• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head		rcu;
72 	unsigned		nr;
73 	struct kioctx __rcu	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct rcu_head		free_rcu;
119 	struct work_struct	free_work;	/* see free_ioctx() */
120 
121 	/*
122 	 * signals when all in-flight requests are done
123 	 */
124 	struct ctx_rq_wait	*rq_wait;
125 
126 	struct {
127 		/*
128 		 * This counts the number of available slots in the ringbuffer,
129 		 * so we avoid overflowing it: it's decremented (if positive)
130 		 * when allocating a kiocb and incremented when the resulting
131 		 * io_event is pulled off the ringbuffer.
132 		 *
133 		 * We batch accesses to it with a percpu version.
134 		 */
135 		atomic_t	reqs_available;
136 	} ____cacheline_aligned_in_smp;
137 
138 	struct {
139 		spinlock_t	ctx_lock;
140 		struct list_head active_reqs;	/* used for cancellation */
141 	} ____cacheline_aligned_in_smp;
142 
143 	struct {
144 		struct mutex	ring_lock;
145 		wait_queue_head_t wait;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		unsigned	tail;
150 		unsigned	completed_events;
151 		spinlock_t	completion_lock;
152 	} ____cacheline_aligned_in_smp;
153 
154 	struct page		*internal_pages[AIO_RING_PAGES];
155 	struct file		*aio_ring_file;
156 
157 	unsigned		id;
158 };
159 
160 /*
161  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162  * cancelled or completed (this makes a certain amount of sense because
163  * successful cancellation - io_cancel() - does deliver the completion to
164  * userspace).
165  *
166  * And since most things don't implement kiocb cancellation and we'd really like
167  * kiocb completion to be lockless when possible, we use ki_cancel to
168  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170  */
171 #define KIOCB_CANCELLED		((void *) (~0ULL))
172 
173 struct aio_kiocb {
174 	struct kiocb		common;
175 
176 	struct kioctx		*ki_ctx;
177 	kiocb_cancel_fn		*ki_cancel;
178 
179 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
180 	__u64			ki_user_data;	/* user's data for completion */
181 
182 	struct list_head	ki_list;	/* the aio core uses this
183 						 * for cancellation */
184 
185 	/*
186 	 * If the aio_resfd field of the userspace iocb is not zero,
187 	 * this is the underlying eventfd context to deliver events to.
188 	 */
189 	struct eventfd_ctx	*ki_eventfd;
190 };
191 
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr;		/* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
197 
198 static struct kmem_cache	*kiocb_cachep;
199 static struct kmem_cache	*kioctx_cachep;
200 
201 static struct vfsmount *aio_mnt;
202 
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
205 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 {
208 	struct qstr this = QSTR_INIT("[aio]", 5);
209 	struct file *file;
210 	struct path path;
211 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 	if (IS_ERR(inode))
213 		return ERR_CAST(inode);
214 
215 	inode->i_mapping->a_ops = &aio_ctx_aops;
216 	inode->i_mapping->private_data = ctx;
217 	inode->i_size = PAGE_SIZE * nr_pages;
218 
219 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 	if (!path.dentry) {
221 		iput(inode);
222 		return ERR_PTR(-ENOMEM);
223 	}
224 	path.mnt = mntget(aio_mnt);
225 
226 	d_instantiate(path.dentry, inode);
227 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 	if (IS_ERR(file)) {
229 		path_put(&path);
230 		return file;
231 	}
232 
233 	file->f_flags = O_RDWR;
234 	return file;
235 }
236 
aio_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 				int flags, const char *dev_name, void *data)
239 {
240 	static const struct dentry_operations ops = {
241 		.d_dname	= simple_dname,
242 	};
243 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 					   AIO_RING_MAGIC);
245 
246 	if (!IS_ERR(root))
247 		root->d_sb->s_iflags |= SB_I_NOEXEC;
248 	return root;
249 }
250 
251 /* aio_setup
252  *	Creates the slab caches used by the aio routines, panic on
253  *	failure as this is done early during the boot sequence.
254  */
aio_setup(void)255 static int __init aio_setup(void)
256 {
257 	static struct file_system_type aio_fs = {
258 		.name		= "aio",
259 		.mount		= aio_mount,
260 		.kill_sb	= kill_anon_super,
261 	};
262 	aio_mnt = kern_mount(&aio_fs);
263 	if (IS_ERR(aio_mnt))
264 		panic("Failed to create aio fs mount.");
265 
266 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268 
269 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270 
271 	return 0;
272 }
273 __initcall(aio_setup);
274 
put_aio_ring_file(struct kioctx * ctx)275 static void put_aio_ring_file(struct kioctx *ctx)
276 {
277 	struct file *aio_ring_file = ctx->aio_ring_file;
278 	struct address_space *i_mapping;
279 
280 	if (aio_ring_file) {
281 		truncate_setsize(aio_ring_file->f_inode, 0);
282 
283 		/* Prevent further access to the kioctx from migratepages */
284 		i_mapping = aio_ring_file->f_inode->i_mapping;
285 		spin_lock(&i_mapping->private_lock);
286 		i_mapping->private_data = NULL;
287 		ctx->aio_ring_file = NULL;
288 		spin_unlock(&i_mapping->private_lock);
289 
290 		fput(aio_ring_file);
291 	}
292 }
293 
aio_free_ring(struct kioctx * ctx)294 static void aio_free_ring(struct kioctx *ctx)
295 {
296 	int i;
297 
298 	/* Disconnect the kiotx from the ring file.  This prevents future
299 	 * accesses to the kioctx from page migration.
300 	 */
301 	put_aio_ring_file(ctx);
302 
303 	for (i = 0; i < ctx->nr_pages; i++) {
304 		struct page *page;
305 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
306 				page_count(ctx->ring_pages[i]));
307 		page = ctx->ring_pages[i];
308 		if (!page)
309 			continue;
310 		ctx->ring_pages[i] = NULL;
311 		put_page(page);
312 	}
313 
314 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
315 		kfree(ctx->ring_pages);
316 		ctx->ring_pages = NULL;
317 	}
318 }
319 
aio_ring_mremap(struct vm_area_struct * vma)320 static int aio_ring_mremap(struct vm_area_struct *vma)
321 {
322 	struct file *file = vma->vm_file;
323 	struct mm_struct *mm = vma->vm_mm;
324 	struct kioctx_table *table;
325 	int i, res = -EINVAL;
326 
327 	spin_lock(&mm->ioctx_lock);
328 	rcu_read_lock();
329 	table = rcu_dereference(mm->ioctx_table);
330 	for (i = 0; i < table->nr; i++) {
331 		struct kioctx *ctx;
332 
333 		ctx = rcu_dereference(table->table[i]);
334 		if (ctx && ctx->aio_ring_file == file) {
335 			if (!atomic_read(&ctx->dead)) {
336 				ctx->user_id = ctx->mmap_base = vma->vm_start;
337 				res = 0;
338 			}
339 			break;
340 		}
341 	}
342 
343 	rcu_read_unlock();
344 	spin_unlock(&mm->ioctx_lock);
345 	return res;
346 }
347 
348 static const struct vm_operations_struct aio_ring_vm_ops = {
349 	.mremap		= aio_ring_mremap,
350 #if IS_ENABLED(CONFIG_MMU)
351 	.fault		= filemap_fault,
352 	.map_pages	= filemap_map_pages,
353 	.page_mkwrite	= filemap_page_mkwrite,
354 #endif
355 };
356 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)357 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 {
359 	vma->vm_flags |= VM_DONTEXPAND;
360 	vma->vm_ops = &aio_ring_vm_ops;
361 	return 0;
362 }
363 
364 static const struct file_operations aio_ring_fops = {
365 	.mmap = aio_ring_mmap,
366 };
367 
368 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)369 static int aio_migratepage(struct address_space *mapping, struct page *new,
370 			struct page *old, enum migrate_mode mode)
371 {
372 	struct kioctx *ctx;
373 	unsigned long flags;
374 	pgoff_t idx;
375 	int rc;
376 
377 	rc = 0;
378 
379 	/* mapping->private_lock here protects against the kioctx teardown.  */
380 	spin_lock(&mapping->private_lock);
381 	ctx = mapping->private_data;
382 	if (!ctx) {
383 		rc = -EINVAL;
384 		goto out;
385 	}
386 
387 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
388 	 * to the ring's head, and prevents page migration from mucking in
389 	 * a partially initialized kiotx.
390 	 */
391 	if (!mutex_trylock(&ctx->ring_lock)) {
392 		rc = -EAGAIN;
393 		goto out;
394 	}
395 
396 	idx = old->index;
397 	if (idx < (pgoff_t)ctx->nr_pages) {
398 		/* Make sure the old page hasn't already been changed */
399 		if (ctx->ring_pages[idx] != old)
400 			rc = -EAGAIN;
401 	} else
402 		rc = -EINVAL;
403 
404 	if (rc != 0)
405 		goto out_unlock;
406 
407 	/* Writeback must be complete */
408 	BUG_ON(PageWriteback(old));
409 	get_page(new);
410 
411 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
412 	if (rc != MIGRATEPAGE_SUCCESS) {
413 		put_page(new);
414 		goto out_unlock;
415 	}
416 
417 	/* Take completion_lock to prevent other writes to the ring buffer
418 	 * while the old page is copied to the new.  This prevents new
419 	 * events from being lost.
420 	 */
421 	spin_lock_irqsave(&ctx->completion_lock, flags);
422 	migrate_page_copy(new, old);
423 	BUG_ON(ctx->ring_pages[idx] != old);
424 	ctx->ring_pages[idx] = new;
425 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
426 
427 	/* The old page is no longer accessible. */
428 	put_page(old);
429 
430 out_unlock:
431 	mutex_unlock(&ctx->ring_lock);
432 out:
433 	spin_unlock(&mapping->private_lock);
434 	return rc;
435 }
436 #endif
437 
438 static const struct address_space_operations aio_ctx_aops = {
439 	.set_page_dirty = __set_page_dirty_no_writeback,
440 #if IS_ENABLED(CONFIG_MIGRATION)
441 	.migratepage	= aio_migratepage,
442 #endif
443 };
444 
aio_setup_ring(struct kioctx * ctx)445 static int aio_setup_ring(struct kioctx *ctx)
446 {
447 	struct aio_ring *ring;
448 	unsigned nr_events = ctx->max_reqs;
449 	struct mm_struct *mm = current->mm;
450 	unsigned long size, unused;
451 	int nr_pages;
452 	int i;
453 	struct file *file;
454 
455 	/* Compensate for the ring buffer's head/tail overlap entry */
456 	nr_events += 2;	/* 1 is required, 2 for good luck */
457 
458 	size = sizeof(struct aio_ring);
459 	size += sizeof(struct io_event) * nr_events;
460 
461 	nr_pages = PFN_UP(size);
462 	if (nr_pages < 0)
463 		return -EINVAL;
464 
465 	file = aio_private_file(ctx, nr_pages);
466 	if (IS_ERR(file)) {
467 		ctx->aio_ring_file = NULL;
468 		return -ENOMEM;
469 	}
470 
471 	ctx->aio_ring_file = file;
472 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
473 			/ sizeof(struct io_event);
474 
475 	ctx->ring_pages = ctx->internal_pages;
476 	if (nr_pages > AIO_RING_PAGES) {
477 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
478 					  GFP_KERNEL);
479 		if (!ctx->ring_pages) {
480 			put_aio_ring_file(ctx);
481 			return -ENOMEM;
482 		}
483 	}
484 
485 	for (i = 0; i < nr_pages; i++) {
486 		struct page *page;
487 		page = find_or_create_page(file->f_inode->i_mapping,
488 					   i, GFP_HIGHUSER | __GFP_ZERO);
489 		if (!page)
490 			break;
491 		pr_debug("pid(%d) page[%d]->count=%d\n",
492 			 current->pid, i, page_count(page));
493 		SetPageUptodate(page);
494 		unlock_page(page);
495 
496 		ctx->ring_pages[i] = page;
497 	}
498 	ctx->nr_pages = i;
499 
500 	if (unlikely(i != nr_pages)) {
501 		aio_free_ring(ctx);
502 		return -ENOMEM;
503 	}
504 
505 	ctx->mmap_size = nr_pages * PAGE_SIZE;
506 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
507 
508 	if (down_write_killable(&mm->mmap_sem)) {
509 		ctx->mmap_size = 0;
510 		aio_free_ring(ctx);
511 		return -EINTR;
512 	}
513 
514 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
515 				       PROT_READ | PROT_WRITE,
516 				       MAP_SHARED, 0, &unused);
517 	up_write(&mm->mmap_sem);
518 	if (IS_ERR((void *)ctx->mmap_base)) {
519 		ctx->mmap_size = 0;
520 		aio_free_ring(ctx);
521 		return -ENOMEM;
522 	}
523 
524 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
525 
526 	ctx->user_id = ctx->mmap_base;
527 	ctx->nr_events = nr_events; /* trusted copy */
528 
529 	ring = kmap_atomic(ctx->ring_pages[0]);
530 	ring->nr = nr_events;	/* user copy */
531 	ring->id = ~0U;
532 	ring->head = ring->tail = 0;
533 	ring->magic = AIO_RING_MAGIC;
534 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
535 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
536 	ring->header_length = sizeof(struct aio_ring);
537 	kunmap_atomic(ring);
538 	flush_dcache_page(ctx->ring_pages[0]);
539 
540 	return 0;
541 }
542 
543 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
544 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
546 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)547 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
548 {
549 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
550 	struct kioctx *ctx = req->ki_ctx;
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&ctx->ctx_lock, flags);
554 
555 	if (!req->ki_list.next)
556 		list_add(&req->ki_list, &ctx->active_reqs);
557 
558 	req->ki_cancel = cancel;
559 
560 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
561 }
562 EXPORT_SYMBOL(kiocb_set_cancel_fn);
563 
kiocb_cancel(struct aio_kiocb * kiocb)564 static int kiocb_cancel(struct aio_kiocb *kiocb)
565 {
566 	kiocb_cancel_fn *old, *cancel;
567 
568 	/*
569 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
570 	 * actually has a cancel function, hence the cmpxchg()
571 	 */
572 
573 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
574 	do {
575 		if (!cancel || cancel == KIOCB_CANCELLED)
576 			return -EINVAL;
577 
578 		old = cancel;
579 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
580 	} while (cancel != old);
581 
582 	return cancel(&kiocb->common);
583 }
584 
585 /*
586  * free_ioctx() should be RCU delayed to synchronize against the RCU
587  * protected lookup_ioctx() and also needs process context to call
588  * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
589  * ->free_work.
590  */
free_ioctx(struct work_struct * work)591 static void free_ioctx(struct work_struct *work)
592 {
593 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
594 
595 	pr_debug("freeing %p\n", ctx);
596 
597 	aio_free_ring(ctx);
598 	free_percpu(ctx->cpu);
599 	percpu_ref_exit(&ctx->reqs);
600 	percpu_ref_exit(&ctx->users);
601 	kmem_cache_free(kioctx_cachep, ctx);
602 }
603 
free_ioctx_rcufn(struct rcu_head * head)604 static void free_ioctx_rcufn(struct rcu_head *head)
605 {
606 	struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
607 
608 	INIT_WORK(&ctx->free_work, free_ioctx);
609 	schedule_work(&ctx->free_work);
610 }
611 
free_ioctx_reqs(struct percpu_ref * ref)612 static void free_ioctx_reqs(struct percpu_ref *ref)
613 {
614 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
615 
616 	/* At this point we know that there are no any in-flight requests */
617 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
618 		complete(&ctx->rq_wait->comp);
619 
620 	/* Synchronize against RCU protected table->table[] dereferences */
621 	call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
622 }
623 
624 /*
625  * When this function runs, the kioctx has been removed from the "hash table"
626  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
627  * now it's safe to cancel any that need to be.
628  */
free_ioctx_users(struct percpu_ref * ref)629 static void free_ioctx_users(struct percpu_ref *ref)
630 {
631 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
632 	struct aio_kiocb *req;
633 
634 	spin_lock_irq(&ctx->ctx_lock);
635 
636 	while (!list_empty(&ctx->active_reqs)) {
637 		req = list_first_entry(&ctx->active_reqs,
638 				       struct aio_kiocb, ki_list);
639 
640 		list_del_init(&req->ki_list);
641 		kiocb_cancel(req);
642 	}
643 
644 	spin_unlock_irq(&ctx->ctx_lock);
645 
646 	percpu_ref_kill(&ctx->reqs);
647 	percpu_ref_put(&ctx->reqs);
648 }
649 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)650 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
651 {
652 	unsigned i, new_nr;
653 	struct kioctx_table *table, *old;
654 	struct aio_ring *ring;
655 
656 	spin_lock(&mm->ioctx_lock);
657 	table = rcu_dereference_raw(mm->ioctx_table);
658 
659 	while (1) {
660 		if (table)
661 			for (i = 0; i < table->nr; i++)
662 				if (!rcu_access_pointer(table->table[i])) {
663 					ctx->id = i;
664 					rcu_assign_pointer(table->table[i], ctx);
665 					spin_unlock(&mm->ioctx_lock);
666 
667 					/* While kioctx setup is in progress,
668 					 * we are protected from page migration
669 					 * changes ring_pages by ->ring_lock.
670 					 */
671 					ring = kmap_atomic(ctx->ring_pages[0]);
672 					ring->id = ctx->id;
673 					kunmap_atomic(ring);
674 					return 0;
675 				}
676 
677 		new_nr = (table ? table->nr : 1) * 4;
678 		spin_unlock(&mm->ioctx_lock);
679 
680 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
681 				new_nr, GFP_KERNEL);
682 		if (!table)
683 			return -ENOMEM;
684 
685 		table->nr = new_nr;
686 
687 		spin_lock(&mm->ioctx_lock);
688 		old = rcu_dereference_raw(mm->ioctx_table);
689 
690 		if (!old) {
691 			rcu_assign_pointer(mm->ioctx_table, table);
692 		} else if (table->nr > old->nr) {
693 			memcpy(table->table, old->table,
694 			       old->nr * sizeof(struct kioctx *));
695 
696 			rcu_assign_pointer(mm->ioctx_table, table);
697 			kfree_rcu(old, rcu);
698 		} else {
699 			kfree(table);
700 			table = old;
701 		}
702 	}
703 }
704 
aio_nr_sub(unsigned nr)705 static void aio_nr_sub(unsigned nr)
706 {
707 	spin_lock(&aio_nr_lock);
708 	if (WARN_ON(aio_nr - nr > aio_nr))
709 		aio_nr = 0;
710 	else
711 		aio_nr -= nr;
712 	spin_unlock(&aio_nr_lock);
713 }
714 
715 /* ioctx_alloc
716  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
717  */
ioctx_alloc(unsigned nr_events)718 static struct kioctx *ioctx_alloc(unsigned nr_events)
719 {
720 	struct mm_struct *mm = current->mm;
721 	struct kioctx *ctx;
722 	int err = -ENOMEM;
723 
724 	/*
725 	 * We keep track of the number of available ringbuffer slots, to prevent
726 	 * overflow (reqs_available), and we also use percpu counters for this.
727 	 *
728 	 * So since up to half the slots might be on other cpu's percpu counters
729 	 * and unavailable, double nr_events so userspace sees what they
730 	 * expected: additionally, we move req_batch slots to/from percpu
731 	 * counters at a time, so make sure that isn't 0:
732 	 */
733 	nr_events = max(nr_events, num_possible_cpus() * 4);
734 	nr_events *= 2;
735 
736 	/* Prevent overflows */
737 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
738 		pr_debug("ENOMEM: nr_events too high\n");
739 		return ERR_PTR(-EINVAL);
740 	}
741 
742 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
743 		return ERR_PTR(-EAGAIN);
744 
745 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
746 	if (!ctx)
747 		return ERR_PTR(-ENOMEM);
748 
749 	ctx->max_reqs = nr_events;
750 
751 	spin_lock_init(&ctx->ctx_lock);
752 	spin_lock_init(&ctx->completion_lock);
753 	mutex_init(&ctx->ring_lock);
754 	/* Protect against page migration throughout kiotx setup by keeping
755 	 * the ring_lock mutex held until setup is complete. */
756 	mutex_lock(&ctx->ring_lock);
757 	init_waitqueue_head(&ctx->wait);
758 
759 	INIT_LIST_HEAD(&ctx->active_reqs);
760 
761 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
762 		goto err;
763 
764 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
765 		goto err;
766 
767 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
768 	if (!ctx->cpu)
769 		goto err;
770 
771 	err = aio_setup_ring(ctx);
772 	if (err < 0)
773 		goto err;
774 
775 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
776 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
777 	if (ctx->req_batch < 1)
778 		ctx->req_batch = 1;
779 
780 	/* limit the number of system wide aios */
781 	spin_lock(&aio_nr_lock);
782 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
783 	    aio_nr + nr_events < aio_nr) {
784 		spin_unlock(&aio_nr_lock);
785 		err = -EAGAIN;
786 		goto err_ctx;
787 	}
788 	aio_nr += ctx->max_reqs;
789 	spin_unlock(&aio_nr_lock);
790 
791 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
792 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
793 
794 	err = ioctx_add_table(ctx, mm);
795 	if (err)
796 		goto err_cleanup;
797 
798 	/* Release the ring_lock mutex now that all setup is complete. */
799 	mutex_unlock(&ctx->ring_lock);
800 
801 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
802 		 ctx, ctx->user_id, mm, ctx->nr_events);
803 	return ctx;
804 
805 err_cleanup:
806 	aio_nr_sub(ctx->max_reqs);
807 err_ctx:
808 	atomic_set(&ctx->dead, 1);
809 	if (ctx->mmap_size)
810 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
811 	aio_free_ring(ctx);
812 err:
813 	mutex_unlock(&ctx->ring_lock);
814 	free_percpu(ctx->cpu);
815 	percpu_ref_exit(&ctx->reqs);
816 	percpu_ref_exit(&ctx->users);
817 	kmem_cache_free(kioctx_cachep, ctx);
818 	pr_debug("error allocating ioctx %d\n", err);
819 	return ERR_PTR(err);
820 }
821 
822 /* kill_ioctx
823  *	Cancels all outstanding aio requests on an aio context.  Used
824  *	when the processes owning a context have all exited to encourage
825  *	the rapid destruction of the kioctx.
826  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)827 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
828 		      struct ctx_rq_wait *wait)
829 {
830 	struct kioctx_table *table;
831 
832 	spin_lock(&mm->ioctx_lock);
833 	if (atomic_xchg(&ctx->dead, 1)) {
834 		spin_unlock(&mm->ioctx_lock);
835 		return -EINVAL;
836 	}
837 
838 	table = rcu_dereference_raw(mm->ioctx_table);
839 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
840 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
841 	spin_unlock(&mm->ioctx_lock);
842 
843 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
844 	wake_up_all(&ctx->wait);
845 
846 	/*
847 	 * It'd be more correct to do this in free_ioctx(), after all
848 	 * the outstanding kiocbs have finished - but by then io_destroy
849 	 * has already returned, so io_setup() could potentially return
850 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
851 	 *  could tell).
852 	 */
853 	aio_nr_sub(ctx->max_reqs);
854 
855 	if (ctx->mmap_size)
856 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
857 
858 	ctx->rq_wait = wait;
859 	percpu_ref_kill(&ctx->users);
860 	return 0;
861 }
862 
863 /*
864  * exit_aio: called when the last user of mm goes away.  At this point, there is
865  * no way for any new requests to be submited or any of the io_* syscalls to be
866  * called on the context.
867  *
868  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
869  * them.
870  */
exit_aio(struct mm_struct * mm)871 void exit_aio(struct mm_struct *mm)
872 {
873 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
874 	struct ctx_rq_wait wait;
875 	int i, skipped;
876 
877 	if (!table)
878 		return;
879 
880 	atomic_set(&wait.count, table->nr);
881 	init_completion(&wait.comp);
882 
883 	skipped = 0;
884 	for (i = 0; i < table->nr; ++i) {
885 		struct kioctx *ctx =
886 			rcu_dereference_protected(table->table[i], true);
887 
888 		if (!ctx) {
889 			skipped++;
890 			continue;
891 		}
892 
893 		/*
894 		 * We don't need to bother with munmap() here - exit_mmap(mm)
895 		 * is coming and it'll unmap everything. And we simply can't,
896 		 * this is not necessarily our ->mm.
897 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
898 		 * that it needs to unmap the area, just set it to 0.
899 		 */
900 		ctx->mmap_size = 0;
901 		kill_ioctx(mm, ctx, &wait);
902 	}
903 
904 	if (!atomic_sub_and_test(skipped, &wait.count)) {
905 		/* Wait until all IO for the context are done. */
906 		wait_for_completion(&wait.comp);
907 	}
908 
909 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
910 	kfree(table);
911 }
912 
put_reqs_available(struct kioctx * ctx,unsigned nr)913 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
914 {
915 	struct kioctx_cpu *kcpu;
916 	unsigned long flags;
917 
918 	local_irq_save(flags);
919 	kcpu = this_cpu_ptr(ctx->cpu);
920 	kcpu->reqs_available += nr;
921 
922 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
923 		kcpu->reqs_available -= ctx->req_batch;
924 		atomic_add(ctx->req_batch, &ctx->reqs_available);
925 	}
926 
927 	local_irq_restore(flags);
928 }
929 
get_reqs_available(struct kioctx * ctx)930 static bool get_reqs_available(struct kioctx *ctx)
931 {
932 	struct kioctx_cpu *kcpu;
933 	bool ret = false;
934 	unsigned long flags;
935 
936 	local_irq_save(flags);
937 	kcpu = this_cpu_ptr(ctx->cpu);
938 	if (!kcpu->reqs_available) {
939 		int old, avail = atomic_read(&ctx->reqs_available);
940 
941 		do {
942 			if (avail < ctx->req_batch)
943 				goto out;
944 
945 			old = avail;
946 			avail = atomic_cmpxchg(&ctx->reqs_available,
947 					       avail, avail - ctx->req_batch);
948 		} while (avail != old);
949 
950 		kcpu->reqs_available += ctx->req_batch;
951 	}
952 
953 	ret = true;
954 	kcpu->reqs_available--;
955 out:
956 	local_irq_restore(flags);
957 	return ret;
958 }
959 
960 /* refill_reqs_available
961  *	Updates the reqs_available reference counts used for tracking the
962  *	number of free slots in the completion ring.  This can be called
963  *	from aio_complete() (to optimistically update reqs_available) or
964  *	from aio_get_req() (the we're out of events case).  It must be
965  *	called holding ctx->completion_lock.
966  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)967 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
968                                   unsigned tail)
969 {
970 	unsigned events_in_ring, completed;
971 
972 	/* Clamp head since userland can write to it. */
973 	head %= ctx->nr_events;
974 	if (head <= tail)
975 		events_in_ring = tail - head;
976 	else
977 		events_in_ring = ctx->nr_events - (head - tail);
978 
979 	completed = ctx->completed_events;
980 	if (events_in_ring < completed)
981 		completed -= events_in_ring;
982 	else
983 		completed = 0;
984 
985 	if (!completed)
986 		return;
987 
988 	ctx->completed_events -= completed;
989 	put_reqs_available(ctx, completed);
990 }
991 
992 /* user_refill_reqs_available
993  *	Called to refill reqs_available when aio_get_req() encounters an
994  *	out of space in the completion ring.
995  */
user_refill_reqs_available(struct kioctx * ctx)996 static void user_refill_reqs_available(struct kioctx *ctx)
997 {
998 	spin_lock_irq(&ctx->completion_lock);
999 	if (ctx->completed_events) {
1000 		struct aio_ring *ring;
1001 		unsigned head;
1002 
1003 		/* Access of ring->head may race with aio_read_events_ring()
1004 		 * here, but that's okay since whether we read the old version
1005 		 * or the new version, and either will be valid.  The important
1006 		 * part is that head cannot pass tail since we prevent
1007 		 * aio_complete() from updating tail by holding
1008 		 * ctx->completion_lock.  Even if head is invalid, the check
1009 		 * against ctx->completed_events below will make sure we do the
1010 		 * safe/right thing.
1011 		 */
1012 		ring = kmap_atomic(ctx->ring_pages[0]);
1013 		head = ring->head;
1014 		kunmap_atomic(ring);
1015 
1016 		refill_reqs_available(ctx, head, ctx->tail);
1017 	}
1018 
1019 	spin_unlock_irq(&ctx->completion_lock);
1020 }
1021 
1022 /* aio_get_req
1023  *	Allocate a slot for an aio request.
1024  * Returns NULL if no requests are free.
1025  */
aio_get_req(struct kioctx * ctx)1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 {
1028 	struct aio_kiocb *req;
1029 
1030 	if (!get_reqs_available(ctx)) {
1031 		user_refill_reqs_available(ctx);
1032 		if (!get_reqs_available(ctx))
1033 			return NULL;
1034 	}
1035 
1036 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1037 	if (unlikely(!req))
1038 		goto out_put;
1039 
1040 	percpu_ref_get(&ctx->reqs);
1041 
1042 	req->ki_ctx = ctx;
1043 	return req;
1044 out_put:
1045 	put_reqs_available(ctx, 1);
1046 	return NULL;
1047 }
1048 
kiocb_free(struct aio_kiocb * req)1049 static void kiocb_free(struct aio_kiocb *req)
1050 {
1051 	if (req->common.ki_filp)
1052 		fput(req->common.ki_filp);
1053 	if (req->ki_eventfd != NULL)
1054 		eventfd_ctx_put(req->ki_eventfd);
1055 	kmem_cache_free(kiocb_cachep, req);
1056 }
1057 
lookup_ioctx(unsigned long ctx_id)1058 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1059 {
1060 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1061 	struct mm_struct *mm = current->mm;
1062 	struct kioctx *ctx, *ret = NULL;
1063 	struct kioctx_table *table;
1064 	unsigned id;
1065 
1066 	if (get_user(id, &ring->id))
1067 		return NULL;
1068 
1069 	rcu_read_lock();
1070 	table = rcu_dereference(mm->ioctx_table);
1071 
1072 	if (!table || id >= table->nr)
1073 		goto out;
1074 
1075 	ctx = rcu_dereference(table->table[id]);
1076 	if (ctx && ctx->user_id == ctx_id) {
1077 		percpu_ref_get(&ctx->users);
1078 		ret = ctx;
1079 	}
1080 out:
1081 	rcu_read_unlock();
1082 	return ret;
1083 }
1084 
1085 /* aio_complete
1086  *	Called when the io request on the given iocb is complete.
1087  */
aio_complete(struct kiocb * kiocb,long res,long res2)1088 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1089 {
1090 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1091 	struct kioctx	*ctx = iocb->ki_ctx;
1092 	struct aio_ring	*ring;
1093 	struct io_event	*ev_page, *event;
1094 	unsigned tail, pos, head;
1095 	unsigned long	flags;
1096 
1097 	if (kiocb->ki_flags & IOCB_WRITE) {
1098 		struct file *file = kiocb->ki_filp;
1099 
1100 		/*
1101 		 * Tell lockdep we inherited freeze protection from submission
1102 		 * thread.
1103 		 */
1104 		if (S_ISREG(file_inode(file)->i_mode))
1105 			__sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1106 		file_end_write(file);
1107 	}
1108 
1109 	/*
1110 	 * Special case handling for sync iocbs:
1111 	 *  - events go directly into the iocb for fast handling
1112 	 *  - the sync task with the iocb in its stack holds the single iocb
1113 	 *    ref, no other paths have a way to get another ref
1114 	 *  - the sync task helpfully left a reference to itself in the iocb
1115 	 */
1116 	BUG_ON(is_sync_kiocb(kiocb));
1117 
1118 	if (iocb->ki_list.next) {
1119 		unsigned long flags;
1120 
1121 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1122 		list_del(&iocb->ki_list);
1123 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1124 	}
1125 
1126 	/*
1127 	 * Add a completion event to the ring buffer. Must be done holding
1128 	 * ctx->completion_lock to prevent other code from messing with the tail
1129 	 * pointer since we might be called from irq context.
1130 	 */
1131 	spin_lock_irqsave(&ctx->completion_lock, flags);
1132 
1133 	tail = ctx->tail;
1134 	pos = tail + AIO_EVENTS_OFFSET;
1135 
1136 	if (++tail >= ctx->nr_events)
1137 		tail = 0;
1138 
1139 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1140 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1141 
1142 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1143 	event->data = iocb->ki_user_data;
1144 	event->res = res;
1145 	event->res2 = res2;
1146 
1147 	kunmap_atomic(ev_page);
1148 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1149 
1150 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1151 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1152 		 res, res2);
1153 
1154 	/* after flagging the request as done, we
1155 	 * must never even look at it again
1156 	 */
1157 	smp_wmb();	/* make event visible before updating tail */
1158 
1159 	ctx->tail = tail;
1160 
1161 	ring = kmap_atomic(ctx->ring_pages[0]);
1162 	head = ring->head;
1163 	ring->tail = tail;
1164 	kunmap_atomic(ring);
1165 	flush_dcache_page(ctx->ring_pages[0]);
1166 
1167 	ctx->completed_events++;
1168 	if (ctx->completed_events > 1)
1169 		refill_reqs_available(ctx, head, tail);
1170 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1171 
1172 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1173 
1174 	/*
1175 	 * Check if the user asked us to deliver the result through an
1176 	 * eventfd. The eventfd_signal() function is safe to be called
1177 	 * from IRQ context.
1178 	 */
1179 	if (iocb->ki_eventfd != NULL)
1180 		eventfd_signal(iocb->ki_eventfd, 1);
1181 
1182 	/* everything turned out well, dispose of the aiocb. */
1183 	kiocb_free(iocb);
1184 
1185 	/*
1186 	 * We have to order our ring_info tail store above and test
1187 	 * of the wait list below outside the wait lock.  This is
1188 	 * like in wake_up_bit() where clearing a bit has to be
1189 	 * ordered with the unlocked test.
1190 	 */
1191 	smp_mb();
1192 
1193 	if (waitqueue_active(&ctx->wait))
1194 		wake_up(&ctx->wait);
1195 
1196 	percpu_ref_put(&ctx->reqs);
1197 }
1198 
1199 /* aio_read_events_ring
1200  *	Pull an event off of the ioctx's event ring.  Returns the number of
1201  *	events fetched
1202  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1203 static long aio_read_events_ring(struct kioctx *ctx,
1204 				 struct io_event __user *event, long nr)
1205 {
1206 	struct aio_ring *ring;
1207 	unsigned head, tail, pos;
1208 	long ret = 0;
1209 	int copy_ret;
1210 
1211 	/*
1212 	 * The mutex can block and wake us up and that will cause
1213 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1214 	 * and repeat. This should be rare enough that it doesn't cause
1215 	 * peformance issues. See the comment in read_events() for more detail.
1216 	 */
1217 	sched_annotate_sleep();
1218 	mutex_lock(&ctx->ring_lock);
1219 
1220 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1221 	ring = kmap_atomic(ctx->ring_pages[0]);
1222 	head = ring->head;
1223 	tail = ring->tail;
1224 	kunmap_atomic(ring);
1225 
1226 	/*
1227 	 * Ensure that once we've read the current tail pointer, that
1228 	 * we also see the events that were stored up to the tail.
1229 	 */
1230 	smp_rmb();
1231 
1232 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1233 
1234 	if (head == tail)
1235 		goto out;
1236 
1237 	head %= ctx->nr_events;
1238 	tail %= ctx->nr_events;
1239 
1240 	while (ret < nr) {
1241 		long avail;
1242 		struct io_event *ev;
1243 		struct page *page;
1244 
1245 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1246 		if (head == tail)
1247 			break;
1248 
1249 		avail = min(avail, nr - ret);
1250 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1251 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1252 
1253 		pos = head + AIO_EVENTS_OFFSET;
1254 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1255 		pos %= AIO_EVENTS_PER_PAGE;
1256 
1257 		ev = kmap(page);
1258 		copy_ret = copy_to_user(event + ret, ev + pos,
1259 					sizeof(*ev) * avail);
1260 		kunmap(page);
1261 
1262 		if (unlikely(copy_ret)) {
1263 			ret = -EFAULT;
1264 			goto out;
1265 		}
1266 
1267 		ret += avail;
1268 		head += avail;
1269 		head %= ctx->nr_events;
1270 	}
1271 
1272 	ring = kmap_atomic(ctx->ring_pages[0]);
1273 	ring->head = head;
1274 	kunmap_atomic(ring);
1275 	flush_dcache_page(ctx->ring_pages[0]);
1276 
1277 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1278 out:
1279 	mutex_unlock(&ctx->ring_lock);
1280 
1281 	return ret;
1282 }
1283 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1284 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1285 			    struct io_event __user *event, long *i)
1286 {
1287 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1288 
1289 	if (ret > 0)
1290 		*i += ret;
1291 
1292 	if (unlikely(atomic_read(&ctx->dead)))
1293 		ret = -EINVAL;
1294 
1295 	if (!*i)
1296 		*i = ret;
1297 
1298 	return ret < 0 || *i >= min_nr;
1299 }
1300 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)1301 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1302 			struct io_event __user *event,
1303 			struct timespec __user *timeout)
1304 {
1305 	ktime_t until = { .tv64 = KTIME_MAX };
1306 	long ret = 0;
1307 
1308 	if (timeout) {
1309 		struct timespec	ts;
1310 
1311 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1312 			return -EFAULT;
1313 
1314 		until = timespec_to_ktime(ts);
1315 	}
1316 
1317 	/*
1318 	 * Note that aio_read_events() is being called as the conditional - i.e.
1319 	 * we're calling it after prepare_to_wait() has set task state to
1320 	 * TASK_INTERRUPTIBLE.
1321 	 *
1322 	 * But aio_read_events() can block, and if it blocks it's going to flip
1323 	 * the task state back to TASK_RUNNING.
1324 	 *
1325 	 * This should be ok, provided it doesn't flip the state back to
1326 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1327 	 * will only happen if the mutex_lock() call blocks, and we then find
1328 	 * the ringbuffer empty. So in practice we should be ok, but it's
1329 	 * something to be aware of when touching this code.
1330 	 */
1331 	if (until.tv64 == 0)
1332 		aio_read_events(ctx, min_nr, nr, event, &ret);
1333 	else
1334 		wait_event_interruptible_hrtimeout(ctx->wait,
1335 				aio_read_events(ctx, min_nr, nr, event, &ret),
1336 				until);
1337 
1338 	if (!ret && signal_pending(current))
1339 		ret = -EINTR;
1340 
1341 	return ret;
1342 }
1343 
1344 /* sys_io_setup:
1345  *	Create an aio_context capable of receiving at least nr_events.
1346  *	ctxp must not point to an aio_context that already exists, and
1347  *	must be initialized to 0 prior to the call.  On successful
1348  *	creation of the aio_context, *ctxp is filled in with the resulting
1349  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1350  *	if the specified nr_events exceeds internal limits.  May fail
1351  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1352  *	of available events.  May fail with -ENOMEM if insufficient kernel
1353  *	resources are available.  May fail with -EFAULT if an invalid
1354  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1355  *	implemented.
1356  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1357 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1358 {
1359 	struct kioctx *ioctx = NULL;
1360 	unsigned long ctx;
1361 	long ret;
1362 
1363 	ret = get_user(ctx, ctxp);
1364 	if (unlikely(ret))
1365 		goto out;
1366 
1367 	ret = -EINVAL;
1368 	if (unlikely(ctx || nr_events == 0)) {
1369 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1370 		         ctx, nr_events);
1371 		goto out;
1372 	}
1373 
1374 	ioctx = ioctx_alloc(nr_events);
1375 	ret = PTR_ERR(ioctx);
1376 	if (!IS_ERR(ioctx)) {
1377 		ret = put_user(ioctx->user_id, ctxp);
1378 		if (ret)
1379 			kill_ioctx(current->mm, ioctx, NULL);
1380 		percpu_ref_put(&ioctx->users);
1381 	}
1382 
1383 out:
1384 	return ret;
1385 }
1386 
1387 /* sys_io_destroy:
1388  *	Destroy the aio_context specified.  May cancel any outstanding
1389  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1390  *	implemented.  May fail with -EINVAL if the context pointed to
1391  *	is invalid.
1392  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1393 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1394 {
1395 	struct kioctx *ioctx = lookup_ioctx(ctx);
1396 	if (likely(NULL != ioctx)) {
1397 		struct ctx_rq_wait wait;
1398 		int ret;
1399 
1400 		init_completion(&wait.comp);
1401 		atomic_set(&wait.count, 1);
1402 
1403 		/* Pass requests_done to kill_ioctx() where it can be set
1404 		 * in a thread-safe way. If we try to set it here then we have
1405 		 * a race condition if two io_destroy() called simultaneously.
1406 		 */
1407 		ret = kill_ioctx(current->mm, ioctx, &wait);
1408 		percpu_ref_put(&ioctx->users);
1409 
1410 		/* Wait until all IO for the context are done. Otherwise kernel
1411 		 * keep using user-space buffers even if user thinks the context
1412 		 * is destroyed.
1413 		 */
1414 		if (!ret)
1415 			wait_for_completion(&wait.comp);
1416 
1417 		return ret;
1418 	}
1419 	pr_debug("EINVAL: invalid context id\n");
1420 	return -EINVAL;
1421 }
1422 
aio_setup_rw(int rw,struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1423 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1424 		bool vectored, bool compat, struct iov_iter *iter)
1425 {
1426 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1427 	size_t len = iocb->aio_nbytes;
1428 
1429 	if (!vectored) {
1430 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1431 		*iovec = NULL;
1432 		return ret;
1433 	}
1434 #ifdef CONFIG_COMPAT
1435 	if (compat)
1436 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1437 				iter);
1438 #endif
1439 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1440 }
1441 
aio_ret(struct kiocb * req,ssize_t ret)1442 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1443 {
1444 	switch (ret) {
1445 	case -EIOCBQUEUED:
1446 		return ret;
1447 	case -ERESTARTSYS:
1448 	case -ERESTARTNOINTR:
1449 	case -ERESTARTNOHAND:
1450 	case -ERESTART_RESTARTBLOCK:
1451 		/*
1452 		 * There's no easy way to restart the syscall since other AIO's
1453 		 * may be already running. Just fail this IO with EINTR.
1454 		 */
1455 		ret = -EINTR;
1456 		/*FALLTHRU*/
1457 	default:
1458 		aio_complete(req, ret, 0);
1459 		return 0;
1460 	}
1461 }
1462 
aio_read(struct kiocb * req,struct iocb * iocb,bool vectored,bool compat)1463 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1464 		bool compat)
1465 {
1466 	struct file *file = req->ki_filp;
1467 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1468 	struct iov_iter iter;
1469 	ssize_t ret;
1470 
1471 	if (unlikely(!(file->f_mode & FMODE_READ)))
1472 		return -EBADF;
1473 	if (unlikely(!file->f_op->read_iter))
1474 		return -EINVAL;
1475 
1476 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1477 	if (ret)
1478 		return ret;
1479 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1480 	if (!ret)
1481 		ret = aio_ret(req, file->f_op->read_iter(req, &iter));
1482 	kfree(iovec);
1483 	return ret;
1484 }
1485 
aio_write(struct kiocb * req,struct iocb * iocb,bool vectored,bool compat)1486 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1487 		bool compat)
1488 {
1489 	struct file *file = req->ki_filp;
1490 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1491 	struct iov_iter iter;
1492 	ssize_t ret;
1493 
1494 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1495 		return -EBADF;
1496 	if (unlikely(!file->f_op->write_iter))
1497 		return -EINVAL;
1498 
1499 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1500 	if (ret)
1501 		return ret;
1502 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1503 	if (!ret) {
1504 		req->ki_flags |= IOCB_WRITE;
1505 		file_start_write(file);
1506 		ret = aio_ret(req, file->f_op->write_iter(req, &iter));
1507 		/*
1508 		 * We release freeze protection in aio_complete().  Fool lockdep
1509 		 * by telling it the lock got released so that it doesn't
1510 		 * complain about held lock when we return to userspace.
1511 		 */
1512 		if (S_ISREG(file_inode(file)->i_mode))
1513 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1514 	}
1515 	kfree(iovec);
1516 	return ret;
1517 }
1518 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb,bool compat)1519 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1520 			 struct iocb *iocb, bool compat)
1521 {
1522 	struct aio_kiocb *req;
1523 	struct file *file;
1524 	ssize_t ret;
1525 
1526 	/* enforce forwards compatibility on users */
1527 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1528 		pr_debug("EINVAL: reserve field set\n");
1529 		return -EINVAL;
1530 	}
1531 
1532 	/* prevent overflows */
1533 	if (unlikely(
1534 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1535 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1536 	    ((ssize_t)iocb->aio_nbytes < 0)
1537 	   )) {
1538 		pr_debug("EINVAL: overflow check\n");
1539 		return -EINVAL;
1540 	}
1541 
1542 	req = aio_get_req(ctx);
1543 	if (unlikely(!req))
1544 		return -EAGAIN;
1545 
1546 	req->common.ki_filp = file = fget(iocb->aio_fildes);
1547 	if (unlikely(!req->common.ki_filp)) {
1548 		ret = -EBADF;
1549 		goto out_put_req;
1550 	}
1551 	req->common.ki_pos = iocb->aio_offset;
1552 	req->common.ki_complete = aio_complete;
1553 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1554 
1555 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1556 		/*
1557 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1558 		 * instance of the file* now. The file descriptor must be
1559 		 * an eventfd() fd, and will be signaled for each completed
1560 		 * event using the eventfd_signal() function.
1561 		 */
1562 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1563 		if (IS_ERR(req->ki_eventfd)) {
1564 			ret = PTR_ERR(req->ki_eventfd);
1565 			req->ki_eventfd = NULL;
1566 			goto out_put_req;
1567 		}
1568 
1569 		req->common.ki_flags |= IOCB_EVENTFD;
1570 	}
1571 
1572 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1573 	if (unlikely(ret)) {
1574 		pr_debug("EFAULT: aio_key\n");
1575 		goto out_put_req;
1576 	}
1577 
1578 	req->ki_user_iocb = user_iocb;
1579 	req->ki_user_data = iocb->aio_data;
1580 
1581 	get_file(file);
1582 	switch (iocb->aio_lio_opcode) {
1583 	case IOCB_CMD_PREAD:
1584 		ret = aio_read(&req->common, iocb, false, compat);
1585 		break;
1586 	case IOCB_CMD_PWRITE:
1587 		ret = aio_write(&req->common, iocb, false, compat);
1588 		break;
1589 	case IOCB_CMD_PREADV:
1590 		ret = aio_read(&req->common, iocb, true, compat);
1591 		break;
1592 	case IOCB_CMD_PWRITEV:
1593 		ret = aio_write(&req->common, iocb, true, compat);
1594 		break;
1595 	default:
1596 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1597 		ret = -EINVAL;
1598 		break;
1599 	}
1600 	fput(file);
1601 
1602 	if (ret && ret != -EIOCBQUEUED)
1603 		goto out_put_req;
1604 	return 0;
1605 out_put_req:
1606 	put_reqs_available(ctx, 1);
1607 	percpu_ref_put(&ctx->reqs);
1608 	kiocb_free(req);
1609 	return ret;
1610 }
1611 
do_io_submit(aio_context_t ctx_id,long nr,struct iocb __user * __user * iocbpp,bool compat)1612 long do_io_submit(aio_context_t ctx_id, long nr,
1613 		  struct iocb __user *__user *iocbpp, bool compat)
1614 {
1615 	struct kioctx *ctx;
1616 	long ret = 0;
1617 	int i = 0;
1618 	struct blk_plug plug;
1619 
1620 	if (unlikely(nr < 0))
1621 		return -EINVAL;
1622 
1623 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1624 		nr = LONG_MAX/sizeof(*iocbpp);
1625 
1626 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1627 		return -EFAULT;
1628 
1629 	ctx = lookup_ioctx(ctx_id);
1630 	if (unlikely(!ctx)) {
1631 		pr_debug("EINVAL: invalid context id\n");
1632 		return -EINVAL;
1633 	}
1634 
1635 	blk_start_plug(&plug);
1636 
1637 	/*
1638 	 * AKPM: should this return a partial result if some of the IOs were
1639 	 * successfully submitted?
1640 	 */
1641 	for (i=0; i<nr; i++) {
1642 		struct iocb __user *user_iocb;
1643 		struct iocb tmp;
1644 
1645 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1646 			ret = -EFAULT;
1647 			break;
1648 		}
1649 
1650 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1651 			ret = -EFAULT;
1652 			break;
1653 		}
1654 
1655 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1656 		if (ret)
1657 			break;
1658 	}
1659 	blk_finish_plug(&plug);
1660 
1661 	percpu_ref_put(&ctx->users);
1662 	return i ? i : ret;
1663 }
1664 
1665 /* sys_io_submit:
1666  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1667  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1668  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1669  *	*iocbpp[0] is not properly initialized, if the operation specified
1670  *	is invalid for the file descriptor in the iocb.  May fail with
1671  *	-EFAULT if any of the data structures point to invalid data.  May
1672  *	fail with -EBADF if the file descriptor specified in the first
1673  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1674  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1675  *	fail with -ENOSYS if not implemented.
1676  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1677 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1678 		struct iocb __user * __user *, iocbpp)
1679 {
1680 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1681 }
1682 
1683 /* lookup_kiocb
1684  *	Finds a given iocb for cancellation.
1685  */
1686 static struct aio_kiocb *
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1687 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1688 {
1689 	struct aio_kiocb *kiocb;
1690 
1691 	assert_spin_locked(&ctx->ctx_lock);
1692 
1693 	if (key != KIOCB_KEY)
1694 		return NULL;
1695 
1696 	/* TODO: use a hash or array, this sucks. */
1697 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1698 		if (kiocb->ki_user_iocb == iocb)
1699 			return kiocb;
1700 	}
1701 	return NULL;
1702 }
1703 
1704 /* sys_io_cancel:
1705  *	Attempts to cancel an iocb previously passed to io_submit.  If
1706  *	the operation is successfully cancelled, the resulting event is
1707  *	copied into the memory pointed to by result without being placed
1708  *	into the completion queue and 0 is returned.  May fail with
1709  *	-EFAULT if any of the data structures pointed to are invalid.
1710  *	May fail with -EINVAL if aio_context specified by ctx_id is
1711  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1712  *	cancelled.  Will fail with -ENOSYS if not implemented.
1713  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1714 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1715 		struct io_event __user *, result)
1716 {
1717 	struct kioctx *ctx;
1718 	struct aio_kiocb *kiocb;
1719 	u32 key;
1720 	int ret;
1721 
1722 	ret = get_user(key, &iocb->aio_key);
1723 	if (unlikely(ret))
1724 		return -EFAULT;
1725 
1726 	ctx = lookup_ioctx(ctx_id);
1727 	if (unlikely(!ctx))
1728 		return -EINVAL;
1729 
1730 	spin_lock_irq(&ctx->ctx_lock);
1731 
1732 	kiocb = lookup_kiocb(ctx, iocb, key);
1733 	if (kiocb)
1734 		ret = kiocb_cancel(kiocb);
1735 	else
1736 		ret = -EINVAL;
1737 
1738 	spin_unlock_irq(&ctx->ctx_lock);
1739 
1740 	if (!ret) {
1741 		/*
1742 		 * The result argument is no longer used - the io_event is
1743 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1744 		 * cancellation is progress:
1745 		 */
1746 		ret = -EINPROGRESS;
1747 	}
1748 
1749 	percpu_ref_put(&ctx->users);
1750 
1751 	return ret;
1752 }
1753 
1754 /* io_getevents:
1755  *	Attempts to read at least min_nr events and up to nr events from
1756  *	the completion queue for the aio_context specified by ctx_id. If
1757  *	it succeeds, the number of read events is returned. May fail with
1758  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1759  *	out of range, if timeout is out of range.  May fail with -EFAULT
1760  *	if any of the memory specified is invalid.  May return 0 or
1761  *	< min_nr if the timeout specified by timeout has elapsed
1762  *	before sufficient events are available, where timeout == NULL
1763  *	specifies an infinite timeout. Note that the timeout pointed to by
1764  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1765  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1766 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1767 		long, min_nr,
1768 		long, nr,
1769 		struct io_event __user *, events,
1770 		struct timespec __user *, timeout)
1771 {
1772 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1773 	long ret = -EINVAL;
1774 
1775 	if (likely(ioctx)) {
1776 		if (likely(min_nr <= nr && min_nr >= 0))
1777 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1778 		percpu_ref_put(&ioctx->users);
1779 	}
1780 	return ret;
1781 }
1782