1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/cpufreq_times.h>
8 #include "sched.h"
9 #ifdef CONFIG_PARAVIRT
10 #include <asm/paravirt.h>
11 #endif
12 #include "walt.h"
13
14 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
15
16 /*
17 * There are no locks covering percpu hardirq/softirq time.
18 * They are only modified in vtime_account, on corresponding CPU
19 * with interrupts disabled. So, writes are safe.
20 * They are read and saved off onto struct rq in update_rq_clock().
21 * This may result in other CPU reading this CPU's irq time and can
22 * race with irq/vtime_account on this CPU. We would either get old
23 * or new value with a side effect of accounting a slice of irq time to wrong
24 * task when irq is in progress while we read rq->clock. That is a worthy
25 * compromise in place of having locks on each irq in account_system_time.
26 */
27 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
28
29 static int sched_clock_irqtime;
30
enable_sched_clock_irqtime(void)31 void enable_sched_clock_irqtime(void)
32 {
33 sched_clock_irqtime = 1;
34 }
35
disable_sched_clock_irqtime(void)36 void disable_sched_clock_irqtime(void)
37 {
38 sched_clock_irqtime = 0;
39 }
40
41 /*
42 * Called before incrementing preempt_count on {soft,}irq_enter
43 * and before decrementing preempt_count on {soft,}irq_exit.
44 */
irqtime_account_irq(struct task_struct * curr)45 void irqtime_account_irq(struct task_struct *curr)
46 {
47 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
48 s64 delta;
49 int cpu;
50 #ifdef CONFIG_SCHED_WALT
51 u64 wallclock;
52 bool account = true;
53 #endif
54
55 if (!sched_clock_irqtime)
56 return;
57
58 cpu = smp_processor_id();
59 #ifdef CONFIG_SCHED_WALT
60 wallclock = sched_clock_cpu(cpu);
61 #endif
62 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
63 irqtime->irq_start_time += delta;
64
65 u64_stats_update_begin(&irqtime->sync);
66 /*
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
71 */
72 if (hardirq_count())
73 irqtime->hardirq_time += delta;
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 irqtime->softirq_time += delta;
76 #ifdef CONFIG_SCHED_WALT
77 else
78 account = false;
79 #endif
80
81 u64_stats_update_end(&irqtime->sync);
82 #ifdef CONFIG_SCHED_WALT
83 if (account)
84 walt_account_irqtime(cpu, curr, delta, wallclock);
85 #endif
86 }
87 EXPORT_SYMBOL_GPL(irqtime_account_irq);
88
irqtime_account_update(u64 irqtime,int idx,cputime_t maxtime)89 static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
90 {
91 u64 *cpustat = kcpustat_this_cpu->cpustat;
92 cputime_t irq_cputime;
93
94 irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
95 irq_cputime = min(irq_cputime, maxtime);
96 cpustat[idx] += irq_cputime;
97
98 return irq_cputime;
99 }
100
irqtime_account_hi_update(cputime_t maxtime)101 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
102 {
103 return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
104 CPUTIME_IRQ, maxtime);
105 }
106
irqtime_account_si_update(cputime_t maxtime)107 static cputime_t irqtime_account_si_update(cputime_t maxtime)
108 {
109 return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
110 CPUTIME_SOFTIRQ, maxtime);
111 }
112
113 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
114
115 #define sched_clock_irqtime (0)
116
irqtime_account_hi_update(cputime_t dummy)117 static cputime_t irqtime_account_hi_update(cputime_t dummy)
118 {
119 return 0;
120 }
121
irqtime_account_si_update(cputime_t dummy)122 static cputime_t irqtime_account_si_update(cputime_t dummy)
123 {
124 return 0;
125 }
126
127 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
128
task_group_account_field(struct task_struct * p,int index,u64 tmp)129 static inline void task_group_account_field(struct task_struct *p, int index,
130 u64 tmp)
131 {
132 /*
133 * Since all updates are sure to touch the root cgroup, we
134 * get ourselves ahead and touch it first. If the root cgroup
135 * is the only cgroup, then nothing else should be necessary.
136 *
137 */
138 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
139
140 cpuacct_account_field(p, index, tmp);
141 }
142
143 /*
144 * Account user cpu time to a process.
145 * @p: the process that the cpu time gets accounted to
146 * @cputime: the cpu time spent in user space since the last update
147 * @cputime_scaled: cputime scaled by cpu frequency
148 */
account_user_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)149 void account_user_time(struct task_struct *p, cputime_t cputime,
150 cputime_t cputime_scaled)
151 {
152 int index;
153
154 /* Add user time to process. */
155 p->utime += cputime;
156 p->utimescaled += cputime_scaled;
157 account_group_user_time(p, cputime);
158
159 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
160
161 /* Add user time to cpustat. */
162 task_group_account_field(p, index, (__force u64) cputime);
163
164 /* Account for user time used */
165 acct_account_cputime(p);
166
167 #ifdef CONFIG_CPU_FREQ_TIMES
168 /* Account power usage for user time */
169 cpufreq_acct_update_power(p, cputime);
170 #endif
171 }
172
173 /*
174 * Account guest cpu time to a process.
175 * @p: the process that the cpu time gets accounted to
176 * @cputime: the cpu time spent in virtual machine since the last update
177 * @cputime_scaled: cputime scaled by cpu frequency
178 */
account_guest_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)179 static void account_guest_time(struct task_struct *p, cputime_t cputime,
180 cputime_t cputime_scaled)
181 {
182 u64 *cpustat = kcpustat_this_cpu->cpustat;
183
184 /* Add guest time to process. */
185 p->utime += cputime;
186 p->utimescaled += cputime_scaled;
187 account_group_user_time(p, cputime);
188 p->gtime += cputime;
189
190 /* Add guest time to cpustat. */
191 if (task_nice(p) > 0) {
192 cpustat[CPUTIME_NICE] += (__force u64) cputime;
193 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
194 } else {
195 cpustat[CPUTIME_USER] += (__force u64) cputime;
196 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
197 }
198 }
199
200 /*
201 * Account system cpu time to a process and desired cpustat field
202 * @p: the process that the cpu time gets accounted to
203 * @cputime: the cpu time spent in kernel space since the last update
204 * @cputime_scaled: cputime scaled by cpu frequency
205 * @target_cputime64: pointer to cpustat field that has to be updated
206 */
207 static inline
__account_system_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled,int index)208 void __account_system_time(struct task_struct *p, cputime_t cputime,
209 cputime_t cputime_scaled, int index)
210 {
211 /* Add system time to process. */
212 p->stime += cputime;
213 p->stimescaled += cputime_scaled;
214 account_group_system_time(p, cputime);
215
216 /* Add system time to cpustat. */
217 task_group_account_field(p, index, (__force u64) cputime);
218
219 /* Account for system time used */
220 acct_account_cputime(p);
221 #ifdef CONFIG_CPU_FREQ_TIMES
222 /* Account power usage for system time */
223 cpufreq_acct_update_power(p, cputime);
224 #endif
225 }
226
227 /*
228 * Account system cpu time to a process.
229 * @p: the process that the cpu time gets accounted to
230 * @hardirq_offset: the offset to subtract from hardirq_count()
231 * @cputime: the cpu time spent in kernel space since the last update
232 * @cputime_scaled: cputime scaled by cpu frequency
233 */
account_system_time(struct task_struct * p,int hardirq_offset,cputime_t cputime,cputime_t cputime_scaled)234 void account_system_time(struct task_struct *p, int hardirq_offset,
235 cputime_t cputime, cputime_t cputime_scaled)
236 {
237 int index;
238
239 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
240 account_guest_time(p, cputime, cputime_scaled);
241 return;
242 }
243
244 if (hardirq_count() - hardirq_offset)
245 index = CPUTIME_IRQ;
246 else if (in_serving_softirq())
247 index = CPUTIME_SOFTIRQ;
248 else
249 index = CPUTIME_SYSTEM;
250
251 __account_system_time(p, cputime, cputime_scaled, index);
252 }
253
254 /*
255 * Account for involuntary wait time.
256 * @cputime: the cpu time spent in involuntary wait
257 */
account_steal_time(cputime_t cputime)258 void account_steal_time(cputime_t cputime)
259 {
260 u64 *cpustat = kcpustat_this_cpu->cpustat;
261
262 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
263 }
264
265 /*
266 * Account for idle time.
267 * @cputime: the cpu time spent in idle wait
268 */
account_idle_time(cputime_t cputime)269 void account_idle_time(cputime_t cputime)
270 {
271 u64 *cpustat = kcpustat_this_cpu->cpustat;
272 struct rq *rq = this_rq();
273
274 if (atomic_read(&rq->nr_iowait) > 0)
275 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
276 else
277 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
278 }
279
280 /*
281 * When a guest is interrupted for a longer amount of time, missed clock
282 * ticks are not redelivered later. Due to that, this function may on
283 * occasion account more time than the calling functions think elapsed.
284 */
steal_account_process_time(cputime_t maxtime)285 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
286 {
287 #ifdef CONFIG_PARAVIRT
288 if (static_key_false(¶virt_steal_enabled)) {
289 cputime_t steal_cputime;
290 u64 steal;
291
292 steal = paravirt_steal_clock(smp_processor_id());
293 steal -= this_rq()->prev_steal_time;
294
295 steal_cputime = min(nsecs_to_cputime(steal), maxtime);
296 account_steal_time(steal_cputime);
297 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
298
299 return steal_cputime;
300 }
301 #endif
302 return 0;
303 }
304
305 /*
306 * Account how much elapsed time was spent in steal, irq, or softirq time.
307 */
account_other_time(cputime_t max)308 static inline cputime_t account_other_time(cputime_t max)
309 {
310 cputime_t accounted;
311
312 /* Shall be converted to a lockdep-enabled lightweight check */
313 WARN_ON_ONCE(!irqs_disabled());
314
315 accounted = steal_account_process_time(max);
316
317 if (accounted < max)
318 accounted += irqtime_account_hi_update(max - accounted);
319
320 if (accounted < max)
321 accounted += irqtime_account_si_update(max - accounted);
322
323 return accounted;
324 }
325
326 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)327 static inline u64 read_sum_exec_runtime(struct task_struct *t)
328 {
329 return t->se.sum_exec_runtime;
330 }
331 #else
read_sum_exec_runtime(struct task_struct * t)332 static u64 read_sum_exec_runtime(struct task_struct *t)
333 {
334 u64 ns;
335 struct rq_flags rf;
336 struct rq *rq;
337
338 rq = task_rq_lock(t, &rf);
339 ns = t->se.sum_exec_runtime;
340 task_rq_unlock(rq, t, &rf);
341
342 return ns;
343 }
344 #endif
345
346 /*
347 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
348 * tasks (sum on group iteration) belonging to @tsk's group.
349 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)350 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
351 {
352 struct signal_struct *sig = tsk->signal;
353 cputime_t utime, stime;
354 struct task_struct *t;
355 unsigned int seq, nextseq;
356 unsigned long flags;
357
358 /*
359 * Update current task runtime to account pending time since last
360 * scheduler action or thread_group_cputime() call. This thread group
361 * might have other running tasks on different CPUs, but updating
362 * their runtime can affect syscall performance, so we skip account
363 * those pending times and rely only on values updated on tick or
364 * other scheduler action.
365 */
366 if (same_thread_group(current, tsk))
367 (void) task_sched_runtime(current);
368
369 rcu_read_lock();
370 /* Attempt a lockless read on the first round. */
371 nextseq = 0;
372 do {
373 seq = nextseq;
374 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
375 times->utime = sig->utime;
376 times->stime = sig->stime;
377 times->sum_exec_runtime = sig->sum_sched_runtime;
378
379 for_each_thread(tsk, t) {
380 task_cputime(t, &utime, &stime);
381 times->utime += utime;
382 times->stime += stime;
383 times->sum_exec_runtime += read_sum_exec_runtime(t);
384 }
385 /* If lockless access failed, take the lock. */
386 nextseq = 1;
387 } while (need_seqretry(&sig->stats_lock, seq));
388 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
389 rcu_read_unlock();
390 }
391
392 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
393 /*
394 * Account a tick to a process and cpustat
395 * @p: the process that the cpu time gets accounted to
396 * @user_tick: is the tick from userspace
397 * @rq: the pointer to rq
398 *
399 * Tick demultiplexing follows the order
400 * - pending hardirq update
401 * - pending softirq update
402 * - user_time
403 * - idle_time
404 * - system time
405 * - check for guest_time
406 * - else account as system_time
407 *
408 * Check for hardirq is done both for system and user time as there is
409 * no timer going off while we are on hardirq and hence we may never get an
410 * opportunity to update it solely in system time.
411 * p->stime and friends are only updated on system time and not on irq
412 * softirq as those do not count in task exec_runtime any more.
413 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int ticks)414 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
415 struct rq *rq, int ticks)
416 {
417 u64 cputime = (__force u64) cputime_one_jiffy * ticks;
418 cputime_t scaled, other;
419
420 /*
421 * When returning from idle, many ticks can get accounted at
422 * once, including some ticks of steal, irq, and softirq time.
423 * Subtract those ticks from the amount of time accounted to
424 * idle, or potentially user or system time. Due to rounding,
425 * other time can exceed ticks occasionally.
426 */
427 other = account_other_time(ULONG_MAX);
428 if (other >= cputime)
429 return;
430 cputime -= other;
431 scaled = cputime_to_scaled(cputime);
432
433 if (this_cpu_ksoftirqd() == p) {
434 /*
435 * ksoftirqd time do not get accounted in cpu_softirq_time.
436 * So, we have to handle it separately here.
437 * Also, p->stime needs to be updated for ksoftirqd.
438 */
439 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
440 } else if (user_tick) {
441 account_user_time(p, cputime, scaled);
442 } else if (p == rq->idle) {
443 account_idle_time(cputime);
444 } else if (p->flags & PF_VCPU) { /* System time or guest time */
445 account_guest_time(p, cputime, scaled);
446 } else {
447 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
448 }
449 }
450
irqtime_account_idle_ticks(int ticks)451 static void irqtime_account_idle_ticks(int ticks)
452 {
453 struct rq *rq = this_rq();
454
455 irqtime_account_process_tick(current, 0, rq, ticks);
456 }
457 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)458 static inline void irqtime_account_idle_ticks(int ticks) {}
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int nr_ticks)459 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
460 struct rq *rq, int nr_ticks) {}
461 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
462
463 /*
464 * Use precise platform statistics if available:
465 */
466 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
467
468 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_common_task_switch(struct task_struct * prev)469 void vtime_common_task_switch(struct task_struct *prev)
470 {
471 if (is_idle_task(prev))
472 vtime_account_idle(prev);
473 else
474 vtime_account_system(prev);
475
476 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
477 vtime_account_user(prev);
478 #endif
479 arch_vtime_task_switch(prev);
480 }
481 #endif
482
483 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
484
485
486 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
487 /*
488 * Archs that account the whole time spent in the idle task
489 * (outside irq) as idle time can rely on this and just implement
490 * vtime_account_system() and vtime_account_idle(). Archs that
491 * have other meaning of the idle time (s390 only includes the
492 * time spent by the CPU when it's in low power mode) must override
493 * vtime_account().
494 */
495 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)496 void vtime_account_irq_enter(struct task_struct *tsk)
497 {
498 if (!in_interrupt() && is_idle_task(tsk))
499 vtime_account_idle(tsk);
500 else
501 vtime_account_system(tsk);
502 }
503 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
504 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
505
task_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)506 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
507 {
508 *ut = p->utime;
509 *st = p->stime;
510 }
511 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
512
thread_group_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)513 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
514 {
515 struct task_cputime cputime;
516
517 thread_group_cputime(p, &cputime);
518
519 *ut = cputime.utime;
520 *st = cputime.stime;
521 }
522 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
523 /*
524 * Account a single tick of cpu time.
525 * @p: the process that the cpu time gets accounted to
526 * @user_tick: indicates if the tick is a user or a system tick
527 */
account_process_tick(struct task_struct * p,int user_tick)528 void account_process_tick(struct task_struct *p, int user_tick)
529 {
530 cputime_t cputime, scaled, steal;
531 struct rq *rq = this_rq();
532
533 if (vtime_accounting_cpu_enabled())
534 return;
535
536 if (sched_clock_irqtime) {
537 irqtime_account_process_tick(p, user_tick, rq, 1);
538 return;
539 }
540
541 cputime = cputime_one_jiffy;
542 steal = steal_account_process_time(ULONG_MAX);
543
544 if (steal >= cputime)
545 return;
546
547 cputime -= steal;
548 scaled = cputime_to_scaled(cputime);
549
550 if (user_tick)
551 account_user_time(p, cputime, scaled);
552 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
553 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
554 else
555 account_idle_time(cputime);
556 }
557
558 /*
559 * Account multiple ticks of idle time.
560 * @ticks: number of stolen ticks
561 */
account_idle_ticks(unsigned long ticks)562 void account_idle_ticks(unsigned long ticks)
563 {
564 cputime_t cputime, steal;
565
566 if (sched_clock_irqtime) {
567 irqtime_account_idle_ticks(ticks);
568 return;
569 }
570
571 cputime = jiffies_to_cputime(ticks);
572 steal = steal_account_process_time(ULONG_MAX);
573
574 if (steal >= cputime)
575 return;
576
577 cputime -= steal;
578 account_idle_time(cputime);
579 }
580
581 /*
582 * Perform (stime * rtime) / total, but avoid multiplication overflow by
583 * loosing precision when the numbers are big.
584 */
scale_stime(u64 stime,u64 rtime,u64 total)585 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
586 {
587 u64 scaled;
588
589 for (;;) {
590 /* Make sure "rtime" is the bigger of stime/rtime */
591 if (stime > rtime)
592 swap(rtime, stime);
593
594 /* Make sure 'total' fits in 32 bits */
595 if (total >> 32)
596 goto drop_precision;
597
598 /* Does rtime (and thus stime) fit in 32 bits? */
599 if (!(rtime >> 32))
600 break;
601
602 /* Can we just balance rtime/stime rather than dropping bits? */
603 if (stime >> 31)
604 goto drop_precision;
605
606 /* We can grow stime and shrink rtime and try to make them both fit */
607 stime <<= 1;
608 rtime >>= 1;
609 continue;
610
611 drop_precision:
612 /* We drop from rtime, it has more bits than stime */
613 rtime >>= 1;
614 total >>= 1;
615 }
616
617 /*
618 * Make sure gcc understands that this is a 32x32->64 multiply,
619 * followed by a 64/32->64 divide.
620 */
621 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
622 return (__force cputime_t) scaled;
623 }
624
625 /*
626 * Adjust tick based cputime random precision against scheduler runtime
627 * accounting.
628 *
629 * Tick based cputime accounting depend on random scheduling timeslices of a
630 * task to be interrupted or not by the timer. Depending on these
631 * circumstances, the number of these interrupts may be over or
632 * under-optimistic, matching the real user and system cputime with a variable
633 * precision.
634 *
635 * Fix this by scaling these tick based values against the total runtime
636 * accounted by the CFS scheduler.
637 *
638 * This code provides the following guarantees:
639 *
640 * stime + utime == rtime
641 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
642 *
643 * Assuming that rtime_i+1 >= rtime_i.
644 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,cputime_t * ut,cputime_t * st)645 static void cputime_adjust(struct task_cputime *curr,
646 struct prev_cputime *prev,
647 cputime_t *ut, cputime_t *st)
648 {
649 cputime_t rtime, stime, utime;
650 unsigned long flags;
651
652 /* Serialize concurrent callers such that we can honour our guarantees */
653 raw_spin_lock_irqsave(&prev->lock, flags);
654 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
655
656 /*
657 * This is possible under two circumstances:
658 * - rtime isn't monotonic after all (a bug);
659 * - we got reordered by the lock.
660 *
661 * In both cases this acts as a filter such that the rest of the code
662 * can assume it is monotonic regardless of anything else.
663 */
664 if (prev->stime + prev->utime >= rtime)
665 goto out;
666
667 stime = curr->stime;
668 utime = curr->utime;
669
670 /*
671 * If either stime or both stime and utime are 0, assume all runtime is
672 * userspace. Once a task gets some ticks, the monotonicy code at
673 * 'update' will ensure things converge to the observed ratio.
674 */
675 if (stime == 0) {
676 utime = rtime;
677 goto update;
678 }
679
680 if (utime == 0) {
681 stime = rtime;
682 goto update;
683 }
684
685 stime = scale_stime((__force u64)stime, (__force u64)rtime,
686 (__force u64)(stime + utime));
687
688 update:
689 /*
690 * Make sure stime doesn't go backwards; this preserves monotonicity
691 * for utime because rtime is monotonic.
692 *
693 * utime_i+1 = rtime_i+1 - stime_i
694 * = rtime_i+1 - (rtime_i - utime_i)
695 * = (rtime_i+1 - rtime_i) + utime_i
696 * >= utime_i
697 */
698 if (stime < prev->stime)
699 stime = prev->stime;
700 utime = rtime - stime;
701
702 /*
703 * Make sure utime doesn't go backwards; this still preserves
704 * monotonicity for stime, analogous argument to above.
705 */
706 if (utime < prev->utime) {
707 utime = prev->utime;
708 stime = rtime - utime;
709 }
710
711 prev->stime = stime;
712 prev->utime = utime;
713 out:
714 *ut = prev->utime;
715 *st = prev->stime;
716 raw_spin_unlock_irqrestore(&prev->lock, flags);
717 }
718
task_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)719 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
720 {
721 struct task_cputime cputime = {
722 .sum_exec_runtime = p->se.sum_exec_runtime,
723 };
724
725 task_cputime(p, &cputime.utime, &cputime.stime);
726 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
727 }
728 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
729
thread_group_cputime_adjusted(struct task_struct * p,cputime_t * ut,cputime_t * st)730 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
731 {
732 struct task_cputime cputime;
733
734 thread_group_cputime(p, &cputime);
735 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
736 }
737 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
738
739 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct task_struct * tsk)740 static cputime_t vtime_delta(struct task_struct *tsk)
741 {
742 unsigned long now = READ_ONCE(jiffies);
743
744 if (time_before(now, (unsigned long)tsk->vtime_snap))
745 return 0;
746
747 return jiffies_to_cputime(now - tsk->vtime_snap);
748 }
749
get_vtime_delta(struct task_struct * tsk)750 static cputime_t get_vtime_delta(struct task_struct *tsk)
751 {
752 unsigned long now = READ_ONCE(jiffies);
753 cputime_t delta, other;
754
755 /*
756 * Unlike tick based timing, vtime based timing never has lost
757 * ticks, and no need for steal time accounting to make up for
758 * lost ticks. Vtime accounts a rounded version of actual
759 * elapsed time. Limit account_other_time to prevent rounding
760 * errors from causing elapsed vtime to go negative.
761 */
762 delta = jiffies_to_cputime(now - tsk->vtime_snap);
763 other = account_other_time(delta);
764 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
765 tsk->vtime_snap = now;
766
767 return delta - other;
768 }
769
__vtime_account_system(struct task_struct * tsk)770 static void __vtime_account_system(struct task_struct *tsk)
771 {
772 cputime_t delta_cpu = get_vtime_delta(tsk);
773
774 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
775 }
776
vtime_account_system(struct task_struct * tsk)777 void vtime_account_system(struct task_struct *tsk)
778 {
779 if (!vtime_delta(tsk))
780 return;
781
782 write_seqcount_begin(&tsk->vtime_seqcount);
783 __vtime_account_system(tsk);
784 write_seqcount_end(&tsk->vtime_seqcount);
785 }
786
vtime_account_user(struct task_struct * tsk)787 void vtime_account_user(struct task_struct *tsk)
788 {
789 cputime_t delta_cpu;
790
791 write_seqcount_begin(&tsk->vtime_seqcount);
792 tsk->vtime_snap_whence = VTIME_SYS;
793 if (vtime_delta(tsk)) {
794 delta_cpu = get_vtime_delta(tsk);
795 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
796 }
797 write_seqcount_end(&tsk->vtime_seqcount);
798 }
799
vtime_user_enter(struct task_struct * tsk)800 void vtime_user_enter(struct task_struct *tsk)
801 {
802 write_seqcount_begin(&tsk->vtime_seqcount);
803 if (vtime_delta(tsk))
804 __vtime_account_system(tsk);
805 tsk->vtime_snap_whence = VTIME_USER;
806 write_seqcount_end(&tsk->vtime_seqcount);
807 }
808
vtime_guest_enter(struct task_struct * tsk)809 void vtime_guest_enter(struct task_struct *tsk)
810 {
811 /*
812 * The flags must be updated under the lock with
813 * the vtime_snap flush and update.
814 * That enforces a right ordering and update sequence
815 * synchronization against the reader (task_gtime())
816 * that can thus safely catch up with a tickless delta.
817 */
818 write_seqcount_begin(&tsk->vtime_seqcount);
819 if (vtime_delta(tsk))
820 __vtime_account_system(tsk);
821 current->flags |= PF_VCPU;
822 write_seqcount_end(&tsk->vtime_seqcount);
823 }
824 EXPORT_SYMBOL_GPL(vtime_guest_enter);
825
vtime_guest_exit(struct task_struct * tsk)826 void vtime_guest_exit(struct task_struct *tsk)
827 {
828 write_seqcount_begin(&tsk->vtime_seqcount);
829 __vtime_account_system(tsk);
830 current->flags &= ~PF_VCPU;
831 write_seqcount_end(&tsk->vtime_seqcount);
832 }
833 EXPORT_SYMBOL_GPL(vtime_guest_exit);
834
vtime_account_idle(struct task_struct * tsk)835 void vtime_account_idle(struct task_struct *tsk)
836 {
837 cputime_t delta_cpu = get_vtime_delta(tsk);
838
839 account_idle_time(delta_cpu);
840 }
841
arch_vtime_task_switch(struct task_struct * prev)842 void arch_vtime_task_switch(struct task_struct *prev)
843 {
844 write_seqcount_begin(&prev->vtime_seqcount);
845 prev->vtime_snap_whence = VTIME_INACTIVE;
846 write_seqcount_end(&prev->vtime_seqcount);
847
848 write_seqcount_begin(¤t->vtime_seqcount);
849 current->vtime_snap_whence = VTIME_SYS;
850 current->vtime_snap = jiffies;
851 write_seqcount_end(¤t->vtime_seqcount);
852 }
853
vtime_init_idle(struct task_struct * t,int cpu)854 void vtime_init_idle(struct task_struct *t, int cpu)
855 {
856 unsigned long flags;
857
858 local_irq_save(flags);
859 write_seqcount_begin(&t->vtime_seqcount);
860 t->vtime_snap_whence = VTIME_SYS;
861 t->vtime_snap = jiffies;
862 write_seqcount_end(&t->vtime_seqcount);
863 local_irq_restore(flags);
864 }
865
task_gtime(struct task_struct * t)866 cputime_t task_gtime(struct task_struct *t)
867 {
868 unsigned int seq;
869 cputime_t gtime;
870
871 if (!vtime_accounting_enabled())
872 return t->gtime;
873
874 do {
875 seq = read_seqcount_begin(&t->vtime_seqcount);
876
877 gtime = t->gtime;
878 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
879 gtime += vtime_delta(t);
880
881 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
882
883 return gtime;
884 }
885
886 /*
887 * Fetch cputime raw values from fields of task_struct and
888 * add up the pending nohz execution time since the last
889 * cputime snapshot.
890 */
891 static void
fetch_task_cputime(struct task_struct * t,cputime_t * u_dst,cputime_t * s_dst,cputime_t * u_src,cputime_t * s_src,cputime_t * udelta,cputime_t * sdelta)892 fetch_task_cputime(struct task_struct *t,
893 cputime_t *u_dst, cputime_t *s_dst,
894 cputime_t *u_src, cputime_t *s_src,
895 cputime_t *udelta, cputime_t *sdelta)
896 {
897 unsigned int seq;
898 unsigned long long delta;
899
900 do {
901 *udelta = 0;
902 *sdelta = 0;
903
904 seq = read_seqcount_begin(&t->vtime_seqcount);
905
906 if (u_dst)
907 *u_dst = *u_src;
908 if (s_dst)
909 *s_dst = *s_src;
910
911 /* Task is sleeping, nothing to add */
912 if (t->vtime_snap_whence == VTIME_INACTIVE ||
913 is_idle_task(t))
914 continue;
915
916 delta = vtime_delta(t);
917
918 /*
919 * Task runs either in user or kernel space, add pending nohz time to
920 * the right place.
921 */
922 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
923 *udelta = delta;
924 } else {
925 if (t->vtime_snap_whence == VTIME_SYS)
926 *sdelta = delta;
927 }
928 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
929 }
930
931
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)932 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
933 {
934 cputime_t udelta, sdelta;
935
936 if (!vtime_accounting_enabled()) {
937 if (utime)
938 *utime = t->utime;
939 if (stime)
940 *stime = t->stime;
941 return;
942 }
943
944 fetch_task_cputime(t, utime, stime, &t->utime,
945 &t->stime, &udelta, &sdelta);
946 if (utime)
947 *utime += udelta;
948 if (stime)
949 *stime += sdelta;
950 }
951
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)952 void task_cputime_scaled(struct task_struct *t,
953 cputime_t *utimescaled, cputime_t *stimescaled)
954 {
955 cputime_t udelta, sdelta;
956
957 if (!vtime_accounting_enabled()) {
958 if (utimescaled)
959 *utimescaled = t->utimescaled;
960 if (stimescaled)
961 *stimescaled = t->stimescaled;
962 return;
963 }
964
965 fetch_task_cputime(t, utimescaled, stimescaled,
966 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
967 if (utimescaled)
968 *utimescaled += cputime_to_scaled(udelta);
969 if (stimescaled)
970 *stimescaled += cputime_to_scaled(sdelta);
971 }
972 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
973