• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_GFP_H
2 #define __LINUX_GFP_H
3 
4 #include <linux/mmdebug.h>
5 #include <linux/mmzone.h>
6 #include <linux/stddef.h>
7 #include <linux/linkage.h>
8 #include <linux/topology.h>
9 
10 struct vm_area_struct;
11 
12 /*
13  * In case of changes, please don't forget to update
14  * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
15  */
16 
17 /* Plain integer GFP bitmasks. Do not use this directly. */
18 #define ___GFP_DMA		0x01u
19 #define ___GFP_HIGHMEM		0x02u
20 #define ___GFP_DMA32		0x04u
21 #define ___GFP_MOVABLE		0x08u
22 #define ___GFP_RECLAIMABLE	0x10u
23 #define ___GFP_HIGH		0x20u
24 #define ___GFP_IO		0x40u
25 #define ___GFP_FS		0x80u
26 #define ___GFP_COLD		0x100u
27 #define ___GFP_NOWARN		0x200u
28 #define ___GFP_REPEAT		0x400u
29 #define ___GFP_NOFAIL		0x800u
30 #define ___GFP_NORETRY		0x1000u
31 #define ___GFP_MEMALLOC		0x2000u
32 #define ___GFP_COMP		0x4000u
33 #define ___GFP_ZERO		0x8000u
34 #define ___GFP_NOMEMALLOC	0x10000u
35 #define ___GFP_HARDWALL		0x20000u
36 #define ___GFP_THISNODE		0x40000u
37 #define ___GFP_ATOMIC		0x80000u
38 #define ___GFP_ACCOUNT		0x100000u
39 #define ___GFP_NOTRACK		0x200000u
40 #define ___GFP_DIRECT_RECLAIM	0x400000u
41 #define ___GFP_OTHER_NODE	0x800000u
42 #define ___GFP_WRITE		0x1000000u
43 #define ___GFP_KSWAPD_RECLAIM	0x2000000u
44 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
45 
46 /*
47  * Physical address zone modifiers (see linux/mmzone.h - low four bits)
48  *
49  * Do not put any conditional on these. If necessary modify the definitions
50  * without the underscores and use them consistently. The definitions here may
51  * be used in bit comparisons.
52  */
53 #define __GFP_DMA	((__force gfp_t)___GFP_DMA)
54 #define __GFP_HIGHMEM	((__force gfp_t)___GFP_HIGHMEM)
55 #define __GFP_DMA32	((__force gfp_t)___GFP_DMA32)
56 #define __GFP_MOVABLE	((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
57 #define GFP_ZONEMASK	(__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
58 
59 /*
60  * Page mobility and placement hints
61  *
62  * These flags provide hints about how mobile the page is. Pages with similar
63  * mobility are placed within the same pageblocks to minimise problems due
64  * to external fragmentation.
65  *
66  * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
67  *   moved by page migration during memory compaction or can be reclaimed.
68  *
69  * __GFP_RECLAIMABLE is used for slab allocations that specify
70  *   SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
71  *
72  * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
73  *   these pages will be spread between local zones to avoid all the dirty
74  *   pages being in one zone (fair zone allocation policy).
75  *
76  * __GFP_HARDWALL enforces the cpuset memory allocation policy.
77  *
78  * __GFP_THISNODE forces the allocation to be satisified from the requested
79  *   node with no fallbacks or placement policy enforcements.
80  *
81  * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
82  */
83 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
84 #define __GFP_WRITE	((__force gfp_t)___GFP_WRITE)
85 #define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
86 #define __GFP_THISNODE	((__force gfp_t)___GFP_THISNODE)
87 #define __GFP_ACCOUNT	((__force gfp_t)___GFP_ACCOUNT)
88 
89 /*
90  * Watermark modifiers -- controls access to emergency reserves
91  *
92  * __GFP_HIGH indicates that the caller is high-priority and that granting
93  *   the request is necessary before the system can make forward progress.
94  *   For example, creating an IO context to clean pages.
95  *
96  * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
97  *   high priority. Users are typically interrupt handlers. This may be
98  *   used in conjunction with __GFP_HIGH
99  *
100  * __GFP_MEMALLOC allows access to all memory. This should only be used when
101  *   the caller guarantees the allocation will allow more memory to be freed
102  *   very shortly e.g. process exiting or swapping. Users either should
103  *   be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
104  *
105  * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
106  *   This takes precedence over the __GFP_MEMALLOC flag if both are set.
107  */
108 #define __GFP_ATOMIC	((__force gfp_t)___GFP_ATOMIC)
109 #define __GFP_HIGH	((__force gfp_t)___GFP_HIGH)
110 #define __GFP_MEMALLOC	((__force gfp_t)___GFP_MEMALLOC)
111 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
112 
113 /*
114  * Reclaim modifiers
115  *
116  * __GFP_IO can start physical IO.
117  *
118  * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
119  *   allocator recursing into the filesystem which might already be holding
120  *   locks.
121  *
122  * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
123  *   This flag can be cleared to avoid unnecessary delays when a fallback
124  *   option is available.
125  *
126  * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
127  *   the low watermark is reached and have it reclaim pages until the high
128  *   watermark is reached. A caller may wish to clear this flag when fallback
129  *   options are available and the reclaim is likely to disrupt the system. The
130  *   canonical example is THP allocation where a fallback is cheap but
131  *   reclaim/compaction may cause indirect stalls.
132  *
133  * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
134  *
135  * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
136  *   _might_ fail.  This depends upon the particular VM implementation.
137  *
138  * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
139  *   cannot handle allocation failures. New users should be evaluated carefully
140  *   (and the flag should be used only when there is no reasonable failure
141  *   policy) but it is definitely preferable to use the flag rather than
142  *   opencode endless loop around allocator.
143  *
144  * __GFP_NORETRY: The VM implementation must not retry indefinitely and will
145  *   return NULL when direct reclaim and memory compaction have failed to allow
146  *   the allocation to succeed.  The OOM killer is not called with the current
147  *   implementation.
148  */
149 #define __GFP_IO	((__force gfp_t)___GFP_IO)
150 #define __GFP_FS	((__force gfp_t)___GFP_FS)
151 #define __GFP_DIRECT_RECLAIM	((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
152 #define __GFP_KSWAPD_RECLAIM	((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
153 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
154 #define __GFP_REPEAT	((__force gfp_t)___GFP_REPEAT)
155 #define __GFP_NOFAIL	((__force gfp_t)___GFP_NOFAIL)
156 #define __GFP_NORETRY	((__force gfp_t)___GFP_NORETRY)
157 
158 /*
159  * Action modifiers
160  *
161  * __GFP_COLD indicates that the caller does not expect to be used in the near
162  *   future. Where possible, a cache-cold page will be returned.
163  *
164  * __GFP_NOWARN suppresses allocation failure reports.
165  *
166  * __GFP_COMP address compound page metadata.
167  *
168  * __GFP_ZERO returns a zeroed page on success.
169  *
170  * __GFP_NOTRACK avoids tracking with kmemcheck.
171  *
172  * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
173  *   distinguishing in the source between false positives and allocations that
174  *   cannot be supported (e.g. page tables).
175  *
176  * __GFP_OTHER_NODE is for allocations that are on a remote node but that
177  *   should not be accounted for as a remote allocation in vmstat. A
178  *   typical user would be khugepaged collapsing a huge page on a remote
179  *   node.
180  */
181 #define __GFP_COLD	((__force gfp_t)___GFP_COLD)
182 #define __GFP_NOWARN	((__force gfp_t)___GFP_NOWARN)
183 #define __GFP_COMP	((__force gfp_t)___GFP_COMP)
184 #define __GFP_ZERO	((__force gfp_t)___GFP_ZERO)
185 #define __GFP_NOTRACK	((__force gfp_t)___GFP_NOTRACK)
186 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
187 #define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)
188 
189 /* Room for N __GFP_FOO bits */
190 #define __GFP_BITS_SHIFT 26
191 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
192 
193 /*
194  * Useful GFP flag combinations that are commonly used. It is recommended
195  * that subsystems start with one of these combinations and then set/clear
196  * __GFP_FOO flags as necessary.
197  *
198  * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
199  *   watermark is applied to allow access to "atomic reserves"
200  *
201  * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
202  *   ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
203  *
204  * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
205  *   accounted to kmemcg.
206  *
207  * GFP_NOWAIT is for kernel allocations that should not stall for direct
208  *   reclaim, start physical IO or use any filesystem callback.
209  *
210  * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
211  *   that do not require the starting of any physical IO.
212  *
213  * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
214  *
215  * GFP_USER is for userspace allocations that also need to be directly
216  *   accessibly by the kernel or hardware. It is typically used by hardware
217  *   for buffers that are mapped to userspace (e.g. graphics) that hardware
218  *   still must DMA to. cpuset limits are enforced for these allocations.
219  *
220  * GFP_DMA exists for historical reasons and should be avoided where possible.
221  *   The flags indicates that the caller requires that the lowest zone be
222  *   used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
223  *   it would require careful auditing as some users really require it and
224  *   others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
225  *   lowest zone as a type of emergency reserve.
226  *
227  * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
228  *   address.
229  *
230  * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
231  *   do not need to be directly accessible by the kernel but that cannot
232  *   move once in use. An example may be a hardware allocation that maps
233  *   data directly into userspace but has no addressing limitations.
234  *
235  * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
236  *   need direct access to but can use kmap() when access is required. They
237  *   are expected to be movable via page reclaim or page migration. Typically,
238  *   pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
239  *
240  * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
241  *   compound allocations that will generally fail quickly if memory is not
242  *   available and will not wake kswapd/kcompactd on failure. The _LIGHT
243  *   version does not attempt reclaim/compaction at all and is by default used
244  *   in page fault path, while the non-light is used by khugepaged.
245  */
246 #define GFP_ATOMIC	(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
247 #define GFP_KERNEL	(__GFP_RECLAIM | __GFP_IO | __GFP_FS)
248 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
249 #define GFP_NOWAIT	(__GFP_KSWAPD_RECLAIM)
250 #define GFP_NOIO	(__GFP_RECLAIM)
251 #define GFP_NOFS	(__GFP_RECLAIM | __GFP_IO)
252 #define GFP_TEMPORARY	(__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
253 			 __GFP_RECLAIMABLE)
254 #define GFP_USER	(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
255 #define GFP_DMA		__GFP_DMA
256 #define GFP_DMA32	__GFP_DMA32
257 #define GFP_HIGHUSER	(GFP_USER | __GFP_HIGHMEM)
258 #define GFP_HIGHUSER_MOVABLE	(GFP_HIGHUSER | __GFP_MOVABLE)
259 #define GFP_TRANSHUGE_LIGHT	((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
260 			 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
261 #define GFP_TRANSHUGE	(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
262 
263 /* Convert GFP flags to their corresponding migrate type */
264 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
265 #define GFP_MOVABLE_SHIFT 3
266 
gfpflags_to_migratetype(const gfp_t gfp_flags)267 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
268 {
269 	VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
270 	BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
271 	BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
272 
273 	if (unlikely(page_group_by_mobility_disabled))
274 		return MIGRATE_UNMOVABLE;
275 
276 	/* Group based on mobility */
277 	return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
278 }
279 #undef GFP_MOVABLE_MASK
280 #undef GFP_MOVABLE_SHIFT
281 
gfpflags_allow_blocking(const gfp_t gfp_flags)282 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
283 {
284 	return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
285 }
286 
287 #ifdef CONFIG_HIGHMEM
288 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
289 #else
290 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
291 #endif
292 
293 #ifdef CONFIG_ZONE_DMA
294 #define OPT_ZONE_DMA ZONE_DMA
295 #else
296 #define OPT_ZONE_DMA ZONE_NORMAL
297 #endif
298 
299 #ifdef CONFIG_ZONE_DMA32
300 #define OPT_ZONE_DMA32 ZONE_DMA32
301 #else
302 #define OPT_ZONE_DMA32 ZONE_NORMAL
303 #endif
304 
305 /*
306  * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
307  * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
308  * and there are 16 of them to cover all possible combinations of
309  * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
310  *
311  * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
312  * But GFP_MOVABLE is not only a zone specifier but also an allocation
313  * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
314  * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
315  *
316  *       bit       result
317  *       =================
318  *       0x0    => NORMAL
319  *       0x1    => DMA or NORMAL
320  *       0x2    => HIGHMEM or NORMAL
321  *       0x3    => BAD (DMA+HIGHMEM)
322  *       0x4    => DMA32 or DMA or NORMAL
323  *       0x5    => BAD (DMA+DMA32)
324  *       0x6    => BAD (HIGHMEM+DMA32)
325  *       0x7    => BAD (HIGHMEM+DMA32+DMA)
326  *       0x8    => NORMAL (MOVABLE+0)
327  *       0x9    => DMA or NORMAL (MOVABLE+DMA)
328  *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
329  *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
330  *       0xc    => DMA32 (MOVABLE+DMA32)
331  *       0xd    => BAD (MOVABLE+DMA32+DMA)
332  *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
333  *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
334  *
335  * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
336  */
337 
338 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
339 /* ZONE_DEVICE is not a valid GFP zone specifier */
340 #define GFP_ZONES_SHIFT 2
341 #else
342 #define GFP_ZONES_SHIFT ZONES_SHIFT
343 #endif
344 
345 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
346 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
347 #endif
348 
349 #define GFP_ZONE_TABLE ( \
350 	(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)				       \
351 	| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)		       \
352 	| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)	       \
353 	| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)		       \
354 	| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)		       \
355 	| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
356 	| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
357 	| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
358 )
359 
360 /*
361  * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
362  * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
363  * entry starting with bit 0. Bit is set if the combination is not
364  * allowed.
365  */
366 #define GFP_ZONE_BAD ( \
367 	1 << (___GFP_DMA | ___GFP_HIGHMEM)				      \
368 	| 1 << (___GFP_DMA | ___GFP_DMA32)				      \
369 	| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)				      \
370 	| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)		      \
371 	| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)		      \
372 	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)		      \
373 	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)		      \
374 	| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
375 )
376 
gfp_zone(gfp_t flags)377 static inline enum zone_type gfp_zone(gfp_t flags)
378 {
379 	enum zone_type z;
380 	int bit = (__force int) (flags & GFP_ZONEMASK);
381 
382 	z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
383 					 ((1 << GFP_ZONES_SHIFT) - 1);
384 	VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
385 	return z;
386 }
387 
388 /*
389  * There is only one page-allocator function, and two main namespaces to
390  * it. The alloc_page*() variants return 'struct page *' and as such
391  * can allocate highmem pages, the *get*page*() variants return
392  * virtual kernel addresses to the allocated page(s).
393  */
394 
gfp_zonelist(gfp_t flags)395 static inline int gfp_zonelist(gfp_t flags)
396 {
397 #ifdef CONFIG_NUMA
398 	if (unlikely(flags & __GFP_THISNODE))
399 		return ZONELIST_NOFALLBACK;
400 #endif
401 	return ZONELIST_FALLBACK;
402 }
403 
404 /*
405  * We get the zone list from the current node and the gfp_mask.
406  * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
407  * There are two zonelists per node, one for all zones with memory and
408  * one containing just zones from the node the zonelist belongs to.
409  *
410  * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
411  * optimized to &contig_page_data at compile-time.
412  */
node_zonelist(int nid,gfp_t flags)413 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
414 {
415 	return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
416 }
417 
418 #ifndef HAVE_ARCH_FREE_PAGE
arch_free_page(struct page * page,int order)419 static inline void arch_free_page(struct page *page, int order) { }
420 #endif
421 #ifndef HAVE_ARCH_ALLOC_PAGE
arch_alloc_page(struct page * page,int order)422 static inline void arch_alloc_page(struct page *page, int order) { }
423 #endif
424 
425 struct page *
426 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
427 		       struct zonelist *zonelist, nodemask_t *nodemask);
428 
429 static inline struct page *
__alloc_pages(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist)430 __alloc_pages(gfp_t gfp_mask, unsigned int order,
431 		struct zonelist *zonelist)
432 {
433 	return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
434 }
435 
436 /*
437  * Allocate pages, preferring the node given as nid. The node must be valid and
438  * online. For more general interface, see alloc_pages_node().
439  */
440 static inline struct page *
__alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order)441 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
442 {
443 	VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
444 	VM_WARN_ON(!node_online(nid));
445 
446 	return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
447 }
448 
449 /*
450  * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
451  * prefer the current CPU's closest node. Otherwise node must be valid and
452  * online.
453  */
alloc_pages_node(int nid,gfp_t gfp_mask,unsigned int order)454 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
455 						unsigned int order)
456 {
457 	if (nid == NUMA_NO_NODE)
458 		nid = numa_mem_id();
459 
460 	return __alloc_pages_node(nid, gfp_mask, order);
461 }
462 
463 #ifdef CONFIG_NUMA
464 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
465 
466 static inline struct page *
alloc_pages(gfp_t gfp_mask,unsigned int order)467 alloc_pages(gfp_t gfp_mask, unsigned int order)
468 {
469 	return alloc_pages_current(gfp_mask, order);
470 }
471 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
472 			struct vm_area_struct *vma, unsigned long addr,
473 			int node, bool hugepage);
474 #define alloc_hugepage_vma(gfp_mask, vma, addr, order)	\
475 	alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
476 #else
477 #define alloc_pages(gfp_mask, order) \
478 		alloc_pages_node(numa_node_id(), gfp_mask, order)
479 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
480 	alloc_pages(gfp_mask, order)
481 #define alloc_hugepage_vma(gfp_mask, vma, addr, order)	\
482 	alloc_pages(gfp_mask, order)
483 #endif
484 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
485 #define alloc_page_vma(gfp_mask, vma, addr)			\
486 	alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
487 #define alloc_page_vma_node(gfp_mask, vma, addr, node)		\
488 	alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
489 
490 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
491 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
492 
493 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
494 void free_pages_exact(void *virt, size_t size);
495 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
496 
497 #define __get_free_page(gfp_mask) \
498 		__get_free_pages((gfp_mask), 0)
499 
500 #define __get_dma_pages(gfp_mask, order) \
501 		__get_free_pages((gfp_mask) | GFP_DMA, (order))
502 
503 extern void __free_pages(struct page *page, unsigned int order);
504 extern void free_pages(unsigned long addr, unsigned int order);
505 extern void free_hot_cold_page(struct page *page, bool cold);
506 extern void free_hot_cold_page_list(struct list_head *list, bool cold);
507 
508 struct page_frag_cache;
509 extern void *__alloc_page_frag(struct page_frag_cache *nc,
510 			       unsigned int fragsz, gfp_t gfp_mask);
511 extern void __free_page_frag(void *addr);
512 
513 #define __free_page(page) __free_pages((page), 0)
514 #define free_page(addr) free_pages((addr), 0)
515 
516 void page_alloc_init(void);
517 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
518 void drain_all_pages(struct zone *zone);
519 void drain_local_pages(void *zone);
520 
521 void page_alloc_init_late(void);
522 
523 /*
524  * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
525  * GFP flags are used before interrupts are enabled. Once interrupts are
526  * enabled, it is set to __GFP_BITS_MASK while the system is running. During
527  * hibernation, it is used by PM to avoid I/O during memory allocation while
528  * devices are suspended.
529  */
530 extern gfp_t gfp_allowed_mask;
531 
532 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
533 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
534 
535 extern void pm_restrict_gfp_mask(void);
536 extern void pm_restore_gfp_mask(void);
537 
538 #ifdef CONFIG_PM_SLEEP
539 extern bool pm_suspended_storage(void);
540 #else
pm_suspended_storage(void)541 static inline bool pm_suspended_storage(void)
542 {
543 	return false;
544 }
545 #endif /* CONFIG_PM_SLEEP */
546 
547 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
548 /* The below functions must be run on a range from a single zone. */
549 extern int alloc_contig_range(unsigned long start, unsigned long end,
550 			      unsigned migratetype);
551 extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
552 #endif
553 
554 #ifdef CONFIG_CMA
555 /* CMA stuff */
556 extern void init_cma_reserved_pageblock(struct page *page);
557 #endif
558 
559 #endif /* __LINUX_GFP_H */
560