_xcr(vcpu, index, xcr)) {
731 kvm_inject_gp(vcpu, 0);
732 return 1;
733 }
734 return 0;
735 }
736 EXPORT_SYMBOL_GPL(kvm_set_xcr);
737
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)738 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
739 {
740 unsigned long old_cr4 = kvm_read_cr4(vcpu);
741 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
742 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
743
744 if (cr4 & CR4_RESERVED_BITS)
745 return 1;
746
747 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
748 return 1;
749
750 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
751 return 1;
752
753 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
754 return 1;
755
756 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
757 return 1;
758
759 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
760 return 1;
761
762 if (is_long_mode(vcpu)) {
763 if (!(cr4 & X86_CR4_PAE))
764 return 1;
765 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
766 && ((cr4 ^ old_cr4) & pdptr_bits)
767 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
768 kvm_read_cr3(vcpu)))
769 return 1;
770
771 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
772 if (!guest_cpuid_has_pcid(vcpu))
773 return 1;
774
775 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
776 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_ASID_MASK) ||
777 !is_long_mode(vcpu))
778 return 1;
779 }
780
781 if (kvm_x86_ops->set_cr4(vcpu, cr4))
782 return 1;
783
784 if (((cr4 ^ old_cr4) & pdptr_bits) ||
785 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
786 kvm_mmu_reset_context(vcpu);
787
788 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
789 kvm_update_cpuid(vcpu);
790
791 return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr4);
794
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)795 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
796 {
797 #ifdef CONFIG_X86_64
798 cr3 &= ~CR3_PCID_INVD;
799 #endif
800
801 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
802 kvm_mmu_sync_roots(vcpu);
803 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
804 return 0;
805 }
806
807 if (is_long_mode(vcpu)) {
808 if (cr3 & CR3_L_MODE_RESERVED_BITS)
809 return 1;
810 } else if (is_pae(vcpu) && is_paging(vcpu) &&
811 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
812 return 1;
813
814 vcpu->arch.cr3 = cr3;
815 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
816 kvm_mmu_new_cr3(vcpu);
817 return 0;
818 }
819 EXPORT_SYMBOL_GPL(kvm_set_cr3);
820
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)821 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
822 {
823 if (cr8 & CR8_RESERVED_BITS)
824 return 1;
825 if (lapic_in_kernel(vcpu))
826 kvm_lapic_set_tpr(vcpu, cr8);
827 else
828 vcpu->arch.cr8 = cr8;
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(kvm_set_cr8);
832
kvm_get_cr8(struct kvm_vcpu * vcpu)833 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
834 {
835 if (lapic_in_kernel(vcpu))
836 return kvm_lapic_get_cr8(vcpu);
837 else
838 return vcpu->arch.cr8;
839 }
840 EXPORT_SYMBOL_GPL(kvm_get_cr8);
841
kvm_update_dr0123(struct kvm_vcpu * vcpu)842 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
843 {
844 int i;
845
846 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
847 for (i = 0; i < KVM_NR_DB_REGS; i++)
848 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
849 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
850 }
851 }
852
kvm_update_dr6(struct kvm_vcpu * vcpu)853 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
854 {
855 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
856 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
857 }
858
kvm_update_dr7(struct kvm_vcpu * vcpu)859 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
860 {
861 unsigned long dr7;
862
863 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
864 dr7 = vcpu->arch.guest_debug_dr7;
865 else
866 dr7 = vcpu->arch.dr7;
867 kvm_x86_ops->set_dr7(vcpu, dr7);
868 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
869 if (dr7 & DR7_BP_EN_MASK)
870 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
871 }
872
kvm_dr6_fixed(struct kvm_vcpu * vcpu)873 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
874 {
875 u64 fixed = DR6_FIXED_1;
876
877 if (!guest_cpuid_has_rtm(vcpu))
878 fixed |= DR6_RTM;
879 return fixed;
880 }
881
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)882 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
883 {
884 switch (dr) {
885 case 0 ... 3:
886 vcpu->arch.db[dr] = val;
887 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
888 vcpu->arch.eff_db[dr] = val;
889 break;
890 case 4:
891 /* fall through */
892 case 6:
893 if (val & 0xffffffff00000000ULL)
894 return -1; /* #GP */
895 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
896 kvm_update_dr6(vcpu);
897 break;
898 case 5:
899 /* fall through */
900 default: /* 7 */
901 if (val & 0xffffffff00000000ULL)
902 return -1; /* #GP */
903 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
904 kvm_update_dr7(vcpu);
905 break;
906 }
907
908 return 0;
909 }
910
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)911 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
912 {
913 if (__kvm_set_dr(vcpu, dr, val)) {
914 kvm_inject_gp(vcpu, 0);
915 return 1;
916 }
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(kvm_set_dr);
920
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)921 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
922 {
923 switch (dr) {
924 case 0 ... 3:
925 *val = vcpu->arch.db[dr];
926 break;
927 case 4:
928 /* fall through */
929 case 6:
930 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
931 *val = vcpu->arch.dr6;
932 else
933 *val = kvm_x86_ops->get_dr6(vcpu);
934 break;
935 case 5:
936 /* fall through */
937 default: /* 7 */
938 *val = vcpu->arch.dr7;
939 break;
940 }
941 return 0;
942 }
943 EXPORT_SYMBOL_GPL(kvm_get_dr);
944
kvm_rdpmc(struct kvm_vcpu * vcpu)945 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
946 {
947 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
948 u64 data;
949 int err;
950
951 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
952 if (err)
953 return err;
954 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
955 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
956 return err;
957 }
958 EXPORT_SYMBOL_GPL(kvm_rdpmc);
959
960 /*
961 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
962 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
963 *
964 * This list is modified at module load time to reflect the
965 * capabilities of the host cpu. This capabilities test skips MSRs that are
966 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
967 * may depend on host virtualization features rather than host cpu features.
968 */
969
970 static u32 msrs_to_save[] = {
971 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
972 MSR_STAR,
973 #ifdef CONFIG_X86_64
974 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
975 #endif
976 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
977 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
978 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
979 };
980
981 static unsigned num_msrs_to_save;
982
983 static u32 emulated_msrs[] = {
984 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
985 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
986 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
987 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
988 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
989 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
990 HV_X64_MSR_RESET,
991 HV_X64_MSR_VP_INDEX,
992 HV_X64_MSR_VP_RUNTIME,
993 HV_X64_MSR_SCONTROL,
994 HV_X64_MSR_STIMER0_CONFIG,
995 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
996 MSR_KVM_PV_EOI_EN,
997
998 MSR_IA32_TSC_ADJUST,
999 MSR_IA32_TSCDEADLINE,
1000 MSR_IA32_MISC_ENABLE,
1001 MSR_IA32_MCG_STATUS,
1002 MSR_IA32_MCG_CTL,
1003 MSR_IA32_MCG_EXT_CTL,
1004 MSR_IA32_SMBASE,
1005 };
1006
1007 static unsigned num_emulated_msrs;
1008
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1009 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1010 {
1011 if (efer & efer_reserved_bits)
1012 return false;
1013
1014 if (efer & EFER_FFXSR) {
1015 struct kvm_cpuid_entry2 *feat;
1016
1017 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1018 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1019 return false;
1020 }
1021
1022 if (efer & EFER_SVME) {
1023 struct kvm_cpuid_entry2 *feat;
1024
1025 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1026 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1027 return false;
1028 }
1029
1030 return true;
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1033
set_efer(struct kvm_vcpu * vcpu,u64 efer)1034 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1035 {
1036 u64 old_efer = vcpu->arch.efer;
1037
1038 if (!kvm_valid_efer(vcpu, efer))
1039 return 1;
1040
1041 if (is_paging(vcpu)
1042 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1043 return 1;
1044
1045 efer &= ~EFER_LMA;
1046 efer |= vcpu->arch.efer & EFER_LMA;
1047
1048 kvm_x86_ops->set_efer(vcpu, efer);
1049
1050 /* Update reserved bits */
1051 if ((efer ^ old_efer) & EFER_NX)
1052 kvm_mmu_reset_context(vcpu);
1053
1054 return 0;
1055 }
1056
kvm_enable_efer_bits(u64 mask)1057 void kvm_enable_efer_bits(u64 mask)
1058 {
1059 efer_reserved_bits &= ~mask;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1062
1063 /*
1064 * Writes msr value into into the appropriate "register".
1065 * Returns 0 on success, non-0 otherwise.
1066 * Assumes vcpu_load() was already called.
1067 */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1068 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1069 {
1070 switch (msr->index) {
1071 case MSR_FS_BASE:
1072 case MSR_GS_BASE:
1073 case MSR_KERNEL_GS_BASE:
1074 case MSR_CSTAR:
1075 case MSR_LSTAR:
1076 if (is_noncanonical_address(msr->data))
1077 return 1;
1078 break;
1079 case MSR_IA32_SYSENTER_EIP:
1080 case MSR_IA32_SYSENTER_ESP:
1081 /*
1082 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1083 * non-canonical address is written on Intel but not on
1084 * AMD (which ignores the top 32-bits, because it does
1085 * not implement 64-bit SYSENTER).
1086 *
1087 * 64-bit code should hence be able to write a non-canonical
1088 * value on AMD. Making the address canonical ensures that
1089 * vmentry does not fail on Intel after writing a non-canonical
1090 * value, and that something deterministic happens if the guest
1091 * invokes 64-bit SYSENTER.
1092 */
1093 msr->data = get_canonical(msr->data);
1094 }
1095 return kvm_x86_ops->set_msr(vcpu, msr);
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_set_msr);
1098
1099 /*
1100 * Adapt set_msr() to msr_io()'s calling convention
1101 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1102 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1103 {
1104 struct msr_data msr;
1105 int r;
1106
1107 msr.index = index;
1108 msr.host_initiated = true;
1109 r = kvm_get_msr(vcpu, &msr);
1110 if (r)
1111 return r;
1112
1113 *data = msr.data;
1114 return 0;
1115 }
1116
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1117 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1118 {
1119 struct msr_data msr;
1120
1121 msr.data = *data;
1122 msr.index = index;
1123 msr.host_initiated = true;
1124 return kvm_set_msr(vcpu, &msr);
1125 }
1126
1127 #ifdef CONFIG_X86_64
1128 struct pvclock_gtod_data {
1129 seqcount_t seq;
1130
1131 struct { /* extract of a clocksource struct */
1132 int vclock_mode;
1133 cycle_t cycle_last;
1134 cycle_t mask;
1135 u32 mult;
1136 u32 shift;
1137 } clock;
1138
1139 u64 boot_ns;
1140 u64 nsec_base;
1141 };
1142
1143 static struct pvclock_gtod_data pvclock_gtod_data;
1144
update_pvclock_gtod(struct timekeeper * tk)1145 static void update_pvclock_gtod(struct timekeeper *tk)
1146 {
1147 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1148 u64 boot_ns;
1149
1150 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1151
1152 write_seqcount_begin(&vdata->seq);
1153
1154 /* copy pvclock gtod data */
1155 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1156 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1157 vdata->clock.mask = tk->tkr_mono.mask;
1158 vdata->clock.mult = tk->tkr_mono.mult;
1159 vdata->clock.shift = tk->tkr_mono.shift;
1160
1161 vdata->boot_ns = boot_ns;
1162 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1163
1164 write_seqcount_end(&vdata->seq);
1165 }
1166 #endif
1167
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1168 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1169 {
1170 /*
1171 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1172 * vcpu_enter_guest. This function is only called from
1173 * the physical CPU that is running vcpu.
1174 */
1175 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1176 }
1177
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1178 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1179 {
1180 int version;
1181 int r;
1182 struct pvclock_wall_clock wc;
1183 struct timespec64 boot;
1184
1185 if (!wall_clock)
1186 return;
1187
1188 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1189 if (r)
1190 return;
1191
1192 if (version & 1)
1193 ++version; /* first time write, random junk */
1194
1195 ++version;
1196
1197 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1198 return;
1199
1200 /*
1201 * The guest calculates current wall clock time by adding
1202 * system time (updated by kvm_guest_time_update below) to the
1203 * wall clock specified here. guest system time equals host
1204 * system time for us, thus we must fill in host boot time here.
1205 */
1206 getboottime64(&boot);
1207
1208 if (kvm->arch.kvmclock_offset) {
1209 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1210 boot = timespec64_sub(boot, ts);
1211 }
1212 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1213 wc.nsec = boot.tv_nsec;
1214 wc.version = version;
1215
1216 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1217
1218 version++;
1219 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1220 }
1221
div_frac(uint32_t dividend,uint32_t divisor)1222 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1223 {
1224 do_shl32_div32(dividend, divisor);
1225 return dividend;
1226 }
1227
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1228 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1229 s8 *pshift, u32 *pmultiplier)
1230 {
1231 uint64_t scaled64;
1232 int32_t shift = 0;
1233 uint64_t tps64;
1234 uint32_t tps32;
1235
1236 tps64 = base_hz;
1237 scaled64 = scaled_hz;
1238 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1239 tps64 >>= 1;
1240 shift--;
1241 }
1242
1243 tps32 = (uint32_t)tps64;
1244 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1245 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1246 scaled64 >>= 1;
1247 else
1248 tps32 <<= 1;
1249 shift++;
1250 }
1251
1252 *pshift = shift;
1253 *pmultiplier = div_frac(scaled64, tps32);
1254
1255 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1256 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1257 }
1258
1259 #ifdef CONFIG_X86_64
1260 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1261 #endif
1262
1263 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1264 static unsigned long max_tsc_khz;
1265
adjust_tsc_khz(u32 khz,s32 ppm)1266 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1267 {
1268 u64 v = (u64)khz * (1000000 + ppm);
1269 do_div(v, 1000000);
1270 return v;
1271 }
1272
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1273 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1274 {
1275 u64 ratio;
1276
1277 /* Guest TSC same frequency as host TSC? */
1278 if (!scale) {
1279 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1280 return 0;
1281 }
1282
1283 /* TSC scaling supported? */
1284 if (!kvm_has_tsc_control) {
1285 if (user_tsc_khz > tsc_khz) {
1286 vcpu->arch.tsc_catchup = 1;
1287 vcpu->arch.tsc_always_catchup = 1;
1288 return 0;
1289 } else {
1290 WARN(1, "user requested TSC rate below hardware speed\n");
1291 return -1;
1292 }
1293 }
1294
1295 /* TSC scaling required - calculate ratio */
1296 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1297 user_tsc_khz, tsc_khz);
1298
1299 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1300 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1301 user_tsc_khz);
1302 return -1;
1303 }
1304
1305 vcpu->arch.tsc_scaling_ratio = ratio;
1306 return 0;
1307 }
1308
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1309 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1310 {
1311 u32 thresh_lo, thresh_hi;
1312 int use_scaling = 0;
1313
1314 /* tsc_khz can be zero if TSC calibration fails */
1315 if (user_tsc_khz == 0) {
1316 /* set tsc_scaling_ratio to a safe value */
1317 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1318 return -1;
1319 }
1320
1321 /* Compute a scale to convert nanoseconds in TSC cycles */
1322 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1323 &vcpu->arch.virtual_tsc_shift,
1324 &vcpu->arch.virtual_tsc_mult);
1325 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1326
1327 /*
1328 * Compute the variation in TSC rate which is acceptable
1329 * within the range of tolerance and decide if the
1330 * rate being applied is within that bounds of the hardware
1331 * rate. If so, no scaling or compensation need be done.
1332 */
1333 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1334 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1335 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1336 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1337 use_scaling = 1;
1338 }
1339 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1340 }
1341
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1342 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1343 {
1344 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1345 vcpu->arch.virtual_tsc_mult,
1346 vcpu->arch.virtual_tsc_shift);
1347 tsc += vcpu->arch.this_tsc_write;
1348 return tsc;
1349 }
1350
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1351 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1352 {
1353 #ifdef CONFIG_X86_64
1354 bool vcpus_matched;
1355 struct kvm_arch *ka = &vcpu->kvm->arch;
1356 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1357
1358 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1359 atomic_read(&vcpu->kvm->online_vcpus));
1360
1361 /*
1362 * Once the masterclock is enabled, always perform request in
1363 * order to update it.
1364 *
1365 * In order to enable masterclock, the host clocksource must be TSC
1366 * and the vcpus need to have matched TSCs. When that happens,
1367 * perform request to enable masterclock.
1368 */
1369 if (ka->use_master_clock ||
1370 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1371 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1372
1373 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1374 atomic_read(&vcpu->kvm->online_vcpus),
1375 ka->use_master_clock, gtod->clock.vclock_mode);
1376 #endif
1377 }
1378
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1379 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1380 {
1381 u64 curr_offset = vcpu->arch.tsc_offset;
1382 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1383 }
1384
1385 /*
1386 * Multiply tsc by a fixed point number represented by ratio.
1387 *
1388 * The most significant 64-N bits (mult) of ratio represent the
1389 * integral part of the fixed point number; the remaining N bits
1390 * (frac) represent the fractional part, ie. ratio represents a fixed
1391 * point number (mult + frac * 2^(-N)).
1392 *
1393 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1394 */
__scale_tsc(u64 ratio,u64 tsc)1395 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1396 {
1397 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1398 }
1399
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1400 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1401 {
1402 u64 _tsc = tsc;
1403 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1404
1405 if (ratio != kvm_default_tsc_scaling_ratio)
1406 _tsc = __scale_tsc(ratio, tsc);
1407
1408 return _tsc;
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1411
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1412 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1413 {
1414 u64 tsc;
1415
1416 tsc = kvm_scale_tsc(vcpu, rdtsc());
1417
1418 return target_tsc - tsc;
1419 }
1420
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1421 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1422 {
1423 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1424 }
1425 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1426
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1427 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1428 {
1429 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1430 vcpu->arch.tsc_offset = offset;
1431 }
1432
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1433 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1434 {
1435 struct kvm *kvm = vcpu->kvm;
1436 u64 offset, ns, elapsed;
1437 unsigned long flags;
1438 s64 usdiff;
1439 bool matched;
1440 bool already_matched;
1441 u64 data = msr->data;
1442
1443 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1444 offset = kvm_compute_tsc_offset(vcpu, data);
1445 ns = ktime_get_boot_ns();
1446 elapsed = ns - kvm->arch.last_tsc_nsec;
1447
1448 if (vcpu->arch.virtual_tsc_khz) {
1449 int faulted = 0;
1450
1451 /* n.b - signed multiplication and division required */
1452 usdiff = data - kvm->arch.last_tsc_write;
1453 #ifdef CONFIG_X86_64
1454 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1455 #else
1456 /* do_div() only does unsigned */
1457 asm("1: idivl %[divisor]\n"
1458 "2: xor %%edx, %%edx\n"
1459 " movl $0, %[faulted]\n"
1460 "3:\n"
1461 ".section .fixup,\"ax\"\n"
1462 "4: movl $1, %[faulted]\n"
1463 " jmp 3b\n"
1464 ".previous\n"
1465
1466 _ASM_EXTABLE(1b, 4b)
1467
1468 : "=A"(usdiff), [faulted] "=r" (faulted)
1469 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1470
1471 #endif
1472 do_div(elapsed, 1000);
1473 usdiff -= elapsed;
1474 if (usdiff < 0)
1475 usdiff = -usdiff;
1476
1477 /* idivl overflow => difference is larger than USEC_PER_SEC */
1478 if (faulted)
1479 usdiff = USEC_PER_SEC;
1480 } else
1481 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1482
1483 /*
1484 * Special case: TSC write with a small delta (1 second) of virtual
1485 * cycle time against real time is interpreted as an attempt to
1486 * synchronize the CPU.
1487 *
1488 * For a reliable TSC, we can match TSC offsets, and for an unstable
1489 * TSC, we add elapsed time in this computation. We could let the
1490 * compensation code attempt to catch up if we fall behind, but
1491 * it's better to try to match offsets from the beginning.
1492 */
1493 if (usdiff < USEC_PER_SEC &&
1494 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1495 if (!check_tsc_unstable()) {
1496 offset = kvm->arch.cur_tsc_offset;
1497 pr_debug("kvm: matched tsc offset for %llu\n", data);
1498 } else {
1499 u64 delta = nsec_to_cycles(vcpu, elapsed);
1500 data += delta;
1501 offset = kvm_compute_tsc_offset(vcpu, data);
1502 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1503 }
1504 matched = true;
1505 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1506 } else {
1507 /*
1508 * We split periods of matched TSC writes into generations.
1509 * For each generation, we track the original measured
1510 * nanosecond time, offset, and write, so if TSCs are in
1511 * sync, we can match exact offset, and if not, we can match
1512 * exact software computation in compute_guest_tsc()
1513 *
1514 * These values are tracked in kvm->arch.cur_xxx variables.
1515 */
1516 kvm->arch.cur_tsc_generation++;
1517 kvm->arch.cur_tsc_nsec = ns;
1518 kvm->arch.cur_tsc_write = data;
1519 kvm->arch.cur_tsc_offset = offset;
1520 matched = false;
1521 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1522 kvm->arch.cur_tsc_generation, data);
1523 }
1524
1525 /*
1526 * We also track th most recent recorded KHZ, write and time to
1527 * allow the matching interval to be extended at each write.
1528 */
1529 kvm->arch.last_tsc_nsec = ns;
1530 kvm->arch.last_tsc_write = data;
1531 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1532
1533 vcpu->arch.last_guest_tsc = data;
1534
1535 /* Keep track of which generation this VCPU has synchronized to */
1536 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1537 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1538 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1539
1540 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1541 update_ia32_tsc_adjust_msr(vcpu, offset);
1542 kvm_vcpu_write_tsc_offset(vcpu, offset);
1543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1544
1545 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1546 if (!matched) {
1547 kvm->arch.nr_vcpus_matched_tsc = 0;
1548 } else if (!already_matched) {
1549 kvm->arch.nr_vcpus_matched_tsc++;
1550 }
1551
1552 kvm_track_tsc_matching(vcpu);
1553 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1554 }
1555
1556 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1557
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1558 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1559 s64 adjustment)
1560 {
1561 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1562 }
1563
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1564 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1565 {
1566 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1567 WARN_ON(adjustment < 0);
1568 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1569 adjust_tsc_offset_guest(vcpu, adjustment);
1570 }
1571
1572 #ifdef CONFIG_X86_64
1573
read_tsc(void)1574 static cycle_t read_tsc(void)
1575 {
1576 cycle_t ret = (cycle_t)rdtsc_ordered();
1577 u64 last = pvclock_gtod_data.clock.cycle_last;
1578
1579 if (likely(ret >= last))
1580 return ret;
1581
1582 /*
1583 * GCC likes to generate cmov here, but this branch is extremely
1584 * predictable (it's just a function of time and the likely is
1585 * very likely) and there's a data dependence, so force GCC
1586 * to generate a branch instead. I don't barrier() because
1587 * we don't actually need a barrier, and if this function
1588 * ever gets inlined it will generate worse code.
1589 */
1590 asm volatile ("");
1591 return last;
1592 }
1593
vgettsc(cycle_t * cycle_now)1594 static inline u64 vgettsc(cycle_t *cycle_now)
1595 {
1596 long v;
1597 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1598
1599 *cycle_now = read_tsc();
1600
1601 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1602 return v * gtod->clock.mult;
1603 }
1604
do_monotonic_boot(s64 * t,cycle_t * cycle_now)1605 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1606 {
1607 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1608 unsigned long seq;
1609 int mode;
1610 u64 ns;
1611
1612 do {
1613 seq = read_seqcount_begin(>od->seq);
1614 mode = gtod->clock.vclock_mode;
1615 ns = gtod->nsec_base;
1616 ns += vgettsc(cycle_now);
1617 ns >>= gtod->clock.shift;
1618 ns += gtod->boot_ns;
1619 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1620 *t = ns;
1621
1622 return mode;
1623 }
1624
1625 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1626 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1627 {
1628 /* checked again under seqlock below */
1629 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1630 return false;
1631
1632 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1633 }
1634 #endif
1635
1636 /*
1637 *
1638 * Assuming a stable TSC across physical CPUS, and a stable TSC
1639 * across virtual CPUs, the following condition is possible.
1640 * Each numbered line represents an event visible to both
1641 * CPUs at the next numbered event.
1642 *
1643 * "timespecX" represents host monotonic time. "tscX" represents
1644 * RDTSC value.
1645 *
1646 * VCPU0 on CPU0 | VCPU1 on CPU1
1647 *
1648 * 1. read timespec0,tsc0
1649 * 2. | timespec1 = timespec0 + N
1650 * | tsc1 = tsc0 + M
1651 * 3. transition to guest | transition to guest
1652 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1653 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1654 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1655 *
1656 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1657 *
1658 * - ret0 < ret1
1659 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1660 * ...
1661 * - 0 < N - M => M < N
1662 *
1663 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1664 * always the case (the difference between two distinct xtime instances
1665 * might be smaller then the difference between corresponding TSC reads,
1666 * when updating guest vcpus pvclock areas).
1667 *
1668 * To avoid that problem, do not allow visibility of distinct
1669 * system_timestamp/tsc_timestamp values simultaneously: use a master
1670 * copy of host monotonic time values. Update that master copy
1671 * in lockstep.
1672 *
1673 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1674 *
1675 */
1676
pvclock_update_vm_gtod_copy(struct kvm * kvm)1677 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1678 {
1679 #ifdef CONFIG_X86_64
1680 struct kvm_arch *ka = &kvm->arch;
1681 int vclock_mode;
1682 bool host_tsc_clocksource, vcpus_matched;
1683
1684 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1685 atomic_read(&kvm->online_vcpus));
1686
1687 /*
1688 * If the host uses TSC clock, then passthrough TSC as stable
1689 * to the guest.
1690 */
1691 host_tsc_clocksource = kvm_get_time_and_clockread(
1692 &ka->master_kernel_ns,
1693 &ka->master_cycle_now);
1694
1695 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1696 && !backwards_tsc_observed
1697 && !ka->boot_vcpu_runs_old_kvmclock;
1698
1699 if (ka->use_master_clock)
1700 atomic_set(&kvm_guest_has_master_clock, 1);
1701
1702 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1703 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1704 vcpus_matched);
1705 #endif
1706 }
1707
kvm_make_mclock_inprogress_request(struct kvm * kvm)1708 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1709 {
1710 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1711 }
1712
kvm_gen_update_masterclock(struct kvm * kvm)1713 static void kvm_gen_update_masterclock(struct kvm *kvm)
1714 {
1715 #ifdef CONFIG_X86_64
1716 int i;
1717 struct kvm_vcpu *vcpu;
1718 struct kvm_arch *ka = &kvm->arch;
1719
1720 spin_lock(&ka->pvclock_gtod_sync_lock);
1721 kvm_make_mclock_inprogress_request(kvm);
1722 /* no guest entries from this point */
1723 pvclock_update_vm_gtod_copy(kvm);
1724
1725 kvm_for_each_vcpu(i, vcpu, kvm)
1726 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1727
1728 /* guest entries allowed */
1729 kvm_for_each_vcpu(i, vcpu, kvm)
1730 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1731
1732 spin_unlock(&ka->pvclock_gtod_sync_lock);
1733 #endif
1734 }
1735
__get_kvmclock_ns(struct kvm * kvm)1736 static u64 __get_kvmclock_ns(struct kvm *kvm)
1737 {
1738 struct kvm_arch *ka = &kvm->arch;
1739 struct pvclock_vcpu_time_info hv_clock;
1740 u64 ret;
1741
1742 spin_lock(&ka->pvclock_gtod_sync_lock);
1743 if (!ka->use_master_clock) {
1744 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746 }
1747
1748 hv_clock.tsc_timestamp = ka->master_cycle_now;
1749 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750 spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1753 get_cpu();
1754
1755 if (__this_cpu_read(cpu_tsc_khz)) {
1756 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1757 &hv_clock.tsc_shift,
1758 &hv_clock.tsc_to_system_mul);
1759 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1760 } else
1761 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1762
1763 put_cpu();
1764
1765 return ret;
1766 }
1767
get_kvmclock_ns(struct kvm * kvm)1768 u64 get_kvmclock_ns(struct kvm *kvm)
1769 {
1770 unsigned long flags;
1771 s64 ns;
1772
1773 local_irq_save(flags);
1774 ns = __get_kvmclock_ns(kvm);
1775 local_irq_restore(flags);
1776
1777 return ns;
1778 }
1779
kvm_setup_pvclock_page(struct kvm_vcpu * v)1780 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1781 {
1782 struct kvm_vcpu_arch *vcpu = &v->arch;
1783 struct pvclock_vcpu_time_info guest_hv_clock;
1784
1785 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1786 &guest_hv_clock, sizeof(guest_hv_clock))))
1787 return;
1788
1789 /* This VCPU is paused, but it's legal for a guest to read another
1790 * VCPU's kvmclock, so we really have to follow the specification where
1791 * it says that version is odd if data is being modified, and even after
1792 * it is consistent.
1793 *
1794 * Version field updates must be kept separate. This is because
1795 * kvm_write_guest_cached might use a "rep movs" instruction, and
1796 * writes within a string instruction are weakly ordered. So there
1797 * are three writes overall.
1798 *
1799 * As a small optimization, only write the version field in the first
1800 * and third write. The vcpu->pv_time cache is still valid, because the
1801 * version field is the first in the struct.
1802 */
1803 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1804
1805 if (guest_hv_clock.version & 1)
1806 ++guest_hv_clock.version; /* first time write, random junk */
1807
1808 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1809 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1810 &vcpu->hv_clock,
1811 sizeof(vcpu->hv_clock.version));
1812
1813 smp_wmb();
1814
1815 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1816 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1817
1818 if (vcpu->pvclock_set_guest_stopped_request) {
1819 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1820 vcpu->pvclock_set_guest_stopped_request = false;
1821 }
1822
1823 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1824
1825 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1826 &vcpu->hv_clock,
1827 sizeof(vcpu->hv_clock));
1828
1829 smp_wmb();
1830
1831 vcpu->hv_clock.version++;
1832 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1833 &vcpu->hv_clock,
1834 sizeof(vcpu->hv_clock.version));
1835 }
1836
kvm_guest_time_update(struct kvm_vcpu * v)1837 static int kvm_guest_time_update(struct kvm_vcpu *v)
1838 {
1839 unsigned long flags, tgt_tsc_khz;
1840 struct kvm_vcpu_arch *vcpu = &v->arch;
1841 struct kvm_arch *ka = &v->kvm->arch;
1842 s64 kernel_ns;
1843 u64 tsc_timestamp, host_tsc;
1844 u8 pvclock_flags;
1845 bool use_master_clock;
1846
1847 kernel_ns = 0;
1848 host_tsc = 0;
1849
1850 /*
1851 * If the host uses TSC clock, then passthrough TSC as stable
1852 * to the guest.
1853 */
1854 spin_lock(&ka->pvclock_gtod_sync_lock);
1855 use_master_clock = ka->use_master_clock;
1856 if (use_master_clock) {
1857 host_tsc = ka->master_cycle_now;
1858 kernel_ns = ka->master_kernel_ns;
1859 }
1860 spin_unlock(&ka->pvclock_gtod_sync_lock);
1861
1862 /* Keep irq disabled to prevent changes to the clock */
1863 local_irq_save(flags);
1864 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1865 if (unlikely(tgt_tsc_khz == 0)) {
1866 local_irq_restore(flags);
1867 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1868 return 1;
1869 }
1870 if (!use_master_clock) {
1871 host_tsc = rdtsc();
1872 kernel_ns = ktime_get_boot_ns();
1873 }
1874
1875 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1876
1877 /*
1878 * We may have to catch up the TSC to match elapsed wall clock
1879 * time for two reasons, even if kvmclock is used.
1880 * 1) CPU could have been running below the maximum TSC rate
1881 * 2) Broken TSC compensation resets the base at each VCPU
1882 * entry to avoid unknown leaps of TSC even when running
1883 * again on the same CPU. This may cause apparent elapsed
1884 * time to disappear, and the guest to stand still or run
1885 * very slowly.
1886 */
1887 if (vcpu->tsc_catchup) {
1888 u64 tsc = compute_guest_tsc(v, kernel_ns);
1889 if (tsc > tsc_timestamp) {
1890 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1891 tsc_timestamp = tsc;
1892 }
1893 }
1894
1895 local_irq_restore(flags);
1896
1897 /* With all the info we got, fill in the values */
1898
1899 if (kvm_has_tsc_control)
1900 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1901
1902 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1903 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1904 &vcpu->hv_clock.tsc_shift,
1905 &vcpu->hv_clock.tsc_to_system_mul);
1906 vcpu->hw_tsc_khz = tgt_tsc_khz;
1907 }
1908
1909 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1910 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1911 vcpu->last_guest_tsc = tsc_timestamp;
1912
1913 /* If the host uses TSC clocksource, then it is stable */
1914 pvclock_flags = 0;
1915 if (use_master_clock)
1916 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1917
1918 vcpu->hv_clock.flags = pvclock_flags;
1919
1920 if (vcpu->pv_time_enabled)
1921 kvm_setup_pvclock_page(v);
1922 if (v == kvm_get_vcpu(v->kvm, 0))
1923 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1924 return 0;
1925 }
1926
1927 /*
1928 * kvmclock updates which are isolated to a given vcpu, such as
1929 * vcpu->cpu migration, should not allow system_timestamp from
1930 * the rest of the vcpus to remain static. Otherwise ntp frequency
1931 * correction applies to one vcpu's system_timestamp but not
1932 * the others.
1933 *
1934 * So in those cases, request a kvmclock update for all vcpus.
1935 * We need to rate-limit these requests though, as they can
1936 * considerably slow guests that have a large number of vcpus.
1937 * The time for a remote vcpu to update its kvmclock is bound
1938 * by the delay we use to rate-limit the updates.
1939 */
1940
1941 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1942
kvmclock_update_fn(struct work_struct * work)1943 static void kvmclock_update_fn(struct work_struct *work)
1944 {
1945 int i;
1946 struct delayed_work *dwork = to_delayed_work(work);
1947 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1948 kvmclock_update_work);
1949 struct kvm *kvm = container_of(ka, struct kvm, arch);
1950 struct kvm_vcpu *vcpu;
1951
1952 kvm_for_each_vcpu(i, vcpu, kvm) {
1953 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1954 kvm_vcpu_kick(vcpu);
1955 }
1956 }
1957
kvm_gen_kvmclock_update(struct kvm_vcpu * v)1958 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1959 {
1960 struct kvm *kvm = v->kvm;
1961
1962 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1963 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1964 KVMCLOCK_UPDATE_DELAY);
1965 }
1966
1967 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1968
kvmclock_sync_fn(struct work_struct * work)1969 static void kvmclock_sync_fn(struct work_struct *work)
1970 {
1971 struct delayed_work *dwork = to_delayed_work(work);
1972 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973 kvmclock_sync_work);
1974 struct kvm *kvm = container_of(ka, struct kvm, arch);
1975
1976 if (!kvmclock_periodic_sync)
1977 return;
1978
1979 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1980 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1981 KVMCLOCK_SYNC_PERIOD);
1982 }
1983
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1984 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1985 {
1986 u64 mcg_cap = vcpu->arch.mcg_cap;
1987 unsigned bank_num = mcg_cap & 0xff;
1988
1989 switch (msr) {
1990 case MSR_IA32_MCG_STATUS:
1991 vcpu->arch.mcg_status = data;
1992 break;
1993 case MSR_IA32_MCG_CTL:
1994 if (!(mcg_cap & MCG_CTL_P))
1995 return 1;
1996 if (data != 0 && data != ~(u64)0)
1997 return -1;
1998 vcpu->arch.mcg_ctl = data;
1999 break;
2000 default:
2001 if (msr >= MSR_IA32_MC0_CTL &&
2002 msr < MSR_IA32_MCx_CTL(bank_num)) {
2003 u32 offset = msr - MSR_IA32_MC0_CTL;
2004 /* only 0 or all 1s can be written to IA32_MCi_CTL
2005 * some Linux kernels though clear bit 10 in bank 4 to
2006 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2007 * this to avoid an uncatched #GP in the guest
2008 */
2009 if ((offset & 0x3) == 0 &&
2010 data != 0 && (data | (1 << 10)) != ~(u64)0)
2011 return -1;
2012 vcpu->arch.mce_banks[offset] = data;
2013 break;
2014 }
2015 return 1;
2016 }
2017 return 0;
2018 }
2019
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2020 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2021 {
2022 struct kvm *kvm = vcpu->kvm;
2023 int lm = is_long_mode(vcpu);
2024 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2025 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2026 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2027 : kvm->arch.xen_hvm_config.blob_size_32;
2028 u32 page_num = data & ~PAGE_MASK;
2029 u64 page_addr = data & PAGE_MASK;
2030 u8 *page;
2031 int r;
2032
2033 r = -E2BIG;
2034 if (page_num >= blob_size)
2035 goto out;
2036 r = -ENOMEM;
2037 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2038 if (IS_ERR(page)) {
2039 r = PTR_ERR(page);
2040 goto out;
2041 }
2042 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2043 goto out_free;
2044 r = 0;
2045 out_free:
2046 kfree(page);
2047 out:
2048 return r;
2049 }
2050
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2051 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2052 {
2053 gpa_t gpa = data & ~0x3f;
2054
2055 /* Bits 2:5 are reserved, Should be zero */
2056 if (data & 0x3c)
2057 return 1;
2058
2059 vcpu->arch.apf.msr_val = data;
2060
2061 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2062 kvm_clear_async_pf_completion_queue(vcpu);
2063 kvm_async_pf_hash_reset(vcpu);
2064 return 0;
2065 }
2066
2067 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2068 sizeof(u32)))
2069 return 1;
2070
2071 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2072 kvm_async_pf_wakeup_all(vcpu);
2073 return 0;
2074 }
2075
kvmclock_reset(struct kvm_vcpu * vcpu)2076 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2077 {
2078 vcpu->arch.pv_time_enabled = false;
2079 }
2080
record_steal_time(struct kvm_vcpu * vcpu)2081 static void record_steal_time(struct kvm_vcpu *vcpu)
2082 {
2083 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2084 return;
2085
2086 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2087 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2088 return;
2089
2090 if (vcpu->arch.st.steal.version & 1)
2091 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2092
2093 vcpu->arch.st.steal.version += 1;
2094
2095 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2096 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2097
2098 smp_wmb();
2099
2100 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2101 vcpu->arch.st.last_steal;
2102 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2103
2104 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2105 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2106
2107 smp_wmb();
2108
2109 vcpu->arch.st.steal.version += 1;
2110
2111 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2112 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2113 }
2114
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2115 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2116 {
2117 bool pr = false;
2118 u32 msr = msr_info->index;
2119 u64 data = msr_info->data;
2120
2121 switch (msr) {
2122 case MSR_AMD64_NB_CFG:
2123 case MSR_IA32_UCODE_REV:
2124 case MSR_IA32_UCODE_WRITE:
2125 case MSR_VM_HSAVE_PA:
2126 case MSR_AMD64_PATCH_LOADER:
2127 case MSR_AMD64_BU_CFG2:
2128 break;
2129
2130 case MSR_EFER:
2131 return set_efer(vcpu, data);
2132 case MSR_K7_HWCR:
2133 data &= ~(u64)0x40; /* ignore flush filter disable */
2134 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2135 data &= ~(u64)0x8; /* ignore TLB cache disable */
2136 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2137 if (data != 0) {
2138 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2139 data);
2140 return 1;
2141 }
2142 break;
2143 case MSR_FAM10H_MMIO_CONF_BASE:
2144 if (data != 0) {
2145 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2146 "0x%llx\n", data);
2147 return 1;
2148 }
2149 break;
2150 case MSR_IA32_DEBUGCTLMSR:
2151 if (!data) {
2152 /* We support the non-activated case already */
2153 break;
2154 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2155 /* Values other than LBR and BTF are vendor-specific,
2156 thus reserved and should throw a #GP */
2157 return 1;
2158 }
2159 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2160 __func__, data);
2161 break;
2162 case 0x200 ... 0x2ff:
2163 return kvm_mtrr_set_msr(vcpu, msr, data);
2164 case MSR_IA32_APICBASE:
2165 return kvm_set_apic_base(vcpu, msr_info);
2166 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2167 return kvm_x2apic_msr_write(vcpu, msr, data);
2168 case MSR_IA32_TSCDEADLINE:
2169 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2170 break;
2171 case MSR_IA32_TSC_ADJUST:
2172 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2173 if (!msr_info->host_initiated) {
2174 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2175 adjust_tsc_offset_guest(vcpu, adj);
2176 }
2177 vcpu->arch.ia32_tsc_adjust_msr = data;
2178 }
2179 break;
2180 case MSR_IA32_MISC_ENABLE:
2181 vcpu->arch.ia32_misc_enable_msr = data;
2182 break;
2183 case MSR_IA32_SMBASE:
2184 if (!msr_info->host_initiated)
2185 return 1;
2186 vcpu->arch.smbase = data;
2187 break;
2188 case MSR_KVM_WALL_CLOCK_NEW:
2189 case MSR_KVM_WALL_CLOCK:
2190 vcpu->kvm->arch.wall_clock = data;
2191 kvm_write_wall_clock(vcpu->kvm, data);
2192 break;
2193 case MSR_KVM_SYSTEM_TIME_NEW:
2194 case MSR_KVM_SYSTEM_TIME: {
2195 u64 gpa_offset;
2196 struct kvm_arch *ka = &vcpu->kvm->arch;
2197
2198 kvmclock_reset(vcpu);
2199
2200 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2201 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2202
2203 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2204 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2205 &vcpu->requests);
2206
2207 ka->boot_vcpu_runs_old_kvmclock = tmp;
2208 }
2209
2210 vcpu->arch.time = data;
2211 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2212
2213 /* we verify if the enable bit is set... */
2214 if (!(data & 1))
2215 break;
2216
2217 gpa_offset = data & ~(PAGE_MASK | 1);
2218
2219 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2220 &vcpu->arch.pv_time, data & ~1ULL,
2221 sizeof(struct pvclock_vcpu_time_info)))
2222 vcpu->arch.pv_time_enabled = false;
2223 else
2224 vcpu->arch.pv_time_enabled = true;
2225
2226 break;
2227 }
2228 case MSR_KVM_ASYNC_PF_EN:
2229 if (kvm_pv_enable_async_pf(vcpu, data))
2230 return 1;
2231 break;
2232 case MSR_KVM_STEAL_TIME:
2233
2234 if (unlikely(!sched_info_on()))
2235 return 1;
2236
2237 if (data & KVM_STEAL_RESERVED_MASK)
2238 return 1;
2239
2240 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2241 data & KVM_STEAL_VALID_BITS,
2242 sizeof(struct kvm_steal_time)))
2243 return 1;
2244
2245 vcpu->arch.st.msr_val = data;
2246
2247 if (!(data & KVM_MSR_ENABLED))
2248 break;
2249
2250 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2251
2252 break;
2253 case MSR_KVM_PV_EOI_EN:
2254 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2255 return 1;
2256 break;
2257
2258 case MSR_IA32_MCG_CTL:
2259 case MSR_IA32_MCG_STATUS:
2260 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2261 return set_msr_mce(vcpu, msr, data);
2262
2263 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2264 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2265 pr = true; /* fall through */
2266 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2267 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2268 if (kvm_pmu_is_valid_msr(vcpu, msr))
2269 return kvm_pmu_set_msr(vcpu, msr_info);
2270
2271 if (pr || data != 0)
2272 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2273 "0x%x data 0x%llx\n", msr, data);
2274 break;
2275 case MSR_K7_CLK_CTL:
2276 /*
2277 * Ignore all writes to this no longer documented MSR.
2278 * Writes are only relevant for old K7 processors,
2279 * all pre-dating SVM, but a recommended workaround from
2280 * AMD for these chips. It is possible to specify the
2281 * affected processor models on the command line, hence
2282 * the need to ignore the workaround.
2283 */
2284 break;
2285 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2286 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2287 case HV_X64_MSR_CRASH_CTL:
2288 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2289 return kvm_hv_set_msr_common(vcpu, msr, data,
2290 msr_info->host_initiated);
2291 case MSR_IA32_BBL_CR_CTL3:
2292 /* Drop writes to this legacy MSR -- see rdmsr
2293 * counterpart for further detail.
2294 */
2295 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2296 break;
2297 case MSR_AMD64_OSVW_ID_LENGTH:
2298 if (!guest_cpuid_has_osvw(vcpu))
2299 return 1;
2300 vcpu->arch.osvw.length = data;
2301 break;
2302 case MSR_AMD64_OSVW_STATUS:
2303 if (!guest_cpuid_has_osvw(vcpu))
2304 return 1;
2305 vcpu->arch.osvw.status = data;
2306 break;
2307 default:
2308 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2309 return xen_hvm_config(vcpu, data);
2310 if (kvm_pmu_is_valid_msr(vcpu, msr))
2311 return kvm_pmu_set_msr(vcpu, msr_info);
2312 if (!ignore_msrs) {
2313 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2314 msr, data);
2315 return 1;
2316 } else {
2317 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2318 msr, data);
2319 break;
2320 }
2321 }
2322 return 0;
2323 }
2324 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2325
2326
2327 /*
2328 * Reads an msr value (of 'msr_index') into 'pdata'.
2329 * Returns 0 on success, non-0 otherwise.
2330 * Assumes vcpu_load() was already called.
2331 */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2332 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2333 {
2334 return kvm_x86_ops->get_msr(vcpu, msr);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_get_msr);
2337
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2338 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2339 {
2340 u64 data;
2341 u64 mcg_cap = vcpu->arch.mcg_cap;
2342 unsigned bank_num = mcg_cap & 0xff;
2343
2344 switch (msr) {
2345 case MSR_IA32_P5_MC_ADDR:
2346 case MSR_IA32_P5_MC_TYPE:
2347 data = 0;
2348 break;
2349 case MSR_IA32_MCG_CAP:
2350 data = vcpu->arch.mcg_cap;
2351 break;
2352 case MSR_IA32_MCG_CTL:
2353 if (!(mcg_cap & MCG_CTL_P))
2354 return 1;
2355 data = vcpu->arch.mcg_ctl;
2356 break;
2357 case MSR_IA32_MCG_STATUS:
2358 data = vcpu->arch.mcg_status;
2359 break;
2360 default:
2361 if (msr >= MSR_IA32_MC0_CTL &&
2362 msr < MSR_IA32_MCx_CTL(bank_num)) {
2363 u32 offset = msr - MSR_IA32_MC0_CTL;
2364 data = vcpu->arch.mce_banks[offset];
2365 break;
2366 }
2367 return 1;
2368 }
2369 *pdata = data;
2370 return 0;
2371 }
2372
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2373 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2374 {
2375 switch (msr_info->index) {
2376 case MSR_IA32_PLATFORM_ID:
2377 case MSR_IA32_EBL_CR_POWERON:
2378 case MSR_IA32_DEBUGCTLMSR:
2379 case MSR_IA32_LASTBRANCHFROMIP:
2380 case MSR_IA32_LASTBRANCHTOIP:
2381 case MSR_IA32_LASTINTFROMIP:
2382 case MSR_IA32_LASTINTTOIP:
2383 case MSR_K8_SYSCFG:
2384 case MSR_K8_TSEG_ADDR:
2385 case MSR_K8_TSEG_MASK:
2386 case MSR_K7_HWCR:
2387 case MSR_VM_HSAVE_PA:
2388 case MSR_K8_INT_PENDING_MSG:
2389 case MSR_AMD64_NB_CFG:
2390 case MSR_FAM10H_MMIO_CONF_BASE:
2391 case MSR_AMD64_BU_CFG2:
2392 case MSR_IA32_PERF_CTL:
2393 msr_info->data = 0;
2394 break;
2395 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2396 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2397 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2398 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2399 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2400 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2401 msr_info->data = 0;
2402 break;
2403 case MSR_IA32_UCODE_REV:
2404 msr_info->data = 0x100000000ULL;
2405 break;
2406 case MSR_MTRRcap:
2407 case 0x200 ... 0x2ff:
2408 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2409 case 0xcd: /* fsb frequency */
2410 msr_info->data = 3;
2411 break;
2412 /*
2413 * MSR_EBC_FREQUENCY_ID
2414 * Conservative value valid for even the basic CPU models.
2415 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2416 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2417 * and 266MHz for model 3, or 4. Set Core Clock
2418 * Frequency to System Bus Frequency Ratio to 1 (bits
2419 * 31:24) even though these are only valid for CPU
2420 * models > 2, however guests may end up dividing or
2421 * multiplying by zero otherwise.
2422 */
2423 case MSR_EBC_FREQUENCY_ID:
2424 msr_info->data = 1 << 24;
2425 break;
2426 case MSR_IA32_APICBASE:
2427 msr_info->data = kvm_get_apic_base(vcpu);
2428 break;
2429 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2430 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2431 break;
2432 case MSR_IA32_TSCDEADLINE:
2433 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2434 break;
2435 case MSR_IA32_TSC_ADJUST:
2436 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2437 break;
2438 case MSR_IA32_MISC_ENABLE:
2439 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2440 break;
2441 case MSR_IA32_SMBASE:
2442 if (!msr_info->host_initiated)
2443 return 1;
2444 msr_info->data = vcpu->arch.smbase;
2445 break;
2446 case MSR_IA32_PERF_STATUS:
2447 /* TSC increment by tick */
2448 msr_info->data = 1000ULL;
2449 /* CPU multiplier */
2450 msr_info->data |= (((uint64_t)4ULL) << 40);
2451 break;
2452 case MSR_EFER:
2453 msr_info->data = vcpu->arch.efer;
2454 break;
2455 case MSR_KVM_WALL_CLOCK:
2456 case MSR_KVM_WALL_CLOCK_NEW:
2457 msr_info->data = vcpu->kvm->arch.wall_clock;
2458 break;
2459 case MSR_KVM_SYSTEM_TIME:
2460 case MSR_KVM_SYSTEM_TIME_NEW:
2461 msr_info->data = vcpu->arch.time;
2462 break;
2463 case MSR_KVM_ASYNC_PF_EN:
2464 msr_info->data = vcpu->arch.apf.msr_val;
2465 break;
2466 case MSR_KVM_STEAL_TIME:
2467 msr_info->data = vcpu->arch.st.msr_val;
2468 break;
2469 case MSR_KVM_PV_EOI_EN:
2470 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2471 break;
2472 case MSR_IA32_P5_MC_ADDR:
2473 case MSR_IA32_P5_MC_TYPE:
2474 case MSR_IA32_MCG_CAP:
2475 case MSR_IA32_MCG_CTL:
2476 case MSR_IA32_MCG_STATUS:
2477 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2478 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2479 case MSR_K7_CLK_CTL:
2480 /*
2481 * Provide expected ramp-up count for K7. All other
2482 * are set to zero, indicating minimum divisors for
2483 * every field.
2484 *
2485 * This prevents guest kernels on AMD host with CPU
2486 * type 6, model 8 and higher from exploding due to
2487 * the rdmsr failing.
2488 */
2489 msr_info->data = 0x20000000;
2490 break;
2491 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2492 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2493 case HV_X64_MSR_CRASH_CTL:
2494 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2495 return kvm_hv_get_msr_common(vcpu,
2496 msr_info->index, &msr_info->data);
2497 break;
2498 case MSR_IA32_BBL_CR_CTL3:
2499 /* This legacy MSR exists but isn't fully documented in current
2500 * silicon. It is however accessed by winxp in very narrow
2501 * scenarios where it sets bit #19, itself documented as
2502 * a "reserved" bit. Best effort attempt to source coherent
2503 * read data here should the balance of the register be
2504 * interpreted by the guest:
2505 *
2506 * L2 cache control register 3: 64GB range, 256KB size,
2507 * enabled, latency 0x1, configured
2508 */
2509 msr_info->data = 0xbe702111;
2510 break;
2511 case MSR_AMD64_OSVW_ID_LENGTH:
2512 if (!guest_cpuid_has_osvw(vcpu))
2513 return 1;
2514 msr_info->data = vcpu->arch.osvw.length;
2515 break;
2516 case MSR_AMD64_OSVW_STATUS:
2517 if (!guest_cpuid_has_osvw(vcpu))
2518 return 1;
2519 msr_info->data = vcpu->arch.osvw.status;
2520 break;
2521 default:
2522 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2523 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2524 if (!ignore_msrs) {
2525 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2526 return 1;
2527 } else {
2528 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2529 msr_info->data = 0;
2530 }
2531 break;
2532 }
2533 return 0;
2534 }
2535 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2536
2537 /*
2538 * Read or write a bunch of msrs. All parameters are kernel addresses.
2539 *
2540 * @return number of msrs set successfully.
2541 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2542 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2543 struct kvm_msr_entry *entries,
2544 int (*do_msr)(struct kvm_vcpu *vcpu,
2545 unsigned index, u64 *data))
2546 {
2547 int i, idx;
2548
2549 idx = srcu_read_lock(&vcpu->kvm->srcu);
2550 for (i = 0; i < msrs->nmsrs; ++i)
2551 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2552 break;
2553 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2554
2555 return i;
2556 }
2557
2558 /*
2559 * Read or write a bunch of msrs. Parameters are user addresses.
2560 *
2561 * @return number of msrs set successfully.
2562 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2563 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2564 int (*do_msr)(struct kvm_vcpu *vcpu,
2565 unsigned index, u64 *data),
2566 int writeback)
2567 {
2568 struct kvm_msrs msrs;
2569 struct kvm_msr_entry *entries;
2570 int r, n;
2571 unsigned size;
2572
2573 r = -EFAULT;
2574 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2575 goto out;
2576
2577 r = -E2BIG;
2578 if (msrs.nmsrs >= MAX_IO_MSRS)
2579 goto out;
2580
2581 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2582 entries = memdup_user(user_msrs->entries, size);
2583 if (IS_ERR(entries)) {
2584 r = PTR_ERR(entries);
2585 goto out;
2586 }
2587
2588 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2589 if (r < 0)
2590 goto out_free;
2591
2592 r = -EFAULT;
2593 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2594 goto out_free;
2595
2596 r = n;
2597
2598 out_free:
2599 kfree(entries);
2600 out:
2601 return r;
2602 }
2603
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2604 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2605 {
2606 int r;
2607
2608 switch (ext) {
2609 case KVM_CAP_IRQCHIP:
2610 case KVM_CAP_HLT:
2611 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2612 case KVM_CAP_SET_TSS_ADDR:
2613 case KVM_CAP_EXT_CPUID:
2614 case KVM_CAP_EXT_EMUL_CPUID:
2615 case KVM_CAP_CLOCKSOURCE:
2616 case KVM_CAP_PIT:
2617 case KVM_CAP_NOP_IO_DELAY:
2618 case KVM_CAP_MP_STATE:
2619 case KVM_CAP_SYNC_MMU:
2620 case KVM_CAP_USER_NMI:
2621 case KVM_CAP_REINJECT_CONTROL:
2622 case KVM_CAP_IRQ_INJECT_STATUS:
2623 case KVM_CAP_IOEVENTFD:
2624 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2625 case KVM_CAP_PIT2:
2626 case KVM_CAP_PIT_STATE2:
2627 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2628 case KVM_CAP_XEN_HVM:
2629 case KVM_CAP_VCPU_EVENTS:
2630 case KVM_CAP_HYPERV:
2631 case KVM_CAP_HYPERV_VAPIC:
2632 case KVM_CAP_HYPERV_SPIN:
2633 case KVM_CAP_HYPERV_SYNIC:
2634 case KVM_CAP_PCI_SEGMENT:
2635 case KVM_CAP_DEBUGREGS:
2636 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2637 case KVM_CAP_XSAVE:
2638 case KVM_CAP_ASYNC_PF:
2639 case KVM_CAP_GET_TSC_KHZ:
2640 case KVM_CAP_KVMCLOCK_CTRL:
2641 case KVM_CAP_READONLY_MEM:
2642 case KVM_CAP_HYPERV_TIME:
2643 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2644 case KVM_CAP_TSC_DEADLINE_TIMER:
2645 case KVM_CAP_ENABLE_CAP_VM:
2646 case KVM_CAP_DISABLE_QUIRKS:
2647 case KVM_CAP_SET_BOOT_CPU_ID:
2648 case KVM_CAP_SPLIT_IRQCHIP:
2649 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2650 case KVM_CAP_ASSIGN_DEV_IRQ:
2651 case KVM_CAP_PCI_2_3:
2652 #endif
2653 r = 1;
2654 break;
2655 case KVM_CAP_ADJUST_CLOCK:
2656 r = KVM_CLOCK_TSC_STABLE;
2657 break;
2658 case KVM_CAP_X86_SMM:
2659 /* SMBASE is usually relocated above 1M on modern chipsets,
2660 * and SMM handlers might indeed rely on 4G segment limits,
2661 * so do not report SMM to be available if real mode is
2662 * emulated via vm86 mode. Still, do not go to great lengths
2663 * to avoid userspace's usage of the feature, because it is a
2664 * fringe case that is not enabled except via specific settings
2665 * of the module parameters.
2666 */
2667 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2668 break;
2669 case KVM_CAP_COALESCED_MMIO:
2670 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2671 break;
2672 case KVM_CAP_VAPIC:
2673 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2674 break;
2675 case KVM_CAP_NR_VCPUS:
2676 r = KVM_SOFT_MAX_VCPUS;
2677 break;
2678 case KVM_CAP_MAX_VCPUS:
2679 r = KVM_MAX_VCPUS;
2680 break;
2681 case KVM_CAP_NR_MEMSLOTS:
2682 r = KVM_USER_MEM_SLOTS;
2683 break;
2684 case KVM_CAP_PV_MMU: /* obsolete */
2685 r = 0;
2686 break;
2687 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2688 case KVM_CAP_IOMMU:
2689 r = iommu_present(&pci_bus_type);
2690 break;
2691 #endif
2692 case KVM_CAP_MCE:
2693 r = KVM_MAX_MCE_BANKS;
2694 break;
2695 case KVM_CAP_XCRS:
2696 r = boot_cpu_has(X86_FEATURE_XSAVE);
2697 break;
2698 case KVM_CAP_TSC_CONTROL:
2699 r = kvm_has_tsc_control;
2700 break;
2701 case KVM_CAP_X2APIC_API:
2702 r = KVM_X2APIC_API_VALID_FLAGS;
2703 break;
2704 default:
2705 r = 0;
2706 break;
2707 }
2708 return r;
2709
2710 }
2711
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2712 long kvm_arch_dev_ioctl(struct file *filp,
2713 unsigned int ioctl, unsigned long arg)
2714 {
2715 void __user *argp = (void __user *)arg;
2716 long r;
2717
2718 switch (ioctl) {
2719 case KVM_GET_MSR_INDEX_LIST: {
2720 struct kvm_msr_list __user *user_msr_list = argp;
2721 struct kvm_msr_list msr_list;
2722 unsigned n;
2723
2724 r = -EFAULT;
2725 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2726 goto out;
2727 n = msr_list.nmsrs;
2728 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2729 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2730 goto out;
2731 r = -E2BIG;
2732 if (n < msr_list.nmsrs)
2733 goto out;
2734 r = -EFAULT;
2735 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2736 num_msrs_to_save * sizeof(u32)))
2737 goto out;
2738 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2739 &emulated_msrs,
2740 num_emulated_msrs * sizeof(u32)))
2741 goto out;
2742 r = 0;
2743 break;
2744 }
2745 case KVM_GET_SUPPORTED_CPUID:
2746 case KVM_GET_EMULATED_CPUID: {
2747 struct kvm_cpuid2 __user *cpuid_arg = argp;
2748 struct kvm_cpuid2 cpuid;
2749
2750 r = -EFAULT;
2751 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2752 goto out;
2753
2754 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2755 ioctl);
2756 if (r)
2757 goto out;
2758
2759 r = -EFAULT;
2760 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2761 goto out;
2762 r = 0;
2763 break;
2764 }
2765 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2766 r = -EFAULT;
2767 if (copy_to_user(argp, &kvm_mce_cap_supported,
2768 sizeof(kvm_mce_cap_supported)))
2769 goto out;
2770 r = 0;
2771 break;
2772 }
2773 default:
2774 r = -EINVAL;
2775 }
2776 out:
2777 return r;
2778 }
2779
wbinvd_ipi(void * garbage)2780 static void wbinvd_ipi(void *garbage)
2781 {
2782 wbinvd();
2783 }
2784
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2785 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2786 {
2787 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2788 }
2789
kvm_migrate_timers(struct kvm_vcpu * vcpu)2790 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2791 {
2792 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2793 }
2794
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2795 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2796 {
2797 /* Address WBINVD may be executed by guest */
2798 if (need_emulate_wbinvd(vcpu)) {
2799 if (kvm_x86_ops->has_wbinvd_exit())
2800 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2801 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2802 smp_call_function_single(vcpu->cpu,
2803 wbinvd_ipi, NULL, 1);
2804 }
2805
2806 kvm_x86_ops->vcpu_load(vcpu, cpu);
2807
2808 /* Apply any externally detected TSC adjustments (due to suspend) */
2809 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2810 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2811 vcpu->arch.tsc_offset_adjustment = 0;
2812 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2813 }
2814
2815 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2816 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2817 rdtsc() - vcpu->arch.last_host_tsc;
2818 if (tsc_delta < 0)
2819 mark_tsc_unstable("KVM discovered backwards TSC");
2820
2821 if (check_tsc_unstable()) {
2822 u64 offset = kvm_compute_tsc_offset(vcpu,
2823 vcpu->arch.last_guest_tsc);
2824 kvm_vcpu_write_tsc_offset(vcpu, offset);
2825 vcpu->arch.tsc_catchup = 1;
2826 }
2827 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2828 kvm_x86_ops->set_hv_timer(vcpu,
2829 kvm_get_lapic_tscdeadline_msr(vcpu)))
2830 kvm_lapic_switch_to_sw_timer(vcpu);
2831 /*
2832 * On a host with synchronized TSC, there is no need to update
2833 * kvmclock on vcpu->cpu migration
2834 */
2835 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2836 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2837 if (vcpu->cpu != cpu)
2838 kvm_migrate_timers(vcpu);
2839 vcpu->cpu = cpu;
2840 }
2841
2842 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2843 }
2844
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847 kvm_x86_ops->vcpu_put(vcpu);
2848 kvm_put_guest_fpu(vcpu);
2849 vcpu->arch.last_host_tsc = rdtsc();
2850 /*
2851 * If userspace has set any breakpoints or watchpoints, dr6 is restored
2852 * on every vmexit, but if not, we might have a stale dr6 from the
2853 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
2854 */
2855 set_debugreg(0, 6);
2856 }
2857
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2858 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2859 struct kvm_lapic_state *s)
2860 {
2861 if (vcpu->arch.apicv_active)
2862 kvm_x86_ops->sync_pir_to_irr(vcpu);
2863
2864 return kvm_apic_get_state(vcpu, s);
2865 }
2866
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2867 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2868 struct kvm_lapic_state *s)
2869 {
2870 int r;
2871
2872 r = kvm_apic_set_state(vcpu, s);
2873 if (r)
2874 return r;
2875 update_cr8_intercept(vcpu);
2876
2877 return 0;
2878 }
2879
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)2880 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2881 {
2882 return (!lapic_in_kernel(vcpu) ||
2883 kvm_apic_accept_pic_intr(vcpu));
2884 }
2885
2886 /*
2887 * if userspace requested an interrupt window, check that the
2888 * interrupt window is open.
2889 *
2890 * No need to exit to userspace if we already have an interrupt queued.
2891 */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)2892 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2893 {
2894 return kvm_arch_interrupt_allowed(vcpu) &&
2895 !kvm_cpu_has_interrupt(vcpu) &&
2896 !kvm_event_needs_reinjection(vcpu) &&
2897 kvm_cpu_accept_dm_intr(vcpu);
2898 }
2899
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2900 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2901 struct kvm_interrupt *irq)
2902 {
2903 if (irq->irq >= KVM_NR_INTERRUPTS)
2904 return -EINVAL;
2905
2906 if (!irqchip_in_kernel(vcpu->kvm)) {
2907 kvm_queue_interrupt(vcpu, irq->irq, false);
2908 kvm_make_request(KVM_REQ_EVENT, vcpu);
2909 return 0;
2910 }
2911
2912 /*
2913 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2914 * fail for in-kernel 8259.
2915 */
2916 if (pic_in_kernel(vcpu->kvm))
2917 return -ENXIO;
2918
2919 if (vcpu->arch.pending_external_vector != -1)
2920 return -EEXIST;
2921
2922 vcpu->arch.pending_external_vector = irq->irq;
2923 kvm_make_request(KVM_REQ_EVENT, vcpu);
2924 return 0;
2925 }
2926
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2927 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2928 {
2929 kvm_inject_nmi(vcpu);
2930
2931 return 0;
2932 }
2933
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)2934 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2935 {
2936 kvm_make_request(KVM_REQ_SMI, vcpu);
2937
2938 return 0;
2939 }
2940
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2941 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2942 struct kvm_tpr_access_ctl *tac)
2943 {
2944 if (tac->flags)
2945 return -EINVAL;
2946 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2947 return 0;
2948 }
2949
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2950 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2951 u64 mcg_cap)
2952 {
2953 int r;
2954 unsigned bank_num = mcg_cap & 0xff, bank;
2955
2956 r = -EINVAL;
2957 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2958 goto out;
2959 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2960 goto out;
2961 r = 0;
2962 vcpu->arch.mcg_cap = mcg_cap;
2963 /* Init IA32_MCG_CTL to all 1s */
2964 if (mcg_cap & MCG_CTL_P)
2965 vcpu->arch.mcg_ctl = ~(u64)0;
2966 /* Init IA32_MCi_CTL to all 1s */
2967 for (bank = 0; bank < bank_num; bank++)
2968 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2969
2970 if (kvm_x86_ops->setup_mce)
2971 kvm_x86_ops->setup_mce(vcpu);
2972 out:
2973 return r;
2974 }
2975
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2976 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2977 struct kvm_x86_mce *mce)
2978 {
2979 u64 mcg_cap = vcpu->arch.mcg_cap;
2980 unsigned bank_num = mcg_cap & 0xff;
2981 u64 *banks = vcpu->arch.mce_banks;
2982
2983 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2984 return -EINVAL;
2985 /*
2986 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2987 * reporting is disabled
2988 */
2989 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2990 vcpu->arch.mcg_ctl != ~(u64)0)
2991 return 0;
2992 banks += 4 * mce->bank;
2993 /*
2994 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2995 * reporting is disabled for the bank
2996 */
2997 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2998 return 0;
2999 if (mce->status & MCI_STATUS_UC) {
3000 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3001 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3002 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3003 return 0;
3004 }
3005 if (banks[1] & MCI_STATUS_VAL)
3006 mce->status |= MCI_STATUS_OVER;
3007 banks[2] = mce->addr;
3008 banks[3] = mce->misc;
3009 vcpu->arch.mcg_status = mce->mcg_status;
3010 banks[1] = mce->status;
3011 kvm_queue_exception(vcpu, MC_VECTOR);
3012 } else if (!(banks[1] & MCI_STATUS_VAL)
3013 || !(banks[1] & MCI_STATUS_UC)) {
3014 if (banks[1] & MCI_STATUS_VAL)
3015 mce->status |= MCI_STATUS_OVER;
3016 banks[2] = mce->addr;
3017 banks[3] = mce->misc;
3018 banks[1] = mce->status;
3019 } else
3020 banks[1] |= MCI_STATUS_OVER;
3021 return 0;
3022 }
3023
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3024 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3025 struct kvm_vcpu_events *events)
3026 {
3027 process_nmi(vcpu);
3028 events->exception.injected =
3029 vcpu->arch.exception.pending &&
3030 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3031 events->exception.nr = vcpu->arch.exception.nr;
3032 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3033 events->exception.pad = 0;
3034 events->exception.error_code = vcpu->arch.exception.error_code;
3035
3036 events->interrupt.injected =
3037 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3038 events->interrupt.nr = vcpu->arch.interrupt.nr;
3039 events->interrupt.soft = 0;
3040 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3041
3042 events->nmi.injected = vcpu->arch.nmi_injected;
3043 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3044 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3045 events->nmi.pad = 0;
3046
3047 events->sipi_vector = 0; /* never valid when reporting to user space */
3048
3049 events->smi.smm = is_smm(vcpu);
3050 events->smi.pending = vcpu->arch.smi_pending;
3051 events->smi.smm_inside_nmi =
3052 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3053 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3054
3055 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3056 | KVM_VCPUEVENT_VALID_SHADOW
3057 | KVM_VCPUEVENT_VALID_SMM);
3058 memset(&events->reserved, 0, sizeof(events->reserved));
3059 }
3060
3061 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3062
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3063 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3064 struct kvm_vcpu_events *events)
3065 {
3066 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3067 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3068 | KVM_VCPUEVENT_VALID_SHADOW
3069 | KVM_VCPUEVENT_VALID_SMM))
3070 return -EINVAL;
3071
3072 if (events->exception.injected &&
3073 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3074 is_guest_mode(vcpu)))
3075 return -EINVAL;
3076
3077 /* INITs are latched while in SMM */
3078 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3079 (events->smi.smm || events->smi.pending) &&
3080 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3081 return -EINVAL;
3082
3083 process_nmi(vcpu);
3084 vcpu->arch.exception.pending = events->exception.injected;
3085 vcpu->arch.exception.nr = events->exception.nr;
3086 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3087 vcpu->arch.exception.error_code = events->exception.error_code;
3088
3089 vcpu->arch.interrupt.pending = events->interrupt.injected;
3090 vcpu->arch.interrupt.nr = events->interrupt.nr;
3091 vcpu->arch.interrupt.soft = events->interrupt.soft;
3092 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3093 kvm_x86_ops->set_interrupt_shadow(vcpu,
3094 events->interrupt.shadow);
3095
3096 vcpu->arch.nmi_injected = events->nmi.injected;
3097 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3098 vcpu->arch.nmi_pending = events->nmi.pending;
3099 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3100
3101 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3102 lapic_in_kernel(vcpu))
3103 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3104
3105 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3106 u32 hflags = vcpu->arch.hflags;
3107 if (events->smi.smm)
3108 hflags |= HF_SMM_MASK;
3109 else
3110 hflags &= ~HF_SMM_MASK;
3111 kvm_set_hflags(vcpu, hflags);
3112
3113 vcpu->arch.smi_pending = events->smi.pending;
3114 if (events->smi.smm_inside_nmi)
3115 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3116 else
3117 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3118 if (lapic_in_kernel(vcpu)) {
3119 if (events->smi.latched_init)
3120 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3121 else
3122 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3123 }
3124 }
3125
3126 kvm_make_request(KVM_REQ_EVENT, vcpu);
3127
3128 return 0;
3129 }
3130
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3131 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3132 struct kvm_debugregs *dbgregs)
3133 {
3134 unsigned long val;
3135
3136 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3137 kvm_get_dr(vcpu, 6, &val);
3138 dbgregs->dr6 = val;
3139 dbgregs->dr7 = vcpu->arch.dr7;
3140 dbgregs->flags = 0;
3141 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3142 }
3143
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3144 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3145 struct kvm_debugregs *dbgregs)
3146 {
3147 if (dbgregs->flags)
3148 return -EINVAL;
3149
3150 if (dbgregs->dr6 & ~0xffffffffull)
3151 return -EINVAL;
3152 if (dbgregs->dr7 & ~0xffffffffull)
3153 return -EINVAL;
3154
3155 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3156 kvm_update_dr0123(vcpu);
3157 vcpu->arch.dr6 = dbgregs->dr6;
3158 kvm_update_dr6(vcpu);
3159 vcpu->arch.dr7 = dbgregs->dr7;
3160 kvm_update_dr7(vcpu);
3161
3162 return 0;
3163 }
3164
3165 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3166
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3167 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3168 {
3169 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3170 u64 xstate_bv = xsave->header.xfeatures;
3171 u64 valid;
3172
3173 /*
3174 * Copy legacy XSAVE area, to avoid complications with CPUID
3175 * leaves 0 and 1 in the loop below.
3176 */
3177 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3178
3179 /* Set XSTATE_BV */
3180 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3181 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3182
3183 /*
3184 * Copy each region from the possibly compacted offset to the
3185 * non-compacted offset.
3186 */
3187 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3188 while (valid) {
3189 u64 feature = valid & -valid;
3190 int index = fls64(feature) - 1;
3191 void *src = get_xsave_addr(xsave, feature);
3192
3193 if (src) {
3194 u32 size, offset, ecx, edx;
3195 cpuid_count(XSTATE_CPUID, index,
3196 &size, &offset, &ecx, &edx);
3197 memcpy(dest + offset, src, size);
3198 }
3199
3200 valid -= feature;
3201 }
3202 }
3203
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3204 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3205 {
3206 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3207 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3208 u64 valid;
3209
3210 /*
3211 * Copy legacy XSAVE area, to avoid complications with CPUID
3212 * leaves 0 and 1 in the loop below.
3213 */
3214 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3215
3216 /* Set XSTATE_BV and possibly XCOMP_BV. */
3217 xsave->header.xfeatures = xstate_bv;
3218 if (boot_cpu_has(X86_FEATURE_XSAVES))
3219 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3220
3221 /*
3222 * Copy each region from the non-compacted offset to the
3223 * possibly compacted offset.
3224 */
3225 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3226 while (valid) {
3227 u64 feature = valid & -valid;
3228 int index = fls64(feature) - 1;
3229 void *dest = get_xsave_addr(xsave, feature);
3230
3231 if (dest) {
3232 u32 size, offset, ecx, edx;
3233 cpuid_count(XSTATE_CPUID, index,
3234 &size, &offset, &ecx, &edx);
3235 memcpy(dest, src + offset, size);
3236 }
3237
3238 valid -= feature;
3239 }
3240 }
3241
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3242 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3243 struct kvm_xsave *guest_xsave)
3244 {
3245 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3246 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3247 fill_xsave((u8 *) guest_xsave->region, vcpu);
3248 } else {
3249 memcpy(guest_xsave->region,
3250 &vcpu->arch.guest_fpu.state.fxsave,
3251 sizeof(struct fxregs_state));
3252 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3253 XFEATURE_MASK_FPSSE;
3254 }
3255 }
3256
3257 #define XSAVE_MXCSR_OFFSET 24
3258
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3259 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3260 struct kvm_xsave *guest_xsave)
3261 {
3262 u64 xstate_bv =
3263 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3264 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3265
3266 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3267 /*
3268 * Here we allow setting states that are not present in
3269 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3270 * with old userspace.
3271 */
3272 if (xstate_bv & ~kvm_supported_xcr0() ||
3273 mxcsr & ~mxcsr_feature_mask)
3274 return -EINVAL;
3275 load_xsave(vcpu, (u8 *)guest_xsave->region);
3276 } else {
3277 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3278 mxcsr & ~mxcsr_feature_mask)
3279 return -EINVAL;
3280 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3281 guest_xsave->region, sizeof(struct fxregs_state));
3282 }
3283 return 0;
3284 }
3285
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3286 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3287 struct kvm_xcrs *guest_xcrs)
3288 {
3289 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3290 guest_xcrs->nr_xcrs = 0;
3291 return;
3292 }
3293
3294 guest_xcrs->nr_xcrs = 1;
3295 guest_xcrs->flags = 0;
3296 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3297 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3298 }
3299
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3300 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3301 struct kvm_xcrs *guest_xcrs)
3302 {
3303 int i, r = 0;
3304
3305 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3306 return -EINVAL;
3307
3308 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3309 return -EINVAL;
3310
3311 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3312 /* Only support XCR0 currently */
3313 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3314 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3315 guest_xcrs->xcrs[i].value);
3316 break;
3317 }
3318 if (r)
3319 r = -EINVAL;
3320 return r;
3321 }
3322
3323 /*
3324 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3325 * stopped by the hypervisor. This function will be called from the host only.
3326 * EINVAL is returned when the host attempts to set the flag for a guest that
3327 * does not support pv clocks.
3328 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3329 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3330 {
3331 if (!vcpu->arch.pv_time_enabled)
3332 return -EINVAL;
3333 vcpu->arch.pvclock_set_guest_stopped_request = true;
3334 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3335 return 0;
3336 }
3337
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)3338 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3339 struct kvm_enable_cap *cap)
3340 {
3341 if (cap->flags)
3342 return -EINVAL;
3343
3344 switch (cap->cap) {
3345 case KVM_CAP_HYPERV_SYNIC:
3346 if (!irqchip_in_kernel(vcpu->kvm))
3347 return -EINVAL;
3348 return kvm_hv_activate_synic(vcpu);
3349 default:
3350 return -EINVAL;
3351 }
3352 }
3353
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3354 long kvm_arch_vcpu_ioctl(struct file *filp,
3355 unsigned int ioctl, unsigned long arg)
3356 {
3357 struct kvm_vcpu *vcpu = filp->private_data;
3358 void __user *argp = (void __user *)arg;
3359 int r;
3360 union {
3361 struct kvm_lapic_state *lapic;
3362 struct kvm_xsave *xsave;
3363 struct kvm_xcrs *xcrs;
3364 void *buffer;
3365 } u;
3366
3367 u.buffer = NULL;
3368 switch (ioctl) {
3369 case KVM_GET_LAPIC: {
3370 r = -EINVAL;
3371 if (!lapic_in_kernel(vcpu))
3372 goto out;
3373 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3374
3375 r = -ENOMEM;
3376 if (!u.lapic)
3377 goto out;
3378 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3379 if (r)
3380 goto out;
3381 r = -EFAULT;
3382 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3383 goto out;
3384 r = 0;
3385 break;
3386 }
3387 case KVM_SET_LAPIC: {
3388 r = -EINVAL;
3389 if (!lapic_in_kernel(vcpu))
3390 goto out;
3391 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3392 if (IS_ERR(u.lapic))
3393 return PTR_ERR(u.lapic);
3394
3395 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3396 break;
3397 }
3398 case KVM_INTERRUPT: {
3399 struct kvm_interrupt irq;
3400
3401 r = -EFAULT;
3402 if (copy_from_user(&irq, argp, sizeof irq))
3403 goto out;
3404 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3405 break;
3406 }
3407 case KVM_NMI: {
3408 r = kvm_vcpu_ioctl_nmi(vcpu);
3409 break;
3410 }
3411 case KVM_SMI: {
3412 r = kvm_vcpu_ioctl_smi(vcpu);
3413 break;
3414 }
3415 case KVM_SET_CPUID: {
3416 struct kvm_cpuid __user *cpuid_arg = argp;
3417 struct kvm_cpuid cpuid;
3418
3419 r = -EFAULT;
3420 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3421 goto out;
3422 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3423 break;
3424 }
3425 case KVM_SET_CPUID2: {
3426 struct kvm_cpuid2 __user *cpuid_arg = argp;
3427 struct kvm_cpuid2 cpuid;
3428
3429 r = -EFAULT;
3430 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3431 goto out;
3432 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3433 cpuid_arg->entries);
3434 break;
3435 }
3436 case KVM_GET_CPUID2: {
3437 struct kvm_cpuid2 __user *cpuid_arg = argp;
3438 struct kvm_cpuid2 cpuid;
3439
3440 r = -EFAULT;
3441 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3442 goto out;
3443 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3444 cpuid_arg->entries);
3445 if (r)
3446 goto out;
3447 r = -EFAULT;
3448 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3449 goto out;
3450 r = 0;
3451 break;
3452 }
3453 case KVM_GET_MSRS:
3454 r = msr_io(vcpu, argp, do_get_msr, 1);
3455 break;
3456 case KVM_SET_MSRS:
3457 r = msr_io(vcpu, argp, do_set_msr, 0);
3458 break;
3459 case KVM_TPR_ACCESS_REPORTING: {
3460 struct kvm_tpr_access_ctl tac;
3461
3462 r = -EFAULT;
3463 if (copy_from_user(&tac, argp, sizeof tac))
3464 goto out;
3465 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3466 if (r)
3467 goto out;
3468 r = -EFAULT;
3469 if (copy_to_user(argp, &tac, sizeof tac))
3470 goto out;
3471 r = 0;
3472 break;
3473 };
3474 case KVM_SET_VAPIC_ADDR: {
3475 struct kvm_vapic_addr va;
3476 int idx;
3477
3478 r = -EINVAL;
3479 if (!lapic_in_kernel(vcpu))
3480 goto out;
3481 r = -EFAULT;
3482 if (copy_from_user(&va, argp, sizeof va))
3483 goto out;
3484 idx = srcu_read_lock(&vcpu->kvm->srcu);
3485 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3486 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3487 break;
3488 }
3489 case KVM_X86_SETUP_MCE: {
3490 u64 mcg_cap;
3491
3492 r = -EFAULT;
3493 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3494 goto out;
3495 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3496 break;
3497 }
3498 case KVM_X86_SET_MCE: {
3499 struct kvm_x86_mce mce;
3500
3501 r = -EFAULT;
3502 if (copy_from_user(&mce, argp, sizeof mce))
3503 goto out;
3504 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3505 break;
3506 }
3507 case KVM_GET_VCPU_EVENTS: {
3508 struct kvm_vcpu_events events;
3509
3510 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3511
3512 r = -EFAULT;
3513 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3514 break;
3515 r = 0;
3516 break;
3517 }
3518 case KVM_SET_VCPU_EVENTS: {
3519 struct kvm_vcpu_events events;
3520
3521 r = -EFAULT;
3522 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3523 break;
3524
3525 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3526 break;
3527 }
3528 case KVM_GET_DEBUGREGS: {
3529 struct kvm_debugregs dbgregs;
3530
3531 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3532
3533 r = -EFAULT;
3534 if (copy_to_user(argp, &dbgregs,
3535 sizeof(struct kvm_debugregs)))
3536 break;
3537 r = 0;
3538 break;
3539 }
3540 case KVM_SET_DEBUGREGS: {
3541 struct kvm_debugregs dbgregs;
3542
3543 r = -EFAULT;
3544 if (copy_from_user(&dbgregs, argp,
3545 sizeof(struct kvm_debugregs)))
3546 break;
3547
3548 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3549 break;
3550 }
3551 case KVM_GET_XSAVE: {
3552 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3553 r = -ENOMEM;
3554 if (!u.xsave)
3555 break;
3556
3557 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3558
3559 r = -EFAULT;
3560 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3561 break;
3562 r = 0;
3563 break;
3564 }
3565 case KVM_SET_XSAVE: {
3566 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3567 if (IS_ERR(u.xsave))
3568 return PTR_ERR(u.xsave);
3569
3570 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3571 break;
3572 }
3573 case KVM_GET_XCRS: {
3574 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3575 r = -ENOMEM;
3576 if (!u.xcrs)
3577 break;
3578
3579 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3580
3581 r = -EFAULT;
3582 if (copy_to_user(argp, u.xcrs,
3583 sizeof(struct kvm_xcrs)))
3584 break;
3585 r = 0;
3586 break;
3587 }
3588 case KVM_SET_XCRS: {
3589 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3590 if (IS_ERR(u.xcrs))
3591 return PTR_ERR(u.xcrs);
3592
3593 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3594 break;
3595 }
3596 case KVM_SET_TSC_KHZ: {
3597 u32 user_tsc_khz;
3598
3599 r = -EINVAL;
3600 user_tsc_khz = (u32)arg;
3601
3602 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3603 goto out;
3604
3605 if (user_tsc_khz == 0)
3606 user_tsc_khz = tsc_khz;
3607
3608 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3609 r = 0;
3610
3611 goto out;
3612 }
3613 case KVM_GET_TSC_KHZ: {
3614 r = vcpu->arch.virtual_tsc_khz;
3615 goto out;
3616 }
3617 case KVM_KVMCLOCK_CTRL: {
3618 r = kvm_set_guest_paused(vcpu);
3619 goto out;
3620 }
3621 case KVM_ENABLE_CAP: {
3622 struct kvm_enable_cap cap;
3623
3624 r = -EFAULT;
3625 if (copy_from_user(&cap, argp, sizeof(cap)))
3626 goto out;
3627 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3628 break;
3629 }
3630 default:
3631 r = -EINVAL;
3632 }
3633 out:
3634 kfree(u.buffer);
3635 return r;
3636 }
3637
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3638 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3639 {
3640 return VM_FAULT_SIGBUS;
3641 }
3642
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3643 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3644 {
3645 int ret;
3646
3647 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3648 return -EINVAL;
3649 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3650 return ret;
3651 }
3652
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3653 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3654 u64 ident_addr)
3655 {
3656 kvm->arch.ept_identity_map_addr = ident_addr;
3657 return 0;
3658 }
3659
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3660 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3661 u32 kvm_nr_mmu_pages)
3662 {
3663 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3664 return -EINVAL;
3665
3666 mutex_lock(&kvm->slots_lock);
3667
3668 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3669 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3670
3671 mutex_unlock(&kvm->slots_lock);
3672 return 0;
3673 }
3674
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3675 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3676 {
3677 return kvm->arch.n_max_mmu_pages;
3678 }
3679
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3680 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3681 {
3682 int r;
3683
3684 r = 0;
3685 switch (chip->chip_id) {
3686 case KVM_IRQCHIP_PIC_MASTER:
3687 memcpy(&chip->chip.pic,
3688 &pic_irqchip(kvm)->pics[0],
3689 sizeof(struct kvm_pic_state));
3690 break;
3691 case KVM_IRQCHIP_PIC_SLAVE:
3692 memcpy(&chip->chip.pic,
3693 &pic_irqchip(kvm)->pics[1],
3694 sizeof(struct kvm_pic_state));
3695 break;
3696 case KVM_IRQCHIP_IOAPIC:
3697 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3698 break;
3699 default:
3700 r = -EINVAL;
3701 break;
3702 }
3703 return r;
3704 }
3705
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3706 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3707 {
3708 int r;
3709
3710 r = 0;
3711 switch (chip->chip_id) {
3712 case KVM_IRQCHIP_PIC_MASTER:
3713 spin_lock(&pic_irqchip(kvm)->lock);
3714 memcpy(&pic_irqchip(kvm)->pics[0],
3715 &chip->chip.pic,
3716 sizeof(struct kvm_pic_state));
3717 spin_unlock(&pic_irqchip(kvm)->lock);
3718 break;
3719 case KVM_IRQCHIP_PIC_SLAVE:
3720 spin_lock(&pic_irqchip(kvm)->lock);
3721 memcpy(&pic_irqchip(kvm)->pics[1],
3722 &chip->chip.pic,
3723 sizeof(struct kvm_pic_state));
3724 spin_unlock(&pic_irqchip(kvm)->lock);
3725 break;
3726 case KVM_IRQCHIP_IOAPIC:
3727 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3728 break;
3729 default:
3730 r = -EINVAL;
3731 break;
3732 }
3733 kvm_pic_update_irq(pic_irqchip(kvm));
3734 return r;
3735 }
3736
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3737 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3738 {
3739 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3740
3741 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3742
3743 mutex_lock(&kps->lock);
3744 memcpy(ps, &kps->channels, sizeof(*ps));
3745 mutex_unlock(&kps->lock);
3746 return 0;
3747 }
3748
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3749 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3750 {
3751 int i;
3752 struct kvm_pit *pit = kvm->arch.vpit;
3753
3754 mutex_lock(&pit->pit_state.lock);
3755 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3756 for (i = 0; i < 3; i++)
3757 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3758 mutex_unlock(&pit->pit_state.lock);
3759 return 0;
3760 }
3761
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3762 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3763 {
3764 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3765 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3766 sizeof(ps->channels));
3767 ps->flags = kvm->arch.vpit->pit_state.flags;
3768 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3769 memset(&ps->reserved, 0, sizeof(ps->reserved));
3770 return 0;
3771 }
3772
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3773 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3774 {
3775 int start = 0;
3776 int i;
3777 u32 prev_legacy, cur_legacy;
3778 struct kvm_pit *pit = kvm->arch.vpit;
3779
3780 mutex_lock(&pit->pit_state.lock);
3781 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3782 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3783 if (!prev_legacy && cur_legacy)
3784 start = 1;
3785 memcpy(&pit->pit_state.channels, &ps->channels,
3786 sizeof(pit->pit_state.channels));
3787 pit->pit_state.flags = ps->flags;
3788 for (i = 0; i < 3; i++)
3789 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3790 start && i == 0);
3791 mutex_unlock(&pit->pit_state.lock);
3792 return 0;
3793 }
3794
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3795 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3796 struct kvm_reinject_control *control)
3797 {
3798 struct kvm_pit *pit = kvm->arch.vpit;
3799
3800 if (!pit)
3801 return -ENXIO;
3802
3803 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3804 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3805 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3806 */
3807 mutex_lock(&pit->pit_state.lock);
3808 kvm_pit_set_reinject(pit, control->pit_reinject);
3809 mutex_unlock(&pit->pit_state.lock);
3810
3811 return 0;
3812 }
3813
3814 /**
3815 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3816 * @kvm: kvm instance
3817 * @log: slot id and address to which we copy the log
3818 *
3819 * Steps 1-4 below provide general overview of dirty page logging. See
3820 * kvm_get_dirty_log_protect() function description for additional details.
3821 *
3822 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3823 * always flush the TLB (step 4) even if previous step failed and the dirty
3824 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3825 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3826 * writes will be marked dirty for next log read.
3827 *
3828 * 1. Take a snapshot of the bit and clear it if needed.
3829 * 2. Write protect the corresponding page.
3830 * 3. Copy the snapshot to the userspace.
3831 * 4. Flush TLB's if needed.
3832 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3833 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3834 {
3835 bool is_dirty = false;
3836 int r;
3837
3838 mutex_lock(&kvm->slots_lock);
3839
3840 /*
3841 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3842 */
3843 if (kvm_x86_ops->flush_log_dirty)
3844 kvm_x86_ops->flush_log_dirty(kvm);
3845
3846 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3847
3848 /*
3849 * All the TLBs can be flushed out of mmu lock, see the comments in
3850 * kvm_mmu_slot_remove_write_access().
3851 */
3852 lockdep_assert_held(&kvm->slots_lock);
3853 if (is_dirty)
3854 kvm_flush_remote_tlbs(kvm);
3855
3856 mutex_unlock(&kvm->slots_lock);
3857 return r;
3858 }
3859
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3860 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3861 bool line_status)
3862 {
3863 if (!irqchip_in_kernel(kvm))
3864 return -ENXIO;
3865
3866 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3867 irq_event->irq, irq_event->level,
3868 line_status);
3869 return 0;
3870 }
3871
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3872 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3873 struct kvm_enable_cap *cap)
3874 {
3875 int r;
3876
3877 if (cap->flags)
3878 return -EINVAL;
3879
3880 switch (cap->cap) {
3881 case KVM_CAP_DISABLE_QUIRKS:
3882 kvm->arch.disabled_quirks = cap->args[0];
3883 r = 0;
3884 break;
3885 case KVM_CAP_SPLIT_IRQCHIP: {
3886 mutex_lock(&kvm->lock);
3887 r = -EINVAL;
3888 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3889 goto split_irqchip_unlock;
3890 r = -EEXIST;
3891 if (irqchip_in_kernel(kvm))
3892 goto split_irqchip_unlock;
3893 if (kvm->created_vcpus)
3894 goto split_irqchip_unlock;
3895 r = kvm_setup_empty_irq_routing(kvm);
3896 if (r)
3897 goto split_irqchip_unlock;
3898 /* Pairs with irqchip_in_kernel. */
3899 smp_wmb();
3900 kvm->arch.irqchip_split = true;
3901 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3902 r = 0;
3903 split_irqchip_unlock:
3904 mutex_unlock(&kvm->lock);
3905 break;
3906 }
3907 case KVM_CAP_X2APIC_API:
3908 r = -EINVAL;
3909 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3910 break;
3911
3912 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3913 kvm->arch.x2apic_format = true;
3914 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3915 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3916
3917 r = 0;
3918 break;
3919 default:
3920 r = -EINVAL;
3921 break;
3922 }
3923 return r;
3924 }
3925
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3926 long kvm_arch_vm_ioctl(struct file *filp,
3927 unsigned int ioctl, unsigned long arg)
3928 {
3929 struct kvm *kvm = filp->private_data;
3930 void __user *argp = (void __user *)arg;
3931 int r = -ENOTTY;
3932 /*
3933 * This union makes it completely explicit to gcc-3.x
3934 * that these two variables' stack usage should be
3935 * combined, not added together.
3936 */
3937 union {
3938 struct kvm_pit_state ps;
3939 struct kvm_pit_state2 ps2;
3940 struct kvm_pit_config pit_config;
3941 } u;
3942
3943 switch (ioctl) {
3944 case KVM_SET_TSS_ADDR:
3945 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3946 break;
3947 case KVM_SET_IDENTITY_MAP_ADDR: {
3948 u64 ident_addr;
3949
3950 r = -EFAULT;
3951 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3952 goto out;
3953 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3954 break;
3955 }
3956 case KVM_SET_NR_MMU_PAGES:
3957 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3958 break;
3959 case KVM_GET_NR_MMU_PAGES:
3960 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3961 break;
3962 case KVM_CREATE_IRQCHIP: {
3963 struct kvm_pic *vpic;
3964
3965 mutex_lock(&kvm->lock);
3966 r = -EEXIST;
3967 if (kvm->arch.vpic)
3968 goto create_irqchip_unlock;
3969 r = -EINVAL;
3970 if (kvm->created_vcpus)
3971 goto create_irqchip_unlock;
3972 r = -ENOMEM;
3973 vpic = kvm_create_pic(kvm);
3974 if (vpic) {
3975 r = kvm_ioapic_init(kvm);
3976 if (r) {
3977 mutex_lock(&kvm->slots_lock);
3978 kvm_destroy_pic(vpic);
3979 mutex_unlock(&kvm->slots_lock);
3980 goto create_irqchip_unlock;
3981 }
3982 } else
3983 goto create_irqchip_unlock;
3984 r = kvm_setup_default_irq_routing(kvm);
3985 if (r) {
3986 mutex_lock(&kvm->slots_lock);
3987 mutex_lock(&kvm->irq_lock);
3988 kvm_ioapic_destroy(kvm);
3989 kvm_destroy_pic(vpic);
3990 mutex_unlock(&kvm->irq_lock);
3991 mutex_unlock(&kvm->slots_lock);
3992 goto create_irqchip_unlock;
3993 }
3994 /* Write kvm->irq_routing before kvm->arch.vpic. */
3995 smp_wmb();
3996 kvm->arch.vpic = vpic;
3997 create_irqchip_unlock:
3998 mutex_unlock(&kvm->lock);
3999 break;
4000 }
4001 case KVM_CREATE_PIT:
4002 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4003 goto create_pit;
4004 case KVM_CREATE_PIT2:
4005 r = -EFAULT;
4006 if (copy_from_user(&u.pit_config, argp,
4007 sizeof(struct kvm_pit_config)))
4008 goto out;
4009 create_pit:
4010 mutex_lock(&kvm->lock);
4011 r = -EEXIST;
4012 if (kvm->arch.vpit)
4013 goto create_pit_unlock;
4014 r = -ENOMEM;
4015 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4016 if (kvm->arch.vpit)
4017 r = 0;
4018 create_pit_unlock:
4019 mutex_unlock(&kvm->lock);
4020 break;
4021 case KVM_GET_IRQCHIP: {
4022 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4023 struct kvm_irqchip *chip;
4024
4025 chip = memdup_user(argp, sizeof(*chip));
4026 if (IS_ERR(chip)) {
4027 r = PTR_ERR(chip);
4028 goto out;
4029 }
4030
4031 r = -ENXIO;
4032 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4033 goto get_irqchip_out;
4034 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4035 if (r)
4036 goto get_irqchip_out;
4037 r = -EFAULT;
4038 if (copy_to_user(argp, chip, sizeof *chip))
4039 goto get_irqchip_out;
4040 r = 0;
4041 get_irqchip_out:
4042 kfree(chip);
4043 break;
4044 }
4045 case KVM_SET_IRQCHIP: {
4046 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4047 struct kvm_irqchip *chip;
4048
4049 chip = memdup_user(argp, sizeof(*chip));
4050 if (IS_ERR(chip)) {
4051 r = PTR_ERR(chip);
4052 goto out;
4053 }
4054
4055 r = -ENXIO;
4056 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4057 goto set_irqchip_out;
4058 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4059 if (r)
4060 goto set_irqchip_out;
4061 r = 0;
4062 set_irqchip_out:
4063 kfree(chip);
4064 break;
4065 }
4066 case KVM_GET_PIT: {
4067 r = -EFAULT;
4068 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4069 goto out;
4070 r = -ENXIO;
4071 if (!kvm->arch.vpit)
4072 goto out;
4073 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4074 if (r)
4075 goto out;
4076 r = -EFAULT;
4077 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4078 goto out;
4079 r = 0;
4080 break;
4081 }
4082 case KVM_SET_PIT: {
4083 r = -EFAULT;
4084 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4085 goto out;
4086 r = -ENXIO;
4087 if (!kvm->arch.vpit)
4088 goto out;
4089 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4090 break;
4091 }
4092 case KVM_GET_PIT2: {
4093 r = -ENXIO;
4094 if (!kvm->arch.vpit)
4095 goto out;
4096 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4097 if (r)
4098 goto out;
4099 r = -EFAULT;
4100 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4101 goto out;
4102 r = 0;
4103 break;
4104 }
4105 case KVM_SET_PIT2: {
4106 r = -EFAULT;
4107 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4108 goto out;
4109 r = -ENXIO;
4110 if (!kvm->arch.vpit)
4111 goto out;
4112 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4113 break;
4114 }
4115 case KVM_REINJECT_CONTROL: {
4116 struct kvm_reinject_control control;
4117 r = -EFAULT;
4118 if (copy_from_user(&control, argp, sizeof(control)))
4119 goto out;
4120 r = kvm_vm_ioctl_reinject(kvm, &control);
4121 break;
4122 }
4123 case KVM_SET_BOOT_CPU_ID:
4124 r = 0;
4125 mutex_lock(&kvm->lock);
4126 if (kvm->created_vcpus)
4127 r = -EBUSY;
4128 else
4129 kvm->arch.bsp_vcpu_id = arg;
4130 mutex_unlock(&kvm->lock);
4131 break;
4132 case KVM_XEN_HVM_CONFIG: {
4133 r = -EFAULT;
4134 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4135 sizeof(struct kvm_xen_hvm_config)))
4136 goto out;
4137 r = -EINVAL;
4138 if (kvm->arch.xen_hvm_config.flags)
4139 goto out;
4140 r = 0;
4141 break;
4142 }
4143 case KVM_SET_CLOCK: {
4144 struct kvm_clock_data user_ns;
4145 u64 now_ns;
4146
4147 r = -EFAULT;
4148 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4149 goto out;
4150
4151 r = -EINVAL;
4152 if (user_ns.flags)
4153 goto out;
4154
4155 r = 0;
4156 local_irq_disable();
4157 now_ns = __get_kvmclock_ns(kvm);
4158 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4159 local_irq_enable();
4160 kvm_gen_update_masterclock(kvm);
4161 break;
4162 }
4163 case KVM_GET_CLOCK: {
4164 struct kvm_clock_data user_ns;
4165 u64 now_ns;
4166
4167 local_irq_disable();
4168 now_ns = __get_kvmclock_ns(kvm);
4169 user_ns.clock = now_ns;
4170 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4171 local_irq_enable();
4172 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4173
4174 r = -EFAULT;
4175 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4176 goto out;
4177 r = 0;
4178 break;
4179 }
4180 case KVM_ENABLE_CAP: {
4181 struct kvm_enable_cap cap;
4182
4183 r = -EFAULT;
4184 if (copy_from_user(&cap, argp, sizeof(cap)))
4185 goto out;
4186 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4187 break;
4188 }
4189 default:
4190 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4191 }
4192 out:
4193 return r;
4194 }
4195
kvm_init_msr_list(void)4196 static void kvm_init_msr_list(void)
4197 {
4198 u32 dummy[2];
4199 unsigned i, j;
4200
4201 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4202 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4203 continue;
4204
4205 /*
4206 * Even MSRs that are valid in the host may not be exposed
4207 * to the guests in some cases.
4208 */
4209 switch (msrs_to_save[i]) {
4210 case MSR_IA32_BNDCFGS:
4211 if (!kvm_x86_ops->mpx_supported())
4212 continue;
4213 break;
4214 case MSR_TSC_AUX:
4215 if (!kvm_x86_ops->rdtscp_supported())
4216 continue;
4217 break;
4218 default:
4219 break;
4220 }
4221
4222 if (j < i)
4223 msrs_to_save[j] = msrs_to_save[i];
4224 j++;
4225 }
4226 num_msrs_to_save = j;
4227
4228 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4229 switch (emulated_msrs[i]) {
4230 case MSR_IA32_SMBASE:
4231 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4232 continue;
4233 break;
4234 default:
4235 break;
4236 }
4237
4238 if (j < i)
4239 emulated_msrs[j] = emulated_msrs[i];
4240 j++;
4241 }
4242 num_emulated_msrs = j;
4243 }
4244
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4245 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4246 const void *v)
4247 {
4248 int handled = 0;
4249 int n;
4250
4251 do {
4252 n = min(len, 8);
4253 if (!(lapic_in_kernel(vcpu) &&
4254 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4255 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4256 break;
4257 handled += n;
4258 addr += n;
4259 len -= n;
4260 v += n;
4261 } while (len);
4262
4263 return handled;
4264 }
4265
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4266 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4267 {
4268 int handled = 0;
4269 int n;
4270
4271 do {
4272 n = min(len, 8);
4273 if (!(lapic_in_kernel(vcpu) &&
4274 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4275 addr, n, v))
4276 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4277 break;
4278 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4279 handled += n;
4280 addr += n;
4281 len -= n;
4282 v += n;
4283 } while (len);
4284
4285 return handled;
4286 }
4287
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4288 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4289 struct kvm_segment *var, int seg)
4290 {
4291 kvm_x86_ops->set_segment(vcpu, var, seg);
4292 }
4293
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4294 void kvm_get_segment(struct kvm_vcpu *vcpu,
4295 struct kvm_segment *var, int seg)
4296 {
4297 kvm_x86_ops->get_segment(vcpu, var, seg);
4298 }
4299
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4300 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4301 struct x86_exception *exception)
4302 {
4303 gpa_t t_gpa;
4304
4305 BUG_ON(!mmu_is_nested(vcpu));
4306
4307 /* NPT walks are always user-walks */
4308 access |= PFERR_USER_MASK;
4309 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4310
4311 return t_gpa;
4312 }
4313
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4314 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4315 struct x86_exception *exception)
4316 {
4317 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4318 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4319 }
4320
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4321 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4322 struct x86_exception *exception)
4323 {
4324 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4325 access |= PFERR_FETCH_MASK;
4326 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4327 }
4328
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4329 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4330 struct x86_exception *exception)
4331 {
4332 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4333 access |= PFERR_WRITE_MASK;
4334 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4335 }
4336
4337 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4338 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4339 struct x86_exception *exception)
4340 {
4341 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4342 }
4343
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4344 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4345 struct kvm_vcpu *vcpu, u32 access,
4346 struct x86_exception *exception)
4347 {
4348 void *data = val;
4349 int r = X86EMUL_CONTINUE;
4350
4351 while (bytes) {
4352 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4353 exception);
4354 unsigned offset = addr & (PAGE_SIZE-1);
4355 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4356 int ret;
4357
4358 if (gpa == UNMAPPED_GVA)
4359 return X86EMUL_PROPAGATE_FAULT;
4360 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4361 offset, toread);
4362 if (ret < 0) {
4363 r = X86EMUL_IO_NEEDED;
4364 goto out;
4365 }
4366
4367 bytes -= toread;
4368 data += toread;
4369 addr += toread;
4370 }
4371 out:
4372 return r;
4373 }
4374
4375 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4376 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4377 gva_t addr, void *val, unsigned int bytes,
4378 struct x86_exception *exception)
4379 {
4380 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4381 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4382 unsigned offset;
4383 int ret;
4384
4385 /* Inline kvm_read_guest_virt_helper for speed. */
4386 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4387 exception);
4388 if (unlikely(gpa == UNMAPPED_GVA))
4389 return X86EMUL_PROPAGATE_FAULT;
4390
4391 offset = addr & (PAGE_SIZE-1);
4392 if (WARN_ON(offset + bytes > PAGE_SIZE))
4393 bytes = (unsigned)PAGE_SIZE - offset;
4394 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4395 offset, bytes);
4396 if (unlikely(ret < 0))
4397 return X86EMUL_IO_NEEDED;
4398
4399 return X86EMUL_CONTINUE;
4400 }
4401
kvm_read_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4402 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4403 gva_t addr, void *val, unsigned int bytes,
4404 struct x86_exception *exception)
4405 {
4406 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4407 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4408
4409 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4410 exception);
4411 }
4412 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4413
kvm_read_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4414 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4415 gva_t addr, void *val, unsigned int bytes,
4416 struct x86_exception *exception)
4417 {
4418 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4419 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4420 }
4421
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)4422 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4423 unsigned long addr, void *val, unsigned int bytes)
4424 {
4425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4426 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4427
4428 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4429 }
4430
kvm_write_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4431 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4432 gva_t addr, void *val,
4433 unsigned int bytes,
4434 struct x86_exception *exception)
4435 {
4436 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4437 void *data = val;
4438 int r = X86EMUL_CONTINUE;
4439
4440 while (bytes) {
4441 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4442 PFERR_WRITE_MASK,
4443 exception);
4444 unsigned offset = addr & (PAGE_SIZE-1);
4445 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4446 int ret;
4447
4448 if (gpa == UNMAPPED_GVA)
4449 return X86EMUL_PROPAGATE_FAULT;
4450 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4451 if (ret < 0) {
4452 r = X86EMUL_IO_NEEDED;
4453 goto out;
4454 }
4455
4456 bytes -= towrite;
4457 data += towrite;
4458 addr += towrite;
4459 }
4460 out:
4461 return r;
4462 }
4463 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4464
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4465 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4466 gpa_t *gpa, struct x86_exception *exception,
4467 bool write)
4468 {
4469 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4470 | (write ? PFERR_WRITE_MASK : 0);
4471
4472 /*
4473 * currently PKRU is only applied to ept enabled guest so
4474 * there is no pkey in EPT page table for L1 guest or EPT
4475 * shadow page table for L2 guest.
4476 */
4477 if (vcpu_match_mmio_gva(vcpu, gva)
4478 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4479 vcpu->arch.access, 0, access)) {
4480 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4481 (gva & (PAGE_SIZE - 1));
4482 trace_vcpu_match_mmio(gva, *gpa, write, false);
4483 return 1;
4484 }
4485
4486 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4487
4488 if (*gpa == UNMAPPED_GVA)
4489 return -1;
4490
4491 /* For APIC access vmexit */
4492 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4493 return 1;
4494
4495 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4496 trace_vcpu_match_mmio(gva, *gpa, write, true);
4497 return 1;
4498 }
4499
4500 return 0;
4501 }
4502
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4503 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4504 const void *val, int bytes)
4505 {
4506 int ret;
4507
4508 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4509 if (ret < 0)
4510 return 0;
4511 kvm_page_track_write(vcpu, gpa, val, bytes);
4512 return 1;
4513 }
4514
4515 struct read_write_emulator_ops {
4516 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4517 int bytes);
4518 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4519 void *val, int bytes);
4520 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4521 int bytes, void *val);
4522 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4523 void *val, int bytes);
4524 bool write;
4525 };
4526
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4527 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4528 {
4529 if (vcpu->mmio_read_completed) {
4530 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4531 vcpu->mmio_fragments[0].gpa, val);
4532 vcpu->mmio_read_completed = 0;
4533 return 1;
4534 }
4535
4536 return 0;
4537 }
4538
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4539 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4540 void *val, int bytes)
4541 {
4542 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4543 }
4544
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4545 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4546 void *val, int bytes)
4547 {
4548 return emulator_write_phys(vcpu, gpa, val, bytes);
4549 }
4550
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4551 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4552 {
4553 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4554 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4555 }
4556
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4557 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4558 void *val, int bytes)
4559 {
4560 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4561 return X86EMUL_IO_NEEDED;
4562 }
4563
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4564 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4565 void *val, int bytes)
4566 {
4567 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4568
4569 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4570 return X86EMUL_CONTINUE;
4571 }
4572
4573 static const struct read_write_emulator_ops read_emultor = {
4574 .read_write_prepare = read_prepare,
4575 .read_write_emulate = read_emulate,
4576 .read_write_mmio = vcpu_mmio_read,
4577 .read_write_exit_mmio = read_exit_mmio,
4578 };
4579
4580 static const struct read_write_emulator_ops write_emultor = {
4581 .read_write_emulate = write_emulate,
4582 .read_write_mmio = write_mmio,
4583 .read_write_exit_mmio = write_exit_mmio,
4584 .write = true,
4585 };
4586
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4587 static int emulator_read_write_onepage(unsigned long addr, void *val,
4588 unsigned int bytes,
4589 struct x86_exception *exception,
4590 struct kvm_vcpu *vcpu,
4591 const struct read_write_emulator_ops *ops)
4592 {
4593 gpa_t gpa;
4594 int handled, ret;
4595 bool write = ops->write;
4596 struct kvm_mmio_fragment *frag;
4597
4598 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4599
4600 if (ret < 0)
4601 return X86EMUL_PROPAGATE_FAULT;
4602
4603 /* For APIC access vmexit */
4604 if (ret)
4605 goto mmio;
4606
4607 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4608 return X86EMUL_CONTINUE;
4609
4610 mmio:
4611 /*
4612 * Is this MMIO handled locally?
4613 */
4614 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4615 if (handled == bytes)
4616 return X86EMUL_CONTINUE;
4617
4618 gpa += handled;
4619 bytes -= handled;
4620 val += handled;
4621
4622 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4623 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4624 frag->gpa = gpa;
4625 frag->data = val;
4626 frag->len = bytes;
4627 return X86EMUL_CONTINUE;
4628 }
4629
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4630 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4631 unsigned long addr,
4632 void *val, unsigned int bytes,
4633 struct x86_exception *exception,
4634 const struct read_write_emulator_ops *ops)
4635 {
4636 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4637 gpa_t gpa;
4638 int rc;
4639
4640 if (ops->read_write_prepare &&
4641 ops->read_write_prepare(vcpu, val, bytes))
4642 return X86EMUL_CONTINUE;
4643
4644 vcpu->mmio_nr_fragments = 0;
4645
4646 /* Crossing a page boundary? */
4647 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4648 int now;
4649
4650 now = -addr & ~PAGE_MASK;
4651 rc = emulator_read_write_onepage(addr, val, now, exception,
4652 vcpu, ops);
4653
4654 if (rc != X86EMUL_CONTINUE)
4655 return rc;
4656 addr += now;
4657 if (ctxt->mode != X86EMUL_MODE_PROT64)
4658 addr = (u32)addr;
4659 val += now;
4660 bytes -= now;
4661 }
4662
4663 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4664 vcpu, ops);
4665 if (rc != X86EMUL_CONTINUE)
4666 return rc;
4667
4668 if (!vcpu->mmio_nr_fragments)
4669 return rc;
4670
4671 gpa = vcpu->mmio_fragments[0].gpa;
4672
4673 vcpu->mmio_needed = 1;
4674 vcpu->mmio_cur_fragment = 0;
4675
4676 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4677 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4678 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4679 vcpu->run->mmio.phys_addr = gpa;
4680
4681 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4682 }
4683
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4684 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4685 unsigned long addr,
4686 void *val,
4687 unsigned int bytes,
4688 struct x86_exception *exception)
4689 {
4690 return emulator_read_write(ctxt, addr, val, bytes,
4691 exception, &read_emultor);
4692 }
4693
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4694 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4695 unsigned long addr,
4696 const void *val,
4697 unsigned int bytes,
4698 struct x86_exception *exception)
4699 {
4700 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4701 exception, &write_emultor);
4702 }
4703
4704 #define CMPXCHG_TYPE(t, ptr, old, new) \
4705 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4706
4707 #ifdef CONFIG_X86_64
4708 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4709 #else
4710 # define CMPXCHG64(ptr, old, new) \
4711 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4712 #endif
4713
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4714 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4715 unsigned long addr,
4716 const void *old,
4717 const void *new,
4718 unsigned int bytes,
4719 struct x86_exception *exception)
4720 {
4721 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4722 gpa_t gpa;
4723 struct page *page;
4724 char *kaddr;
4725 bool exchanged;
4726
4727 /* guests cmpxchg8b have to be emulated atomically */
4728 if (bytes > 8 || (bytes & (bytes - 1)))
4729 goto emul_write;
4730
4731 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4732
4733 if (gpa == UNMAPPED_GVA ||
4734 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4735 goto emul_write;
4736
4737 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4738 goto emul_write;
4739
4740 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4741 if (is_error_page(page))
4742 goto emul_write;
4743
4744 kaddr = kmap_atomic(page);
4745 kaddr += offset_in_page(gpa);
4746 switch (bytes) {
4747 case 1:
4748 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4749 break;
4750 case 2:
4751 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4752 break;
4753 case 4:
4754 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4755 break;
4756 case 8:
4757 exchanged = CMPXCHG64(kaddr, old, new);
4758 break;
4759 default:
4760 BUG();
4761 }
4762 kunmap_atomic(kaddr);
4763 kvm_release_page_dirty(page);
4764
4765 if (!exchanged)
4766 return X86EMUL_CMPXCHG_FAILED;
4767
4768 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4769 kvm_page_track_write(vcpu, gpa, new, bytes);
4770
4771 return X86EMUL_CONTINUE;
4772
4773 emul_write:
4774 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4775
4776 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4777 }
4778
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4779 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4780 {
4781 int r = 0, i;
4782
4783 for (i = 0; i < vcpu->arch.pio.count; i++) {
4784 if (vcpu->arch.pio.in)
4785 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4786 vcpu->arch.pio.size, pd);
4787 else
4788 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4789 vcpu->arch.pio.port, vcpu->arch.pio.size,
4790 pd);
4791 if (r)
4792 break;
4793 pd += vcpu->arch.pio.size;
4794 }
4795 return r;
4796 }
4797
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4798 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4799 unsigned short port, void *val,
4800 unsigned int count, bool in)
4801 {
4802 vcpu->arch.pio.port = port;
4803 vcpu->arch.pio.in = in;
4804 vcpu->arch.pio.count = count;
4805 vcpu->arch.pio.size = size;
4806
4807 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4808 vcpu->arch.pio.count = 0;
4809 return 1;
4810 }
4811
4812 vcpu->run->exit_reason = KVM_EXIT_IO;
4813 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4814 vcpu->run->io.size = size;
4815 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4816 vcpu->run->io.count = count;
4817 vcpu->run->io.port = port;
4818
4819 return 0;
4820 }
4821
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4822 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4823 int size, unsigned short port, void *val,
4824 unsigned int count)
4825 {
4826 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4827 int ret;
4828
4829 if (vcpu->arch.pio.count)
4830 goto data_avail;
4831
4832 memset(vcpu->arch.pio_data, 0, size * count);
4833
4834 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4835 if (ret) {
4836 data_avail:
4837 memcpy(val, vcpu->arch.pio_data, size * count);
4838 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4839 vcpu->arch.pio.count = 0;
4840 return 1;
4841 }
4842
4843 return 0;
4844 }
4845
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4846 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4847 int size, unsigned short port,
4848 const void *val, unsigned int count)
4849 {
4850 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4851
4852 memcpy(vcpu->arch.pio_data, val, size * count);
4853 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4854 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4855 }
4856
get_segment_base(struct kvm_vcpu * vcpu,int seg)4857 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4858 {
4859 return kvm_x86_ops->get_segment_base(vcpu, seg);
4860 }
4861
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4862 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4863 {
4864 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4865 }
4866
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)4867 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4868 {
4869 if (!need_emulate_wbinvd(vcpu))
4870 return X86EMUL_CONTINUE;
4871
4872 if (kvm_x86_ops->has_wbinvd_exit()) {
4873 int cpu = get_cpu();
4874
4875 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4876 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4877 wbinvd_ipi, NULL, 1);
4878 put_cpu();
4879 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4880 } else
4881 wbinvd();
4882 return X86EMUL_CONTINUE;
4883 }
4884
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4885 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4886 {
4887 kvm_x86_ops->skip_emulated_instruction(vcpu);
4888 return kvm_emulate_wbinvd_noskip(vcpu);
4889 }
4890 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4891
4892
4893
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4894 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4895 {
4896 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4897 }
4898
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4899 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4900 unsigned long *dest)
4901 {
4902 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4903 }
4904
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4905 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4906 unsigned long value)
4907 {
4908
4909 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4910 }
4911
mk_cr_64(u64 curr_cr,u32 new_val)4912 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4913 {
4914 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4915 }
4916
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4917 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4918 {
4919 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4920 unsigned long value;
4921
4922 switch (cr) {
4923 case 0:
4924 value = kvm_read_cr0(vcpu);
4925 break;
4926 case 2:
4927 value = vcpu->arch.cr2;
4928 break;
4929 case 3:
4930 value = kvm_read_cr3(vcpu);
4931 break;
4932 case 4:
4933 value = kvm_read_cr4(vcpu);
4934 break;
4935 case 8:
4936 value = kvm_get_cr8(vcpu);
4937 break;
4938 default:
4939 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4940 return 0;
4941 }
4942
4943 return value;
4944 }
4945
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4946 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4947 {
4948 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4949 int res = 0;
4950
4951 switch (cr) {
4952 case 0:
4953 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4954 break;
4955 case 2:
4956 vcpu->arch.cr2 = val;
4957 break;
4958 case 3:
4959 res = kvm_set_cr3(vcpu, val);
4960 break;
4961 case 4:
4962 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4963 break;
4964 case 8:
4965 res = kvm_set_cr8(vcpu, val);
4966 break;
4967 default:
4968 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4969 res = -1;
4970 }
4971
4972 return res;
4973 }
4974
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4975 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4976 {
4977 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4978 }
4979
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4980 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4981 {
4982 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4983 }
4984
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4985 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4986 {
4987 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4988 }
4989
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4990 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4991 {
4992 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4993 }
4994
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4995 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4996 {
4997 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4998 }
4999
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)5000 static unsigned long emulator_get_cached_segment_base(
5001 struct x86_emulate_ctxt *ctxt, int seg)
5002 {
5003 return get_segment_base(emul_to_vcpu(ctxt), seg);
5004 }
5005
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)5006 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5007 struct desc_struct *desc, u32 *base3,
5008 int seg)
5009 {
5010 struct kvm_segment var;
5011
5012 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5013 *selector = var.selector;
5014
5015 if (var.unusable) {
5016 memset(desc, 0, sizeof(*desc));
5017 if (base3)
5018 *base3 = 0;
5019 return false;
5020 }
5021
5022 if (var.g)
5023 var.limit >>= 12;
5024 set_desc_limit(desc, var.limit);
5025 set_desc_base(desc, (unsigned long)var.base);
5026 #ifdef CONFIG_X86_64
5027 if (base3)
5028 *base3 = var.base >> 32;
5029 #endif
5030 desc->type = var.type;
5031 desc->s = var.s;
5032 desc->dpl = var.dpl;
5033 desc->p = var.present;
5034 desc->avl = var.avl;
5035 desc->l = var.l;
5036 desc->d = var.db;
5037 desc->g = var.g;
5038
5039 return true;
5040 }
5041
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)5042 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5043 struct desc_struct *desc, u32 base3,
5044 int seg)
5045 {
5046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5047 struct kvm_segment var;
5048
5049 var.selector = selector;
5050 var.base = get_desc_base(desc);
5051 #ifdef CONFIG_X86_64
5052 var.base |= ((u64)base3) << 32;
5053 #endif
5054 var.limit = get_desc_limit(desc);
5055 if (desc->g)
5056 var.limit = (var.limit << 12) | 0xfff;
5057 var.type = desc->type;
5058 var.dpl = desc->dpl;
5059 var.db = desc->d;
5060 var.s = desc->s;
5061 var.l = desc->l;
5062 var.g = desc->g;
5063 var.avl = desc->avl;
5064 var.present = desc->p;
5065 var.unusable = !var.present;
5066 var.padding = 0;
5067
5068 kvm_set_segment(vcpu, &var, seg);
5069 return;
5070 }
5071
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)5072 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5073 u32 msr_index, u64 *pdata)
5074 {
5075 struct msr_data msr;
5076 int r;
5077
5078 msr.index = msr_index;
5079 msr.host_initiated = false;
5080 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5081 if (r)
5082 return r;
5083
5084 *pdata = msr.data;
5085 return 0;
5086 }
5087
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)5088 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5089 u32 msr_index, u64 data)
5090 {
5091 struct msr_data msr;
5092
5093 msr.data = data;
5094 msr.index = msr_index;
5095 msr.host_initiated = false;
5096 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5097 }
5098
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)5099 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5100 {
5101 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5102
5103 return vcpu->arch.smbase;
5104 }
5105
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)5106 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5107 {
5108 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5109
5110 vcpu->arch.smbase = smbase;
5111 }
5112
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)5113 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5114 u32 pmc)
5115 {
5116 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5117 }
5118
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)5119 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5120 u32 pmc, u64 *pdata)
5121 {
5122 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5123 }
5124
emulator_halt(struct x86_emulate_ctxt * ctxt)5125 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5126 {
5127 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5128 }
5129
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)5130 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5131 {
5132 preempt_disable();
5133 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5134 /*
5135 * CR0.TS may reference the host fpu state, not the guest fpu state,
5136 * so it may be clear at this point.
5137 */
5138 clts();
5139 }
5140
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)5141 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5142 {
5143 preempt_enable();
5144 }
5145
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)5146 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5147 struct x86_instruction_info *info,
5148 enum x86_intercept_stage stage)
5149 {
5150 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5151 }
5152
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)5153 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5154 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5155 {
5156 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5157 }
5158
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5159 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5160 {
5161 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5162 }
5163
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5164 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5165 {
5166 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5167 }
5168
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5169 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5170 {
5171 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5172 }
5173
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)5174 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5175 {
5176 return emul_to_vcpu(ctxt)->arch.hflags;
5177 }
5178
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)5179 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5180 {
5181 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5182 }
5183
5184 static const struct x86_emulate_ops emulate_ops = {
5185 .read_gpr = emulator_read_gpr,
5186 .write_gpr = emulator_write_gpr,
5187 .read_std = kvm_read_guest_virt_system,
5188 .write_std = kvm_write_guest_virt_system,
5189 .read_phys = kvm_read_guest_phys_system,
5190 .fetch = kvm_fetch_guest_virt,
5191 .read_emulated = emulator_read_emulated,
5192 .write_emulated = emulator_write_emulated,
5193 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5194 .invlpg = emulator_invlpg,
5195 .pio_in_emulated = emulator_pio_in_emulated,
5196 .pio_out_emulated = emulator_pio_out_emulated,
5197 .get_segment = emulator_get_segment,
5198 .set_segment = emulator_set_segment,
5199 .get_cached_segment_base = emulator_get_cached_segment_base,
5200 .get_gdt = emulator_get_gdt,
5201 .get_idt = emulator_get_idt,
5202 .set_gdt = emulator_set_gdt,
5203 .set_idt = emulator_set_idt,
5204 .get_cr = emulator_get_cr,
5205 .set_cr = emulator_set_cr,
5206 .cpl = emulator_get_cpl,
5207 .get_dr = emulator_get_dr,
5208 .set_dr = emulator_set_dr,
5209 .get_smbase = emulator_get_smbase,
5210 .set_smbase = emulator_set_smbase,
5211 .set_msr = emulator_set_msr,
5212 .get_msr = emulator_get_msr,
5213 .check_pmc = emulator_check_pmc,
5214 .read_pmc = emulator_read_pmc,
5215 .halt = emulator_halt,
5216 .wbinvd = emulator_wbinvd,
5217 .fix_hypercall = emulator_fix_hypercall,
5218 .get_fpu = emulator_get_fpu,
5219 .put_fpu = emulator_put_fpu,
5220 .intercept = emulator_intercept,
5221 .get_cpuid = emulator_get_cpuid,
5222 .set_nmi_mask = emulator_set_nmi_mask,
5223 .get_hflags = emulator_get_hflags,
5224 .set_hflags = emulator_set_hflags,
5225 };
5226
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5227 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5228 {
5229 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5230 /*
5231 * an sti; sti; sequence only disable interrupts for the first
5232 * instruction. So, if the last instruction, be it emulated or
5233 * not, left the system with the INT_STI flag enabled, it
5234 * means that the last instruction is an sti. We should not
5235 * leave the flag on in this case. The same goes for mov ss
5236 */
5237 if (int_shadow & mask)
5238 mask = 0;
5239 if (unlikely(int_shadow || mask)) {
5240 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5241 if (!mask)
5242 kvm_make_request(KVM_REQ_EVENT, vcpu);
5243 }
5244 }
5245
inject_emulated_exception(struct kvm_vcpu * vcpu)5246 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5247 {
5248 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5249 if (ctxt->exception.vector == PF_VECTOR)
5250 return kvm_propagate_fault(vcpu, &ctxt->exception);
5251
5252 if (ctxt->exception.error_code_valid)
5253 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5254 ctxt->exception.error_code);
5255 else
5256 kvm_queue_exception(vcpu, ctxt->exception.vector);
5257 return false;
5258 }
5259
init_emulate_ctxt(struct kvm_vcpu * vcpu)5260 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5261 {
5262 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5263 int cs_db, cs_l;
5264
5265 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5266
5267 ctxt->eflags = kvm_get_rflags(vcpu);
5268 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5269
5270 ctxt->eip = kvm_rip_read(vcpu);
5271 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5272 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5273 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5274 cs_db ? X86EMUL_MODE_PROT32 :
5275 X86EMUL_MODE_PROT16;
5276 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5277 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5278 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5279
5280 init_decode_cache(ctxt);
5281 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5282 }
5283
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5284 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5285 {
5286 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5287 int ret;
5288
5289 init_emulate_ctxt(vcpu);
5290
5291 ctxt->op_bytes = 2;
5292 ctxt->ad_bytes = 2;
5293 ctxt->_eip = ctxt->eip + inc_eip;
5294 ret = emulate_int_real(ctxt, irq);
5295
5296 if (ret != X86EMUL_CONTINUE)
5297 return EMULATE_FAIL;
5298
5299 ctxt->eip = ctxt->_eip;
5300 kvm_rip_write(vcpu, ctxt->eip);
5301 kvm_set_rflags(vcpu, ctxt->eflags);
5302
5303 if (irq == NMI_VECTOR)
5304 vcpu->arch.nmi_pending = 0;
5305 else
5306 vcpu->arch.interrupt.pending = false;
5307
5308 return EMULATE_DONE;
5309 }
5310 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5311
handle_emulation_failure(struct kvm_vcpu * vcpu)5312 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5313 {
5314 int r = EMULATE_DONE;
5315
5316 ++vcpu->stat.insn_emulation_fail;
5317 trace_kvm_emulate_insn_failed(vcpu);
5318 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5319 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5320 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5321 vcpu->run->internal.ndata = 0;
5322 r = EMULATE_USER_EXIT;
5323 }
5324 kvm_queue_exception(vcpu, UD_VECTOR);
5325
5326 return r;
5327 }
5328
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5329 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5330 bool write_fault_to_shadow_pgtable,
5331 int emulation_type)
5332 {
5333 gpa_t gpa = cr2;
5334 kvm_pfn_t pfn;
5335
5336 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5337 return false;
5338
5339 if (!vcpu->arch.mmu.direct_map) {
5340 /*
5341 * Write permission should be allowed since only
5342 * write access need to be emulated.
5343 */
5344 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5345
5346 /*
5347 * If the mapping is invalid in guest, let cpu retry
5348 * it to generate fault.
5349 */
5350 if (gpa == UNMAPPED_GVA)
5351 return true;
5352 }
5353
5354 /*
5355 * Do not retry the unhandleable instruction if it faults on the
5356 * readonly host memory, otherwise it will goto a infinite loop:
5357 * retry instruction -> write #PF -> emulation fail -> retry
5358 * instruction -> ...
5359 */
5360 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5361
5362 /*
5363 * If the instruction failed on the error pfn, it can not be fixed,
5364 * report the error to userspace.
5365 */
5366 if (is_error_noslot_pfn(pfn))
5367 return false;
5368
5369 kvm_release_pfn_clean(pfn);
5370
5371 /* The instructions are well-emulated on direct mmu. */
5372 if (vcpu->arch.mmu.direct_map) {
5373 unsigned int indirect_shadow_pages;
5374
5375 spin_lock(&vcpu->kvm->mmu_lock);
5376 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5377 spin_unlock(&vcpu->kvm->mmu_lock);
5378
5379 if (indirect_shadow_pages)
5380 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5381
5382 return true;
5383 }
5384
5385 /*
5386 * if emulation was due to access to shadowed page table
5387 * and it failed try to unshadow page and re-enter the
5388 * guest to let CPU execute the instruction.
5389 */
5390 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5391
5392 /*
5393 * If the access faults on its page table, it can not
5394 * be fixed by unprotecting shadow page and it should
5395 * be reported to userspace.
5396 */
5397 return !write_fault_to_shadow_pgtable;
5398 }
5399
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5400 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5401 unsigned long cr2, int emulation_type)
5402 {
5403 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5404 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5405
5406 last_retry_eip = vcpu->arch.last_retry_eip;
5407 last_retry_addr = vcpu->arch.last_retry_addr;
5408
5409 /*
5410 * If the emulation is caused by #PF and it is non-page_table
5411 * writing instruction, it means the VM-EXIT is caused by shadow
5412 * page protected, we can zap the shadow page and retry this
5413 * instruction directly.
5414 *
5415 * Note: if the guest uses a non-page-table modifying instruction
5416 * on the PDE that points to the instruction, then we will unmap
5417 * the instruction and go to an infinite loop. So, we cache the
5418 * last retried eip and the last fault address, if we meet the eip
5419 * and the address again, we can break out of the potential infinite
5420 * loop.
5421 */
5422 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5423
5424 if (!(emulation_type & EMULTYPE_RETRY))
5425 return false;
5426
5427 if (x86_page_table_writing_insn(ctxt))
5428 return false;
5429
5430 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5431 return false;
5432
5433 vcpu->arch.last_retry_eip = ctxt->eip;
5434 vcpu->arch.last_retry_addr = cr2;
5435
5436 if (!vcpu->arch.mmu.direct_map)
5437 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5438
5439 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5440
5441 return true;
5442 }
5443
5444 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5445 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5446
kvm_smm_changed(struct kvm_vcpu * vcpu)5447 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5448 {
5449 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5450 /* This is a good place to trace that we are exiting SMM. */
5451 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5452
5453 /* Process a latched INIT or SMI, if any. */
5454 kvm_make_request(KVM_REQ_EVENT, vcpu);
5455 }
5456
5457 kvm_mmu_reset_context(vcpu);
5458 }
5459
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)5460 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5461 {
5462 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5463
5464 vcpu->arch.hflags = emul_flags;
5465
5466 if (changed & HF_SMM_MASK)
5467 kvm_smm_changed(vcpu);
5468 }
5469
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5470 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5471 unsigned long *db)
5472 {
5473 u32 dr6 = 0;
5474 int i;
5475 u32 enable, rwlen;
5476
5477 enable = dr7;
5478 rwlen = dr7 >> 16;
5479 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5480 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5481 dr6 |= (1 << i);
5482 return dr6;
5483 }
5484
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu,int * r)5485 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5486 {
5487 struct kvm_run *kvm_run = vcpu->run;
5488
5489 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5490 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5491 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5492 kvm_run->debug.arch.exception = DB_VECTOR;
5493 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5494 *r = EMULATE_USER_EXIT;
5495 } else {
5496 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5497 /*
5498 * "Certain debug exceptions may clear bit 0-3. The
5499 * remaining contents of the DR6 register are never
5500 * cleared by the processor".
5501 */
5502 vcpu->arch.dr6 &= ~15;
5503 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5504 kvm_queue_exception(vcpu, DB_VECTOR);
5505 }
5506 }
5507
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5508 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5509 {
5510 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5511 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5512 struct kvm_run *kvm_run = vcpu->run;
5513 unsigned long eip = kvm_get_linear_rip(vcpu);
5514 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5515 vcpu->arch.guest_debug_dr7,
5516 vcpu->arch.eff_db);
5517
5518 if (dr6 != 0) {
5519 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5520 kvm_run->debug.arch.pc = eip;
5521 kvm_run->debug.arch.exception = DB_VECTOR;
5522 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5523 *r = EMULATE_USER_EXIT;
5524 return true;
5525 }
5526 }
5527
5528 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5529 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5530 unsigned long eip = kvm_get_linear_rip(vcpu);
5531 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5532 vcpu->arch.dr7,
5533 vcpu->arch.db);
5534
5535 if (dr6 != 0) {
5536 vcpu->arch.dr6 &= ~15;
5537 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5538 kvm_queue_exception(vcpu, DB_VECTOR);
5539 *r = EMULATE_DONE;
5540 return true;
5541 }
5542 }
5543
5544 return false;
5545 }
5546
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5547 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5548 unsigned long cr2,
5549 int emulation_type,
5550 void *insn,
5551 int insn_len)
5552 {
5553 int r;
5554 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5555 bool writeback = true;
5556 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5557
5558 /*
5559 * Clear write_fault_to_shadow_pgtable here to ensure it is
5560 * never reused.
5561 */
5562 vcpu->arch.write_fault_to_shadow_pgtable = false;
5563 kvm_clear_exception_queue(vcpu);
5564
5565 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5566 init_emulate_ctxt(vcpu);
5567
5568 /*
5569 * We will reenter on the same instruction since
5570 * we do not set complete_userspace_io. This does not
5571 * handle watchpoints yet, those would be handled in
5572 * the emulate_ops.
5573 */
5574 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5575 return r;
5576
5577 ctxt->interruptibility = 0;
5578 ctxt->have_exception = false;
5579 ctxt->exception.vector = -1;
5580 ctxt->perm_ok = false;
5581
5582 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5583
5584 r = x86_decode_insn(ctxt, insn, insn_len);
5585
5586 trace_kvm_emulate_insn_start(vcpu);
5587 ++vcpu->stat.insn_emulation;
5588 if (r != EMULATION_OK) {
5589 if (emulation_type & EMULTYPE_TRAP_UD)
5590 return EMULATE_FAIL;
5591 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5592 emulation_type))
5593 return EMULATE_DONE;
5594 if (ctxt->have_exception && inject_emulated_exception(vcpu))
5595 return EMULATE_DONE;
5596 if (emulation_type & EMULTYPE_SKIP)
5597 return EMULATE_FAIL;
5598 return handle_emulation_failure(vcpu);
5599 }
5600 }
5601
5602 if (emulation_type & EMULTYPE_SKIP) {
5603 kvm_rip_write(vcpu, ctxt->_eip);
5604 if (ctxt->eflags & X86_EFLAGS_RF)
5605 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5606 return EMULATE_DONE;
5607 }
5608
5609 if (retry_instruction(ctxt, cr2, emulation_type))
5610 return EMULATE_DONE;
5611
5612 /* this is needed for vmware backdoor interface to work since it
5613 changes registers values during IO operation */
5614 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5615 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5616 emulator_invalidate_register_cache(ctxt);
5617 }
5618
5619 restart:
5620 r = x86_emulate_insn(ctxt);
5621
5622 if (r == EMULATION_INTERCEPTED)
5623 return EMULATE_DONE;
5624
5625 if (r == EMULATION_FAILED) {
5626 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5627 emulation_type))
5628 return EMULATE_DONE;
5629
5630 return handle_emulation_failure(vcpu);
5631 }
5632
5633 if (ctxt->have_exception) {
5634 r = EMULATE_DONE;
5635 if (inject_emulated_exception(vcpu))
5636 return r;
5637 } else if (vcpu->arch.pio.count) {
5638 if (!vcpu->arch.pio.in) {
5639 /* FIXME: return into emulator if single-stepping. */
5640 vcpu->arch.pio.count = 0;
5641 } else {
5642 writeback = false;
5643 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5644 }
5645 r = EMULATE_USER_EXIT;
5646 } else if (vcpu->mmio_needed) {
5647 if (!vcpu->mmio_is_write)
5648 writeback = false;
5649 r = EMULATE_USER_EXIT;
5650 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5651 } else if (r == EMULATION_RESTART)
5652 goto restart;
5653 else
5654 r = EMULATE_DONE;
5655
5656 if (writeback) {
5657 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5658 toggle_interruptibility(vcpu, ctxt->interruptibility);
5659 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5660 kvm_rip_write(vcpu, ctxt->eip);
5661 if (r == EMULATE_DONE &&
5662 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5663 kvm_vcpu_do_singlestep(vcpu, &r);
5664 if (!ctxt->have_exception ||
5665 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5666 __kvm_set_rflags(vcpu, ctxt->eflags);
5667
5668 /*
5669 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5670 * do nothing, and it will be requested again as soon as
5671 * the shadow expires. But we still need to check here,
5672 * because POPF has no interrupt shadow.
5673 */
5674 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5675 kvm_make_request(KVM_REQ_EVENT, vcpu);
5676 } else
5677 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5678
5679 return r;
5680 }
5681 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5682
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5683 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5684 {
5685 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5686 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5687 size, port, &val, 1);
5688 /* do not return to emulator after return from userspace */
5689 vcpu->arch.pio.count = 0;
5690 return ret;
5691 }
5692 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5693
kvmclock_cpu_down_prep(unsigned int cpu)5694 static int kvmclock_cpu_down_prep(unsigned int cpu)
5695 {
5696 __this_cpu_write(cpu_tsc_khz, 0);
5697 return 0;
5698 }
5699
tsc_khz_changed(void * data)5700 static void tsc_khz_changed(void *data)
5701 {
5702 struct cpufreq_freqs *freq = data;
5703 unsigned long khz = 0;
5704
5705 if (data)
5706 khz = freq->new;
5707 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5708 khz = cpufreq_quick_get(raw_smp_processor_id());
5709 if (!khz)
5710 khz = tsc_khz;
5711 __this_cpu_write(cpu_tsc_khz, khz);
5712 }
5713
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5714 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5715 void *data)
5716 {
5717 struct cpufreq_freqs *freq = data;
5718 struct kvm *kvm;
5719 struct kvm_vcpu *vcpu;
5720 int i, send_ipi = 0;
5721
5722 /*
5723 * We allow guests to temporarily run on slowing clocks,
5724 * provided we notify them after, or to run on accelerating
5725 * clocks, provided we notify them before. Thus time never
5726 * goes backwards.
5727 *
5728 * However, we have a problem. We can't atomically update
5729 * the frequency of a given CPU from this function; it is
5730 * merely a notifier, which can be called from any CPU.
5731 * Changing the TSC frequency at arbitrary points in time
5732 * requires a recomputation of local variables related to
5733 * the TSC for each VCPU. We must flag these local variables
5734 * to be updated and be sure the update takes place with the
5735 * new frequency before any guests proceed.
5736 *
5737 * Unfortunately, the combination of hotplug CPU and frequency
5738 * change creates an intractable locking scenario; the order
5739 * of when these callouts happen is undefined with respect to
5740 * CPU hotplug, and they can race with each other. As such,
5741 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5742 * undefined; you can actually have a CPU frequency change take
5743 * place in between the computation of X and the setting of the
5744 * variable. To protect against this problem, all updates of
5745 * the per_cpu tsc_khz variable are done in an interrupt
5746 * protected IPI, and all callers wishing to update the value
5747 * must wait for a synchronous IPI to complete (which is trivial
5748 * if the caller is on the CPU already). This establishes the
5749 * necessary total order on variable updates.
5750 *
5751 * Note that because a guest time update may take place
5752 * anytime after the setting of the VCPU's request bit, the
5753 * correct TSC value must be set before the request. However,
5754 * to ensure the update actually makes it to any guest which
5755 * starts running in hardware virtualization between the set
5756 * and the acquisition of the spinlock, we must also ping the
5757 * CPU after setting the request bit.
5758 *
5759 */
5760
5761 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5762 return 0;
5763 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5764 return 0;
5765
5766 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5767
5768 spin_lock(&kvm_lock);
5769 list_for_each_entry(kvm, &vm_list, vm_list) {
5770 kvm_for_each_vcpu(i, vcpu, kvm) {
5771 if (vcpu->cpu != freq->cpu)
5772 continue;
5773 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5774 if (vcpu->cpu != smp_processor_id())
5775 send_ipi = 1;
5776 }
5777 }
5778 spin_unlock(&kvm_lock);
5779
5780 if (freq->old < freq->new && send_ipi) {
5781 /*
5782 * We upscale the frequency. Must make the guest
5783 * doesn't see old kvmclock values while running with
5784 * the new frequency, otherwise we risk the guest sees
5785 * time go backwards.
5786 *
5787 * In case we update the frequency for another cpu
5788 * (which might be in guest context) send an interrupt
5789 * to kick the cpu out of guest context. Next time
5790 * guest context is entered kvmclock will be updated,
5791 * so the guest will not see stale values.
5792 */
5793 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5794 }
5795 return 0;
5796 }
5797
5798 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5799 .notifier_call = kvmclock_cpufreq_notifier
5800 };
5801
kvmclock_cpu_online(unsigned int cpu)5802 static int kvmclock_cpu_online(unsigned int cpu)
5803 {
5804 tsc_khz_changed(NULL);
5805 return 0;
5806 }
5807
kvm_timer_init(void)5808 static void kvm_timer_init(void)
5809 {
5810 max_tsc_khz = tsc_khz;
5811
5812 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5813 #ifdef CONFIG_CPU_FREQ
5814 struct cpufreq_policy policy;
5815 int cpu;
5816
5817 memset(&policy, 0, sizeof(policy));
5818 cpu = get_cpu();
5819 cpufreq_get_policy(&policy, cpu);
5820 if (policy.cpuinfo.max_freq)
5821 max_tsc_khz = policy.cpuinfo.max_freq;
5822 put_cpu();
5823 #endif
5824 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5825 CPUFREQ_TRANSITION_NOTIFIER);
5826 }
5827 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5828
5829 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5830 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5831 }
5832
5833 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5834
kvm_is_in_guest(void)5835 int kvm_is_in_guest(void)
5836 {
5837 return __this_cpu_read(current_vcpu) != NULL;
5838 }
5839
kvm_is_user_mode(void)5840 static int kvm_is_user_mode(void)
5841 {
5842 int user_mode = 3;
5843
5844 if (__this_cpu_read(current_vcpu))
5845 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5846
5847 return user_mode != 0;
5848 }
5849
kvm_get_guest_ip(void)5850 static unsigned long kvm_get_guest_ip(void)
5851 {
5852 unsigned long ip = 0;
5853
5854 if (__this_cpu_read(current_vcpu))
5855 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5856
5857 return ip;
5858 }
5859
5860 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5861 .is_in_guest = kvm_is_in_guest,
5862 .is_user_mode = kvm_is_user_mode,
5863 .get_guest_ip = kvm_get_guest_ip,
5864 };
5865
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5866 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5867 {
5868 __this_cpu_write(current_vcpu, vcpu);
5869 }
5870 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5871
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5872 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5873 {
5874 __this_cpu_write(current_vcpu, NULL);
5875 }
5876 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5877
kvm_set_mmio_spte_mask(void)5878 static void kvm_set_mmio_spte_mask(void)
5879 {
5880 u64 mask;
5881 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5882
5883 /*
5884 * Set the reserved bits and the present bit of an paging-structure
5885 * entry to generate page fault with PFER.RSV = 1.
5886 */
5887 /* Mask the reserved physical address bits. */
5888 mask = rsvd_bits(maxphyaddr, 51);
5889
5890 /* Bit 62 is always reserved for 32bit host. */
5891 mask |= 0x3ull << 62;
5892
5893 /* Set the present bit. */
5894 mask |= 1ull;
5895
5896 #ifdef CONFIG_X86_64
5897 /*
5898 * If reserved bit is not supported, clear the present bit to disable
5899 * mmio page fault.
5900 */
5901 if (maxphyaddr == 52)
5902 mask &= ~1ull;
5903 #endif
5904
5905 kvm_mmu_set_mmio_spte_mask(mask);
5906 }
5907
5908 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5909 static void pvclock_gtod_update_fn(struct work_struct *work)
5910 {
5911 struct kvm *kvm;
5912
5913 struct kvm_vcpu *vcpu;
5914 int i;
5915
5916 spin_lock(&kvm_lock);
5917 list_for_each_entry(kvm, &vm_list, vm_list)
5918 kvm_for_each_vcpu(i, vcpu, kvm)
5919 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5920 atomic_set(&kvm_guest_has_master_clock, 0);
5921 spin_unlock(&kvm_lock);
5922 }
5923
5924 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5925
5926 /*
5927 * Notification about pvclock gtod data update.
5928 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5929 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5930 void *priv)
5931 {
5932 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5933 struct timekeeper *tk = priv;
5934
5935 update_pvclock_gtod(tk);
5936
5937 /* disable master clock if host does not trust, or does not
5938 * use, TSC clocksource
5939 */
5940 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5941 atomic_read(&kvm_guest_has_master_clock) != 0)
5942 queue_work(system_long_wq, &pvclock_gtod_work);
5943
5944 return 0;
5945 }
5946
5947 static struct notifier_block pvclock_gtod_notifier = {
5948 .notifier_call = pvclock_gtod_notify,
5949 };
5950 #endif
5951
kvm_arch_init(void * opaque)5952 int kvm_arch_init(void *opaque)
5953 {
5954 int r;
5955 struct kvm_x86_ops *ops = opaque;
5956
5957 if (kvm_x86_ops) {
5958 printk(KERN_ERR "kvm: already loaded the other module\n");
5959 r = -EEXIST;
5960 goto out;
5961 }
5962
5963 if (!ops->cpu_has_kvm_support()) {
5964 printk(KERN_ERR "kvm: no hardware support\n");
5965 r = -EOPNOTSUPP;
5966 goto out;
5967 }
5968 if (ops->disabled_by_bios()) {
5969 printk(KERN_ERR "kvm: disabled by bios\n");
5970 r = -EOPNOTSUPP;
5971 goto out;
5972 }
5973
5974 r = -ENOMEM;
5975 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5976 if (!shared_msrs) {
5977 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5978 goto out;
5979 }
5980
5981 r = kvm_mmu_module_init();
5982 if (r)
5983 goto out_free_percpu;
5984
5985 kvm_set_mmio_spte_mask();
5986
5987 kvm_x86_ops = ops;
5988
5989 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5990 PT_DIRTY_MASK, PT64_NX_MASK, 0,
5991 PT_PRESENT_MASK);
5992 kvm_timer_init();
5993
5994 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5995
5996 if (boot_cpu_has(X86_FEATURE_XSAVE))
5997 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5998
5999 kvm_lapic_init();
6000 #ifdef CONFIG_X86_64
6001 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6002 #endif
6003
6004 return 0;
6005
6006 out_free_percpu:
6007 free_percpu(shared_msrs);
6008 out:
6009 return r;
6010 }
6011
kvm_arch_exit(void)6012 void kvm_arch_exit(void)
6013 {
6014 kvm_lapic_exit();
6015 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6016
6017 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6018 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6019 CPUFREQ_TRANSITION_NOTIFIER);
6020 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6021 #ifdef CONFIG_X86_64
6022 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6023 #endif
6024 kvm_x86_ops = NULL;
6025 kvm_mmu_module_exit();
6026 free_percpu(shared_msrs);
6027 }
6028
kvm_vcpu_halt(struct kvm_vcpu * vcpu)6029 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6030 {
6031 ++vcpu->stat.halt_exits;
6032 if (lapic_in_kernel(vcpu)) {
6033 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6034 return 1;
6035 } else {
6036 vcpu->run->exit_reason = KVM_EXIT_HLT;
6037 return 0;
6038 }
6039 }
6040 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6041
kvm_emulate_halt(struct kvm_vcpu * vcpu)6042 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6043 {
6044 kvm_x86_ops->skip_emulated_instruction(vcpu);
6045 return kvm_vcpu_halt(vcpu);
6046 }
6047 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6048
6049 /*
6050 * kvm_pv_kick_cpu_op: Kick a vcpu.
6051 *
6052 * @apicid - apicid of vcpu to be kicked.
6053 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)6054 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6055 {
6056 struct kvm_lapic_irq lapic_irq;
6057
6058 lapic_irq.shorthand = 0;
6059 lapic_irq.dest_mode = 0;
6060 lapic_irq.dest_id = apicid;
6061 lapic_irq.msi_redir_hint = false;
6062
6063 lapic_irq.delivery_mode = APIC_DM_REMRD;
6064 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6065 }
6066
kvm_vcpu_deactivate_apicv(struct kvm_vcpu * vcpu)6067 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6068 {
6069 vcpu->arch.apicv_active = false;
6070 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6071 }
6072
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)6073 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6074 {
6075 unsigned long nr, a0, a1, a2, a3, ret;
6076 int op_64_bit, r = 1;
6077
6078 kvm_x86_ops->skip_emulated_instruction(vcpu);
6079
6080 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6081 return kvm_hv_hypercall(vcpu);
6082
6083 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6084 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6085 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6086 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6087 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6088
6089 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6090
6091 op_64_bit = is_64_bit_mode(vcpu);
6092 if (!op_64_bit) {
6093 nr &= 0xFFFFFFFF;
6094 a0 &= 0xFFFFFFFF;
6095 a1 &= 0xFFFFFFFF;
6096 a2 &= 0xFFFFFFFF;
6097 a3 &= 0xFFFFFFFF;
6098 }
6099
6100 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6101 ret = -KVM_EPERM;
6102 goto out;
6103 }
6104
6105 switch (nr) {
6106 case KVM_HC_VAPIC_POLL_IRQ:
6107 ret = 0;
6108 break;
6109 case KVM_HC_KICK_CPU:
6110 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6111 ret = 0;
6112 break;
6113 default:
6114 ret = -KVM_ENOSYS;
6115 break;
6116 }
6117 out:
6118 if (!op_64_bit)
6119 ret = (u32)ret;
6120 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6121 ++vcpu->stat.hypercalls;
6122 return r;
6123 }
6124 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6125
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)6126 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6127 {
6128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6129 char instruction[3];
6130 unsigned long rip = kvm_rip_read(vcpu);
6131
6132 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6133
6134 return emulator_write_emulated(ctxt, rip, instruction, 3,
6135 &ctxt->exception);
6136 }
6137
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)6138 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6139 {
6140 return vcpu->run->request_interrupt_window &&
6141 likely(!pic_in_kernel(vcpu->kvm));
6142 }
6143
post_kvm_run_save(struct kvm_vcpu * vcpu)6144 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6145 {
6146 struct kvm_run *kvm_run = vcpu->run;
6147
6148 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6149 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6150 kvm_run->cr8 = kvm_get_cr8(vcpu);
6151 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6152 kvm_run->ready_for_interrupt_injection =
6153 pic_in_kernel(vcpu->kvm) ||
6154 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6155 }
6156
update_cr8_intercept(struct kvm_vcpu * vcpu)6157 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6158 {
6159 int max_irr, tpr;
6160
6161 if (!kvm_x86_ops->update_cr8_intercept)
6162 return;
6163
6164 if (!lapic_in_kernel(vcpu))
6165 return;
6166
6167 if (vcpu->arch.apicv_active)
6168 return;
6169
6170 if (!vcpu->arch.apic->vapic_addr)
6171 max_irr = kvm_lapic_find_highest_irr(vcpu);
6172 else
6173 max_irr = -1;
6174
6175 if (max_irr != -1)
6176 max_irr >>= 4;
6177
6178 tpr = kvm_lapic_get_cr8(vcpu);
6179
6180 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6181 }
6182
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6183 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6184 {
6185 int r;
6186
6187 /* try to reinject previous events if any */
6188 if (vcpu->arch.exception.pending) {
6189 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6190 vcpu->arch.exception.has_error_code,
6191 vcpu->arch.exception.error_code);
6192
6193 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6194 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6195 X86_EFLAGS_RF);
6196
6197 if (vcpu->arch.exception.nr == DB_VECTOR &&
6198 (vcpu->arch.dr7 & DR7_GD)) {
6199 vcpu->arch.dr7 &= ~DR7_GD;
6200 kvm_update_dr7(vcpu);
6201 }
6202
6203 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6204 vcpu->arch.exception.has_error_code,
6205 vcpu->arch.exception.error_code,
6206 vcpu->arch.exception.reinject);
6207 return 0;
6208 }
6209
6210 if (vcpu->arch.nmi_injected) {
6211 kvm_x86_ops->set_nmi(vcpu);
6212 return 0;
6213 }
6214
6215 if (vcpu->arch.interrupt.pending) {
6216 kvm_x86_ops->set_irq(vcpu);
6217 return 0;
6218 }
6219
6220 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6221 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6222 if (r != 0)
6223 return r;
6224 }
6225
6226 /* try to inject new event if pending */
6227 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6228 vcpu->arch.smi_pending = false;
6229 enter_smm(vcpu);
6230 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6231 --vcpu->arch.nmi_pending;
6232 vcpu->arch.nmi_injected = true;
6233 kvm_x86_ops->set_nmi(vcpu);
6234 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6235 /*
6236 * Because interrupts can be injected asynchronously, we are
6237 * calling check_nested_events again here to avoid a race condition.
6238 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6239 * proposal and current concerns. Perhaps we should be setting
6240 * KVM_REQ_EVENT only on certain events and not unconditionally?
6241 */
6242 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6243 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6244 if (r != 0)
6245 return r;
6246 }
6247 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6248 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6249 false);
6250 kvm_x86_ops->set_irq(vcpu);
6251 }
6252 }
6253
6254 return 0;
6255 }
6256
process_nmi(struct kvm_vcpu * vcpu)6257 static void process_nmi(struct kvm_vcpu *vcpu)
6258 {
6259 unsigned limit = 2;
6260
6261 /*
6262 * x86 is limited to one NMI running, and one NMI pending after it.
6263 * If an NMI is already in progress, limit further NMIs to just one.
6264 * Otherwise, allow two (and we'll inject the first one immediately).
6265 */
6266 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6267 limit = 1;
6268
6269 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6270 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6271 kvm_make_request(KVM_REQ_EVENT, vcpu);
6272 }
6273
6274 #define put_smstate(type, buf, offset, val) \
6275 *(type *)((buf) + (offset) - 0x7e00) = val
6276
enter_smm_get_segment_flags(struct kvm_segment * seg)6277 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6278 {
6279 u32 flags = 0;
6280 flags |= seg->g << 23;
6281 flags |= seg->db << 22;
6282 flags |= seg->l << 21;
6283 flags |= seg->avl << 20;
6284 flags |= seg->present << 15;
6285 flags |= seg->dpl << 13;
6286 flags |= seg->s << 12;
6287 flags |= seg->type << 8;
6288 return flags;
6289 }
6290
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)6291 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6292 {
6293 struct kvm_segment seg;
6294 int offset;
6295
6296 kvm_get_segment(vcpu, &seg, n);
6297 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6298
6299 if (n < 3)
6300 offset = 0x7f84 + n * 12;
6301 else
6302 offset = 0x7f2c + (n - 3) * 12;
6303
6304 put_smstate(u32, buf, offset + 8, seg.base);
6305 put_smstate(u32, buf, offset + 4, seg.limit);
6306 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6307 }
6308
6309 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)6310 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6311 {
6312 struct kvm_segment seg;
6313 int offset;
6314 u16 flags;
6315
6316 kvm_get_segment(vcpu, &seg, n);
6317 offset = 0x7e00 + n * 16;
6318
6319 flags = enter_smm_get_segment_flags(&seg) >> 8;
6320 put_smstate(u16, buf, offset, seg.selector);
6321 put_smstate(u16, buf, offset + 2, flags);
6322 put_smstate(u32, buf, offset + 4, seg.limit);
6323 put_smstate(u64, buf, offset + 8, seg.base);
6324 }
6325 #endif
6326
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)6327 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6328 {
6329 struct desc_ptr dt;
6330 struct kvm_segment seg;
6331 unsigned long val;
6332 int i;
6333
6334 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6335 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6336 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6337 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6338
6339 for (i = 0; i < 8; i++)
6340 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6341
6342 kvm_get_dr(vcpu, 6, &val);
6343 put_smstate(u32, buf, 0x7fcc, (u32)val);
6344 kvm_get_dr(vcpu, 7, &val);
6345 put_smstate(u32, buf, 0x7fc8, (u32)val);
6346
6347 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6348 put_smstate(u32, buf, 0x7fc4, seg.selector);
6349 put_smstate(u32, buf, 0x7f64, seg.base);
6350 put_smstate(u32, buf, 0x7f60, seg.limit);
6351 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6352
6353 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6354 put_smstate(u32, buf, 0x7fc0, seg.selector);
6355 put_smstate(u32, buf, 0x7f80, seg.base);
6356 put_smstate(u32, buf, 0x7f7c, seg.limit);
6357 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6358
6359 kvm_x86_ops->get_gdt(vcpu, &dt);
6360 put_smstate(u32, buf, 0x7f74, dt.address);
6361 put_smstate(u32, buf, 0x7f70, dt.size);
6362
6363 kvm_x86_ops->get_idt(vcpu, &dt);
6364 put_smstate(u32, buf, 0x7f58, dt.address);
6365 put_smstate(u32, buf, 0x7f54, dt.size);
6366
6367 for (i = 0; i < 6; i++)
6368 enter_smm_save_seg_32(vcpu, buf, i);
6369
6370 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6371
6372 /* revision id */
6373 put_smstate(u32, buf, 0x7efc, 0x00020000);
6374 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6375 }
6376
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)6377 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6378 {
6379 #ifdef CONFIG_X86_64
6380 struct desc_ptr dt;
6381 struct kvm_segment seg;
6382 unsigned long val;
6383 int i;
6384
6385 for (i = 0; i < 16; i++)
6386 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6387
6388 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6389 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6390
6391 kvm_get_dr(vcpu, 6, &val);
6392 put_smstate(u64, buf, 0x7f68, val);
6393 kvm_get_dr(vcpu, 7, &val);
6394 put_smstate(u64, buf, 0x7f60, val);
6395
6396 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6397 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6398 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6399
6400 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6401
6402 /* revision id */
6403 put_smstate(u32, buf, 0x7efc, 0x00020064);
6404
6405 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6406
6407 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6408 put_smstate(u16, buf, 0x7e90, seg.selector);
6409 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6410 put_smstate(u32, buf, 0x7e94, seg.limit);
6411 put_smstate(u64, buf, 0x7e98, seg.base);
6412
6413 kvm_x86_ops->get_idt(vcpu, &dt);
6414 put_smstate(u32, buf, 0x7e84, dt.size);
6415 put_smstate(u64, buf, 0x7e88, dt.address);
6416
6417 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6418 put_smstate(u16, buf, 0x7e70, seg.selector);
6419 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6420 put_smstate(u32, buf, 0x7e74, seg.limit);
6421 put_smstate(u64, buf, 0x7e78, seg.base);
6422
6423 kvm_x86_ops->get_gdt(vcpu, &dt);
6424 put_smstate(u32, buf, 0x7e64, dt.size);
6425 put_smstate(u64, buf, 0x7e68, dt.address);
6426
6427 for (i = 0; i < 6; i++)
6428 enter_smm_save_seg_64(vcpu, buf, i);
6429 #else
6430 WARN_ON_ONCE(1);
6431 #endif
6432 }
6433
enter_smm(struct kvm_vcpu * vcpu)6434 static void enter_smm(struct kvm_vcpu *vcpu)
6435 {
6436 struct kvm_segment cs, ds;
6437 struct desc_ptr dt;
6438 char buf[512];
6439 u32 cr0;
6440
6441 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6442 vcpu->arch.hflags |= HF_SMM_MASK;
6443 memset(buf, 0, 512);
6444 if (guest_cpuid_has_longmode(vcpu))
6445 enter_smm_save_state_64(vcpu, buf);
6446 else
6447 enter_smm_save_state_32(vcpu, buf);
6448
6449 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6450
6451 if (kvm_x86_ops->get_nmi_mask(vcpu))
6452 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6453 else
6454 kvm_x86_ops->set_nmi_mask(vcpu, true);
6455
6456 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6457 kvm_rip_write(vcpu, 0x8000);
6458
6459 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6460 kvm_x86_ops->set_cr0(vcpu, cr0);
6461 vcpu->arch.cr0 = cr0;
6462
6463 kvm_x86_ops->set_cr4(vcpu, 0);
6464
6465 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6466 dt.address = dt.size = 0;
6467 kvm_x86_ops->set_idt(vcpu, &dt);
6468
6469 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6470
6471 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6472 cs.base = vcpu->arch.smbase;
6473
6474 ds.selector = 0;
6475 ds.base = 0;
6476
6477 cs.limit = ds.limit = 0xffffffff;
6478 cs.type = ds.type = 0x3;
6479 cs.dpl = ds.dpl = 0;
6480 cs.db = ds.db = 0;
6481 cs.s = ds.s = 1;
6482 cs.l = ds.l = 0;
6483 cs.g = ds.g = 1;
6484 cs.avl = ds.avl = 0;
6485 cs.present = ds.present = 1;
6486 cs.unusable = ds.unusable = 0;
6487 cs.padding = ds.padding = 0;
6488
6489 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6490 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6491 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6492 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6493 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6494 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6495
6496 if (guest_cpuid_has_longmode(vcpu))
6497 kvm_x86_ops->set_efer(vcpu, 0);
6498
6499 kvm_update_cpuid(vcpu);
6500 kvm_mmu_reset_context(vcpu);
6501 }
6502
process_smi(struct kvm_vcpu * vcpu)6503 static void process_smi(struct kvm_vcpu *vcpu)
6504 {
6505 vcpu->arch.smi_pending = true;
6506 kvm_make_request(KVM_REQ_EVENT, vcpu);
6507 }
6508
kvm_make_scan_ioapic_request(struct kvm * kvm)6509 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6510 {
6511 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6512 }
6513
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6514 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6515 {
6516 u64 eoi_exit_bitmap[4];
6517
6518 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6519 return;
6520
6521 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6522
6523 if (irqchip_split(vcpu->kvm))
6524 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6525 else {
6526 if (vcpu->arch.apicv_active)
6527 kvm_x86_ops->sync_pir_to_irr(vcpu);
6528 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6529 }
6530 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6531 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6532 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6533 }
6534
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu)6535 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6536 {
6537 ++vcpu->stat.tlb_flush;
6538 kvm_x86_ops->tlb_flush(vcpu);
6539 }
6540
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)6541 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6542 unsigned long start, unsigned long end)
6543 {
6544 unsigned long apic_address;
6545
6546 /*
6547 * The physical address of apic access page is stored in the VMCS.
6548 * Update it when it becomes invalid.
6549 */
6550 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6551 if (start <= apic_address && apic_address < end)
6552 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6553 }
6554
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)6555 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6556 {
6557 struct page *page = NULL;
6558
6559 if (!lapic_in_kernel(vcpu))
6560 return;
6561
6562 if (!kvm_x86_ops->set_apic_access_page_addr)
6563 return;
6564
6565 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6566 if (is_error_page(page))
6567 return;
6568 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6569
6570 /*
6571 * Do not pin apic access page in memory, the MMU notifier
6572 * will call us again if it is migrated or swapped out.
6573 */
6574 put_page(page);
6575 }
6576 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6577
kvm_arch_mmu_notifier_invalidate_page(struct kvm * kvm,unsigned long address)6578 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6579 unsigned long address)
6580 {
6581 /*
6582 * The physical address of apic access page is stored in the VMCS.
6583 * Update it when it becomes invalid.
6584 */
6585 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6586 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6587 }
6588
6589 /*
6590 * Returns 1 to let vcpu_run() continue the guest execution loop without
6591 * exiting to the userspace. Otherwise, the value will be returned to the
6592 * userspace.
6593 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)6594 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6595 {
6596 int r;
6597 bool req_int_win =
6598 dm_request_for_irq_injection(vcpu) &&
6599 kvm_cpu_accept_dm_intr(vcpu);
6600
6601 bool req_immediate_exit = false;
6602
6603 if (vcpu->requests) {
6604 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6605 kvm_mmu_unload(vcpu);
6606 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6607 __kvm_migrate_timers(vcpu);
6608 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6609 kvm_gen_update_masterclock(vcpu->kvm);
6610 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6611 kvm_gen_kvmclock_update(vcpu);
6612 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6613 r = kvm_guest_time_update(vcpu);
6614 if (unlikely(r))
6615 goto out;
6616 }
6617 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6618 kvm_mmu_sync_roots(vcpu);
6619 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6620 kvm_vcpu_flush_tlb(vcpu);
6621 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6622 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6623 r = 0;
6624 goto out;
6625 }
6626 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6627 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6628 r = 0;
6629 goto out;
6630 }
6631 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6632 vcpu->fpu_active = 0;
6633 kvm_x86_ops->fpu_deactivate(vcpu);
6634 }
6635 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6636 /* Page is swapped out. Do synthetic halt */
6637 vcpu->arch.apf.halted = true;
6638 r = 1;
6639 goto out;
6640 }
6641 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6642 record_steal_time(vcpu);
6643 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6644 process_smi(vcpu);
6645 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6646 process_nmi(vcpu);
6647 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6648 kvm_pmu_handle_event(vcpu);
6649 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6650 kvm_pmu_deliver_pmi(vcpu);
6651 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6652 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6653 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6654 vcpu->arch.ioapic_handled_vectors)) {
6655 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6656 vcpu->run->eoi.vector =
6657 vcpu->arch.pending_ioapic_eoi;
6658 r = 0;
6659 goto out;
6660 }
6661 }
6662 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6663 vcpu_scan_ioapic(vcpu);
6664 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6665 kvm_vcpu_reload_apic_access_page(vcpu);
6666 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6667 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6668 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6669 r = 0;
6670 goto out;
6671 }
6672 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6673 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6674 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6675 r = 0;
6676 goto out;
6677 }
6678 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6679 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6680 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6681 r = 0;
6682 goto out;
6683 }
6684
6685 /*
6686 * KVM_REQ_HV_STIMER has to be processed after
6687 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6688 * depend on the guest clock being up-to-date
6689 */
6690 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6691 kvm_hv_process_stimers(vcpu);
6692 }
6693
6694 /*
6695 * KVM_REQ_EVENT is not set when posted interrupts are set by
6696 * VT-d hardware, so we have to update RVI unconditionally.
6697 */
6698 if (kvm_lapic_enabled(vcpu)) {
6699 /*
6700 * Update architecture specific hints for APIC
6701 * virtual interrupt delivery.
6702 */
6703 if (vcpu->arch.apicv_active)
6704 kvm_x86_ops->hwapic_irr_update(vcpu,
6705 kvm_lapic_find_highest_irr(vcpu));
6706 }
6707
6708 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6709 kvm_apic_accept_events(vcpu);
6710 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6711 r = 1;
6712 goto out;
6713 }
6714
6715 if (inject_pending_event(vcpu, req_int_win) != 0)
6716 req_immediate_exit = true;
6717 else {
6718 /* Enable NMI/IRQ window open exits if needed.
6719 *
6720 * SMIs have two cases: 1) they can be nested, and
6721 * then there is nothing to do here because RSM will
6722 * cause a vmexit anyway; 2) or the SMI can be pending
6723 * because inject_pending_event has completed the
6724 * injection of an IRQ or NMI from the previous vmexit,
6725 * and then we request an immediate exit to inject the SMI.
6726 */
6727 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6728 req_immediate_exit = true;
6729 if (vcpu->arch.nmi_pending)
6730 kvm_x86_ops->enable_nmi_window(vcpu);
6731 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6732 kvm_x86_ops->enable_irq_window(vcpu);
6733 }
6734
6735 if (kvm_lapic_enabled(vcpu)) {
6736 update_cr8_intercept(vcpu);
6737 kvm_lapic_sync_to_vapic(vcpu);
6738 }
6739 }
6740
6741 r = kvm_mmu_reload(vcpu);
6742 if (unlikely(r)) {
6743 goto cancel_injection;
6744 }
6745
6746 preempt_disable();
6747
6748 kvm_x86_ops->prepare_guest_switch(vcpu);
6749 if (vcpu->fpu_active)
6750 kvm_load_guest_fpu(vcpu);
6751 vcpu->mode = IN_GUEST_MODE;
6752
6753 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6754
6755 /*
6756 * We should set ->mode before check ->requests,
6757 * Please see the comment in kvm_make_all_cpus_request.
6758 * This also orders the write to mode from any reads
6759 * to the page tables done while the VCPU is running.
6760 * Please see the comment in kvm_flush_remote_tlbs.
6761 */
6762 smp_mb__after_srcu_read_unlock();
6763
6764 local_irq_disable();
6765
6766 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6767 || need_resched() || signal_pending(current)) {
6768 vcpu->mode = OUTSIDE_GUEST_MODE;
6769 smp_wmb();
6770 local_irq_enable();
6771 preempt_enable();
6772 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6773 r = 1;
6774 goto cancel_injection;
6775 }
6776
6777 kvm_load_guest_xcr0(vcpu);
6778
6779 if (req_immediate_exit) {
6780 kvm_make_request(KVM_REQ_EVENT, vcpu);
6781 smp_send_reschedule(vcpu->cpu);
6782 }
6783
6784 trace_kvm_entry(vcpu->vcpu_id);
6785 wait_lapic_expire(vcpu);
6786 guest_enter_irqoff();
6787
6788 if (unlikely(vcpu->arch.switch_db_regs)) {
6789 set_debugreg(0, 7);
6790 set_debugreg(vcpu->arch.eff_db[0], 0);
6791 set_debugreg(vcpu->arch.eff_db[1], 1);
6792 set_debugreg(vcpu->arch.eff_db[2], 2);
6793 set_debugreg(vcpu->arch.eff_db[3], 3);
6794 set_debugreg(vcpu->arch.dr6, 6);
6795 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6796 }
6797
6798 kvm_x86_ops->run(vcpu);
6799
6800 /*
6801 * Do this here before restoring debug registers on the host. And
6802 * since we do this before handling the vmexit, a DR access vmexit
6803 * can (a) read the correct value of the debug registers, (b) set
6804 * KVM_DEBUGREG_WONT_EXIT again.
6805 */
6806 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6807 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6808 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6809 kvm_update_dr0123(vcpu);
6810 kvm_update_dr6(vcpu);
6811 kvm_update_dr7(vcpu);
6812 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6813 }
6814
6815 /*
6816 * If the guest has used debug registers, at least dr7
6817 * will be disabled while returning to the host.
6818 * If we don't have active breakpoints in the host, we don't
6819 * care about the messed up debug address registers. But if
6820 * we have some of them active, restore the old state.
6821 */
6822 if (hw_breakpoint_active())
6823 hw_breakpoint_restore();
6824
6825 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6826
6827 vcpu->mode = OUTSIDE_GUEST_MODE;
6828 smp_wmb();
6829
6830 kvm_put_guest_xcr0(vcpu);
6831
6832 kvm_x86_ops->handle_external_intr(vcpu);
6833
6834 ++vcpu->stat.exits;
6835
6836 guest_exit_irqoff();
6837
6838 local_irq_enable();
6839 preempt_enable();
6840
6841 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6842
6843 /*
6844 * Profile KVM exit RIPs:
6845 */
6846 if (unlikely(prof_on == KVM_PROFILING)) {
6847 unsigned long rip = kvm_rip_read(vcpu);
6848 profile_hit(KVM_PROFILING, (void *)rip);
6849 }
6850
6851 if (unlikely(vcpu->arch.tsc_always_catchup))
6852 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6853
6854 if (vcpu->arch.apic_attention)
6855 kvm_lapic_sync_from_vapic(vcpu);
6856
6857 r = kvm_x86_ops->handle_exit(vcpu);
6858 return r;
6859
6860 cancel_injection:
6861 kvm_x86_ops->cancel_injection(vcpu);
6862 if (unlikely(vcpu->arch.apic_attention))
6863 kvm_lapic_sync_from_vapic(vcpu);
6864 out:
6865 return r;
6866 }
6867
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)6868 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6869 {
6870 if (!kvm_arch_vcpu_runnable(vcpu) &&
6871 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6872 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6873 kvm_vcpu_block(vcpu);
6874 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6875
6876 if (kvm_x86_ops->post_block)
6877 kvm_x86_ops->post_block(vcpu);
6878
6879 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6880 return 1;
6881 }
6882
6883 kvm_apic_accept_events(vcpu);
6884 switch(vcpu->arch.mp_state) {
6885 case KVM_MP_STATE_HALTED:
6886 vcpu->arch.pv.pv_unhalted = false;
6887 vcpu->arch.mp_state =
6888 KVM_MP_STATE_RUNNABLE;
6889 case KVM_MP_STATE_RUNNABLE:
6890 vcpu->arch.apf.halted = false;
6891 break;
6892 case KVM_MP_STATE_INIT_RECEIVED:
6893 break;
6894 default:
6895 return -EINTR;
6896 break;
6897 }
6898 return 1;
6899 }
6900
kvm_vcpu_running(struct kvm_vcpu * vcpu)6901 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6902 {
6903 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6904 !vcpu->arch.apf.halted);
6905 }
6906
vcpu_run(struct kvm_vcpu * vcpu)6907 static int vcpu_run(struct kvm_vcpu *vcpu)
6908 {
6909 int r;
6910 struct kvm *kvm = vcpu->kvm;
6911
6912 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6913
6914 for (;;) {
6915 if (kvm_vcpu_running(vcpu)) {
6916 r = vcpu_enter_guest(vcpu);
6917 } else {
6918 r = vcpu_block(kvm, vcpu);
6919 }
6920
6921 if (r <= 0)
6922 break;
6923
6924 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6925 if (kvm_cpu_has_pending_timer(vcpu))
6926 kvm_inject_pending_timer_irqs(vcpu);
6927
6928 if (dm_request_for_irq_injection(vcpu) &&
6929 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6930 r = 0;
6931 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6932 ++vcpu->stat.request_irq_exits;
6933 break;
6934 }
6935
6936 kvm_check_async_pf_completion(vcpu);
6937
6938 if (signal_pending(current)) {
6939 r = -EINTR;
6940 vcpu->run->exit_reason = KVM_EXIT_INTR;
6941 ++vcpu->stat.signal_exits;
6942 break;
6943 }
6944 if (need_resched()) {
6945 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6946 cond_resched();
6947 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6948 }
6949 }
6950
6951 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6952
6953 return r;
6954 }
6955
complete_emulated_io(struct kvm_vcpu * vcpu)6956 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6957 {
6958 int r;
6959 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6960 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6961 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6962 if (r != EMULATE_DONE)
6963 return 0;
6964 return 1;
6965 }
6966
complete_emulated_pio(struct kvm_vcpu * vcpu)6967 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6968 {
6969 BUG_ON(!vcpu->arch.pio.count);
6970
6971 return complete_emulated_io(vcpu);
6972 }
6973
6974 /*
6975 * Implements the following, as a state machine:
6976 *
6977 * read:
6978 * for each fragment
6979 * for each mmio piece in the fragment
6980 * write gpa, len
6981 * exit
6982 * copy data
6983 * execute insn
6984 *
6985 * write:
6986 * for each fragment
6987 * for each mmio piece in the fragment
6988 * write gpa, len
6989 * copy data
6990 * exit
6991 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)6992 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6993 {
6994 struct kvm_run *run = vcpu->run;
6995 struct kvm_mmio_fragment *frag;
6996 unsigned len;
6997
6998 BUG_ON(!vcpu->mmio_needed);
6999
7000 /* Complete previous fragment */
7001 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7002 len = min(8u, frag->len);
7003 if (!vcpu->mmio_is_write)
7004 memcpy(frag->data, run->mmio.data, len);
7005
7006 if (frag->len <= 8) {
7007 /* Switch to the next fragment. */
7008 frag++;
7009 vcpu->mmio_cur_fragment++;
7010 } else {
7011 /* Go forward to the next mmio piece. */
7012 frag->data += len;
7013 frag->gpa += len;
7014 frag->len -= len;
7015 }
7016
7017 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7018 vcpu->mmio_needed = 0;
7019
7020 /* FIXME: return into emulator if single-stepping. */
7021 if (vcpu->mmio_is_write)
7022 return 1;
7023 vcpu->mmio_read_completed = 1;
7024 return complete_emulated_io(vcpu);
7025 }
7026
7027 run->exit_reason = KVM_EXIT_MMIO;
7028 run->mmio.phys_addr = frag->gpa;
7029 if (vcpu->mmio_is_write)
7030 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7031 run->mmio.len = min(8u, frag->len);
7032 run->mmio.is_write = vcpu->mmio_is_write;
7033 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7034 return 0;
7035 }
7036
7037
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)7038 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7039 {
7040 struct fpu *fpu = ¤t->thread.fpu;
7041 int r;
7042 sigset_t sigsaved;
7043
7044 fpu__activate_curr(fpu);
7045
7046 if (vcpu->sigset_active)
7047 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7048
7049 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7050 kvm_vcpu_block(vcpu);
7051 kvm_apic_accept_events(vcpu);
7052 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7053 r = -EAGAIN;
7054 goto out;
7055 }
7056
7057 /* re-sync apic's tpr */
7058 if (!lapic_in_kernel(vcpu)) {
7059 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7060 r = -EINVAL;
7061 goto out;
7062 }
7063 }
7064
7065 if (unlikely(vcpu->arch.complete_userspace_io)) {
7066 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7067 vcpu->arch.complete_userspace_io = NULL;
7068 r = cui(vcpu);
7069 if (r <= 0)
7070 goto out;
7071 } else
7072 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7073
7074 r = vcpu_run(vcpu);
7075
7076 out:
7077 post_kvm_run_save(vcpu);
7078 if (vcpu->sigset_active)
7079 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7080
7081 return r;
7082 }
7083
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7084 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7085 {
7086 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7087 /*
7088 * We are here if userspace calls get_regs() in the middle of
7089 * instruction emulation. Registers state needs to be copied
7090 * back from emulation context to vcpu. Userspace shouldn't do
7091 * that usually, but some bad designed PV devices (vmware
7092 * backdoor interface) need this to work
7093 */
7094 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7095 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7096 }
7097 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7098 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7099 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7100 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7101 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7102 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7103 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7104 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7105 #ifdef CONFIG_X86_64
7106 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7107 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7108 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7109 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7110 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7111 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7112 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7113 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7114 #endif
7115
7116 regs->rip = kvm_rip_read(vcpu);
7117 regs->rflags = kvm_get_rflags(vcpu);
7118
7119 return 0;
7120 }
7121
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7122 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7123 {
7124 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7125 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7126
7127 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7128 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7129 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7130 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7131 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7132 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7133 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7134 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7135 #ifdef CONFIG_X86_64
7136 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7137 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7138 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7139 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7140 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7141 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7142 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7143 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7144 #endif
7145
7146 kvm_rip_write(vcpu, regs->rip);
7147 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7148
7149 vcpu->arch.exception.pending = false;
7150
7151 kvm_make_request(KVM_REQ_EVENT, vcpu);
7152
7153 return 0;
7154 }
7155
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)7156 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7157 {
7158 struct kvm_segment cs;
7159
7160 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7161 *db = cs.db;
7162 *l = cs.l;
7163 }
7164 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7165
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7166 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7167 struct kvm_sregs *sregs)
7168 {
7169 struct desc_ptr dt;
7170
7171 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7172 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7173 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7174 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7175 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7176 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7177
7178 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7179 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7180
7181 kvm_x86_ops->get_idt(vcpu, &dt);
7182 sregs->idt.limit = dt.size;
7183 sregs->idt.base = dt.address;
7184 kvm_x86_ops->get_gdt(vcpu, &dt);
7185 sregs->gdt.limit = dt.size;
7186 sregs->gdt.base = dt.address;
7187
7188 sregs->cr0 = kvm_read_cr0(vcpu);
7189 sregs->cr2 = vcpu->arch.cr2;
7190 sregs->cr3 = kvm_read_cr3(vcpu);
7191 sregs->cr4 = kvm_read_cr4(vcpu);
7192 sregs->cr8 = kvm_get_cr8(vcpu);
7193 sregs->efer = vcpu->arch.efer;
7194 sregs->apic_base = kvm_get_apic_base(vcpu);
7195
7196 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7197
7198 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7199 set_bit(vcpu->arch.interrupt.nr,
7200 (unsigned long *)sregs->interrupt_bitmap);
7201
7202 return 0;
7203 }
7204
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7205 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7206 struct kvm_mp_state *mp_state)
7207 {
7208 kvm_apic_accept_events(vcpu);
7209 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7210 vcpu->arch.pv.pv_unhalted)
7211 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7212 else
7213 mp_state->mp_state = vcpu->arch.mp_state;
7214
7215 return 0;
7216 }
7217
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7218 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7219 struct kvm_mp_state *mp_state)
7220 {
7221 if (!lapic_in_kernel(vcpu) &&
7222 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7223 return -EINVAL;
7224
7225 /* INITs are latched while in SMM */
7226 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7227 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7228 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7229 return -EINVAL;
7230
7231 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7232 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7233 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7234 } else
7235 vcpu->arch.mp_state = mp_state->mp_state;
7236 kvm_make_request(KVM_REQ_EVENT, vcpu);
7237 return 0;
7238 }
7239
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)7240 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7241 int reason, bool has_error_code, u32 error_code)
7242 {
7243 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7244 int ret;
7245
7246 init_emulate_ctxt(vcpu);
7247
7248 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7249 has_error_code, error_code);
7250
7251 if (ret)
7252 return EMULATE_FAIL;
7253
7254 kvm_rip_write(vcpu, ctxt->eip);
7255 kvm_set_rflags(vcpu, ctxt->eflags);
7256 kvm_make_request(KVM_REQ_EVENT, vcpu);
7257 return EMULATE_DONE;
7258 }
7259 EXPORT_SYMBOL_GPL(kvm_task_switch);
7260
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7261 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7262 struct kvm_sregs *sregs)
7263 {
7264 struct msr_data apic_base_msr;
7265 int mmu_reset_needed = 0;
7266 int pending_vec, max_bits, idx;
7267 struct desc_ptr dt;
7268
7269 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7270 return -EINVAL;
7271
7272 dt.size = sregs->idt.limit;
7273 dt.address = sregs->idt.base;
7274 kvm_x86_ops->set_idt(vcpu, &dt);
7275 dt.size = sregs->gdt.limit;
7276 dt.address = sregs->gdt.base;
7277 kvm_x86_ops->set_gdt(vcpu, &dt);
7278
7279 vcpu->arch.cr2 = sregs->cr2;
7280 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7281 vcpu->arch.cr3 = sregs->cr3;
7282 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7283
7284 kvm_set_cr8(vcpu, sregs->cr8);
7285
7286 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7287 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7288 apic_base_msr.data = sregs->apic_base;
7289 apic_base_msr.host_initiated = true;
7290 kvm_set_apic_base(vcpu, &apic_base_msr);
7291
7292 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7293 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7294 vcpu->arch.cr0 = sregs->cr0;
7295
7296 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7297 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7298 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7299 kvm_update_cpuid(vcpu);
7300
7301 idx = srcu_read_lock(&vcpu->kvm->srcu);
7302 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7303 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7304 mmu_reset_needed = 1;
7305 }
7306 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7307
7308 if (mmu_reset_needed)
7309 kvm_mmu_reset_context(vcpu);
7310
7311 max_bits = KVM_NR_INTERRUPTS;
7312 pending_vec = find_first_bit(
7313 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7314 if (pending_vec < max_bits) {
7315 kvm_queue_interrupt(vcpu, pending_vec, false);
7316 pr_debug("Set back pending irq %d\n", pending_vec);
7317 }
7318
7319 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7320 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7321 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7322 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7323 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7324 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7325
7326 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7327 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7328
7329 update_cr8_intercept(vcpu);
7330
7331 /* Older userspace won't unhalt the vcpu on reset. */
7332 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7333 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7334 !is_protmode(vcpu))
7335 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7336
7337 kvm_make_request(KVM_REQ_EVENT, vcpu);
7338
7339 return 0;
7340 }
7341
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)7342 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7343 struct kvm_guest_debug *dbg)
7344 {
7345 unsigned long rflags;
7346 int i, r;
7347
7348 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7349 r = -EBUSY;
7350 if (vcpu->arch.exception.pending)
7351 goto out;
7352 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7353 kvm_queue_exception(vcpu, DB_VECTOR);
7354 else
7355 kvm_queue_exception(vcpu, BP_VECTOR);
7356 }
7357
7358 /*
7359 * Read rflags as long as potentially injected trace flags are still
7360 * filtered out.
7361 */
7362 rflags = kvm_get_rflags(vcpu);
7363
7364 vcpu->guest_debug = dbg->control;
7365 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7366 vcpu->guest_debug = 0;
7367
7368 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7369 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7370 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7371 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7372 } else {
7373 for (i = 0; i < KVM_NR_DB_REGS; i++)
7374 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7375 }
7376 kvm_update_dr7(vcpu);
7377
7378 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7379 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7380 get_segment_base(vcpu, VCPU_SREG_CS);
7381
7382 /*
7383 * Trigger an rflags update that will inject or remove the trace
7384 * flags.
7385 */
7386 kvm_set_rflags(vcpu, rflags);
7387
7388 kvm_x86_ops->update_bp_intercept(vcpu);
7389
7390 r = 0;
7391
7392 out:
7393
7394 return r;
7395 }
7396
7397 /*
7398 * Translate a guest virtual address to a guest physical address.
7399 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)7400 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7401 struct kvm_translation *tr)
7402 {
7403 unsigned long vaddr = tr->linear_address;
7404 gpa_t gpa;
7405 int idx;
7406
7407 idx = srcu_read_lock(&vcpu->kvm->srcu);
7408 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7409 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7410 tr->physical_address = gpa;
7411 tr->valid = gpa != UNMAPPED_GVA;
7412 tr->writeable = 1;
7413 tr->usermode = 0;
7414
7415 return 0;
7416 }
7417
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7418 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7419 {
7420 struct fxregs_state *fxsave =
7421 &vcpu->arch.guest_fpu.state.fxsave;
7422
7423 memcpy(fpu->fpr, fxsave->st_space, 128);
7424 fpu->fcw = fxsave->cwd;
7425 fpu->fsw = fxsave->swd;
7426 fpu->ftwx = fxsave->twd;
7427 fpu->last_opcode = fxsave->fop;
7428 fpu->last_ip = fxsave->rip;
7429 fpu->last_dp = fxsave->rdp;
7430 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7431
7432 return 0;
7433 }
7434
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7435 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7436 {
7437 struct fxregs_state *fxsave =
7438 &vcpu->arch.guest_fpu.state.fxsave;
7439
7440 memcpy(fxsave->st_space, fpu->fpr, 128);
7441 fxsave->cwd = fpu->fcw;
7442 fxsave->swd = fpu->fsw;
7443 fxsave->twd = fpu->ftwx;
7444 fxsave->fop = fpu->last_opcode;
7445 fxsave->rip = fpu->last_ip;
7446 fxsave->rdp = fpu->last_dp;
7447 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7448
7449 return 0;
7450 }
7451
fx_init(struct kvm_vcpu * vcpu)7452 static void fx_init(struct kvm_vcpu *vcpu)
7453 {
7454 fpstate_init(&vcpu->arch.guest_fpu.state);
7455 if (boot_cpu_has(X86_FEATURE_XSAVES))
7456 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7457 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7458
7459 /*
7460 * Ensure guest xcr0 is valid for loading
7461 */
7462 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7463
7464 vcpu->arch.cr0 |= X86_CR0_ET;
7465 }
7466
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7467 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7468 {
7469 if (vcpu->guest_fpu_loaded)
7470 return;
7471
7472 /*
7473 * Restore all possible states in the guest,
7474 * and assume host would use all available bits.
7475 * Guest xcr0 would be loaded later.
7476 */
7477 vcpu->guest_fpu_loaded = 1;
7478 __kernel_fpu_begin();
7479 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7480 trace_kvm_fpu(1);
7481 }
7482
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7483 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7484 {
7485 if (!vcpu->guest_fpu_loaded) {
7486 vcpu->fpu_counter = 0;
7487 return;
7488 }
7489
7490 vcpu->guest_fpu_loaded = 0;
7491 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7492 __kernel_fpu_end();
7493 ++vcpu->stat.fpu_reload;
7494 /*
7495 * If using eager FPU mode, or if the guest is a frequent user
7496 * of the FPU, just leave the FPU active for next time.
7497 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7498 * the FPU in bursts will revert to loading it on demand.
7499 */
7500 if (!use_eager_fpu()) {
7501 if (++vcpu->fpu_counter < 5)
7502 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7503 }
7504 trace_kvm_fpu(0);
7505 }
7506
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7507 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7508 {
7509 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7510
7511 kvmclock_reset(vcpu);
7512
7513 kvm_x86_ops->vcpu_free(vcpu);
7514 free_cpumask_var(wbinvd_dirty_mask);
7515 }
7516
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)7517 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7518 unsigned int id)
7519 {
7520 struct kvm_vcpu *vcpu;
7521
7522 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7523 printk_once(KERN_WARNING
7524 "kvm: SMP vm created on host with unstable TSC; "
7525 "guest TSC will not be reliable\n");
7526
7527 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7528
7529 return vcpu;
7530 }
7531
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)7532 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7533 {
7534 int r;
7535
7536 kvm_vcpu_mtrr_init(vcpu);
7537 r = vcpu_load(vcpu);
7538 if (r)
7539 return r;
7540 kvm_vcpu_reset(vcpu, false);
7541 kvm_mmu_setup(vcpu);
7542 vcpu_put(vcpu);
7543 return r;
7544 }
7545
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)7546 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7547 {
7548 struct msr_data msr;
7549 struct kvm *kvm = vcpu->kvm;
7550
7551 if (vcpu_load(vcpu))
7552 return;
7553 msr.data = 0x0;
7554 msr.index = MSR_IA32_TSC;
7555 msr.host_initiated = true;
7556 kvm_write_tsc(vcpu, &msr);
7557 vcpu_put(vcpu);
7558
7559 if (!kvmclock_periodic_sync)
7560 return;
7561
7562 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7563 KVMCLOCK_SYNC_PERIOD);
7564 }
7565
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)7566 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7567 {
7568 int r;
7569 vcpu->arch.apf.msr_val = 0;
7570
7571 r = vcpu_load(vcpu);
7572 BUG_ON(r);
7573 kvm_mmu_unload(vcpu);
7574 vcpu_put(vcpu);
7575
7576 kvm_x86_ops->vcpu_free(vcpu);
7577 }
7578
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)7579 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7580 {
7581 vcpu->arch.hflags = 0;
7582
7583 vcpu->arch.smi_pending = 0;
7584 atomic_set(&vcpu->arch.nmi_queued, 0);
7585 vcpu->arch.nmi_pending = 0;
7586 vcpu->arch.nmi_injected = false;
7587 kvm_clear_interrupt_queue(vcpu);
7588 kvm_clear_exception_queue(vcpu);
7589
7590 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7591 kvm_update_dr0123(vcpu);
7592 vcpu->arch.dr6 = DR6_INIT;
7593 kvm_update_dr6(vcpu);
7594 vcpu->arch.dr7 = DR7_FIXED_1;
7595 kvm_update_dr7(vcpu);
7596
7597 vcpu->arch.cr2 = 0;
7598
7599 kvm_make_request(KVM_REQ_EVENT, vcpu);
7600 vcpu->arch.apf.msr_val = 0;
7601 vcpu->arch.st.msr_val = 0;
7602
7603 kvmclock_reset(vcpu);
7604
7605 kvm_clear_async_pf_completion_queue(vcpu);
7606 kvm_async_pf_hash_reset(vcpu);
7607 vcpu->arch.apf.halted = false;
7608
7609 if (!init_event) {
7610 kvm_pmu_reset(vcpu);
7611 vcpu->arch.smbase = 0x30000;
7612 }
7613
7614 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7615 vcpu->arch.regs_avail = ~0;
7616 vcpu->arch.regs_dirty = ~0;
7617
7618 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7619 }
7620
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)7621 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7622 {
7623 struct kvm_segment cs;
7624
7625 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7626 cs.selector = vector << 8;
7627 cs.base = vector << 12;
7628 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7629 kvm_rip_write(vcpu, 0);
7630 }
7631
kvm_arch_hardware_enable(void)7632 int kvm_arch_hardware_enable(void)
7633 {
7634 struct kvm *kvm;
7635 struct kvm_vcpu *vcpu;
7636 int i;
7637 int ret;
7638 u64 local_tsc;
7639 u64 max_tsc = 0;
7640 bool stable, backwards_tsc = false;
7641
7642 kvm_shared_msr_cpu_online();
7643 ret = kvm_x86_ops->hardware_enable();
7644 if (ret != 0)
7645 return ret;
7646
7647 local_tsc = rdtsc();
7648 stable = !check_tsc_unstable();
7649 list_for_each_entry(kvm, &vm_list, vm_list) {
7650 kvm_for_each_vcpu(i, vcpu, kvm) {
7651 if (!stable && vcpu->cpu == smp_processor_id())
7652 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7653 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7654 backwards_tsc = true;
7655 if (vcpu->arch.last_host_tsc > max_tsc)
7656 max_tsc = vcpu->arch.last_host_tsc;
7657 }
7658 }
7659 }
7660
7661 /*
7662 * Sometimes, even reliable TSCs go backwards. This happens on
7663 * platforms that reset TSC during suspend or hibernate actions, but
7664 * maintain synchronization. We must compensate. Fortunately, we can
7665 * detect that condition here, which happens early in CPU bringup,
7666 * before any KVM threads can be running. Unfortunately, we can't
7667 * bring the TSCs fully up to date with real time, as we aren't yet far
7668 * enough into CPU bringup that we know how much real time has actually
7669 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7670 * variables that haven't been updated yet.
7671 *
7672 * So we simply find the maximum observed TSC above, then record the
7673 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7674 * the adjustment will be applied. Note that we accumulate
7675 * adjustments, in case multiple suspend cycles happen before some VCPU
7676 * gets a chance to run again. In the event that no KVM threads get a
7677 * chance to run, we will miss the entire elapsed period, as we'll have
7678 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7679 * loose cycle time. This isn't too big a deal, since the loss will be
7680 * uniform across all VCPUs (not to mention the scenario is extremely
7681 * unlikely). It is possible that a second hibernate recovery happens
7682 * much faster than a first, causing the observed TSC here to be
7683 * smaller; this would require additional padding adjustment, which is
7684 * why we set last_host_tsc to the local tsc observed here.
7685 *
7686 * N.B. - this code below runs only on platforms with reliable TSC,
7687 * as that is the only way backwards_tsc is set above. Also note
7688 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7689 * have the same delta_cyc adjustment applied if backwards_tsc
7690 * is detected. Note further, this adjustment is only done once,
7691 * as we reset last_host_tsc on all VCPUs to stop this from being
7692 * called multiple times (one for each physical CPU bringup).
7693 *
7694 * Platforms with unreliable TSCs don't have to deal with this, they
7695 * will be compensated by the logic in vcpu_load, which sets the TSC to
7696 * catchup mode. This will catchup all VCPUs to real time, but cannot
7697 * guarantee that they stay in perfect synchronization.
7698 */
7699 if (backwards_tsc) {
7700 u64 delta_cyc = max_tsc - local_tsc;
7701 backwards_tsc_observed = true;
7702 list_for_each_entry(kvm, &vm_list, vm_list) {
7703 kvm_for_each_vcpu(i, vcpu, kvm) {
7704 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7705 vcpu->arch.last_host_tsc = local_tsc;
7706 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7707 }
7708
7709 /*
7710 * We have to disable TSC offset matching.. if you were
7711 * booting a VM while issuing an S4 host suspend....
7712 * you may have some problem. Solving this issue is
7713 * left as an exercise to the reader.
7714 */
7715 kvm->arch.last_tsc_nsec = 0;
7716 kvm->arch.last_tsc_write = 0;
7717 }
7718
7719 }
7720 return 0;
7721 }
7722
kvm_arch_hardware_disable(void)7723 void kvm_arch_hardware_disable(void)
7724 {
7725 kvm_x86_ops->hardware_disable();
7726 drop_user_return_notifiers();
7727 }
7728
kvm_arch_hardware_setup(void)7729 int kvm_arch_hardware_setup(void)
7730 {
7731 int r;
7732
7733 r = kvm_x86_ops->hardware_setup();
7734 if (r != 0)
7735 return r;
7736
7737 if (kvm_has_tsc_control) {
7738 /*
7739 * Make sure the user can only configure tsc_khz values that
7740 * fit into a signed integer.
7741 * A min value is not calculated needed because it will always
7742 * be 1 on all machines.
7743 */
7744 u64 max = min(0x7fffffffULL,
7745 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7746 kvm_max_guest_tsc_khz = max;
7747
7748 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7749 }
7750
7751 kvm_init_msr_list();
7752 return 0;
7753 }
7754
kvm_arch_hardware_unsetup(void)7755 void kvm_arch_hardware_unsetup(void)
7756 {
7757 kvm_x86_ops->hardware_unsetup();
7758 }
7759
kvm_arch_check_processor_compat(void * rtn)7760 void kvm_arch_check_processor_compat(void *rtn)
7761 {
7762 kvm_x86_ops->check_processor_compatibility(rtn);
7763 }
7764
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)7765 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7766 {
7767 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7768 }
7769 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7770
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)7771 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7772 {
7773 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7774 }
7775
7776 struct static_key kvm_no_apic_vcpu __read_mostly;
7777 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7778
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)7779 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7780 {
7781 struct page *page;
7782 struct kvm *kvm;
7783 int r;
7784
7785 BUG_ON(vcpu->kvm == NULL);
7786 kvm = vcpu->kvm;
7787
7788 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7789 vcpu->arch.pv.pv_unhalted = false;
7790 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7791 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7792 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7793 else
7794 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7795
7796 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7797 if (!page) {
7798 r = -ENOMEM;
7799 goto fail;
7800 }
7801 vcpu->arch.pio_data = page_address(page);
7802
7803 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7804
7805 r = kvm_mmu_create(vcpu);
7806 if (r < 0)
7807 goto fail_free_pio_data;
7808
7809 if (irqchip_in_kernel(kvm)) {
7810 r = kvm_create_lapic(vcpu);
7811 if (r < 0)
7812 goto fail_mmu_destroy;
7813 } else
7814 static_key_slow_inc(&kvm_no_apic_vcpu);
7815
7816 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7817 GFP_KERNEL);
7818 if (!vcpu->arch.mce_banks) {
7819 r = -ENOMEM;
7820 goto fail_free_lapic;
7821 }
7822 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7823
7824 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7825 r = -ENOMEM;
7826 goto fail_free_mce_banks;
7827 }
7828
7829 fx_init(vcpu);
7830
7831 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7832 vcpu->arch.pv_time_enabled = false;
7833
7834 vcpu->arch.guest_supported_xcr0 = 0;
7835 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7836
7837 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7838
7839 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7840
7841 kvm_async_pf_hash_reset(vcpu);
7842 kvm_pmu_init(vcpu);
7843
7844 vcpu->arch.pending_external_vector = -1;
7845
7846 kvm_hv_vcpu_init(vcpu);
7847
7848 return 0;
7849
7850 fail_free_mce_banks:
7851 kfree(vcpu->arch.mce_banks);
7852 fail_free_lapic:
7853 kvm_free_lapic(vcpu);
7854 fail_mmu_destroy:
7855 kvm_mmu_destroy(vcpu);
7856 fail_free_pio_data:
7857 free_page((unsigned long)vcpu->arch.pio_data);
7858 fail:
7859 return r;
7860 }
7861
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)7862 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7863 {
7864 int idx;
7865
7866 kvm_hv_vcpu_uninit(vcpu);
7867 kvm_pmu_destroy(vcpu);
7868 kfree(vcpu->arch.mce_banks);
7869 kvm_free_lapic(vcpu);
7870 idx = srcu_read_lock(&vcpu->kvm->srcu);
7871 kvm_mmu_destroy(vcpu);
7872 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7873 free_page((unsigned long)vcpu->arch.pio_data);
7874 if (!lapic_in_kernel(vcpu))
7875 static_key_slow_dec(&kvm_no_apic_vcpu);
7876 }
7877
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)7878 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7879 {
7880 kvm_x86_ops->sched_in(vcpu, cpu);
7881 }
7882
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)7883 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7884 {
7885 if (type)
7886 return -EINVAL;
7887
7888 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7889 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7890 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7891 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7892 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7893
7894 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7895 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7896 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7897 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7898 &kvm->arch.irq_sources_bitmap);
7899
7900 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7901 mutex_init(&kvm->arch.apic_map_lock);
7902 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7903
7904 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7905 pvclock_update_vm_gtod_copy(kvm);
7906
7907 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7908 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7909
7910 kvm_page_track_init(kvm);
7911 kvm_mmu_init_vm(kvm);
7912
7913 if (kvm_x86_ops->vm_init)
7914 return kvm_x86_ops->vm_init(kvm);
7915
7916 return 0;
7917 }
7918
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)7919 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7920 {
7921 int r;
7922 r = vcpu_load(vcpu);
7923 BUG_ON(r);
7924 kvm_mmu_unload(vcpu);
7925 vcpu_put(vcpu);
7926 }
7927
kvm_free_vcpus(struct kvm * kvm)7928 static void kvm_free_vcpus(struct kvm *kvm)
7929 {
7930 unsigned int i;
7931 struct kvm_vcpu *vcpu;
7932
7933 /*
7934 * Unpin any mmu pages first.
7935 */
7936 kvm_for_each_vcpu(i, vcpu, kvm) {
7937 kvm_clear_async_pf_completion_queue(vcpu);
7938 kvm_unload_vcpu_mmu(vcpu);
7939 }
7940 kvm_for_each_vcpu(i, vcpu, kvm)
7941 kvm_arch_vcpu_free(vcpu);
7942
7943 mutex_lock(&kvm->lock);
7944 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7945 kvm->vcpus[i] = NULL;
7946
7947 atomic_set(&kvm->online_vcpus, 0);
7948 mutex_unlock(&kvm->lock);
7949 }
7950
kvm_arch_sync_events(struct kvm * kvm)7951 void kvm_arch_sync_events(struct kvm *kvm)
7952 {
7953 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7954 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7955 kvm_free_all_assigned_devices(kvm);
7956 kvm_free_pit(kvm);
7957 }
7958
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7959 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7960 {
7961 int i, r;
7962 unsigned long hva;
7963 struct kvm_memslots *slots = kvm_memslots(kvm);
7964 struct kvm_memory_slot *slot, old;
7965
7966 /* Called with kvm->slots_lock held. */
7967 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7968 return -EINVAL;
7969
7970 slot = id_to_memslot(slots, id);
7971 if (size) {
7972 if (slot->npages)
7973 return -EEXIST;
7974
7975 /*
7976 * MAP_SHARED to prevent internal slot pages from being moved
7977 * by fork()/COW.
7978 */
7979 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7980 MAP_SHARED | MAP_ANONYMOUS, 0);
7981 if (IS_ERR((void *)hva))
7982 return PTR_ERR((void *)hva);
7983 } else {
7984 if (!slot->npages)
7985 return 0;
7986
7987 hva = 0;
7988 }
7989
7990 old = *slot;
7991 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7992 struct kvm_userspace_memory_region m;
7993
7994 m.slot = id | (i << 16);
7995 m.flags = 0;
7996 m.guest_phys_addr = gpa;
7997 m.userspace_addr = hva;
7998 m.memory_size = size;
7999 r = __kvm_set_memory_region(kvm, &m);
8000 if (r < 0)
8001 return r;
8002 }
8003
8004 if (!size) {
8005 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8006 WARN_ON(r < 0);
8007 }
8008
8009 return 0;
8010 }
8011 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8012
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)8013 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8014 {
8015 int r;
8016
8017 mutex_lock(&kvm->slots_lock);
8018 r = __x86_set_memory_region(kvm, id, gpa, size);
8019 mutex_unlock(&kvm->slots_lock);
8020
8021 return r;
8022 }
8023 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8024
kvm_arch_destroy_vm(struct kvm * kvm)8025 void kvm_arch_destroy_vm(struct kvm *kvm)
8026 {
8027 if (current->mm == kvm->mm) {
8028 /*
8029 * Free memory regions allocated on behalf of userspace,
8030 * unless the the memory map has changed due to process exit
8031 * or fd copying.
8032 */
8033 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8034 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8035 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8036 }
8037 if (kvm_x86_ops->vm_destroy)
8038 kvm_x86_ops->vm_destroy(kvm);
8039 kvm_iommu_unmap_guest(kvm);
8040 kfree(kvm->arch.vpic);
8041 kfree(kvm->arch.vioapic);
8042 kvm_free_vcpus(kvm);
8043 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8044 kvm_mmu_uninit_vm(kvm);
8045 kvm_page_track_cleanup(kvm);
8046 }
8047
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)8048 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8049 struct kvm_memory_slot *dont)
8050 {
8051 int i;
8052
8053 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8054 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8055 kvfree(free->arch.rmap[i]);
8056 free->arch.rmap[i] = NULL;
8057 }
8058 if (i == 0)
8059 continue;
8060
8061 if (!dont || free->arch.lpage_info[i - 1] !=
8062 dont->arch.lpage_info[i - 1]) {
8063 kvfree(free->arch.lpage_info[i - 1]);
8064 free->arch.lpage_info[i - 1] = NULL;
8065 }
8066 }
8067
8068 kvm_page_track_free_memslot(free, dont);
8069 }
8070
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)8071 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8072 unsigned long npages)
8073 {
8074 int i;
8075
8076 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8077 struct kvm_lpage_info *linfo;
8078 unsigned long ugfn;
8079 int lpages;
8080 int level = i + 1;
8081
8082 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8083 slot->base_gfn, level) + 1;
8084
8085 slot->arch.rmap[i] =
8086 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8087 if (!slot->arch.rmap[i])
8088 goto out_free;
8089 if (i == 0)
8090 continue;
8091
8092 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8093 if (!linfo)
8094 goto out_free;
8095
8096 slot->arch.lpage_info[i - 1] = linfo;
8097
8098 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8099 linfo[0].disallow_lpage = 1;
8100 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8101 linfo[lpages - 1].disallow_lpage = 1;
8102 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8103 /*
8104 * If the gfn and userspace address are not aligned wrt each
8105 * other, or if explicitly asked to, disable large page
8106 * support for this slot
8107 */
8108 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8109 !kvm_largepages_enabled()) {
8110 unsigned long j;
8111
8112 for (j = 0; j < lpages; ++j)
8113 linfo[j].disallow_lpage = 1;
8114 }
8115 }
8116
8117 if (kvm_page_track_create_memslot(slot, npages))
8118 goto out_free;
8119
8120 return 0;
8121
8122 out_free:
8123 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8124 kvfree(slot->arch.rmap[i]);
8125 slot->arch.rmap[i] = NULL;
8126 if (i == 0)
8127 continue;
8128
8129 kvfree(slot->arch.lpage_info[i - 1]);
8130 slot->arch.lpage_info[i - 1] = NULL;
8131 }
8132 return -ENOMEM;
8133 }
8134
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)8135 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8136 {
8137 /*
8138 * memslots->generation has been incremented.
8139 * mmio generation may have reached its maximum value.
8140 */
8141 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8142 }
8143
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)8144 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8145 struct kvm_memory_slot *memslot,
8146 const struct kvm_userspace_memory_region *mem,
8147 enum kvm_mr_change change)
8148 {
8149 return 0;
8150 }
8151
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)8152 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8153 struct kvm_memory_slot *new)
8154 {
8155 /* Still write protect RO slot */
8156 if (new->flags & KVM_MEM_READONLY) {
8157 kvm_mmu_slot_remove_write_access(kvm, new);
8158 return;
8159 }
8160
8161 /*
8162 * Call kvm_x86_ops dirty logging hooks when they are valid.
8163 *
8164 * kvm_x86_ops->slot_disable_log_dirty is called when:
8165 *
8166 * - KVM_MR_CREATE with dirty logging is disabled
8167 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8168 *
8169 * The reason is, in case of PML, we need to set D-bit for any slots
8170 * with dirty logging disabled in order to eliminate unnecessary GPA
8171 * logging in PML buffer (and potential PML buffer full VMEXT). This
8172 * guarantees leaving PML enabled during guest's lifetime won't have
8173 * any additonal overhead from PML when guest is running with dirty
8174 * logging disabled for memory slots.
8175 *
8176 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8177 * to dirty logging mode.
8178 *
8179 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8180 *
8181 * In case of write protect:
8182 *
8183 * Write protect all pages for dirty logging.
8184 *
8185 * All the sptes including the large sptes which point to this
8186 * slot are set to readonly. We can not create any new large
8187 * spte on this slot until the end of the logging.
8188 *
8189 * See the comments in fast_page_fault().
8190 */
8191 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8192 if (kvm_x86_ops->slot_enable_log_dirty)
8193 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8194 else
8195 kvm_mmu_slot_remove_write_access(kvm, new);
8196 } else {
8197 if (kvm_x86_ops->slot_disable_log_dirty)
8198 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8199 }
8200 }
8201
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)8202 void kvm_arch_commit_memory_region(struct kvm *kvm,
8203 const struct kvm_userspace_memory_region *mem,
8204 const struct kvm_memory_slot *old,
8205 const struct kvm_memory_slot *new,
8206 enum kvm_mr_change change)
8207 {
8208 int nr_mmu_pages = 0;
8209
8210 if (!kvm->arch.n_requested_mmu_pages)
8211 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8212
8213 if (nr_mmu_pages)
8214 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8215
8216 /*
8217 * Dirty logging tracks sptes in 4k granularity, meaning that large
8218 * sptes have to be split. If live migration is successful, the guest
8219 * in the source machine will be destroyed and large sptes will be
8220 * created in the destination. However, if the guest continues to run
8221 * in the source machine (for example if live migration fails), small
8222 * sptes will remain around and cause bad performance.
8223 *
8224 * Scan sptes if dirty logging has been stopped, dropping those
8225 * which can be collapsed into a single large-page spte. Later
8226 * page faults will create the large-page sptes.
8227 */
8228 if ((change != KVM_MR_DELETE) &&
8229 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8230 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8231 kvm_mmu_zap_collapsible_sptes(kvm, new);
8232
8233 /*
8234 * Set up write protection and/or dirty logging for the new slot.
8235 *
8236 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8237 * been zapped so no dirty logging staff is needed for old slot. For
8238 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8239 * new and it's also covered when dealing with the new slot.
8240 *
8241 * FIXME: const-ify all uses of struct kvm_memory_slot.
8242 */
8243 if (change != KVM_MR_DELETE)
8244 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8245 }
8246
kvm_arch_flush_shadow_all(struct kvm * kvm)8247 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8248 {
8249 kvm_mmu_invalidate_zap_all_pages(kvm);
8250 }
8251
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)8252 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8253 struct kvm_memory_slot *slot)
8254 {
8255 kvm_mmu_invalidate_zap_all_pages(kvm);
8256 }
8257
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)8258 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8259 {
8260 if (!list_empty_careful(&vcpu->async_pf.done))
8261 return true;
8262
8263 if (kvm_apic_has_events(vcpu))
8264 return true;
8265
8266 if (vcpu->arch.pv.pv_unhalted)
8267 return true;
8268
8269 if (atomic_read(&vcpu->arch.nmi_queued))
8270 return true;
8271
8272 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8273 return true;
8274
8275 if (kvm_arch_interrupt_allowed(vcpu) &&
8276 kvm_cpu_has_interrupt(vcpu))
8277 return true;
8278
8279 if (kvm_hv_has_stimer_pending(vcpu))
8280 return true;
8281
8282 return false;
8283 }
8284
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)8285 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8286 {
8287 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8288 kvm_x86_ops->check_nested_events(vcpu, false);
8289
8290 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8291 }
8292
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)8293 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8294 {
8295 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8296 }
8297
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)8298 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8299 {
8300 return kvm_x86_ops->interrupt_allowed(vcpu);
8301 }
8302
kvm_get_linear_rip(struct kvm_vcpu * vcpu)8303 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8304 {
8305 if (is_64_bit_mode(vcpu))
8306 return kvm_rip_read(vcpu);
8307 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8308 kvm_rip_read(vcpu));
8309 }
8310 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8311
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)8312 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8313 {
8314 return kvm_get_linear_rip(vcpu) == linear_rip;
8315 }
8316 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8317
kvm_get_rflags(struct kvm_vcpu * vcpu)8318 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8319 {
8320 unsigned long rflags;
8321
8322 rflags = kvm_x86_ops->get_rflags(vcpu);
8323 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8324 rflags &= ~X86_EFLAGS_TF;
8325 return rflags;
8326 }
8327 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8328
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8329 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8330 {
8331 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8332 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8333 rflags |= X86_EFLAGS_TF;
8334 kvm_x86_ops->set_rflags(vcpu, rflags);
8335 }
8336
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8337 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8338 {
8339 __kvm_set_rflags(vcpu, rflags);
8340 kvm_make_request(KVM_REQ_EVENT, vcpu);
8341 }
8342 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8343
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8344 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8345 {
8346 int r;
8347
8348 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8349 work->wakeup_all)
8350 return;
8351
8352 r = kvm_mmu_reload(vcpu);
8353 if (unlikely(r))
8354 return;
8355
8356 if (!vcpu->arch.mmu.direct_map &&
8357 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8358 return;
8359
8360 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8361 }
8362
kvm_async_pf_hash_fn(gfn_t gfn)8363 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8364 {
8365 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8366 }
8367
kvm_async_pf_next_probe(u32 key)8368 static inline u32 kvm_async_pf_next_probe(u32 key)
8369 {
8370 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8371 }
8372
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8373 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8374 {
8375 u32 key = kvm_async_pf_hash_fn(gfn);
8376
8377 while (vcpu->arch.apf.gfns[key] != ~0)
8378 key = kvm_async_pf_next_probe(key);
8379
8380 vcpu->arch.apf.gfns[key] = gfn;
8381 }
8382
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)8383 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8384 {
8385 int i;
8386 u32 key = kvm_async_pf_hash_fn(gfn);
8387
8388 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8389 (vcpu->arch.apf.gfns[key] != gfn &&
8390 vcpu->arch.apf.gfns[key] != ~0); i++)
8391 key = kvm_async_pf_next_probe(key);
8392
8393 return key;
8394 }
8395
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8396 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8397 {
8398 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8399 }
8400
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8401 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8402 {
8403 u32 i, j, k;
8404
8405 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8406 while (true) {
8407 vcpu->arch.apf.gfns[i] = ~0;
8408 do {
8409 j = kvm_async_pf_next_probe(j);
8410 if (vcpu->arch.apf.gfns[j] == ~0)
8411 return;
8412 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8413 /*
8414 * k lies cyclically in ]i,j]
8415 * | i.k.j |
8416 * |....j i.k.| or |.k..j i...|
8417 */
8418 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8419 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8420 i = j;
8421 }
8422 }
8423
apf_put_user(struct kvm_vcpu * vcpu,u32 val)8424 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8425 {
8426
8427 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8428 sizeof(val));
8429 }
8430
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)8431 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8432 {
8433
8434 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8435 sizeof(u32));
8436 }
8437
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8438 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8439 struct kvm_async_pf *work)
8440 {
8441 struct x86_exception fault;
8442
8443 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8444 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8445
8446 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8447 (vcpu->arch.apf.send_user_only &&
8448 kvm_x86_ops->get_cpl(vcpu) == 0))
8449 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8450 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8451 fault.vector = PF_VECTOR;
8452 fault.error_code_valid = true;
8453 fault.error_code = 0;
8454 fault.nested_page_fault = false;
8455 fault.address = work->arch.token;
8456 kvm_inject_page_fault(vcpu, &fault);
8457 }
8458 }
8459
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8460 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8461 struct kvm_async_pf *work)
8462 {
8463 struct x86_exception fault;
8464 u32 val;
8465
8466 if (work->wakeup_all)
8467 work->arch.token = ~0; /* broadcast wakeup */
8468 else
8469 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8470 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8471
8472 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8473 !apf_get_user(vcpu, &val)) {
8474 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8475 vcpu->arch.exception.pending &&
8476 vcpu->arch.exception.nr == PF_VECTOR &&
8477 !apf_put_user(vcpu, 0)) {
8478 vcpu->arch.exception.pending = false;
8479 vcpu->arch.exception.nr = 0;
8480 vcpu->arch.exception.has_error_code = false;
8481 vcpu->arch.exception.error_code = 0;
8482 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8483 fault.vector = PF_VECTOR;
8484 fault.error_code_valid = true;
8485 fault.error_code = 0;
8486 fault.nested_page_fault = false;
8487 fault.address = work->arch.token;
8488 kvm_inject_page_fault(vcpu, &fault);
8489 }
8490 }
8491 vcpu->arch.apf.halted = false;
8492 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8493 }
8494
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)8495 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8496 {
8497 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8498 return true;
8499 else
8500 return kvm_can_do_async_pf(vcpu);
8501 }
8502
kvm_arch_start_assignment(struct kvm * kvm)8503 void kvm_arch_start_assignment(struct kvm *kvm)
8504 {
8505 atomic_inc(&kvm->arch.assigned_device_count);
8506 }
8507 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8508
kvm_arch_end_assignment(struct kvm * kvm)8509 void kvm_arch_end_assignment(struct kvm *kvm)
8510 {
8511 atomic_dec(&kvm->arch.assigned_device_count);
8512 }
8513 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8514
kvm_arch_has_assigned_device(struct kvm * kvm)8515 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8516 {
8517 return atomic_read(&kvm->arch.assigned_device_count);
8518 }
8519 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8520
kvm_arch_register_noncoherent_dma(struct kvm * kvm)8521 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8522 {
8523 atomic_inc(&kvm->arch.noncoherent_dma_count);
8524 }
8525 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8526
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)8527 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8528 {
8529 atomic_dec(&kvm->arch.noncoherent_dma_count);
8530 }
8531 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8532
kvm_arch_has_noncoherent_dma(struct kvm * kvm)8533 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8534 {
8535 return atomic_read(&kvm->arch.noncoherent_dma_count);
8536 }
8537 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8538
kvm_arch_has_irq_bypass(void)8539 bool kvm_arch_has_irq_bypass(void)
8540 {
8541 return kvm_x86_ops->update_pi_irte != NULL;
8542 }
8543
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8544 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8545 struct irq_bypass_producer *prod)
8546 {
8547 struct kvm_kernel_irqfd *irqfd =
8548 container_of(cons, struct kvm_kernel_irqfd, consumer);
8549
8550 irqfd->producer = prod;
8551
8552 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8553 prod->irq, irqfd->gsi, 1);
8554 }
8555
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8556 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8557 struct irq_bypass_producer *prod)
8558 {
8559 int ret;
8560 struct kvm_kernel_irqfd *irqfd =
8561 container_of(cons, struct kvm_kernel_irqfd, consumer);
8562
8563 WARN_ON(irqfd->producer != prod);
8564 irqfd->producer = NULL;
8565
8566 /*
8567 * When producer of consumer is unregistered, we change back to
8568 * remapped mode, so we can re-use the current implementation
8569 * when the irq is masked/disabled or the consumer side (KVM
8570 * int this case doesn't want to receive the interrupts.
8571 */
8572 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8573 if (ret)
8574 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8575 " fails: %d\n", irqfd->consumer.token, ret);
8576 }
8577
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)8578 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8579 uint32_t guest_irq, bool set)
8580 {
8581 if (!kvm_x86_ops->update_pi_irte)
8582 return -EINVAL;
8583
8584 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8585 }
8586
kvm_vector_hashing_enabled(void)8587 bool kvm_vector_hashing_enabled(void)
8588 {
8589 return vector_hashing;
8590 }
8591 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8592
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8608 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8612