• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #define gf100_ram(p) container_of((p), struct gf100_ram, base)
25 #include "ram.h"
26 #include "ramfuc.h"
27 
28 #include <core/option.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk.h>
34 #include <subdev/clk/pll.h>
35 #include <subdev/ltc.h>
36 
37 struct gf100_ramfuc {
38 	struct ramfuc base;
39 
40 	struct ramfuc_reg r_0x10fe20;
41 	struct ramfuc_reg r_0x10fe24;
42 	struct ramfuc_reg r_0x137320;
43 	struct ramfuc_reg r_0x137330;
44 
45 	struct ramfuc_reg r_0x132000;
46 	struct ramfuc_reg r_0x132004;
47 	struct ramfuc_reg r_0x132100;
48 
49 	struct ramfuc_reg r_0x137390;
50 
51 	struct ramfuc_reg r_0x10f290;
52 	struct ramfuc_reg r_0x10f294;
53 	struct ramfuc_reg r_0x10f298;
54 	struct ramfuc_reg r_0x10f29c;
55 	struct ramfuc_reg r_0x10f2a0;
56 
57 	struct ramfuc_reg r_0x10f300;
58 	struct ramfuc_reg r_0x10f338;
59 	struct ramfuc_reg r_0x10f340;
60 	struct ramfuc_reg r_0x10f344;
61 	struct ramfuc_reg r_0x10f348;
62 
63 	struct ramfuc_reg r_0x10f910;
64 	struct ramfuc_reg r_0x10f914;
65 
66 	struct ramfuc_reg r_0x100b0c;
67 	struct ramfuc_reg r_0x10f050;
68 	struct ramfuc_reg r_0x10f090;
69 	struct ramfuc_reg r_0x10f200;
70 	struct ramfuc_reg r_0x10f210;
71 	struct ramfuc_reg r_0x10f310;
72 	struct ramfuc_reg r_0x10f314;
73 	struct ramfuc_reg r_0x10f610;
74 	struct ramfuc_reg r_0x10f614;
75 	struct ramfuc_reg r_0x10f800;
76 	struct ramfuc_reg r_0x10f808;
77 	struct ramfuc_reg r_0x10f824;
78 	struct ramfuc_reg r_0x10f830;
79 	struct ramfuc_reg r_0x10f988;
80 	struct ramfuc_reg r_0x10f98c;
81 	struct ramfuc_reg r_0x10f990;
82 	struct ramfuc_reg r_0x10f998;
83 	struct ramfuc_reg r_0x10f9b0;
84 	struct ramfuc_reg r_0x10f9b4;
85 	struct ramfuc_reg r_0x10fb04;
86 	struct ramfuc_reg r_0x10fb08;
87 	struct ramfuc_reg r_0x137300;
88 	struct ramfuc_reg r_0x137310;
89 	struct ramfuc_reg r_0x137360;
90 	struct ramfuc_reg r_0x1373ec;
91 	struct ramfuc_reg r_0x1373f0;
92 	struct ramfuc_reg r_0x1373f8;
93 
94 	struct ramfuc_reg r_0x61c140;
95 	struct ramfuc_reg r_0x611200;
96 
97 	struct ramfuc_reg r_0x13d8f4;
98 };
99 
100 struct gf100_ram {
101 	struct nvkm_ram base;
102 	struct gf100_ramfuc fuc;
103 	struct nvbios_pll refpll;
104 	struct nvbios_pll mempll;
105 };
106 
107 static void
gf100_ram_train(struct gf100_ramfuc * fuc,u32 magic)108 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
109 {
110 	struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
111 	struct nvkm_fb *fb = ram->base.fb;
112 	struct nvkm_device *device = fb->subdev.device;
113 	u32 part = nvkm_rd32(device, 0x022438), i;
114 	u32 mask = nvkm_rd32(device, 0x022554);
115 	u32 addr = 0x110974;
116 
117 	ram_wr32(fuc, 0x10f910, magic);
118 	ram_wr32(fuc, 0x10f914, magic);
119 
120 	for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
121 		if (mask & (1 << i))
122 			continue;
123 		ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
124 	}
125 }
126 
127 static int
gf100_ram_calc(struct nvkm_ram * base,u32 freq)128 gf100_ram_calc(struct nvkm_ram *base, u32 freq)
129 {
130 	struct gf100_ram *ram = gf100_ram(base);
131 	struct gf100_ramfuc *fuc = &ram->fuc;
132 	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
133 	struct nvkm_device *device = subdev->device;
134 	struct nvkm_clk *clk = device->clk;
135 	struct nvkm_bios *bios = device->bios;
136 	struct nvbios_ramcfg cfg;
137 	u8  ver, cnt, len, strap;
138 	struct {
139 		u32 data;
140 		u8  size;
141 	} rammap, ramcfg, timing;
142 	int ref, div, out;
143 	int from, mode;
144 	int N1, M1, P;
145 	int ret;
146 
147 	/* lookup memory config data relevant to the target frequency */
148 	rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
149 				      &cnt, &ramcfg.size, &cfg);
150 	if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
151 		nvkm_error(subdev, "invalid/missing rammap entry\n");
152 		return -EINVAL;
153 	}
154 
155 	/* locate specific data set for the attached memory */
156 	strap = nvbios_ramcfg_index(subdev);
157 	if (strap >= cnt) {
158 		nvkm_error(subdev, "invalid ramcfg strap\n");
159 		return -EINVAL;
160 	}
161 
162 	ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
163 	if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
164 		nvkm_error(subdev, "invalid/missing ramcfg entry\n");
165 		return -EINVAL;
166 	}
167 
168 	/* lookup memory timings, if bios says they're present */
169 	strap = nvbios_rd08(bios, ramcfg.data + 0x01);
170 	if (strap != 0xff) {
171 		timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
172 					      &cnt, &len);
173 		if (!timing.data || ver != 0x10 || timing.size < 0x19) {
174 			nvkm_error(subdev, "invalid/missing timing entry\n");
175 			return -EINVAL;
176 		}
177 	} else {
178 		timing.data = 0;
179 	}
180 
181 	ret = ram_init(fuc, ram->base.fb);
182 	if (ret)
183 		return ret;
184 
185 	/* determine current mclk configuration */
186 	from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
187 
188 	/* determine target mclk configuration */
189 	if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
190 		ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
191 	else
192 		ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
193 	div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
194 	out = (ref * 2) / (div + 2);
195 	mode = freq != out;
196 
197 	ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
198 
199 	if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
200 		ram_nuke(fuc, 0x132000);
201 		ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
202 		ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
203 	}
204 
205 	if (mode == 1) {
206 		ram_nuke(fuc, 0x10fe20);
207 		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
208 		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
209 	}
210 
211 // 0x00020034 // 0x0000000a
212 	ram_wr32(fuc, 0x132100, 0x00000001);
213 
214 	if (mode == 1 && from == 0) {
215 		/* calculate refpll */
216 		ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
217 				     &N1, NULL, &M1, &P);
218 		if (ret <= 0) {
219 			nvkm_error(subdev, "unable to calc refpll\n");
220 			return ret ? ret : -ERANGE;
221 		}
222 
223 		ram_wr32(fuc, 0x10fe20, 0x20010000);
224 		ram_wr32(fuc, 0x137320, 0x00000003);
225 		ram_wr32(fuc, 0x137330, 0x81200006);
226 		ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
227 		ram_wr32(fuc, 0x10fe20, 0x20010001);
228 		ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
229 
230 		/* calculate mempll */
231 		ret = gt215_pll_calc(subdev, &ram->mempll, freq,
232 				     &N1, NULL, &M1, &P);
233 		if (ret <= 0) {
234 			nvkm_error(subdev, "unable to calc refpll\n");
235 			return ret ? ret : -ERANGE;
236 		}
237 
238 		ram_wr32(fuc, 0x10fe20, 0x20010005);
239 		ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
240 		ram_wr32(fuc, 0x132000, 0x18010101);
241 		ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
242 	} else
243 	if (mode == 0) {
244 		ram_wr32(fuc, 0x137300, 0x00000003);
245 	}
246 
247 	if (from == 0) {
248 		ram_nuke(fuc, 0x10fb04);
249 		ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
250 		ram_nuke(fuc, 0x10fb08);
251 		ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
252 		ram_wr32(fuc, 0x10f988, 0x2004ff00);
253 		ram_wr32(fuc, 0x10f98c, 0x003fc040);
254 		ram_wr32(fuc, 0x10f990, 0x20012001);
255 		ram_wr32(fuc, 0x10f998, 0x00011a00);
256 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
257 	} else {
258 		ram_wr32(fuc, 0x10f988, 0x20010000);
259 		ram_wr32(fuc, 0x10f98c, 0x00000000);
260 		ram_wr32(fuc, 0x10f990, 0x20012001);
261 		ram_wr32(fuc, 0x10f998, 0x00010a00);
262 	}
263 
264 	if (from == 0) {
265 // 0x00020039 // 0x000000ba
266 	}
267 
268 // 0x0002003a // 0x00000002
269 	ram_wr32(fuc, 0x100b0c, 0x00080012);
270 // 0x00030014 // 0x00000000 // 0x02b5f070
271 // 0x00030014 // 0x00010000 // 0x02b5f070
272 	ram_wr32(fuc, 0x611200, 0x00003300);
273 // 0x00020034 // 0x0000000a
274 // 0x00030020 // 0x00000001 // 0x00000000
275 
276 	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
277 	ram_wr32(fuc, 0x10f210, 0x00000000);
278 	ram_nsec(fuc, 1000);
279 	if (mode == 0)
280 		gf100_ram_train(fuc, 0x000c1001);
281 	ram_wr32(fuc, 0x10f310, 0x00000001);
282 	ram_nsec(fuc, 1000);
283 	ram_wr32(fuc, 0x10f090, 0x00000061);
284 	ram_wr32(fuc, 0x10f090, 0xc000007f);
285 	ram_nsec(fuc, 1000);
286 
287 	if (from == 0) {
288 		ram_wr32(fuc, 0x10f824, 0x00007fd4);
289 	} else {
290 		ram_wr32(fuc, 0x1373ec, 0x00020404);
291 	}
292 
293 	if (mode == 0) {
294 		ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
295 		ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
296 		ram_wr32(fuc, 0x10f830, 0x41500010);
297 		ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
298 		ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
299 		ram_wr32(fuc, 0x10f050, 0xff000090);
300 		ram_wr32(fuc, 0x1373ec, 0x00020f0f);
301 		ram_wr32(fuc, 0x1373f0, 0x00000003);
302 		ram_wr32(fuc, 0x137310, 0x81201616);
303 		ram_wr32(fuc, 0x132100, 0x00000001);
304 // 0x00020039 // 0x000000ba
305 		ram_wr32(fuc, 0x10f830, 0x00300017);
306 		ram_wr32(fuc, 0x1373f0, 0x00000001);
307 		ram_wr32(fuc, 0x10f824, 0x00007e77);
308 		ram_wr32(fuc, 0x132000, 0x18030001);
309 		ram_wr32(fuc, 0x10f090, 0x4000007e);
310 		ram_nsec(fuc, 2000);
311 		ram_wr32(fuc, 0x10f314, 0x00000001);
312 		ram_wr32(fuc, 0x10f210, 0x80000000);
313 		ram_wr32(fuc, 0x10f338, 0x00300220);
314 		ram_wr32(fuc, 0x10f300, 0x0000011d);
315 		ram_nsec(fuc, 1000);
316 		ram_wr32(fuc, 0x10f290, 0x02060505);
317 		ram_wr32(fuc, 0x10f294, 0x34208288);
318 		ram_wr32(fuc, 0x10f298, 0x44050411);
319 		ram_wr32(fuc, 0x10f29c, 0x0000114c);
320 		ram_wr32(fuc, 0x10f2a0, 0x42e10069);
321 		ram_wr32(fuc, 0x10f614, 0x40044f77);
322 		ram_wr32(fuc, 0x10f610, 0x40044f77);
323 		ram_wr32(fuc, 0x10f344, 0x00600009);
324 		ram_nsec(fuc, 1000);
325 		ram_wr32(fuc, 0x10f348, 0x00700008);
326 		ram_wr32(fuc, 0x61c140, 0x19240000);
327 		ram_wr32(fuc, 0x10f830, 0x00300017);
328 		gf100_ram_train(fuc, 0x80021001);
329 		gf100_ram_train(fuc, 0x80081001);
330 		ram_wr32(fuc, 0x10f340, 0x00500004);
331 		ram_nsec(fuc, 1000);
332 		ram_wr32(fuc, 0x10f830, 0x01300017);
333 		ram_wr32(fuc, 0x10f830, 0x00300017);
334 // 0x00030020 // 0x00000000 // 0x00000000
335 // 0x00020034 // 0x0000000b
336 		ram_wr32(fuc, 0x100b0c, 0x00080028);
337 		ram_wr32(fuc, 0x611200, 0x00003330);
338 	} else {
339 		ram_wr32(fuc, 0x10f800, 0x00001800);
340 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
341 		ram_wr32(fuc, 0x1373ec, 0x00020404);
342 		ram_wr32(fuc, 0x1373f0, 0x00000003);
343 		ram_wr32(fuc, 0x10f830, 0x40700010);
344 		ram_wr32(fuc, 0x10f830, 0x40500010);
345 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
346 		ram_wr32(fuc, 0x1373f8, 0x00000000);
347 		ram_wr32(fuc, 0x132100, 0x00000101);
348 		ram_wr32(fuc, 0x137310, 0x89201616);
349 		ram_wr32(fuc, 0x10f050, 0xff000090);
350 		ram_wr32(fuc, 0x1373ec, 0x00030404);
351 		ram_wr32(fuc, 0x1373f0, 0x00000002);
352 	// 0x00020039 // 0x00000011
353 		ram_wr32(fuc, 0x132100, 0x00000001);
354 		ram_wr32(fuc, 0x1373f8, 0x00002000);
355 		ram_nsec(fuc, 2000);
356 		ram_wr32(fuc, 0x10f808, 0x7aaa0050);
357 		ram_wr32(fuc, 0x10f830, 0x00500010);
358 		ram_wr32(fuc, 0x10f200, 0x00ce1000);
359 		ram_wr32(fuc, 0x10f090, 0x4000007e);
360 		ram_nsec(fuc, 2000);
361 		ram_wr32(fuc, 0x10f314, 0x00000001);
362 		ram_wr32(fuc, 0x10f210, 0x80000000);
363 		ram_wr32(fuc, 0x10f338, 0x00300200);
364 		ram_wr32(fuc, 0x10f300, 0x0000084d);
365 		ram_nsec(fuc, 1000);
366 		ram_wr32(fuc, 0x10f290, 0x0b343825);
367 		ram_wr32(fuc, 0x10f294, 0x3483028e);
368 		ram_wr32(fuc, 0x10f298, 0x440c0600);
369 		ram_wr32(fuc, 0x10f29c, 0x0000214c);
370 		ram_wr32(fuc, 0x10f2a0, 0x42e20069);
371 		ram_wr32(fuc, 0x10f200, 0x00ce0000);
372 		ram_wr32(fuc, 0x10f614, 0x60044e77);
373 		ram_wr32(fuc, 0x10f610, 0x60044e77);
374 		ram_wr32(fuc, 0x10f340, 0x00500000);
375 		ram_nsec(fuc, 1000);
376 		ram_wr32(fuc, 0x10f344, 0x00600228);
377 		ram_nsec(fuc, 1000);
378 		ram_wr32(fuc, 0x10f348, 0x00700000);
379 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
380 		ram_wr32(fuc, 0x61c140, 0x09a40000);
381 
382 		gf100_ram_train(fuc, 0x800e1008);
383 
384 		ram_nsec(fuc, 1000);
385 		ram_wr32(fuc, 0x10f800, 0x00001804);
386 	// 0x00030020 // 0x00000000 // 0x00000000
387 	// 0x00020034 // 0x0000000b
388 		ram_wr32(fuc, 0x13d8f4, 0x00000000);
389 		ram_wr32(fuc, 0x100b0c, 0x00080028);
390 		ram_wr32(fuc, 0x611200, 0x00003330);
391 		ram_nsec(fuc, 100000);
392 		ram_wr32(fuc, 0x10f9b0, 0x05313f41);
393 		ram_wr32(fuc, 0x10f9b4, 0x00002f50);
394 
395 		gf100_ram_train(fuc, 0x010c1001);
396 	}
397 
398 	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
399 // 0x00020016 // 0x00000000
400 
401 	if (mode == 0)
402 		ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
403 
404 	return 0;
405 }
406 
407 static int
gf100_ram_prog(struct nvkm_ram * base)408 gf100_ram_prog(struct nvkm_ram *base)
409 {
410 	struct gf100_ram *ram = gf100_ram(base);
411 	struct nvkm_device *device = ram->base.fb->subdev.device;
412 	ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
413 	return 0;
414 }
415 
416 static void
gf100_ram_tidy(struct nvkm_ram * base)417 gf100_ram_tidy(struct nvkm_ram *base)
418 {
419 	struct gf100_ram *ram = gf100_ram(base);
420 	ram_exec(&ram->fuc, false);
421 }
422 
423 extern const u8 gf100_pte_storage_type_map[256];
424 
425 void
gf100_ram_put(struct nvkm_ram * ram,struct nvkm_mem ** pmem)426 gf100_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
427 {
428 	struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
429 	struct nvkm_mem *mem = *pmem;
430 
431 	*pmem = NULL;
432 	if (unlikely(mem == NULL))
433 		return;
434 
435 	mutex_lock(&ram->fb->subdev.mutex);
436 	if (mem->tag)
437 		nvkm_ltc_tags_free(ltc, &mem->tag);
438 	__nv50_ram_put(ram, mem);
439 	mutex_unlock(&ram->fb->subdev.mutex);
440 
441 	kfree(mem);
442 }
443 
444 int
gf100_ram_get(struct nvkm_ram * ram,u64 size,u32 align,u32 ncmin,u32 memtype,struct nvkm_mem ** pmem)445 gf100_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
446 	      u32 memtype, struct nvkm_mem **pmem)
447 {
448 	struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
449 	struct nvkm_mm *mm = &ram->vram;
450 	struct nvkm_mm_node *r;
451 	struct nvkm_mem *mem;
452 	int type = (memtype & 0x0ff);
453 	int back = (memtype & 0x800);
454 	const bool comp = gf100_pte_storage_type_map[type] != type;
455 	int ret;
456 
457 	size  >>= NVKM_RAM_MM_SHIFT;
458 	align >>= NVKM_RAM_MM_SHIFT;
459 	ncmin >>= NVKM_RAM_MM_SHIFT;
460 	if (!ncmin)
461 		ncmin = size;
462 
463 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
464 	if (!mem)
465 		return -ENOMEM;
466 
467 	INIT_LIST_HEAD(&mem->regions);
468 	mem->size = size;
469 
470 	mutex_lock(&ram->fb->subdev.mutex);
471 	if (comp) {
472 		/* compression only works with lpages */
473 		if (align == (1 << (17 - NVKM_RAM_MM_SHIFT))) {
474 			int n = size >> 5;
475 			nvkm_ltc_tags_alloc(ltc, n, &mem->tag);
476 		}
477 
478 		if (unlikely(!mem->tag))
479 			type = gf100_pte_storage_type_map[type];
480 	}
481 	mem->memtype = type;
482 
483 	do {
484 		if (back)
485 			ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
486 		else
487 			ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
488 		if (ret) {
489 			mutex_unlock(&ram->fb->subdev.mutex);
490 			ram->func->put(ram, &mem);
491 			return ret;
492 		}
493 
494 		list_add_tail(&r->rl_entry, &mem->regions);
495 		size -= r->length;
496 	} while (size);
497 	mutex_unlock(&ram->fb->subdev.mutex);
498 
499 	r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
500 	mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
501 	*pmem = mem;
502 	return 0;
503 }
504 
505 static int
gf100_ram_init(struct nvkm_ram * base)506 gf100_ram_init(struct nvkm_ram *base)
507 {
508 	static const u8  train0[] = {
509 		0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
510 		0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
511 	};
512 	static const u32 train1[] = {
513 		0x00000000, 0xffffffff,
514 		0x55555555, 0xaaaaaaaa,
515 		0x33333333, 0xcccccccc,
516 		0xf0f0f0f0, 0x0f0f0f0f,
517 		0x00ff00ff, 0xff00ff00,
518 		0x0000ffff, 0xffff0000,
519 	};
520 	struct gf100_ram *ram = gf100_ram(base);
521 	struct nvkm_device *device = ram->base.fb->subdev.device;
522 	int i;
523 
524 	switch (ram->base.type) {
525 	case NVKM_RAM_TYPE_GDDR5:
526 		break;
527 	default:
528 		return 0;
529 	}
530 
531 	/* prepare for ddr link training, and load training patterns */
532 	for (i = 0; i < 0x30; i++) {
533 		nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
534 		nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
535 		nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
536 		nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
537 		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
538 		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
539 		nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
540 		nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
541 		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
542 		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
543 	}
544 
545 	return 0;
546 }
547 
548 static const struct nvkm_ram_func
549 gf100_ram_func = {
550 	.init = gf100_ram_init,
551 	.get = gf100_ram_get,
552 	.put = gf100_ram_put,
553 	.calc = gf100_ram_calc,
554 	.prog = gf100_ram_prog,
555 	.tidy = gf100_ram_tidy,
556 };
557 
558 int
gf100_ram_ctor(const struct nvkm_ram_func * func,struct nvkm_fb * fb,u32 maskaddr,struct nvkm_ram * ram)559 gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
560 	       u32 maskaddr, struct nvkm_ram *ram)
561 {
562 	struct nvkm_subdev *subdev = &fb->subdev;
563 	struct nvkm_device *device = subdev->device;
564 	struct nvkm_bios *bios = device->bios;
565 	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
566 	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
567 	u32 parts = nvkm_rd32(device, 0x022438);
568 	u32 pmask = nvkm_rd32(device, maskaddr);
569 	u64 bsize = (u64)nvkm_rd32(device, 0x10f20c) << 20;
570 	u64 psize, size = 0;
571 	enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
572 	bool uniform = true;
573 	int ret, i;
574 
575 	nvkm_debug(subdev, "100800: %08x\n", nvkm_rd32(device, 0x100800));
576 	nvkm_debug(subdev, "parts %08x mask %08x\n", parts, pmask);
577 
578 	/* read amount of vram attached to each memory controller */
579 	for (i = 0; i < parts; i++) {
580 		if (pmask & (1 << i))
581 			continue;
582 
583 		psize = (u64)nvkm_rd32(device, 0x11020c + (i * 0x1000)) << 20;
584 		if (psize != bsize) {
585 			if (psize < bsize)
586 				bsize = psize;
587 			uniform = false;
588 		}
589 
590 		nvkm_debug(subdev, "%d: %d MiB\n", i, (u32)(psize >> 20));
591 		size += psize;
592 	}
593 
594 	ret = nvkm_ram_ctor(func, fb, type, size, 0, ram);
595 	if (ret)
596 		return ret;
597 
598 	nvkm_mm_fini(&ram->vram);
599 
600 	/* if all controllers have the same amount attached, there's no holes */
601 	if (uniform) {
602 		ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
603 				   (size - rsvd_head - rsvd_tail) >>
604 				   NVKM_RAM_MM_SHIFT, 1);
605 		if (ret)
606 			return ret;
607 	} else {
608 		/* otherwise, address lowest common amount from 0GiB */
609 		ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
610 				   ((bsize * parts) - rsvd_head) >>
611 				   NVKM_RAM_MM_SHIFT, 1);
612 		if (ret)
613 			return ret;
614 
615 		/* and the rest starting from (8GiB + common_size) */
616 		ret = nvkm_mm_init(&ram->vram, (0x0200000000ULL + bsize) >>
617 				   NVKM_RAM_MM_SHIFT,
618 				   (size - (bsize * parts) - rsvd_tail) >>
619 				   NVKM_RAM_MM_SHIFT, 1);
620 		if (ret)
621 			return ret;
622 	}
623 
624 	ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
625 	return 0;
626 }
627 
628 int
gf100_ram_new(struct nvkm_fb * fb,struct nvkm_ram ** pram)629 gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
630 {
631 	struct nvkm_subdev *subdev = &fb->subdev;
632 	struct nvkm_bios *bios = subdev->device->bios;
633 	struct gf100_ram *ram;
634 	int ret;
635 
636 	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
637 		return -ENOMEM;
638 	*pram = &ram->base;
639 
640 	ret = gf100_ram_ctor(&gf100_ram_func, fb, 0x022554, &ram->base);
641 	if (ret)
642 		return ret;
643 
644 	ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
645 	if (ret) {
646 		nvkm_error(subdev, "mclk refpll data not found\n");
647 		return ret;
648 	}
649 
650 	ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
651 	if (ret) {
652 		nvkm_error(subdev, "mclk pll data not found\n");
653 		return ret;
654 	}
655 
656 	ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
657 	ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
658 	ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
659 	ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
660 
661 	ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
662 	ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
663 	ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
664 
665 	ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
666 
667 	ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
668 	ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
669 	ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
670 	ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
671 	ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
672 
673 	ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
674 	ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
675 	ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
676 	ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
677 	ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
678 
679 	ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
680 	ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
681 
682 	ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
683 	ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
684 	ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
685 	ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
686 	ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
687 	ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
688 	ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
689 	ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
690 	ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
691 	ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
692 	ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
693 	ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
694 	ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
695 	ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
696 	ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
697 	ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
698 	ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
699 	ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
700 	ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
701 	ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
702 	ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
703 	ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
704 	ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
705 	ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
706 	ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
707 	ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
708 	ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
709 
710 	ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
711 	ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
712 
713 	ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
714 	return 0;
715 }
716