1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/unpack.h>
41
42 /*******************************************************************************
43 * Zero Bandwidth Clear
44 ******************************************************************************/
45
46 static void
gf100_gr_zbc_clear_color(struct gf100_gr * gr,int zbc)47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
48 {
49 struct nvkm_device *device = gr->base.engine.subdev.device;
50 if (gr->zbc_color[zbc].format) {
51 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
52 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
53 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
54 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
55 }
56 nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
57 nvkm_wr32(device, 0x405820, zbc);
58 nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
59 }
60
61 static int
gf100_gr_zbc_color_get(struct gf100_gr * gr,int format,const u32 ds[4],const u32 l2[4])62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
63 const u32 ds[4], const u32 l2[4])
64 {
65 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
66 int zbc = -ENOSPC, i;
67
68 for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
69 if (gr->zbc_color[i].format) {
70 if (gr->zbc_color[i].format != format)
71 continue;
72 if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
73 gr->zbc_color[i].ds)))
74 continue;
75 if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
76 gr->zbc_color[i].l2))) {
77 WARN_ON(1);
78 return -EINVAL;
79 }
80 return i;
81 } else {
82 zbc = (zbc < 0) ? i : zbc;
83 }
84 }
85
86 if (zbc < 0)
87 return zbc;
88
89 memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
90 memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
91 gr->zbc_color[zbc].format = format;
92 nvkm_ltc_zbc_color_get(ltc, zbc, l2);
93 gf100_gr_zbc_clear_color(gr, zbc);
94 return zbc;
95 }
96
97 static void
gf100_gr_zbc_clear_depth(struct gf100_gr * gr,int zbc)98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
99 {
100 struct nvkm_device *device = gr->base.engine.subdev.device;
101 if (gr->zbc_depth[zbc].format)
102 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
103 nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
104 nvkm_wr32(device, 0x405820, zbc);
105 nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
106 }
107
108 static int
gf100_gr_zbc_depth_get(struct gf100_gr * gr,int format,const u32 ds,const u32 l2)109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
110 const u32 ds, const u32 l2)
111 {
112 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
113 int zbc = -ENOSPC, i;
114
115 for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
116 if (gr->zbc_depth[i].format) {
117 if (gr->zbc_depth[i].format != format)
118 continue;
119 if (gr->zbc_depth[i].ds != ds)
120 continue;
121 if (gr->zbc_depth[i].l2 != l2) {
122 WARN_ON(1);
123 return -EINVAL;
124 }
125 return i;
126 } else {
127 zbc = (zbc < 0) ? i : zbc;
128 }
129 }
130
131 if (zbc < 0)
132 return zbc;
133
134 gr->zbc_depth[zbc].format = format;
135 gr->zbc_depth[zbc].ds = ds;
136 gr->zbc_depth[zbc].l2 = l2;
137 nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
138 gf100_gr_zbc_clear_depth(gr, zbc);
139 return zbc;
140 }
141
142 /*******************************************************************************
143 * Graphics object classes
144 ******************************************************************************/
145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
146
147 struct gf100_gr_object {
148 struct nvkm_object object;
149 struct gf100_gr_chan *chan;
150 };
151
152 static int
gf100_fermi_mthd_zbc_color(struct nvkm_object * object,void * data,u32 size)153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
154 {
155 struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
156 union {
157 struct fermi_a_zbc_color_v0 v0;
158 } *args = data;
159 int ret = -ENOSYS;
160
161 if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
162 switch (args->v0.format) {
163 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
164 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
165 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
166 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
167 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
168 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
169 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
170 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
171 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
172 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
173 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
174 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
175 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
176 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
177 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
178 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
179 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
180 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
181 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
182 ret = gf100_gr_zbc_color_get(gr, args->v0.format,
183 args->v0.ds,
184 args->v0.l2);
185 if (ret >= 0) {
186 args->v0.index = ret;
187 return 0;
188 }
189 break;
190 default:
191 return -EINVAL;
192 }
193 }
194
195 return ret;
196 }
197
198 static int
gf100_fermi_mthd_zbc_depth(struct nvkm_object * object,void * data,u32 size)199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
200 {
201 struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
202 union {
203 struct fermi_a_zbc_depth_v0 v0;
204 } *args = data;
205 int ret = -ENOSYS;
206
207 if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
208 switch (args->v0.format) {
209 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
210 ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
211 args->v0.ds,
212 args->v0.l2);
213 return (ret >= 0) ? 0 : -ENOSPC;
214 default:
215 return -EINVAL;
216 }
217 }
218
219 return ret;
220 }
221
222 static int
gf100_fermi_mthd(struct nvkm_object * object,u32 mthd,void * data,u32 size)223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
224 {
225 nvif_ioctl(object, "fermi mthd %08x\n", mthd);
226 switch (mthd) {
227 case FERMI_A_ZBC_COLOR:
228 return gf100_fermi_mthd_zbc_color(object, data, size);
229 case FERMI_A_ZBC_DEPTH:
230 return gf100_fermi_mthd_zbc_depth(object, data, size);
231 default:
232 break;
233 }
234 return -EINVAL;
235 }
236
237 const struct nvkm_object_func
238 gf100_fermi = {
239 .mthd = gf100_fermi_mthd,
240 };
241
242 static void
gf100_gr_mthd_set_shader_exceptions(struct nvkm_device * device,u32 data)243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
244 {
245 nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
246 nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
247 }
248
249 static bool
gf100_gr_mthd_sw(struct nvkm_device * device,u16 class,u32 mthd,u32 data)250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
251 {
252 switch (class & 0x00ff) {
253 case 0x97:
254 case 0xc0:
255 switch (mthd) {
256 case 0x1528:
257 gf100_gr_mthd_set_shader_exceptions(device, data);
258 return true;
259 default:
260 break;
261 }
262 break;
263 default:
264 break;
265 }
266 return false;
267 }
268
269 static const struct nvkm_object_func
270 gf100_gr_object_func = {
271 };
272
273 static int
gf100_gr_object_new(const struct nvkm_oclass * oclass,void * data,u32 size,struct nvkm_object ** pobject)274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
275 struct nvkm_object **pobject)
276 {
277 struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
278 struct gf100_gr_object *object;
279
280 if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
281 return -ENOMEM;
282 *pobject = &object->object;
283
284 nvkm_object_ctor(oclass->base.func ? oclass->base.func :
285 &gf100_gr_object_func, oclass, &object->object);
286 object->chan = chan;
287 return 0;
288 }
289
290 static int
gf100_gr_object_get(struct nvkm_gr * base,int index,struct nvkm_sclass * sclass)291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
292 {
293 struct gf100_gr *gr = gf100_gr(base);
294 int c = 0;
295
296 while (gr->func->sclass[c].oclass) {
297 if (c++ == index) {
298 *sclass = gr->func->sclass[index];
299 sclass->ctor = gf100_gr_object_new;
300 return index;
301 }
302 }
303
304 return c;
305 }
306
307 /*******************************************************************************
308 * PGRAPH context
309 ******************************************************************************/
310
311 static int
gf100_gr_chan_bind(struct nvkm_object * object,struct nvkm_gpuobj * parent,int align,struct nvkm_gpuobj ** pgpuobj)312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
313 int align, struct nvkm_gpuobj **pgpuobj)
314 {
315 struct gf100_gr_chan *chan = gf100_gr_chan(object);
316 struct gf100_gr *gr = chan->gr;
317 int ret, i;
318
319 ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
320 align, false, parent, pgpuobj);
321 if (ret)
322 return ret;
323
324 nvkm_kmap(*pgpuobj);
325 for (i = 0; i < gr->size; i += 4)
326 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
327
328 if (!gr->firmware) {
329 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
330 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8);
331 } else {
332 nvkm_wo32(*pgpuobj, 0xf4, 0);
333 nvkm_wo32(*pgpuobj, 0xf8, 0);
334 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
335 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset));
336 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset));
337 nvkm_wo32(*pgpuobj, 0x1c, 1);
338 nvkm_wo32(*pgpuobj, 0x20, 0);
339 nvkm_wo32(*pgpuobj, 0x28, 0);
340 nvkm_wo32(*pgpuobj, 0x2c, 0);
341 }
342 nvkm_done(*pgpuobj);
343 return 0;
344 }
345
346 static void *
gf100_gr_chan_dtor(struct nvkm_object * object)347 gf100_gr_chan_dtor(struct nvkm_object *object)
348 {
349 struct gf100_gr_chan *chan = gf100_gr_chan(object);
350 int i;
351
352 for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
353 if (chan->data[i].vma.node) {
354 nvkm_vm_unmap(&chan->data[i].vma);
355 nvkm_vm_put(&chan->data[i].vma);
356 }
357 nvkm_memory_del(&chan->data[i].mem);
358 }
359
360 if (chan->mmio_vma.node) {
361 nvkm_vm_unmap(&chan->mmio_vma);
362 nvkm_vm_put(&chan->mmio_vma);
363 }
364 nvkm_memory_del(&chan->mmio);
365 return chan;
366 }
367
368 static const struct nvkm_object_func
369 gf100_gr_chan = {
370 .dtor = gf100_gr_chan_dtor,
371 .bind = gf100_gr_chan_bind,
372 };
373
374 static int
gf100_gr_chan_new(struct nvkm_gr * base,struct nvkm_fifo_chan * fifoch,const struct nvkm_oclass * oclass,struct nvkm_object ** pobject)375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
376 const struct nvkm_oclass *oclass,
377 struct nvkm_object **pobject)
378 {
379 struct gf100_gr *gr = gf100_gr(base);
380 struct gf100_gr_data *data = gr->mmio_data;
381 struct gf100_gr_mmio *mmio = gr->mmio_list;
382 struct gf100_gr_chan *chan;
383 struct nvkm_device *device = gr->base.engine.subdev.device;
384 int ret, i;
385
386 if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
387 return -ENOMEM;
388 nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
389 chan->gr = gr;
390 *pobject = &chan->object;
391
392 /* allocate memory for a "mmio list" buffer that's used by the HUB
393 * fuc to modify some per-context register settings on first load
394 * of the context.
395 */
396 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
397 false, &chan->mmio);
398 if (ret)
399 return ret;
400
401 ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW |
402 NV_MEM_ACCESS_SYS, &chan->mmio_vma);
403 if (ret)
404 return ret;
405
406 nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0);
407
408 /* allocate buffers referenced by mmio list */
409 for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411 data->size, data->align, false,
412 &chan->data[i].mem);
413 if (ret)
414 return ret;
415
416 ret = nvkm_vm_get(fifoch->vm,
417 nvkm_memory_size(chan->data[i].mem), 12,
418 data->access, &chan->data[i].vma);
419 if (ret)
420 return ret;
421
422 nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0);
423 data++;
424 }
425
426 /* finally, fill in the mmio list and point the context at it */
427 nvkm_kmap(chan->mmio);
428 for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
429 u32 addr = mmio->addr;
430 u32 data = mmio->data;
431
432 if (mmio->buffer >= 0) {
433 u64 info = chan->data[mmio->buffer].vma.offset;
434 data |= info >> mmio->shift;
435 }
436
437 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
438 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
439 mmio++;
440 }
441 nvkm_done(chan->mmio);
442 return 0;
443 }
444
445 /*******************************************************************************
446 * PGRAPH register lists
447 ******************************************************************************/
448
449 const struct gf100_gr_init
450 gf100_gr_init_main_0[] = {
451 { 0x400080, 1, 0x04, 0x003083c2 },
452 { 0x400088, 1, 0x04, 0x00006fe7 },
453 { 0x40008c, 1, 0x04, 0x00000000 },
454 { 0x400090, 1, 0x04, 0x00000030 },
455 { 0x40013c, 1, 0x04, 0x013901f7 },
456 { 0x400140, 1, 0x04, 0x00000100 },
457 { 0x400144, 1, 0x04, 0x00000000 },
458 { 0x400148, 1, 0x04, 0x00000110 },
459 { 0x400138, 1, 0x04, 0x00000000 },
460 { 0x400130, 2, 0x04, 0x00000000 },
461 { 0x400124, 1, 0x04, 0x00000002 },
462 {}
463 };
464
465 const struct gf100_gr_init
466 gf100_gr_init_fe_0[] = {
467 { 0x40415c, 1, 0x04, 0x00000000 },
468 { 0x404170, 1, 0x04, 0x00000000 },
469 {}
470 };
471
472 const struct gf100_gr_init
473 gf100_gr_init_pri_0[] = {
474 { 0x404488, 2, 0x04, 0x00000000 },
475 {}
476 };
477
478 const struct gf100_gr_init
479 gf100_gr_init_rstr2d_0[] = {
480 { 0x407808, 1, 0x04, 0x00000000 },
481 {}
482 };
483
484 const struct gf100_gr_init
485 gf100_gr_init_pd_0[] = {
486 { 0x406024, 1, 0x04, 0x00000000 },
487 {}
488 };
489
490 const struct gf100_gr_init
491 gf100_gr_init_ds_0[] = {
492 { 0x405844, 1, 0x04, 0x00ffffff },
493 { 0x405850, 1, 0x04, 0x00000000 },
494 { 0x405908, 1, 0x04, 0x00000000 },
495 {}
496 };
497
498 const struct gf100_gr_init
499 gf100_gr_init_scc_0[] = {
500 { 0x40803c, 1, 0x04, 0x00000000 },
501 {}
502 };
503
504 const struct gf100_gr_init
505 gf100_gr_init_prop_0[] = {
506 { 0x4184a0, 1, 0x04, 0x00000000 },
507 {}
508 };
509
510 const struct gf100_gr_init
511 gf100_gr_init_gpc_unk_0[] = {
512 { 0x418604, 1, 0x04, 0x00000000 },
513 { 0x418680, 1, 0x04, 0x00000000 },
514 { 0x418714, 1, 0x04, 0x80000000 },
515 { 0x418384, 1, 0x04, 0x00000000 },
516 {}
517 };
518
519 const struct gf100_gr_init
520 gf100_gr_init_setup_0[] = {
521 { 0x418814, 3, 0x04, 0x00000000 },
522 {}
523 };
524
525 const struct gf100_gr_init
526 gf100_gr_init_crstr_0[] = {
527 { 0x418b04, 1, 0x04, 0x00000000 },
528 {}
529 };
530
531 const struct gf100_gr_init
532 gf100_gr_init_setup_1[] = {
533 { 0x4188c8, 1, 0x04, 0x80000000 },
534 { 0x4188cc, 1, 0x04, 0x00000000 },
535 { 0x4188d0, 1, 0x04, 0x00010000 },
536 { 0x4188d4, 1, 0x04, 0x00000001 },
537 {}
538 };
539
540 const struct gf100_gr_init
541 gf100_gr_init_zcull_0[] = {
542 { 0x418910, 1, 0x04, 0x00010001 },
543 { 0x418914, 1, 0x04, 0x00000301 },
544 { 0x418918, 1, 0x04, 0x00800000 },
545 { 0x418980, 1, 0x04, 0x77777770 },
546 { 0x418984, 3, 0x04, 0x77777777 },
547 {}
548 };
549
550 const struct gf100_gr_init
551 gf100_gr_init_gpm_0[] = {
552 { 0x418c04, 1, 0x04, 0x00000000 },
553 { 0x418c88, 1, 0x04, 0x00000000 },
554 {}
555 };
556
557 const struct gf100_gr_init
558 gf100_gr_init_gpc_unk_1[] = {
559 { 0x418d00, 1, 0x04, 0x00000000 },
560 { 0x418f08, 1, 0x04, 0x00000000 },
561 { 0x418e00, 1, 0x04, 0x00000050 },
562 { 0x418e08, 1, 0x04, 0x00000000 },
563 {}
564 };
565
566 const struct gf100_gr_init
567 gf100_gr_init_gcc_0[] = {
568 { 0x41900c, 1, 0x04, 0x00000000 },
569 { 0x419018, 1, 0x04, 0x00000000 },
570 {}
571 };
572
573 const struct gf100_gr_init
574 gf100_gr_init_tpccs_0[] = {
575 { 0x419d08, 2, 0x04, 0x00000000 },
576 { 0x419d10, 1, 0x04, 0x00000014 },
577 {}
578 };
579
580 const struct gf100_gr_init
581 gf100_gr_init_tex_0[] = {
582 { 0x419ab0, 1, 0x04, 0x00000000 },
583 { 0x419ab8, 1, 0x04, 0x000000e7 },
584 { 0x419abc, 2, 0x04, 0x00000000 },
585 {}
586 };
587
588 const struct gf100_gr_init
589 gf100_gr_init_pe_0[] = {
590 { 0x41980c, 3, 0x04, 0x00000000 },
591 { 0x419844, 1, 0x04, 0x00000000 },
592 { 0x41984c, 1, 0x04, 0x00005bc5 },
593 { 0x419850, 4, 0x04, 0x00000000 },
594 {}
595 };
596
597 const struct gf100_gr_init
598 gf100_gr_init_l1c_0[] = {
599 { 0x419c98, 1, 0x04, 0x00000000 },
600 { 0x419ca8, 1, 0x04, 0x80000000 },
601 { 0x419cb4, 1, 0x04, 0x00000000 },
602 { 0x419cb8, 1, 0x04, 0x00008bf4 },
603 { 0x419cbc, 1, 0x04, 0x28137606 },
604 { 0x419cc0, 2, 0x04, 0x00000000 },
605 {}
606 };
607
608 const struct gf100_gr_init
609 gf100_gr_init_wwdx_0[] = {
610 { 0x419bd4, 1, 0x04, 0x00800000 },
611 { 0x419bdc, 1, 0x04, 0x00000000 },
612 {}
613 };
614
615 const struct gf100_gr_init
616 gf100_gr_init_tpccs_1[] = {
617 { 0x419d2c, 1, 0x04, 0x00000000 },
618 {}
619 };
620
621 const struct gf100_gr_init
622 gf100_gr_init_mpc_0[] = {
623 { 0x419c0c, 1, 0x04, 0x00000000 },
624 {}
625 };
626
627 static const struct gf100_gr_init
628 gf100_gr_init_sm_0[] = {
629 { 0x419e00, 1, 0x04, 0x00000000 },
630 { 0x419ea0, 1, 0x04, 0x00000000 },
631 { 0x419ea4, 1, 0x04, 0x00000100 },
632 { 0x419ea8, 1, 0x04, 0x00001100 },
633 { 0x419eac, 1, 0x04, 0x11100702 },
634 { 0x419eb0, 1, 0x04, 0x00000003 },
635 { 0x419eb4, 4, 0x04, 0x00000000 },
636 { 0x419ec8, 1, 0x04, 0x06060618 },
637 { 0x419ed0, 1, 0x04, 0x0eff0e38 },
638 { 0x419ed4, 1, 0x04, 0x011104f1 },
639 { 0x419edc, 1, 0x04, 0x00000000 },
640 { 0x419f00, 1, 0x04, 0x00000000 },
641 { 0x419f2c, 1, 0x04, 0x00000000 },
642 {}
643 };
644
645 const struct gf100_gr_init
646 gf100_gr_init_be_0[] = {
647 { 0x40880c, 1, 0x04, 0x00000000 },
648 { 0x408910, 9, 0x04, 0x00000000 },
649 { 0x408950, 1, 0x04, 0x00000000 },
650 { 0x408954, 1, 0x04, 0x0000ffff },
651 { 0x408984, 1, 0x04, 0x00000000 },
652 { 0x408988, 1, 0x04, 0x08040201 },
653 { 0x40898c, 1, 0x04, 0x80402010 },
654 {}
655 };
656
657 const struct gf100_gr_init
658 gf100_gr_init_fe_1[] = {
659 { 0x4040f0, 1, 0x04, 0x00000000 },
660 {}
661 };
662
663 const struct gf100_gr_init
664 gf100_gr_init_pe_1[] = {
665 { 0x419880, 1, 0x04, 0x00000002 },
666 {}
667 };
668
669 static const struct gf100_gr_pack
670 gf100_gr_pack_mmio[] = {
671 { gf100_gr_init_main_0 },
672 { gf100_gr_init_fe_0 },
673 { gf100_gr_init_pri_0 },
674 { gf100_gr_init_rstr2d_0 },
675 { gf100_gr_init_pd_0 },
676 { gf100_gr_init_ds_0 },
677 { gf100_gr_init_scc_0 },
678 { gf100_gr_init_prop_0 },
679 { gf100_gr_init_gpc_unk_0 },
680 { gf100_gr_init_setup_0 },
681 { gf100_gr_init_crstr_0 },
682 { gf100_gr_init_setup_1 },
683 { gf100_gr_init_zcull_0 },
684 { gf100_gr_init_gpm_0 },
685 { gf100_gr_init_gpc_unk_1 },
686 { gf100_gr_init_gcc_0 },
687 { gf100_gr_init_tpccs_0 },
688 { gf100_gr_init_tex_0 },
689 { gf100_gr_init_pe_0 },
690 { gf100_gr_init_l1c_0 },
691 { gf100_gr_init_wwdx_0 },
692 { gf100_gr_init_tpccs_1 },
693 { gf100_gr_init_mpc_0 },
694 { gf100_gr_init_sm_0 },
695 { gf100_gr_init_be_0 },
696 { gf100_gr_init_fe_1 },
697 { gf100_gr_init_pe_1 },
698 {}
699 };
700
701 /*******************************************************************************
702 * PGRAPH engine/subdev functions
703 ******************************************************************************/
704
705 int
gf100_gr_rops(struct gf100_gr * gr)706 gf100_gr_rops(struct gf100_gr *gr)
707 {
708 struct nvkm_device *device = gr->base.engine.subdev.device;
709 return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
710 }
711
712 void
gf100_gr_zbc_init(struct gf100_gr * gr)713 gf100_gr_zbc_init(struct gf100_gr *gr)
714 {
715 const u32 zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
716 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
717 const u32 one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
718 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
719 const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
720 0x00000000, 0x00000000, 0x00000000, 0x00000000 };
721 const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
722 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
723 struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
724 int index;
725
726 if (!gr->zbc_color[0].format) {
727 gf100_gr_zbc_color_get(gr, 1, & zero[0], &zero[4]);
728 gf100_gr_zbc_color_get(gr, 2, & one[0], &one[4]);
729 gf100_gr_zbc_color_get(gr, 4, &f32_0[0], &f32_0[4]);
730 gf100_gr_zbc_color_get(gr, 4, &f32_1[0], &f32_1[4]);
731 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
732 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
733 }
734
735 for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
736 gf100_gr_zbc_clear_color(gr, index);
737 for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
738 gf100_gr_zbc_clear_depth(gr, index);
739 }
740
741 /**
742 * Wait until GR goes idle. GR is considered idle if it is disabled by the
743 * MC (0x200) register, or GR is not busy and a context switch is not in
744 * progress.
745 */
746 int
gf100_gr_wait_idle(struct gf100_gr * gr)747 gf100_gr_wait_idle(struct gf100_gr *gr)
748 {
749 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
750 struct nvkm_device *device = subdev->device;
751 unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
752 bool gr_enabled, ctxsw_active, gr_busy;
753
754 do {
755 /*
756 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
757 * up-to-date
758 */
759 nvkm_rd32(device, 0x400700);
760
761 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
762 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
763 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
764
765 if (!gr_enabled || (!gr_busy && !ctxsw_active))
766 return 0;
767 } while (time_before(jiffies, end_jiffies));
768
769 nvkm_error(subdev,
770 "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
771 gr_enabled, ctxsw_active, gr_busy);
772 return -EAGAIN;
773 }
774
775 void
gf100_gr_mmio(struct gf100_gr * gr,const struct gf100_gr_pack * p)776 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
777 {
778 struct nvkm_device *device = gr->base.engine.subdev.device;
779 const struct gf100_gr_pack *pack;
780 const struct gf100_gr_init *init;
781
782 pack_for_each_init(init, pack, p) {
783 u32 next = init->addr + init->count * init->pitch;
784 u32 addr = init->addr;
785 while (addr < next) {
786 nvkm_wr32(device, addr, init->data);
787 addr += init->pitch;
788 }
789 }
790 }
791
792 void
gf100_gr_icmd(struct gf100_gr * gr,const struct gf100_gr_pack * p)793 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
794 {
795 struct nvkm_device *device = gr->base.engine.subdev.device;
796 const struct gf100_gr_pack *pack;
797 const struct gf100_gr_init *init;
798 u32 data = 0;
799
800 nvkm_wr32(device, 0x400208, 0x80000000);
801
802 pack_for_each_init(init, pack, p) {
803 u32 next = init->addr + init->count * init->pitch;
804 u32 addr = init->addr;
805
806 if ((pack == p && init == p->init) || data != init->data) {
807 nvkm_wr32(device, 0x400204, init->data);
808 data = init->data;
809 }
810
811 while (addr < next) {
812 nvkm_wr32(device, 0x400200, addr);
813 /**
814 * Wait for GR to go idle after submitting a
815 * GO_IDLE bundle
816 */
817 if ((addr & 0xffff) == 0xe100)
818 gf100_gr_wait_idle(gr);
819 nvkm_msec(device, 2000,
820 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
821 break;
822 );
823 addr += init->pitch;
824 }
825 }
826
827 nvkm_wr32(device, 0x400208, 0x00000000);
828 }
829
830 void
gf100_gr_mthd(struct gf100_gr * gr,const struct gf100_gr_pack * p)831 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
832 {
833 struct nvkm_device *device = gr->base.engine.subdev.device;
834 const struct gf100_gr_pack *pack;
835 const struct gf100_gr_init *init;
836 u32 data = 0;
837
838 pack_for_each_init(init, pack, p) {
839 u32 ctrl = 0x80000000 | pack->type;
840 u32 next = init->addr + init->count * init->pitch;
841 u32 addr = init->addr;
842
843 if ((pack == p && init == p->init) || data != init->data) {
844 nvkm_wr32(device, 0x40448c, init->data);
845 data = init->data;
846 }
847
848 while (addr < next) {
849 nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
850 addr += init->pitch;
851 }
852 }
853 }
854
855 u64
gf100_gr_units(struct nvkm_gr * base)856 gf100_gr_units(struct nvkm_gr *base)
857 {
858 struct gf100_gr *gr = gf100_gr(base);
859 u64 cfg;
860
861 cfg = (u32)gr->gpc_nr;
862 cfg |= (u32)gr->tpc_total << 8;
863 cfg |= (u64)gr->rop_nr << 32;
864
865 return cfg;
866 }
867
868 static const struct nvkm_bitfield gf100_dispatch_error[] = {
869 { 0x00000001, "INJECTED_BUNDLE_ERROR" },
870 { 0x00000002, "CLASS_SUBCH_MISMATCH" },
871 { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
872 {}
873 };
874
875 static const struct nvkm_bitfield gf100_m2mf_error[] = {
876 { 0x00000001, "PUSH_TOO_MUCH_DATA" },
877 { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
878 {}
879 };
880
881 static const struct nvkm_bitfield gf100_unk6_error[] = {
882 { 0x00000001, "TEMP_TOO_SMALL" },
883 {}
884 };
885
886 static const struct nvkm_bitfield gf100_ccache_error[] = {
887 { 0x00000001, "INTR" },
888 { 0x00000002, "LDCONST_OOB" },
889 {}
890 };
891
892 static const struct nvkm_bitfield gf100_macro_error[] = {
893 { 0x00000001, "TOO_FEW_PARAMS" },
894 { 0x00000002, "TOO_MANY_PARAMS" },
895 { 0x00000004, "ILLEGAL_OPCODE" },
896 { 0x00000008, "DOUBLE_BRANCH" },
897 { 0x00000010, "WATCHDOG" },
898 {}
899 };
900
901 static const struct nvkm_bitfield gk104_sked_error[] = {
902 { 0x00000040, "CTA_RESUME" },
903 { 0x00000080, "CONSTANT_BUFFER_SIZE" },
904 { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
905 { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
906 { 0x00000800, "WARP_CSTACK_SIZE" },
907 { 0x00001000, "TOTAL_TEMP_SIZE" },
908 { 0x00002000, "REGISTER_COUNT" },
909 { 0x00040000, "TOTAL_THREADS" },
910 { 0x00100000, "PROGRAM_OFFSET" },
911 { 0x00200000, "SHARED_MEMORY_SIZE" },
912 { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
913 { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
914 { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
915 { 0x04000000, "TOTAL_REGISTER_COUNT" },
916 {}
917 };
918
919 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
920 { 0x00000002, "RT_PITCH_OVERRUN" },
921 { 0x00000010, "RT_WIDTH_OVERRUN" },
922 { 0x00000020, "RT_HEIGHT_OVERRUN" },
923 { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
924 { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
925 { 0x00000400, "RT_LINEAR_MISMATCH" },
926 {}
927 };
928
929 static void
gf100_gr_trap_gpc_rop(struct gf100_gr * gr,int gpc)930 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
931 {
932 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
933 struct nvkm_device *device = subdev->device;
934 char error[128];
935 u32 trap[4];
936
937 trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
938 trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
939 trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
940 trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
941
942 nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
943
944 nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
945 "format = %x, storage type = %x\n",
946 gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
947 (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
948 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
949 }
950
951 static const struct nvkm_enum gf100_mp_warp_error[] = {
952 { 0x01, "STACK_ERROR" },
953 { 0x02, "API_STACK_ERROR" },
954 { 0x03, "RET_EMPTY_STACK_ERROR" },
955 { 0x04, "PC_WRAP" },
956 { 0x05, "MISALIGNED_PC" },
957 { 0x06, "PC_OVERFLOW" },
958 { 0x07, "MISALIGNED_IMMC_ADDR" },
959 { 0x08, "MISALIGNED_REG" },
960 { 0x09, "ILLEGAL_INSTR_ENCODING" },
961 { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
962 { 0x0b, "ILLEGAL_INSTR_PARAM" },
963 { 0x0c, "INVALID_CONST_ADDR" },
964 { 0x0d, "OOR_REG" },
965 { 0x0e, "OOR_ADDR" },
966 { 0x0f, "MISALIGNED_ADDR" },
967 { 0x10, "INVALID_ADDR_SPACE" },
968 { 0x11, "ILLEGAL_INSTR_PARAM2" },
969 { 0x12, "INVALID_CONST_ADDR_LDC" },
970 { 0x13, "GEOMETRY_SM_ERROR" },
971 { 0x14, "DIVERGENT" },
972 { 0x15, "WARP_EXIT" },
973 {}
974 };
975
976 static const struct nvkm_bitfield gf100_mp_global_error[] = {
977 { 0x00000001, "SM_TO_SM_FAULT" },
978 { 0x00000002, "L1_ERROR" },
979 { 0x00000004, "MULTIPLE_WARP_ERRORS" },
980 { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
981 { 0x00000010, "BPT_INT" },
982 { 0x00000020, "BPT_PAUSE" },
983 { 0x00000040, "SINGLE_STEP_COMPLETE" },
984 { 0x20000000, "ECC_SEC_ERROR" },
985 { 0x40000000, "ECC_DED_ERROR" },
986 { 0x80000000, "TIMEOUT" },
987 {}
988 };
989
990 static void
gf100_gr_trap_mp(struct gf100_gr * gr,int gpc,int tpc)991 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
992 {
993 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
994 struct nvkm_device *device = subdev->device;
995 u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
996 u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
997 const struct nvkm_enum *warp;
998 char glob[128];
999
1000 nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1001 warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1002
1003 nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1004 "global %08x [%s] warp %04x [%s]\n",
1005 gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1006
1007 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1008 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1009 }
1010
1011 static void
gf100_gr_trap_tpc(struct gf100_gr * gr,int gpc,int tpc)1012 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1013 {
1014 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1015 struct nvkm_device *device = subdev->device;
1016 u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1017
1018 if (stat & 0x00000001) {
1019 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1020 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1021 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1022 stat &= ~0x00000001;
1023 }
1024
1025 if (stat & 0x00000002) {
1026 gf100_gr_trap_mp(gr, gpc, tpc);
1027 stat &= ~0x00000002;
1028 }
1029
1030 if (stat & 0x00000004) {
1031 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1032 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1033 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1034 stat &= ~0x00000004;
1035 }
1036
1037 if (stat & 0x00000008) {
1038 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1039 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1040 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1041 stat &= ~0x00000008;
1042 }
1043
1044 if (stat) {
1045 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1046 }
1047 }
1048
1049 static void
gf100_gr_trap_gpc(struct gf100_gr * gr,int gpc)1050 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1051 {
1052 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1053 struct nvkm_device *device = subdev->device;
1054 u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1055 int tpc;
1056
1057 if (stat & 0x00000001) {
1058 gf100_gr_trap_gpc_rop(gr, gpc);
1059 stat &= ~0x00000001;
1060 }
1061
1062 if (stat & 0x00000002) {
1063 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1064 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1065 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1066 stat &= ~0x00000002;
1067 }
1068
1069 if (stat & 0x00000004) {
1070 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1071 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1072 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1073 stat &= ~0x00000004;
1074 }
1075
1076 if (stat & 0x00000008) {
1077 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1078 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1079 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1080 stat &= ~0x00000009;
1081 }
1082
1083 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1084 u32 mask = 0x00010000 << tpc;
1085 if (stat & mask) {
1086 gf100_gr_trap_tpc(gr, gpc, tpc);
1087 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1088 stat &= ~mask;
1089 }
1090 }
1091
1092 if (stat) {
1093 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1094 }
1095 }
1096
1097 static void
gf100_gr_trap_intr(struct gf100_gr * gr)1098 gf100_gr_trap_intr(struct gf100_gr *gr)
1099 {
1100 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1101 struct nvkm_device *device = subdev->device;
1102 char error[128];
1103 u32 trap = nvkm_rd32(device, 0x400108);
1104 int rop, gpc;
1105
1106 if (trap & 0x00000001) {
1107 u32 stat = nvkm_rd32(device, 0x404000);
1108
1109 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1110 stat & 0x3fffffff);
1111 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1112 nvkm_wr32(device, 0x404000, 0xc0000000);
1113 nvkm_wr32(device, 0x400108, 0x00000001);
1114 trap &= ~0x00000001;
1115 }
1116
1117 if (trap & 0x00000002) {
1118 u32 stat = nvkm_rd32(device, 0x404600);
1119
1120 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1121 stat & 0x3fffffff);
1122 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1123
1124 nvkm_wr32(device, 0x404600, 0xc0000000);
1125 nvkm_wr32(device, 0x400108, 0x00000002);
1126 trap &= ~0x00000002;
1127 }
1128
1129 if (trap & 0x00000008) {
1130 u32 stat = nvkm_rd32(device, 0x408030);
1131
1132 nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1133 stat & 0x3fffffff);
1134 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1135 nvkm_wr32(device, 0x408030, 0xc0000000);
1136 nvkm_wr32(device, 0x400108, 0x00000008);
1137 trap &= ~0x00000008;
1138 }
1139
1140 if (trap & 0x00000010) {
1141 u32 stat = nvkm_rd32(device, 0x405840);
1142 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1143 stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1144 nvkm_wr32(device, 0x405840, 0xc0000000);
1145 nvkm_wr32(device, 0x400108, 0x00000010);
1146 trap &= ~0x00000010;
1147 }
1148
1149 if (trap & 0x00000040) {
1150 u32 stat = nvkm_rd32(device, 0x40601c);
1151
1152 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1153 stat & 0x3fffffff);
1154 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1155
1156 nvkm_wr32(device, 0x40601c, 0xc0000000);
1157 nvkm_wr32(device, 0x400108, 0x00000040);
1158 trap &= ~0x00000040;
1159 }
1160
1161 if (trap & 0x00000080) {
1162 u32 stat = nvkm_rd32(device, 0x404490);
1163 u32 pc = nvkm_rd32(device, 0x404494);
1164 u32 op = nvkm_rd32(device, 0x40449c);
1165
1166 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1167 stat & 0x1fffffff);
1168 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1169 stat, error, pc & 0x7ff,
1170 (pc & 0x10000000) ? "" : " (invalid)",
1171 op);
1172
1173 nvkm_wr32(device, 0x404490, 0xc0000000);
1174 nvkm_wr32(device, 0x400108, 0x00000080);
1175 trap &= ~0x00000080;
1176 }
1177
1178 if (trap & 0x00000100) {
1179 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1180
1181 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1182 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1183
1184 if (stat)
1185 nvkm_wr32(device, 0x407020, 0x40000000);
1186 nvkm_wr32(device, 0x400108, 0x00000100);
1187 trap &= ~0x00000100;
1188 }
1189
1190 if (trap & 0x01000000) {
1191 u32 stat = nvkm_rd32(device, 0x400118);
1192 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1193 u32 mask = 0x00000001 << gpc;
1194 if (stat & mask) {
1195 gf100_gr_trap_gpc(gr, gpc);
1196 nvkm_wr32(device, 0x400118, mask);
1197 stat &= ~mask;
1198 }
1199 }
1200 nvkm_wr32(device, 0x400108, 0x01000000);
1201 trap &= ~0x01000000;
1202 }
1203
1204 if (trap & 0x02000000) {
1205 for (rop = 0; rop < gr->rop_nr; rop++) {
1206 u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1207 u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1208 nvkm_error(subdev, "ROP%d %08x %08x\n",
1209 rop, statz, statc);
1210 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1211 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1212 }
1213 nvkm_wr32(device, 0x400108, 0x02000000);
1214 trap &= ~0x02000000;
1215 }
1216
1217 if (trap) {
1218 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1219 nvkm_wr32(device, 0x400108, trap);
1220 }
1221 }
1222
1223 static void
gf100_gr_ctxctl_debug_unit(struct gf100_gr * gr,u32 base)1224 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1225 {
1226 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1227 struct nvkm_device *device = subdev->device;
1228 nvkm_error(subdev, "%06x - done %08x\n", base,
1229 nvkm_rd32(device, base + 0x400));
1230 nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1231 nvkm_rd32(device, base + 0x800),
1232 nvkm_rd32(device, base + 0x804),
1233 nvkm_rd32(device, base + 0x808),
1234 nvkm_rd32(device, base + 0x80c));
1235 nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1236 nvkm_rd32(device, base + 0x810),
1237 nvkm_rd32(device, base + 0x814),
1238 nvkm_rd32(device, base + 0x818),
1239 nvkm_rd32(device, base + 0x81c));
1240 }
1241
1242 void
gf100_gr_ctxctl_debug(struct gf100_gr * gr)1243 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1244 {
1245 struct nvkm_device *device = gr->base.engine.subdev.device;
1246 u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1247 u32 gpc;
1248
1249 gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1250 for (gpc = 0; gpc < gpcnr; gpc++)
1251 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1252 }
1253
1254 static void
gf100_gr_ctxctl_isr(struct gf100_gr * gr)1255 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1256 {
1257 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1258 struct nvkm_device *device = subdev->device;
1259 u32 stat = nvkm_rd32(device, 0x409c18);
1260
1261 if (stat & 0x00000001) {
1262 u32 code = nvkm_rd32(device, 0x409814);
1263 if (code == E_BAD_FWMTHD) {
1264 u32 class = nvkm_rd32(device, 0x409808);
1265 u32 addr = nvkm_rd32(device, 0x40980c);
1266 u32 subc = (addr & 0x00070000) >> 16;
1267 u32 mthd = (addr & 0x00003ffc);
1268 u32 data = nvkm_rd32(device, 0x409810);
1269
1270 nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1271 "mthd %04x data %08x\n",
1272 subc, class, mthd, data);
1273
1274 nvkm_wr32(device, 0x409c20, 0x00000001);
1275 stat &= ~0x00000001;
1276 } else {
1277 nvkm_error(subdev, "FECS ucode error %d\n", code);
1278 }
1279 }
1280
1281 if (stat & 0x00080000) {
1282 nvkm_error(subdev, "FECS watchdog timeout\n");
1283 gf100_gr_ctxctl_debug(gr);
1284 nvkm_wr32(device, 0x409c20, 0x00080000);
1285 stat &= ~0x00080000;
1286 }
1287
1288 if (stat) {
1289 nvkm_error(subdev, "FECS %08x\n", stat);
1290 gf100_gr_ctxctl_debug(gr);
1291 nvkm_wr32(device, 0x409c20, stat);
1292 }
1293 }
1294
1295 static void
gf100_gr_intr(struct nvkm_gr * base)1296 gf100_gr_intr(struct nvkm_gr *base)
1297 {
1298 struct gf100_gr *gr = gf100_gr(base);
1299 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1300 struct nvkm_device *device = subdev->device;
1301 struct nvkm_fifo_chan *chan;
1302 unsigned long flags;
1303 u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1304 u32 stat = nvkm_rd32(device, 0x400100);
1305 u32 addr = nvkm_rd32(device, 0x400704);
1306 u32 mthd = (addr & 0x00003ffc);
1307 u32 subc = (addr & 0x00070000) >> 16;
1308 u32 data = nvkm_rd32(device, 0x400708);
1309 u32 code = nvkm_rd32(device, 0x400110);
1310 u32 class;
1311 const char *name = "unknown";
1312 int chid = -1;
1313
1314 chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1315 if (chan) {
1316 name = chan->object.client->name;
1317 chid = chan->chid;
1318 }
1319
1320 if (device->card_type < NV_E0 || subc < 4)
1321 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1322 else
1323 class = 0x0000;
1324
1325 if (stat & 0x00000001) {
1326 /*
1327 * notifier interrupt, only needed for cyclestats
1328 * can be safely ignored
1329 */
1330 nvkm_wr32(device, 0x400100, 0x00000001);
1331 stat &= ~0x00000001;
1332 }
1333
1334 if (stat & 0x00000010) {
1335 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1336 nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1337 "subc %d class %04x mthd %04x data %08x\n",
1338 chid, inst << 12, name, subc,
1339 class, mthd, data);
1340 }
1341 nvkm_wr32(device, 0x400100, 0x00000010);
1342 stat &= ~0x00000010;
1343 }
1344
1345 if (stat & 0x00000020) {
1346 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1347 "subc %d class %04x mthd %04x data %08x\n",
1348 chid, inst << 12, name, subc, class, mthd, data);
1349 nvkm_wr32(device, 0x400100, 0x00000020);
1350 stat &= ~0x00000020;
1351 }
1352
1353 if (stat & 0x00100000) {
1354 const struct nvkm_enum *en =
1355 nvkm_enum_find(nv50_data_error_names, code);
1356 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1357 "subc %d class %04x mthd %04x data %08x\n",
1358 code, en ? en->name : "", chid, inst << 12,
1359 name, subc, class, mthd, data);
1360 nvkm_wr32(device, 0x400100, 0x00100000);
1361 stat &= ~0x00100000;
1362 }
1363
1364 if (stat & 0x00200000) {
1365 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1366 chid, inst << 12, name);
1367 gf100_gr_trap_intr(gr);
1368 nvkm_wr32(device, 0x400100, 0x00200000);
1369 stat &= ~0x00200000;
1370 }
1371
1372 if (stat & 0x00080000) {
1373 gf100_gr_ctxctl_isr(gr);
1374 nvkm_wr32(device, 0x400100, 0x00080000);
1375 stat &= ~0x00080000;
1376 }
1377
1378 if (stat) {
1379 nvkm_error(subdev, "intr %08x\n", stat);
1380 nvkm_wr32(device, 0x400100, stat);
1381 }
1382
1383 nvkm_wr32(device, 0x400500, 0x00010001);
1384 nvkm_fifo_chan_put(device->fifo, flags, &chan);
1385 }
1386
1387 void
gf100_gr_init_fw(struct gf100_gr * gr,u32 fuc_base,struct gf100_gr_fuc * code,struct gf100_gr_fuc * data)1388 gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base,
1389 struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1390 {
1391 struct nvkm_device *device = gr->base.engine.subdev.device;
1392 int i;
1393
1394 nvkm_wr32(device, fuc_base + 0x01c0, 0x01000000);
1395 for (i = 0; i < data->size / 4; i++)
1396 nvkm_wr32(device, fuc_base + 0x01c4, data->data[i]);
1397
1398 nvkm_wr32(device, fuc_base + 0x0180, 0x01000000);
1399 for (i = 0; i < code->size / 4; i++) {
1400 if ((i & 0x3f) == 0)
1401 nvkm_wr32(device, fuc_base + 0x0188, i >> 6);
1402 nvkm_wr32(device, fuc_base + 0x0184, code->data[i]);
1403 }
1404
1405 /* code must be padded to 0x40 words */
1406 for (; i & 0x3f; i++)
1407 nvkm_wr32(device, fuc_base + 0x0184, 0);
1408 }
1409
1410 static void
gf100_gr_init_csdata(struct gf100_gr * gr,const struct gf100_gr_pack * pack,u32 falcon,u32 starstar,u32 base)1411 gf100_gr_init_csdata(struct gf100_gr *gr,
1412 const struct gf100_gr_pack *pack,
1413 u32 falcon, u32 starstar, u32 base)
1414 {
1415 struct nvkm_device *device = gr->base.engine.subdev.device;
1416 const struct gf100_gr_pack *iter;
1417 const struct gf100_gr_init *init;
1418 u32 addr = ~0, prev = ~0, xfer = 0;
1419 u32 star, temp;
1420
1421 nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1422 star = nvkm_rd32(device, falcon + 0x01c4);
1423 temp = nvkm_rd32(device, falcon + 0x01c4);
1424 if (temp > star)
1425 star = temp;
1426 nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1427
1428 pack_for_each_init(init, iter, pack) {
1429 u32 head = init->addr - base;
1430 u32 tail = head + init->count * init->pitch;
1431 while (head < tail) {
1432 if (head != prev + 4 || xfer >= 32) {
1433 if (xfer) {
1434 u32 data = ((--xfer << 26) | addr);
1435 nvkm_wr32(device, falcon + 0x01c4, data);
1436 star += 4;
1437 }
1438 addr = head;
1439 xfer = 0;
1440 }
1441 prev = head;
1442 xfer = xfer + 1;
1443 head = head + init->pitch;
1444 }
1445 }
1446
1447 nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1448 nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1449 nvkm_wr32(device, falcon + 0x01c4, star + 4);
1450 }
1451
1452 int
gf100_gr_init_ctxctl(struct gf100_gr * gr)1453 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1454 {
1455 const struct gf100_grctx_func *grctx = gr->func->grctx;
1456 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1457 struct nvkm_device *device = subdev->device;
1458 struct nvkm_secboot *sb = device->secboot;
1459 int i;
1460 int ret = 0;
1461
1462 if (gr->firmware) {
1463 /* load fuc microcode */
1464 nvkm_mc_unk260(device, 0);
1465
1466 /* securely-managed falcons must be reset using secure boot */
1467 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1468 ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_FECS);
1469 else
1470 gf100_gr_init_fw(gr, 0x409000, &gr->fuc409c,
1471 &gr->fuc409d);
1472 if (ret)
1473 return ret;
1474
1475 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1476 ret = nvkm_secboot_reset(sb, NVKM_SECBOOT_FALCON_GPCCS);
1477 else
1478 gf100_gr_init_fw(gr, 0x41a000, &gr->fuc41ac,
1479 &gr->fuc41ad);
1480 if (ret)
1481 return ret;
1482
1483 nvkm_mc_unk260(device, 1);
1484
1485 /* start both of them running */
1486 nvkm_wr32(device, 0x409840, 0xffffffff);
1487 nvkm_wr32(device, 0x41a10c, 0x00000000);
1488 nvkm_wr32(device, 0x40910c, 0x00000000);
1489
1490 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1491 nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_GPCCS);
1492 else
1493 nvkm_wr32(device, 0x41a100, 0x00000002);
1494 if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1495 nvkm_secboot_start(sb, NVKM_SECBOOT_FALCON_FECS);
1496 else
1497 nvkm_wr32(device, 0x409100, 0x00000002);
1498 if (nvkm_msec(device, 2000,
1499 if (nvkm_rd32(device, 0x409800) & 0x00000001)
1500 break;
1501 ) < 0)
1502 return -EBUSY;
1503
1504 nvkm_wr32(device, 0x409840, 0xffffffff);
1505 nvkm_wr32(device, 0x409500, 0x7fffffff);
1506 nvkm_wr32(device, 0x409504, 0x00000021);
1507
1508 nvkm_wr32(device, 0x409840, 0xffffffff);
1509 nvkm_wr32(device, 0x409500, 0x00000000);
1510 nvkm_wr32(device, 0x409504, 0x00000010);
1511 if (nvkm_msec(device, 2000,
1512 if ((gr->size = nvkm_rd32(device, 0x409800)))
1513 break;
1514 ) < 0)
1515 return -EBUSY;
1516
1517 nvkm_wr32(device, 0x409840, 0xffffffff);
1518 nvkm_wr32(device, 0x409500, 0x00000000);
1519 nvkm_wr32(device, 0x409504, 0x00000016);
1520 if (nvkm_msec(device, 2000,
1521 if (nvkm_rd32(device, 0x409800))
1522 break;
1523 ) < 0)
1524 return -EBUSY;
1525
1526 nvkm_wr32(device, 0x409840, 0xffffffff);
1527 nvkm_wr32(device, 0x409500, 0x00000000);
1528 nvkm_wr32(device, 0x409504, 0x00000025);
1529 if (nvkm_msec(device, 2000,
1530 if (nvkm_rd32(device, 0x409800))
1531 break;
1532 ) < 0)
1533 return -EBUSY;
1534
1535 if (device->chipset >= 0xe0) {
1536 nvkm_wr32(device, 0x409800, 0x00000000);
1537 nvkm_wr32(device, 0x409500, 0x00000001);
1538 nvkm_wr32(device, 0x409504, 0x00000030);
1539 if (nvkm_msec(device, 2000,
1540 if (nvkm_rd32(device, 0x409800))
1541 break;
1542 ) < 0)
1543 return -EBUSY;
1544
1545 nvkm_wr32(device, 0x409810, 0xb00095c8);
1546 nvkm_wr32(device, 0x409800, 0x00000000);
1547 nvkm_wr32(device, 0x409500, 0x00000001);
1548 nvkm_wr32(device, 0x409504, 0x00000031);
1549 if (nvkm_msec(device, 2000,
1550 if (nvkm_rd32(device, 0x409800))
1551 break;
1552 ) < 0)
1553 return -EBUSY;
1554
1555 nvkm_wr32(device, 0x409810, 0x00080420);
1556 nvkm_wr32(device, 0x409800, 0x00000000);
1557 nvkm_wr32(device, 0x409500, 0x00000001);
1558 nvkm_wr32(device, 0x409504, 0x00000032);
1559 if (nvkm_msec(device, 2000,
1560 if (nvkm_rd32(device, 0x409800))
1561 break;
1562 ) < 0)
1563 return -EBUSY;
1564
1565 nvkm_wr32(device, 0x409614, 0x00000070);
1566 nvkm_wr32(device, 0x409614, 0x00000770);
1567 nvkm_wr32(device, 0x40802c, 0x00000001);
1568 }
1569
1570 if (gr->data == NULL) {
1571 int ret = gf100_grctx_generate(gr);
1572 if (ret) {
1573 nvkm_error(subdev, "failed to construct context\n");
1574 return ret;
1575 }
1576 }
1577
1578 return 0;
1579 } else
1580 if (!gr->func->fecs.ucode) {
1581 return -ENOSYS;
1582 }
1583
1584 /* load HUB microcode */
1585 nvkm_mc_unk260(device, 0);
1586 nvkm_wr32(device, 0x4091c0, 0x01000000);
1587 for (i = 0; i < gr->func->fecs.ucode->data.size / 4; i++)
1588 nvkm_wr32(device, 0x4091c4, gr->func->fecs.ucode->data.data[i]);
1589
1590 nvkm_wr32(device, 0x409180, 0x01000000);
1591 for (i = 0; i < gr->func->fecs.ucode->code.size / 4; i++) {
1592 if ((i & 0x3f) == 0)
1593 nvkm_wr32(device, 0x409188, i >> 6);
1594 nvkm_wr32(device, 0x409184, gr->func->fecs.ucode->code.data[i]);
1595 }
1596
1597 /* load GPC microcode */
1598 nvkm_wr32(device, 0x41a1c0, 0x01000000);
1599 for (i = 0; i < gr->func->gpccs.ucode->data.size / 4; i++)
1600 nvkm_wr32(device, 0x41a1c4, gr->func->gpccs.ucode->data.data[i]);
1601
1602 nvkm_wr32(device, 0x41a180, 0x01000000);
1603 for (i = 0; i < gr->func->gpccs.ucode->code.size / 4; i++) {
1604 if ((i & 0x3f) == 0)
1605 nvkm_wr32(device, 0x41a188, i >> 6);
1606 nvkm_wr32(device, 0x41a184, gr->func->gpccs.ucode->code.data[i]);
1607 }
1608 nvkm_mc_unk260(device, 1);
1609
1610 /* load register lists */
1611 gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1612 gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1613 gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1614 gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1615
1616 /* start HUB ucode running, it'll init the GPCs */
1617 nvkm_wr32(device, 0x40910c, 0x00000000);
1618 nvkm_wr32(device, 0x409100, 0x00000002);
1619 if (nvkm_msec(device, 2000,
1620 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1621 break;
1622 ) < 0) {
1623 gf100_gr_ctxctl_debug(gr);
1624 return -EBUSY;
1625 }
1626
1627 gr->size = nvkm_rd32(device, 0x409804);
1628 if (gr->data == NULL) {
1629 int ret = gf100_grctx_generate(gr);
1630 if (ret) {
1631 nvkm_error(subdev, "failed to construct context\n");
1632 return ret;
1633 }
1634 }
1635
1636 return 0;
1637 }
1638
1639 static int
gf100_gr_oneinit(struct nvkm_gr * base)1640 gf100_gr_oneinit(struct nvkm_gr *base)
1641 {
1642 struct gf100_gr *gr = gf100_gr(base);
1643 struct nvkm_device *device = gr->base.engine.subdev.device;
1644 int i, j;
1645
1646 nvkm_pmu_pgob(device->pmu, false);
1647
1648 gr->rop_nr = gr->func->rops(gr);
1649 gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1650 for (i = 0; i < gr->gpc_nr; i++) {
1651 gr->tpc_nr[i] = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1652 gr->tpc_total += gr->tpc_nr[i];
1653 gr->ppc_nr[i] = gr->func->ppc_nr;
1654 for (j = 0; j < gr->ppc_nr[i]; j++) {
1655 u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1656 if (mask)
1657 gr->ppc_mask[i] |= (1 << j);
1658 gr->ppc_tpc_nr[i][j] = hweight8(mask);
1659 }
1660 }
1661
1662 /*XXX: these need figuring out... though it might not even matter */
1663 switch (device->chipset) {
1664 case 0xc0:
1665 if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1666 gr->screen_tile_row_offset = 0x07;
1667 } else
1668 if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1669 gr->screen_tile_row_offset = 0x05;
1670 } else
1671 if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1672 gr->screen_tile_row_offset = 0x06;
1673 }
1674 break;
1675 case 0xc3: /* 450, 4/0/0/0, 2 */
1676 gr->screen_tile_row_offset = 0x03;
1677 break;
1678 case 0xc4: /* 460, 3/4/0/0, 4 */
1679 gr->screen_tile_row_offset = 0x01;
1680 break;
1681 case 0xc1: /* 2/0/0/0, 1 */
1682 gr->screen_tile_row_offset = 0x01;
1683 break;
1684 case 0xc8: /* 4/4/3/4, 5 */
1685 gr->screen_tile_row_offset = 0x06;
1686 break;
1687 case 0xce: /* 4/4/0/0, 4 */
1688 gr->screen_tile_row_offset = 0x03;
1689 break;
1690 case 0xcf: /* 4/0/0/0, 3 */
1691 gr->screen_tile_row_offset = 0x03;
1692 break;
1693 case 0xd7:
1694 case 0xd9: /* 1/0/0/0, 1 */
1695 case 0xea: /* gk20a */
1696 case 0x12b: /* gm20b */
1697 gr->screen_tile_row_offset = 0x01;
1698 break;
1699 }
1700
1701 return 0;
1702 }
1703
1704 int
gf100_gr_init_(struct nvkm_gr * base)1705 gf100_gr_init_(struct nvkm_gr *base)
1706 {
1707 struct gf100_gr *gr = gf100_gr(base);
1708 nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1709 return gr->func->init(gr);
1710 }
1711
1712 void
gf100_gr_dtor_fw(struct gf100_gr_fuc * fuc)1713 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1714 {
1715 kfree(fuc->data);
1716 fuc->data = NULL;
1717 }
1718
1719 static void
gf100_gr_dtor_init(struct gf100_gr_pack * pack)1720 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1721 {
1722 vfree(pack);
1723 }
1724
1725 void *
gf100_gr_dtor(struct nvkm_gr * base)1726 gf100_gr_dtor(struct nvkm_gr *base)
1727 {
1728 struct gf100_gr *gr = gf100_gr(base);
1729
1730 if (gr->func->dtor)
1731 gr->func->dtor(gr);
1732 kfree(gr->data);
1733
1734 gf100_gr_dtor_fw(&gr->fuc409c);
1735 gf100_gr_dtor_fw(&gr->fuc409d);
1736 gf100_gr_dtor_fw(&gr->fuc41ac);
1737 gf100_gr_dtor_fw(&gr->fuc41ad);
1738
1739 gf100_gr_dtor_init(gr->fuc_bundle);
1740 gf100_gr_dtor_init(gr->fuc_method);
1741 gf100_gr_dtor_init(gr->fuc_sw_ctx);
1742 gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1743
1744 return gr;
1745 }
1746
1747 static const struct nvkm_gr_func
1748 gf100_gr_ = {
1749 .dtor = gf100_gr_dtor,
1750 .oneinit = gf100_gr_oneinit,
1751 .init = gf100_gr_init_,
1752 .intr = gf100_gr_intr,
1753 .units = gf100_gr_units,
1754 .chan_new = gf100_gr_chan_new,
1755 .object_get = gf100_gr_object_get,
1756 };
1757
1758 int
gf100_gr_ctor_fw_legacy(struct gf100_gr * gr,const char * fwname,struct gf100_gr_fuc * fuc,int ret)1759 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1760 struct gf100_gr_fuc *fuc, int ret)
1761 {
1762 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1763 struct nvkm_device *device = subdev->device;
1764 const struct firmware *fw;
1765 char f[32];
1766
1767 /* see if this firmware has a legacy path */
1768 if (!strcmp(fwname, "fecs_inst"))
1769 fwname = "fuc409c";
1770 else if (!strcmp(fwname, "fecs_data"))
1771 fwname = "fuc409d";
1772 else if (!strcmp(fwname, "gpccs_inst"))
1773 fwname = "fuc41ac";
1774 else if (!strcmp(fwname, "gpccs_data"))
1775 fwname = "fuc41ad";
1776 else {
1777 /* nope, let's just return the error we got */
1778 nvkm_error(subdev, "failed to load %s\n", fwname);
1779 return ret;
1780 }
1781
1782 /* yes, try to load from the legacy path */
1783 nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1784
1785 snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1786 ret = request_firmware(&fw, f, device->dev);
1787 if (ret) {
1788 snprintf(f, sizeof(f), "nouveau/%s", fwname);
1789 ret = request_firmware(&fw, f, device->dev);
1790 if (ret) {
1791 nvkm_error(subdev, "failed to load %s\n", fwname);
1792 return ret;
1793 }
1794 }
1795
1796 fuc->size = fw->size;
1797 fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1798 release_firmware(fw);
1799 return (fuc->data != NULL) ? 0 : -ENOMEM;
1800 }
1801
1802 int
gf100_gr_ctor_fw(struct gf100_gr * gr,const char * fwname,struct gf100_gr_fuc * fuc)1803 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1804 struct gf100_gr_fuc *fuc)
1805 {
1806 struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1807 struct nvkm_device *device = subdev->device;
1808 const struct firmware *fw;
1809 int ret;
1810
1811 ret = nvkm_firmware_get(device, fwname, &fw);
1812 if (ret)
1813 return gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1814
1815 fuc->size = fw->size;
1816 fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1817 nvkm_firmware_put(fw);
1818 return (fuc->data != NULL) ? 0 : -ENOMEM;
1819 }
1820
1821 int
gf100_gr_ctor(const struct gf100_gr_func * func,struct nvkm_device * device,int index,struct gf100_gr * gr)1822 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1823 int index, struct gf100_gr *gr)
1824 {
1825 int ret;
1826
1827 gr->func = func;
1828 gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1829 func->fecs.ucode == NULL);
1830
1831 ret = nvkm_gr_ctor(&gf100_gr_, device, index,
1832 gr->firmware || func->fecs.ucode != NULL,
1833 &gr->base);
1834 if (ret)
1835 return ret;
1836
1837 return 0;
1838 }
1839
1840 int
gf100_gr_new_(const struct gf100_gr_func * func,struct nvkm_device * device,int index,struct nvkm_gr ** pgr)1841 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1842 int index, struct nvkm_gr **pgr)
1843 {
1844 struct gf100_gr *gr;
1845 int ret;
1846
1847 if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1848 return -ENOMEM;
1849 *pgr = &gr->base;
1850
1851 ret = gf100_gr_ctor(func, device, index, gr);
1852 if (ret)
1853 return ret;
1854
1855 if (gr->firmware) {
1856 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1857 gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1858 gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1859 gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1860 return -ENODEV;
1861 }
1862
1863 return 0;
1864 }
1865
1866 int
gf100_gr_init(struct gf100_gr * gr)1867 gf100_gr_init(struct gf100_gr *gr)
1868 {
1869 struct nvkm_device *device = gr->base.engine.subdev.device;
1870 struct nvkm_fb *fb = device->fb;
1871 const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1872 u32 data[TPC_MAX / 8] = {};
1873 u8 tpcnr[GPC_MAX];
1874 int gpc, tpc, rop;
1875 int i;
1876
1877 nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000);
1878 nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000);
1879 nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000);
1880 nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000);
1881 nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000);
1882 nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000);
1883 nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8);
1884 nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8);
1885
1886 gf100_gr_mmio(gr, gr->func->mmio);
1887
1888 nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
1889
1890 memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1891 for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1892 do {
1893 gpc = (gpc + 1) % gr->gpc_nr;
1894 } while (!tpcnr[gpc]);
1895 tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1896
1897 data[i / 8] |= tpc << ((i % 8) * 4);
1898 }
1899
1900 nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1901 nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1902 nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1903 nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1904
1905 for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1906 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1907 gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
1908 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1909 gr->tpc_total);
1910 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1911 }
1912
1913 if (device->chipset != 0xd7)
1914 nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1915 else
1916 nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1917
1918 nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1919
1920 nvkm_wr32(device, 0x400500, 0x00010001);
1921
1922 nvkm_wr32(device, 0x400100, 0xffffffff);
1923 nvkm_wr32(device, 0x40013c, 0xffffffff);
1924
1925 nvkm_wr32(device, 0x409c24, 0x000f0000);
1926 nvkm_wr32(device, 0x404000, 0xc0000000);
1927 nvkm_wr32(device, 0x404600, 0xc0000000);
1928 nvkm_wr32(device, 0x408030, 0xc0000000);
1929 nvkm_wr32(device, 0x40601c, 0xc0000000);
1930 nvkm_wr32(device, 0x404490, 0xc0000000);
1931 nvkm_wr32(device, 0x406018, 0xc0000000);
1932 nvkm_wr32(device, 0x405840, 0xc0000000);
1933 nvkm_wr32(device, 0x405844, 0x00ffffff);
1934 nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1935 nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1936
1937 for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1938 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1939 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1940 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1941 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1942 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1943 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
1944 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
1945 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
1946 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
1947 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
1948 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
1949 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
1950 }
1951 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
1952 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
1953 }
1954
1955 for (rop = 0; rop < gr->rop_nr; rop++) {
1956 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1957 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1958 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
1959 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
1960 }
1961
1962 nvkm_wr32(device, 0x400108, 0xffffffff);
1963 nvkm_wr32(device, 0x400138, 0xffffffff);
1964 nvkm_wr32(device, 0x400118, 0xffffffff);
1965 nvkm_wr32(device, 0x400130, 0xffffffff);
1966 nvkm_wr32(device, 0x40011c, 0xffffffff);
1967 nvkm_wr32(device, 0x400134, 0xffffffff);
1968
1969 nvkm_wr32(device, 0x400054, 0x34ce3464);
1970
1971 gf100_gr_zbc_init(gr);
1972
1973 return gf100_gr_init_ctxctl(gr);
1974 }
1975
1976 #include "fuc/hubgf100.fuc3.h"
1977
1978 struct gf100_gr_ucode
1979 gf100_gr_fecs_ucode = {
1980 .code.data = gf100_grhub_code,
1981 .code.size = sizeof(gf100_grhub_code),
1982 .data.data = gf100_grhub_data,
1983 .data.size = sizeof(gf100_grhub_data),
1984 };
1985
1986 #include "fuc/gpcgf100.fuc3.h"
1987
1988 struct gf100_gr_ucode
1989 gf100_gr_gpccs_ucode = {
1990 .code.data = gf100_grgpc_code,
1991 .code.size = sizeof(gf100_grgpc_code),
1992 .data.data = gf100_grgpc_data,
1993 .data.size = sizeof(gf100_grgpc_data),
1994 };
1995
1996 static const struct gf100_gr_func
1997 gf100_gr = {
1998 .init = gf100_gr_init,
1999 .mmio = gf100_gr_pack_mmio,
2000 .fecs.ucode = &gf100_gr_fecs_ucode,
2001 .gpccs.ucode = &gf100_gr_gpccs_ucode,
2002 .rops = gf100_gr_rops,
2003 .grctx = &gf100_grctx,
2004 .sclass = {
2005 { -1, -1, FERMI_TWOD_A },
2006 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2007 { -1, -1, FERMI_A, &gf100_fermi },
2008 { -1, -1, FERMI_COMPUTE_A },
2009 {}
2010 }
2011 };
2012
2013 int
gf100_gr_new(struct nvkm_device * device,int index,struct nvkm_gr ** pgr)2014 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2015 {
2016 return gf100_gr_new_(&gf100_gr, device, index, pgr);
2017 }
2018