1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46
47 #include "internal.h"
48
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
67
68 #define AIO_RING_PAGES 8
69
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
74 };
75
76 struct kioctx_cpu {
77 unsigned reqs_available;
78 };
79
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83 };
84
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct rcu_head free_rcu;
119 struct work_struct free_work; /* see free_ioctx() */
120
121 /*
122 * signals when all in-flight requests are done
123 */
124 struct ctx_rq_wait *rq_wait;
125
126 struct {
127 /*
128 * This counts the number of available slots in the ringbuffer,
129 * so we avoid overflowing it: it's decremented (if positive)
130 * when allocating a kiocb and incremented when the resulting
131 * io_event is pulled off the ringbuffer.
132 *
133 * We batch accesses to it with a percpu version.
134 */
135 atomic_t reqs_available;
136 } ____cacheline_aligned_in_smp;
137
138 struct {
139 spinlock_t ctx_lock;
140 struct list_head active_reqs; /* used for cancellation */
141 } ____cacheline_aligned_in_smp;
142
143 struct {
144 struct mutex ring_lock;
145 wait_queue_head_t wait;
146 } ____cacheline_aligned_in_smp;
147
148 struct {
149 unsigned tail;
150 unsigned completed_events;
151 spinlock_t completion_lock;
152 } ____cacheline_aligned_in_smp;
153
154 struct page *internal_pages[AIO_RING_PAGES];
155 struct file *aio_ring_file;
156
157 unsigned id;
158 };
159
160 /*
161 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162 * cancelled or completed (this makes a certain amount of sense because
163 * successful cancellation - io_cancel() - does deliver the completion to
164 * userspace).
165 *
166 * And since most things don't implement kiocb cancellation and we'd really like
167 * kiocb completion to be lockless when possible, we use ki_cancel to
168 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 */
171 #define KIOCB_CANCELLED ((void *) (~0ULL))
172
173 struct aio_kiocb {
174 struct kiocb common;
175
176 struct kioctx *ki_ctx;
177 kiocb_cancel_fn *ki_cancel;
178
179 struct iocb __user *ki_user_iocb; /* user's aiocb */
180 __u64 ki_user_data; /* user's data for completion */
181
182 struct list_head ki_list; /* the aio core uses this
183 * for cancellation */
184
185 /*
186 * If the aio_resfd field of the userspace iocb is not zero,
187 * this is the underlying eventfd context to deliver events to.
188 */
189 struct eventfd_ctx *ki_eventfd;
190 };
191
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr; /* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
197
198 static struct kmem_cache *kiocb_cachep;
199 static struct kmem_cache *kioctx_cachep;
200
201 static struct vfsmount *aio_mnt;
202
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
205
aio_private_file(struct kioctx * ctx,loff_t nr_pages)206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 {
208 struct qstr this = QSTR_INIT("[aio]", 5);
209 struct file *file;
210 struct path path;
211 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 if (IS_ERR(inode))
213 return ERR_CAST(inode);
214
215 inode->i_mapping->a_ops = &aio_ctx_aops;
216 inode->i_mapping->private_data = ctx;
217 inode->i_size = PAGE_SIZE * nr_pages;
218
219 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 if (!path.dentry) {
221 iput(inode);
222 return ERR_PTR(-ENOMEM);
223 }
224 path.mnt = mntget(aio_mnt);
225
226 d_instantiate(path.dentry, inode);
227 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 if (IS_ERR(file)) {
229 path_put(&path);
230 return file;
231 }
232
233 file->f_flags = O_RDWR;
234 return file;
235 }
236
aio_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 int flags, const char *dev_name, void *data)
239 {
240 static const struct dentry_operations ops = {
241 .d_dname = simple_dname,
242 };
243 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 AIO_RING_MAGIC);
245
246 if (!IS_ERR(root))
247 root->d_sb->s_iflags |= SB_I_NOEXEC;
248 return root;
249 }
250
251 /* aio_setup
252 * Creates the slab caches used by the aio routines, panic on
253 * failure as this is done early during the boot sequence.
254 */
aio_setup(void)255 static int __init aio_setup(void)
256 {
257 static struct file_system_type aio_fs = {
258 .name = "aio",
259 .mount = aio_mount,
260 .kill_sb = kill_anon_super,
261 };
262 aio_mnt = kern_mount(&aio_fs);
263 if (IS_ERR(aio_mnt))
264 panic("Failed to create aio fs mount.");
265
266 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268
269 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270
271 return 0;
272 }
273 __initcall(aio_setup);
274
put_aio_ring_file(struct kioctx * ctx)275 static void put_aio_ring_file(struct kioctx *ctx)
276 {
277 struct file *aio_ring_file = ctx->aio_ring_file;
278 struct address_space *i_mapping;
279
280 if (aio_ring_file) {
281 truncate_setsize(aio_ring_file->f_inode, 0);
282
283 /* Prevent further access to the kioctx from migratepages */
284 i_mapping = aio_ring_file->f_inode->i_mapping;
285 spin_lock(&i_mapping->private_lock);
286 i_mapping->private_data = NULL;
287 ctx->aio_ring_file = NULL;
288 spin_unlock(&i_mapping->private_lock);
289
290 fput(aio_ring_file);
291 }
292 }
293
aio_free_ring(struct kioctx * ctx)294 static void aio_free_ring(struct kioctx *ctx)
295 {
296 int i;
297
298 /* Disconnect the kiotx from the ring file. This prevents future
299 * accesses to the kioctx from page migration.
300 */
301 put_aio_ring_file(ctx);
302
303 for (i = 0; i < ctx->nr_pages; i++) {
304 struct page *page;
305 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
306 page_count(ctx->ring_pages[i]));
307 page = ctx->ring_pages[i];
308 if (!page)
309 continue;
310 ctx->ring_pages[i] = NULL;
311 put_page(page);
312 }
313
314 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
315 kfree(ctx->ring_pages);
316 ctx->ring_pages = NULL;
317 }
318 }
319
aio_ring_mremap(struct vm_area_struct * vma)320 static int aio_ring_mremap(struct vm_area_struct *vma)
321 {
322 struct file *file = vma->vm_file;
323 struct mm_struct *mm = vma->vm_mm;
324 struct kioctx_table *table;
325 int i, res = -EINVAL;
326
327 spin_lock(&mm->ioctx_lock);
328 rcu_read_lock();
329 table = rcu_dereference(mm->ioctx_table);
330 for (i = 0; i < table->nr; i++) {
331 struct kioctx *ctx;
332
333 ctx = rcu_dereference(table->table[i]);
334 if (ctx && ctx->aio_ring_file == file) {
335 if (!atomic_read(&ctx->dead)) {
336 ctx->user_id = ctx->mmap_base = vma->vm_start;
337 res = 0;
338 }
339 break;
340 }
341 }
342
343 rcu_read_unlock();
344 spin_unlock(&mm->ioctx_lock);
345 return res;
346 }
347
348 static const struct vm_operations_struct aio_ring_vm_ops = {
349 .mremap = aio_ring_mremap,
350 #if IS_ENABLED(CONFIG_MMU)
351 .fault = filemap_fault,
352 .map_pages = filemap_map_pages,
353 .page_mkwrite = filemap_page_mkwrite,
354 #endif
355 };
356
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)357 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 {
359 vma->vm_flags |= VM_DONTEXPAND;
360 vma->vm_ops = &aio_ring_vm_ops;
361 return 0;
362 }
363
364 static const struct file_operations aio_ring_fops = {
365 .mmap = aio_ring_mmap,
366 };
367
368 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)369 static int aio_migratepage(struct address_space *mapping, struct page *new,
370 struct page *old, enum migrate_mode mode)
371 {
372 struct kioctx *ctx;
373 unsigned long flags;
374 pgoff_t idx;
375 int rc;
376
377 rc = 0;
378
379 /* mapping->private_lock here protects against the kioctx teardown. */
380 spin_lock(&mapping->private_lock);
381 ctx = mapping->private_data;
382 if (!ctx) {
383 rc = -EINVAL;
384 goto out;
385 }
386
387 /* The ring_lock mutex. The prevents aio_read_events() from writing
388 * to the ring's head, and prevents page migration from mucking in
389 * a partially initialized kiotx.
390 */
391 if (!mutex_trylock(&ctx->ring_lock)) {
392 rc = -EAGAIN;
393 goto out;
394 }
395
396 idx = old->index;
397 if (idx < (pgoff_t)ctx->nr_pages) {
398 /* Make sure the old page hasn't already been changed */
399 if (ctx->ring_pages[idx] != old)
400 rc = -EAGAIN;
401 } else
402 rc = -EINVAL;
403
404 if (rc != 0)
405 goto out_unlock;
406
407 /* Writeback must be complete */
408 BUG_ON(PageWriteback(old));
409 get_page(new);
410
411 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
412 if (rc != MIGRATEPAGE_SUCCESS) {
413 put_page(new);
414 goto out_unlock;
415 }
416
417 /* Take completion_lock to prevent other writes to the ring buffer
418 * while the old page is copied to the new. This prevents new
419 * events from being lost.
420 */
421 spin_lock_irqsave(&ctx->completion_lock, flags);
422 migrate_page_copy(new, old);
423 BUG_ON(ctx->ring_pages[idx] != old);
424 ctx->ring_pages[idx] = new;
425 spin_unlock_irqrestore(&ctx->completion_lock, flags);
426
427 /* The old page is no longer accessible. */
428 put_page(old);
429
430 out_unlock:
431 mutex_unlock(&ctx->ring_lock);
432 out:
433 spin_unlock(&mapping->private_lock);
434 return rc;
435 }
436 #endif
437
438 static const struct address_space_operations aio_ctx_aops = {
439 .set_page_dirty = __set_page_dirty_no_writeback,
440 #if IS_ENABLED(CONFIG_MIGRATION)
441 .migratepage = aio_migratepage,
442 #endif
443 };
444
aio_setup_ring(struct kioctx * ctx)445 static int aio_setup_ring(struct kioctx *ctx)
446 {
447 struct aio_ring *ring;
448 unsigned nr_events = ctx->max_reqs;
449 struct mm_struct *mm = current->mm;
450 unsigned long size, unused;
451 int nr_pages;
452 int i;
453 struct file *file;
454
455 /* Compensate for the ring buffer's head/tail overlap entry */
456 nr_events += 2; /* 1 is required, 2 for good luck */
457
458 size = sizeof(struct aio_ring);
459 size += sizeof(struct io_event) * nr_events;
460
461 nr_pages = PFN_UP(size);
462 if (nr_pages < 0)
463 return -EINVAL;
464
465 file = aio_private_file(ctx, nr_pages);
466 if (IS_ERR(file)) {
467 ctx->aio_ring_file = NULL;
468 return -ENOMEM;
469 }
470
471 ctx->aio_ring_file = file;
472 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
473 / sizeof(struct io_event);
474
475 ctx->ring_pages = ctx->internal_pages;
476 if (nr_pages > AIO_RING_PAGES) {
477 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
478 GFP_KERNEL);
479 if (!ctx->ring_pages) {
480 put_aio_ring_file(ctx);
481 return -ENOMEM;
482 }
483 }
484
485 for (i = 0; i < nr_pages; i++) {
486 struct page *page;
487 page = find_or_create_page(file->f_inode->i_mapping,
488 i, GFP_HIGHUSER | __GFP_ZERO);
489 if (!page)
490 break;
491 pr_debug("pid(%d) page[%d]->count=%d\n",
492 current->pid, i, page_count(page));
493 SetPageUptodate(page);
494 unlock_page(page);
495
496 ctx->ring_pages[i] = page;
497 }
498 ctx->nr_pages = i;
499
500 if (unlikely(i != nr_pages)) {
501 aio_free_ring(ctx);
502 return -ENOMEM;
503 }
504
505 ctx->mmap_size = nr_pages * PAGE_SIZE;
506 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
507
508 if (down_write_killable(&mm->mmap_sem)) {
509 ctx->mmap_size = 0;
510 aio_free_ring(ctx);
511 return -EINTR;
512 }
513
514 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
515 PROT_READ | PROT_WRITE,
516 MAP_SHARED, 0, &unused);
517 up_write(&mm->mmap_sem);
518 if (IS_ERR((void *)ctx->mmap_base)) {
519 ctx->mmap_size = 0;
520 aio_free_ring(ctx);
521 return -ENOMEM;
522 }
523
524 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
525
526 ctx->user_id = ctx->mmap_base;
527 ctx->nr_events = nr_events; /* trusted copy */
528
529 ring = kmap_atomic(ctx->ring_pages[0]);
530 ring->nr = nr_events; /* user copy */
531 ring->id = ~0U;
532 ring->head = ring->tail = 0;
533 ring->magic = AIO_RING_MAGIC;
534 ring->compat_features = AIO_RING_COMPAT_FEATURES;
535 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
536 ring->header_length = sizeof(struct aio_ring);
537 kunmap_atomic(ring);
538 flush_dcache_page(ctx->ring_pages[0]);
539
540 return 0;
541 }
542
543 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
544 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
546
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)547 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
548 {
549 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
550 struct kioctx *ctx = req->ki_ctx;
551 unsigned long flags;
552
553 spin_lock_irqsave(&ctx->ctx_lock, flags);
554
555 if (!req->ki_list.next)
556 list_add(&req->ki_list, &ctx->active_reqs);
557
558 req->ki_cancel = cancel;
559
560 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
561 }
562 EXPORT_SYMBOL(kiocb_set_cancel_fn);
563
kiocb_cancel(struct aio_kiocb * kiocb)564 static int kiocb_cancel(struct aio_kiocb *kiocb)
565 {
566 kiocb_cancel_fn *old, *cancel;
567
568 /*
569 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
570 * actually has a cancel function, hence the cmpxchg()
571 */
572
573 cancel = ACCESS_ONCE(kiocb->ki_cancel);
574 do {
575 if (!cancel || cancel == KIOCB_CANCELLED)
576 return -EINVAL;
577
578 old = cancel;
579 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
580 } while (cancel != old);
581
582 return cancel(&kiocb->common);
583 }
584
585 /*
586 * free_ioctx() should be RCU delayed to synchronize against the RCU
587 * protected lookup_ioctx() and also needs process context to call
588 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
589 * ->free_work.
590 */
free_ioctx(struct work_struct * work)591 static void free_ioctx(struct work_struct *work)
592 {
593 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
594
595 pr_debug("freeing %p\n", ctx);
596
597 aio_free_ring(ctx);
598 free_percpu(ctx->cpu);
599 percpu_ref_exit(&ctx->reqs);
600 percpu_ref_exit(&ctx->users);
601 kmem_cache_free(kioctx_cachep, ctx);
602 }
603
free_ioctx_rcufn(struct rcu_head * head)604 static void free_ioctx_rcufn(struct rcu_head *head)
605 {
606 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
607
608 INIT_WORK(&ctx->free_work, free_ioctx);
609 schedule_work(&ctx->free_work);
610 }
611
free_ioctx_reqs(struct percpu_ref * ref)612 static void free_ioctx_reqs(struct percpu_ref *ref)
613 {
614 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
615
616 /* At this point we know that there are no any in-flight requests */
617 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
618 complete(&ctx->rq_wait->comp);
619
620 /* Synchronize against RCU protected table->table[] dereferences */
621 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
622 }
623
624 /*
625 * When this function runs, the kioctx has been removed from the "hash table"
626 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
627 * now it's safe to cancel any that need to be.
628 */
free_ioctx_users(struct percpu_ref * ref)629 static void free_ioctx_users(struct percpu_ref *ref)
630 {
631 struct kioctx *ctx = container_of(ref, struct kioctx, users);
632 struct aio_kiocb *req;
633
634 spin_lock_irq(&ctx->ctx_lock);
635
636 while (!list_empty(&ctx->active_reqs)) {
637 req = list_first_entry(&ctx->active_reqs,
638 struct aio_kiocb, ki_list);
639
640 list_del_init(&req->ki_list);
641 kiocb_cancel(req);
642 }
643
644 spin_unlock_irq(&ctx->ctx_lock);
645
646 percpu_ref_kill(&ctx->reqs);
647 percpu_ref_put(&ctx->reqs);
648 }
649
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)650 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
651 {
652 unsigned i, new_nr;
653 struct kioctx_table *table, *old;
654 struct aio_ring *ring;
655
656 spin_lock(&mm->ioctx_lock);
657 table = rcu_dereference_raw(mm->ioctx_table);
658
659 while (1) {
660 if (table)
661 for (i = 0; i < table->nr; i++)
662 if (!rcu_access_pointer(table->table[i])) {
663 ctx->id = i;
664 rcu_assign_pointer(table->table[i], ctx);
665 spin_unlock(&mm->ioctx_lock);
666
667 /* While kioctx setup is in progress,
668 * we are protected from page migration
669 * changes ring_pages by ->ring_lock.
670 */
671 ring = kmap_atomic(ctx->ring_pages[0]);
672 ring->id = ctx->id;
673 kunmap_atomic(ring);
674 return 0;
675 }
676
677 new_nr = (table ? table->nr : 1) * 4;
678 spin_unlock(&mm->ioctx_lock);
679
680 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
681 new_nr, GFP_KERNEL);
682 if (!table)
683 return -ENOMEM;
684
685 table->nr = new_nr;
686
687 spin_lock(&mm->ioctx_lock);
688 old = rcu_dereference_raw(mm->ioctx_table);
689
690 if (!old) {
691 rcu_assign_pointer(mm->ioctx_table, table);
692 } else if (table->nr > old->nr) {
693 memcpy(table->table, old->table,
694 old->nr * sizeof(struct kioctx *));
695
696 rcu_assign_pointer(mm->ioctx_table, table);
697 kfree_rcu(old, rcu);
698 } else {
699 kfree(table);
700 table = old;
701 }
702 }
703 }
704
aio_nr_sub(unsigned nr)705 static void aio_nr_sub(unsigned nr)
706 {
707 spin_lock(&aio_nr_lock);
708 if (WARN_ON(aio_nr - nr > aio_nr))
709 aio_nr = 0;
710 else
711 aio_nr -= nr;
712 spin_unlock(&aio_nr_lock);
713 }
714
715 /* ioctx_alloc
716 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
717 */
ioctx_alloc(unsigned nr_events)718 static struct kioctx *ioctx_alloc(unsigned nr_events)
719 {
720 struct mm_struct *mm = current->mm;
721 struct kioctx *ctx;
722 int err = -ENOMEM;
723
724 /*
725 * We keep track of the number of available ringbuffer slots, to prevent
726 * overflow (reqs_available), and we also use percpu counters for this.
727 *
728 * So since up to half the slots might be on other cpu's percpu counters
729 * and unavailable, double nr_events so userspace sees what they
730 * expected: additionally, we move req_batch slots to/from percpu
731 * counters at a time, so make sure that isn't 0:
732 */
733 nr_events = max(nr_events, num_possible_cpus() * 4);
734 nr_events *= 2;
735
736 /* Prevent overflows */
737 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
738 pr_debug("ENOMEM: nr_events too high\n");
739 return ERR_PTR(-EINVAL);
740 }
741
742 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
743 return ERR_PTR(-EAGAIN);
744
745 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
746 if (!ctx)
747 return ERR_PTR(-ENOMEM);
748
749 ctx->max_reqs = nr_events;
750
751 spin_lock_init(&ctx->ctx_lock);
752 spin_lock_init(&ctx->completion_lock);
753 mutex_init(&ctx->ring_lock);
754 /* Protect against page migration throughout kiotx setup by keeping
755 * the ring_lock mutex held until setup is complete. */
756 mutex_lock(&ctx->ring_lock);
757 init_waitqueue_head(&ctx->wait);
758
759 INIT_LIST_HEAD(&ctx->active_reqs);
760
761 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
762 goto err;
763
764 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
765 goto err;
766
767 ctx->cpu = alloc_percpu(struct kioctx_cpu);
768 if (!ctx->cpu)
769 goto err;
770
771 err = aio_setup_ring(ctx);
772 if (err < 0)
773 goto err;
774
775 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
776 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
777 if (ctx->req_batch < 1)
778 ctx->req_batch = 1;
779
780 /* limit the number of system wide aios */
781 spin_lock(&aio_nr_lock);
782 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
783 aio_nr + nr_events < aio_nr) {
784 spin_unlock(&aio_nr_lock);
785 err = -EAGAIN;
786 goto err_ctx;
787 }
788 aio_nr += ctx->max_reqs;
789 spin_unlock(&aio_nr_lock);
790
791 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
792 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
793
794 err = ioctx_add_table(ctx, mm);
795 if (err)
796 goto err_cleanup;
797
798 /* Release the ring_lock mutex now that all setup is complete. */
799 mutex_unlock(&ctx->ring_lock);
800
801 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
802 ctx, ctx->user_id, mm, ctx->nr_events);
803 return ctx;
804
805 err_cleanup:
806 aio_nr_sub(ctx->max_reqs);
807 err_ctx:
808 atomic_set(&ctx->dead, 1);
809 if (ctx->mmap_size)
810 vm_munmap(ctx->mmap_base, ctx->mmap_size);
811 aio_free_ring(ctx);
812 err:
813 mutex_unlock(&ctx->ring_lock);
814 free_percpu(ctx->cpu);
815 percpu_ref_exit(&ctx->reqs);
816 percpu_ref_exit(&ctx->users);
817 kmem_cache_free(kioctx_cachep, ctx);
818 pr_debug("error allocating ioctx %d\n", err);
819 return ERR_PTR(err);
820 }
821
822 /* kill_ioctx
823 * Cancels all outstanding aio requests on an aio context. Used
824 * when the processes owning a context have all exited to encourage
825 * the rapid destruction of the kioctx.
826 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)827 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
828 struct ctx_rq_wait *wait)
829 {
830 struct kioctx_table *table;
831
832 spin_lock(&mm->ioctx_lock);
833 if (atomic_xchg(&ctx->dead, 1)) {
834 spin_unlock(&mm->ioctx_lock);
835 return -EINVAL;
836 }
837
838 table = rcu_dereference_raw(mm->ioctx_table);
839 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
840 RCU_INIT_POINTER(table->table[ctx->id], NULL);
841 spin_unlock(&mm->ioctx_lock);
842
843 /* free_ioctx_reqs() will do the necessary RCU synchronization */
844 wake_up_all(&ctx->wait);
845
846 /*
847 * It'd be more correct to do this in free_ioctx(), after all
848 * the outstanding kiocbs have finished - but by then io_destroy
849 * has already returned, so io_setup() could potentially return
850 * -EAGAIN with no ioctxs actually in use (as far as userspace
851 * could tell).
852 */
853 aio_nr_sub(ctx->max_reqs);
854
855 if (ctx->mmap_size)
856 vm_munmap(ctx->mmap_base, ctx->mmap_size);
857
858 ctx->rq_wait = wait;
859 percpu_ref_kill(&ctx->users);
860 return 0;
861 }
862
863 /*
864 * exit_aio: called when the last user of mm goes away. At this point, there is
865 * no way for any new requests to be submited or any of the io_* syscalls to be
866 * called on the context.
867 *
868 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
869 * them.
870 */
exit_aio(struct mm_struct * mm)871 void exit_aio(struct mm_struct *mm)
872 {
873 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
874 struct ctx_rq_wait wait;
875 int i, skipped;
876
877 if (!table)
878 return;
879
880 atomic_set(&wait.count, table->nr);
881 init_completion(&wait.comp);
882
883 skipped = 0;
884 for (i = 0; i < table->nr; ++i) {
885 struct kioctx *ctx =
886 rcu_dereference_protected(table->table[i], true);
887
888 if (!ctx) {
889 skipped++;
890 continue;
891 }
892
893 /*
894 * We don't need to bother with munmap() here - exit_mmap(mm)
895 * is coming and it'll unmap everything. And we simply can't,
896 * this is not necessarily our ->mm.
897 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
898 * that it needs to unmap the area, just set it to 0.
899 */
900 ctx->mmap_size = 0;
901 kill_ioctx(mm, ctx, &wait);
902 }
903
904 if (!atomic_sub_and_test(skipped, &wait.count)) {
905 /* Wait until all IO for the context are done. */
906 wait_for_completion(&wait.comp);
907 }
908
909 RCU_INIT_POINTER(mm->ioctx_table, NULL);
910 kfree(table);
911 }
912
put_reqs_available(struct kioctx * ctx,unsigned nr)913 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
914 {
915 struct kioctx_cpu *kcpu;
916 unsigned long flags;
917
918 local_irq_save(flags);
919 kcpu = this_cpu_ptr(ctx->cpu);
920 kcpu->reqs_available += nr;
921
922 while (kcpu->reqs_available >= ctx->req_batch * 2) {
923 kcpu->reqs_available -= ctx->req_batch;
924 atomic_add(ctx->req_batch, &ctx->reqs_available);
925 }
926
927 local_irq_restore(flags);
928 }
929
get_reqs_available(struct kioctx * ctx)930 static bool get_reqs_available(struct kioctx *ctx)
931 {
932 struct kioctx_cpu *kcpu;
933 bool ret = false;
934 unsigned long flags;
935
936 local_irq_save(flags);
937 kcpu = this_cpu_ptr(ctx->cpu);
938 if (!kcpu->reqs_available) {
939 int old, avail = atomic_read(&ctx->reqs_available);
940
941 do {
942 if (avail < ctx->req_batch)
943 goto out;
944
945 old = avail;
946 avail = atomic_cmpxchg(&ctx->reqs_available,
947 avail, avail - ctx->req_batch);
948 } while (avail != old);
949
950 kcpu->reqs_available += ctx->req_batch;
951 }
952
953 ret = true;
954 kcpu->reqs_available--;
955 out:
956 local_irq_restore(flags);
957 return ret;
958 }
959
960 /* refill_reqs_available
961 * Updates the reqs_available reference counts used for tracking the
962 * number of free slots in the completion ring. This can be called
963 * from aio_complete() (to optimistically update reqs_available) or
964 * from aio_get_req() (the we're out of events case). It must be
965 * called holding ctx->completion_lock.
966 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)967 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
968 unsigned tail)
969 {
970 unsigned events_in_ring, completed;
971
972 /* Clamp head since userland can write to it. */
973 head %= ctx->nr_events;
974 if (head <= tail)
975 events_in_ring = tail - head;
976 else
977 events_in_ring = ctx->nr_events - (head - tail);
978
979 completed = ctx->completed_events;
980 if (events_in_ring < completed)
981 completed -= events_in_ring;
982 else
983 completed = 0;
984
985 if (!completed)
986 return;
987
988 ctx->completed_events -= completed;
989 put_reqs_available(ctx, completed);
990 }
991
992 /* user_refill_reqs_available
993 * Called to refill reqs_available when aio_get_req() encounters an
994 * out of space in the completion ring.
995 */
user_refill_reqs_available(struct kioctx * ctx)996 static void user_refill_reqs_available(struct kioctx *ctx)
997 {
998 spin_lock_irq(&ctx->completion_lock);
999 if (ctx->completed_events) {
1000 struct aio_ring *ring;
1001 unsigned head;
1002
1003 /* Access of ring->head may race with aio_read_events_ring()
1004 * here, but that's okay since whether we read the old version
1005 * or the new version, and either will be valid. The important
1006 * part is that head cannot pass tail since we prevent
1007 * aio_complete() from updating tail by holding
1008 * ctx->completion_lock. Even if head is invalid, the check
1009 * against ctx->completed_events below will make sure we do the
1010 * safe/right thing.
1011 */
1012 ring = kmap_atomic(ctx->ring_pages[0]);
1013 head = ring->head;
1014 kunmap_atomic(ring);
1015
1016 refill_reqs_available(ctx, head, ctx->tail);
1017 }
1018
1019 spin_unlock_irq(&ctx->completion_lock);
1020 }
1021
1022 /* aio_get_req
1023 * Allocate a slot for an aio request.
1024 * Returns NULL if no requests are free.
1025 */
aio_get_req(struct kioctx * ctx)1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 {
1028 struct aio_kiocb *req;
1029
1030 if (!get_reqs_available(ctx)) {
1031 user_refill_reqs_available(ctx);
1032 if (!get_reqs_available(ctx))
1033 return NULL;
1034 }
1035
1036 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1037 if (unlikely(!req))
1038 goto out_put;
1039
1040 percpu_ref_get(&ctx->reqs);
1041
1042 req->ki_ctx = ctx;
1043 return req;
1044 out_put:
1045 put_reqs_available(ctx, 1);
1046 return NULL;
1047 }
1048
kiocb_free(struct aio_kiocb * req)1049 static void kiocb_free(struct aio_kiocb *req)
1050 {
1051 if (req->common.ki_filp)
1052 fput(req->common.ki_filp);
1053 if (req->ki_eventfd != NULL)
1054 eventfd_ctx_put(req->ki_eventfd);
1055 kmem_cache_free(kiocb_cachep, req);
1056 }
1057
lookup_ioctx(unsigned long ctx_id)1058 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1059 {
1060 struct aio_ring __user *ring = (void __user *)ctx_id;
1061 struct mm_struct *mm = current->mm;
1062 struct kioctx *ctx, *ret = NULL;
1063 struct kioctx_table *table;
1064 unsigned id;
1065
1066 if (get_user(id, &ring->id))
1067 return NULL;
1068
1069 rcu_read_lock();
1070 table = rcu_dereference(mm->ioctx_table);
1071
1072 if (!table || id >= table->nr)
1073 goto out;
1074
1075 ctx = rcu_dereference(table->table[id]);
1076 if (ctx && ctx->user_id == ctx_id) {
1077 percpu_ref_get(&ctx->users);
1078 ret = ctx;
1079 }
1080 out:
1081 rcu_read_unlock();
1082 return ret;
1083 }
1084
1085 /* aio_complete
1086 * Called when the io request on the given iocb is complete.
1087 */
aio_complete(struct kiocb * kiocb,long res,long res2)1088 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1089 {
1090 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1091 struct kioctx *ctx = iocb->ki_ctx;
1092 struct aio_ring *ring;
1093 struct io_event *ev_page, *event;
1094 unsigned tail, pos, head;
1095 unsigned long flags;
1096
1097 if (kiocb->ki_flags & IOCB_WRITE) {
1098 struct file *file = kiocb->ki_filp;
1099
1100 /*
1101 * Tell lockdep we inherited freeze protection from submission
1102 * thread.
1103 */
1104 if (S_ISREG(file_inode(file)->i_mode))
1105 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1106 file_end_write(file);
1107 }
1108
1109 /*
1110 * Special case handling for sync iocbs:
1111 * - events go directly into the iocb for fast handling
1112 * - the sync task with the iocb in its stack holds the single iocb
1113 * ref, no other paths have a way to get another ref
1114 * - the sync task helpfully left a reference to itself in the iocb
1115 */
1116 BUG_ON(is_sync_kiocb(kiocb));
1117
1118 if (iocb->ki_list.next) {
1119 unsigned long flags;
1120
1121 spin_lock_irqsave(&ctx->ctx_lock, flags);
1122 list_del(&iocb->ki_list);
1123 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1124 }
1125
1126 /*
1127 * Add a completion event to the ring buffer. Must be done holding
1128 * ctx->completion_lock to prevent other code from messing with the tail
1129 * pointer since we might be called from irq context.
1130 */
1131 spin_lock_irqsave(&ctx->completion_lock, flags);
1132
1133 tail = ctx->tail;
1134 pos = tail + AIO_EVENTS_OFFSET;
1135
1136 if (++tail >= ctx->nr_events)
1137 tail = 0;
1138
1139 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1140 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1141
1142 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1143 event->data = iocb->ki_user_data;
1144 event->res = res;
1145 event->res2 = res2;
1146
1147 kunmap_atomic(ev_page);
1148 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1149
1150 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1151 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1152 res, res2);
1153
1154 /* after flagging the request as done, we
1155 * must never even look at it again
1156 */
1157 smp_wmb(); /* make event visible before updating tail */
1158
1159 ctx->tail = tail;
1160
1161 ring = kmap_atomic(ctx->ring_pages[0]);
1162 head = ring->head;
1163 ring->tail = tail;
1164 kunmap_atomic(ring);
1165 flush_dcache_page(ctx->ring_pages[0]);
1166
1167 ctx->completed_events++;
1168 if (ctx->completed_events > 1)
1169 refill_reqs_available(ctx, head, tail);
1170 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1171
1172 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1173
1174 /*
1175 * Check if the user asked us to deliver the result through an
1176 * eventfd. The eventfd_signal() function is safe to be called
1177 * from IRQ context.
1178 */
1179 if (iocb->ki_eventfd != NULL)
1180 eventfd_signal(iocb->ki_eventfd, 1);
1181
1182 /* everything turned out well, dispose of the aiocb. */
1183 kiocb_free(iocb);
1184
1185 /*
1186 * We have to order our ring_info tail store above and test
1187 * of the wait list below outside the wait lock. This is
1188 * like in wake_up_bit() where clearing a bit has to be
1189 * ordered with the unlocked test.
1190 */
1191 smp_mb();
1192
1193 if (waitqueue_active(&ctx->wait))
1194 wake_up(&ctx->wait);
1195
1196 percpu_ref_put(&ctx->reqs);
1197 }
1198
1199 /* aio_read_events_ring
1200 * Pull an event off of the ioctx's event ring. Returns the number of
1201 * events fetched
1202 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1203 static long aio_read_events_ring(struct kioctx *ctx,
1204 struct io_event __user *event, long nr)
1205 {
1206 struct aio_ring *ring;
1207 unsigned head, tail, pos;
1208 long ret = 0;
1209 int copy_ret;
1210
1211 /*
1212 * The mutex can block and wake us up and that will cause
1213 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1214 * and repeat. This should be rare enough that it doesn't cause
1215 * peformance issues. See the comment in read_events() for more detail.
1216 */
1217 sched_annotate_sleep();
1218 mutex_lock(&ctx->ring_lock);
1219
1220 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1221 ring = kmap_atomic(ctx->ring_pages[0]);
1222 head = ring->head;
1223 tail = ring->tail;
1224 kunmap_atomic(ring);
1225
1226 /*
1227 * Ensure that once we've read the current tail pointer, that
1228 * we also see the events that were stored up to the tail.
1229 */
1230 smp_rmb();
1231
1232 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1233
1234 if (head == tail)
1235 goto out;
1236
1237 head %= ctx->nr_events;
1238 tail %= ctx->nr_events;
1239
1240 while (ret < nr) {
1241 long avail;
1242 struct io_event *ev;
1243 struct page *page;
1244
1245 avail = (head <= tail ? tail : ctx->nr_events) - head;
1246 if (head == tail)
1247 break;
1248
1249 avail = min(avail, nr - ret);
1250 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1251 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1252
1253 pos = head + AIO_EVENTS_OFFSET;
1254 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1255 pos %= AIO_EVENTS_PER_PAGE;
1256
1257 ev = kmap(page);
1258 copy_ret = copy_to_user(event + ret, ev + pos,
1259 sizeof(*ev) * avail);
1260 kunmap(page);
1261
1262 if (unlikely(copy_ret)) {
1263 ret = -EFAULT;
1264 goto out;
1265 }
1266
1267 ret += avail;
1268 head += avail;
1269 head %= ctx->nr_events;
1270 }
1271
1272 ring = kmap_atomic(ctx->ring_pages[0]);
1273 ring->head = head;
1274 kunmap_atomic(ring);
1275 flush_dcache_page(ctx->ring_pages[0]);
1276
1277 pr_debug("%li h%u t%u\n", ret, head, tail);
1278 out:
1279 mutex_unlock(&ctx->ring_lock);
1280
1281 return ret;
1282 }
1283
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1284 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1285 struct io_event __user *event, long *i)
1286 {
1287 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1288
1289 if (ret > 0)
1290 *i += ret;
1291
1292 if (unlikely(atomic_read(&ctx->dead)))
1293 ret = -EINVAL;
1294
1295 if (!*i)
1296 *i = ret;
1297
1298 return ret < 0 || *i >= min_nr;
1299 }
1300
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)1301 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1302 struct io_event __user *event,
1303 struct timespec __user *timeout)
1304 {
1305 ktime_t until = { .tv64 = KTIME_MAX };
1306 long ret = 0;
1307
1308 if (timeout) {
1309 struct timespec ts;
1310
1311 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1312 return -EFAULT;
1313
1314 until = timespec_to_ktime(ts);
1315 }
1316
1317 /*
1318 * Note that aio_read_events() is being called as the conditional - i.e.
1319 * we're calling it after prepare_to_wait() has set task state to
1320 * TASK_INTERRUPTIBLE.
1321 *
1322 * But aio_read_events() can block, and if it blocks it's going to flip
1323 * the task state back to TASK_RUNNING.
1324 *
1325 * This should be ok, provided it doesn't flip the state back to
1326 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1327 * will only happen if the mutex_lock() call blocks, and we then find
1328 * the ringbuffer empty. So in practice we should be ok, but it's
1329 * something to be aware of when touching this code.
1330 */
1331 if (until.tv64 == 0)
1332 aio_read_events(ctx, min_nr, nr, event, &ret);
1333 else
1334 wait_event_interruptible_hrtimeout(ctx->wait,
1335 aio_read_events(ctx, min_nr, nr, event, &ret),
1336 until);
1337
1338 if (!ret && signal_pending(current))
1339 ret = -EINTR;
1340
1341 return ret;
1342 }
1343
1344 /* sys_io_setup:
1345 * Create an aio_context capable of receiving at least nr_events.
1346 * ctxp must not point to an aio_context that already exists, and
1347 * must be initialized to 0 prior to the call. On successful
1348 * creation of the aio_context, *ctxp is filled in with the resulting
1349 * handle. May fail with -EINVAL if *ctxp is not initialized,
1350 * if the specified nr_events exceeds internal limits. May fail
1351 * with -EAGAIN if the specified nr_events exceeds the user's limit
1352 * of available events. May fail with -ENOMEM if insufficient kernel
1353 * resources are available. May fail with -EFAULT if an invalid
1354 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1355 * implemented.
1356 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1357 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1358 {
1359 struct kioctx *ioctx = NULL;
1360 unsigned long ctx;
1361 long ret;
1362
1363 ret = get_user(ctx, ctxp);
1364 if (unlikely(ret))
1365 goto out;
1366
1367 ret = -EINVAL;
1368 if (unlikely(ctx || nr_events == 0)) {
1369 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1370 ctx, nr_events);
1371 goto out;
1372 }
1373
1374 ioctx = ioctx_alloc(nr_events);
1375 ret = PTR_ERR(ioctx);
1376 if (!IS_ERR(ioctx)) {
1377 ret = put_user(ioctx->user_id, ctxp);
1378 if (ret)
1379 kill_ioctx(current->mm, ioctx, NULL);
1380 percpu_ref_put(&ioctx->users);
1381 }
1382
1383 out:
1384 return ret;
1385 }
1386
1387 /* sys_io_destroy:
1388 * Destroy the aio_context specified. May cancel any outstanding
1389 * AIOs and block on completion. Will fail with -ENOSYS if not
1390 * implemented. May fail with -EINVAL if the context pointed to
1391 * is invalid.
1392 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1393 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1394 {
1395 struct kioctx *ioctx = lookup_ioctx(ctx);
1396 if (likely(NULL != ioctx)) {
1397 struct ctx_rq_wait wait;
1398 int ret;
1399
1400 init_completion(&wait.comp);
1401 atomic_set(&wait.count, 1);
1402
1403 /* Pass requests_done to kill_ioctx() where it can be set
1404 * in a thread-safe way. If we try to set it here then we have
1405 * a race condition if two io_destroy() called simultaneously.
1406 */
1407 ret = kill_ioctx(current->mm, ioctx, &wait);
1408 percpu_ref_put(&ioctx->users);
1409
1410 /* Wait until all IO for the context are done. Otherwise kernel
1411 * keep using user-space buffers even if user thinks the context
1412 * is destroyed.
1413 */
1414 if (!ret)
1415 wait_for_completion(&wait.comp);
1416
1417 return ret;
1418 }
1419 pr_debug("EINVAL: invalid context id\n");
1420 return -EINVAL;
1421 }
1422
aio_setup_rw(int rw,struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1423 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1424 bool vectored, bool compat, struct iov_iter *iter)
1425 {
1426 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1427 size_t len = iocb->aio_nbytes;
1428
1429 if (!vectored) {
1430 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1431 *iovec = NULL;
1432 return ret;
1433 }
1434 #ifdef CONFIG_COMPAT
1435 if (compat)
1436 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1437 iter);
1438 #endif
1439 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1440 }
1441
aio_ret(struct kiocb * req,ssize_t ret)1442 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1443 {
1444 switch (ret) {
1445 case -EIOCBQUEUED:
1446 return ret;
1447 case -ERESTARTSYS:
1448 case -ERESTARTNOINTR:
1449 case -ERESTARTNOHAND:
1450 case -ERESTART_RESTARTBLOCK:
1451 /*
1452 * There's no easy way to restart the syscall since other AIO's
1453 * may be already running. Just fail this IO with EINTR.
1454 */
1455 ret = -EINTR;
1456 /*FALLTHRU*/
1457 default:
1458 aio_complete(req, ret, 0);
1459 return 0;
1460 }
1461 }
1462
aio_read(struct kiocb * req,struct iocb * iocb,bool vectored,bool compat)1463 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1464 bool compat)
1465 {
1466 struct file *file = req->ki_filp;
1467 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1468 struct iov_iter iter;
1469 ssize_t ret;
1470
1471 if (unlikely(!(file->f_mode & FMODE_READ)))
1472 return -EBADF;
1473 if (unlikely(!file->f_op->read_iter))
1474 return -EINVAL;
1475
1476 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1477 if (ret)
1478 return ret;
1479 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1480 if (!ret)
1481 ret = aio_ret(req, file->f_op->read_iter(req, &iter));
1482 kfree(iovec);
1483 return ret;
1484 }
1485
aio_write(struct kiocb * req,struct iocb * iocb,bool vectored,bool compat)1486 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1487 bool compat)
1488 {
1489 struct file *file = req->ki_filp;
1490 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1491 struct iov_iter iter;
1492 ssize_t ret;
1493
1494 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1495 return -EBADF;
1496 if (unlikely(!file->f_op->write_iter))
1497 return -EINVAL;
1498
1499 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1500 if (ret)
1501 return ret;
1502 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1503 if (!ret) {
1504 req->ki_flags |= IOCB_WRITE;
1505 file_start_write(file);
1506 ret = aio_ret(req, file->f_op->write_iter(req, &iter));
1507 /*
1508 * We release freeze protection in aio_complete(). Fool lockdep
1509 * by telling it the lock got released so that it doesn't
1510 * complain about held lock when we return to userspace.
1511 */
1512 if (S_ISREG(file_inode(file)->i_mode))
1513 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1514 }
1515 kfree(iovec);
1516 return ret;
1517 }
1518
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb,bool compat)1519 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1520 struct iocb *iocb, bool compat)
1521 {
1522 struct aio_kiocb *req;
1523 struct file *file;
1524 ssize_t ret;
1525
1526 /* enforce forwards compatibility on users */
1527 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1528 pr_debug("EINVAL: reserve field set\n");
1529 return -EINVAL;
1530 }
1531
1532 /* prevent overflows */
1533 if (unlikely(
1534 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1535 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1536 ((ssize_t)iocb->aio_nbytes < 0)
1537 )) {
1538 pr_debug("EINVAL: overflow check\n");
1539 return -EINVAL;
1540 }
1541
1542 req = aio_get_req(ctx);
1543 if (unlikely(!req))
1544 return -EAGAIN;
1545
1546 req->common.ki_filp = file = fget(iocb->aio_fildes);
1547 if (unlikely(!req->common.ki_filp)) {
1548 ret = -EBADF;
1549 goto out_put_req;
1550 }
1551 req->common.ki_pos = iocb->aio_offset;
1552 req->common.ki_complete = aio_complete;
1553 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1554
1555 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1556 /*
1557 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1558 * instance of the file* now. The file descriptor must be
1559 * an eventfd() fd, and will be signaled for each completed
1560 * event using the eventfd_signal() function.
1561 */
1562 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1563 if (IS_ERR(req->ki_eventfd)) {
1564 ret = PTR_ERR(req->ki_eventfd);
1565 req->ki_eventfd = NULL;
1566 goto out_put_req;
1567 }
1568
1569 req->common.ki_flags |= IOCB_EVENTFD;
1570 }
1571
1572 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1573 if (unlikely(ret)) {
1574 pr_debug("EFAULT: aio_key\n");
1575 goto out_put_req;
1576 }
1577
1578 req->ki_user_iocb = user_iocb;
1579 req->ki_user_data = iocb->aio_data;
1580
1581 get_file(file);
1582 switch (iocb->aio_lio_opcode) {
1583 case IOCB_CMD_PREAD:
1584 ret = aio_read(&req->common, iocb, false, compat);
1585 break;
1586 case IOCB_CMD_PWRITE:
1587 ret = aio_write(&req->common, iocb, false, compat);
1588 break;
1589 case IOCB_CMD_PREADV:
1590 ret = aio_read(&req->common, iocb, true, compat);
1591 break;
1592 case IOCB_CMD_PWRITEV:
1593 ret = aio_write(&req->common, iocb, true, compat);
1594 break;
1595 default:
1596 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1597 ret = -EINVAL;
1598 break;
1599 }
1600 fput(file);
1601
1602 if (ret && ret != -EIOCBQUEUED)
1603 goto out_put_req;
1604 return 0;
1605 out_put_req:
1606 put_reqs_available(ctx, 1);
1607 percpu_ref_put(&ctx->reqs);
1608 kiocb_free(req);
1609 return ret;
1610 }
1611
do_io_submit(aio_context_t ctx_id,long nr,struct iocb __user * __user * iocbpp,bool compat)1612 long do_io_submit(aio_context_t ctx_id, long nr,
1613 struct iocb __user *__user *iocbpp, bool compat)
1614 {
1615 struct kioctx *ctx;
1616 long ret = 0;
1617 int i = 0;
1618 struct blk_plug plug;
1619
1620 if (unlikely(nr < 0))
1621 return -EINVAL;
1622
1623 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1624 nr = LONG_MAX/sizeof(*iocbpp);
1625
1626 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1627 return -EFAULT;
1628
1629 ctx = lookup_ioctx(ctx_id);
1630 if (unlikely(!ctx)) {
1631 pr_debug("EINVAL: invalid context id\n");
1632 return -EINVAL;
1633 }
1634
1635 blk_start_plug(&plug);
1636
1637 /*
1638 * AKPM: should this return a partial result if some of the IOs were
1639 * successfully submitted?
1640 */
1641 for (i=0; i<nr; i++) {
1642 struct iocb __user *user_iocb;
1643 struct iocb tmp;
1644
1645 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1646 ret = -EFAULT;
1647 break;
1648 }
1649
1650 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1651 ret = -EFAULT;
1652 break;
1653 }
1654
1655 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1656 if (ret)
1657 break;
1658 }
1659 blk_finish_plug(&plug);
1660
1661 percpu_ref_put(&ctx->users);
1662 return i ? i : ret;
1663 }
1664
1665 /* sys_io_submit:
1666 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1667 * the number of iocbs queued. May return -EINVAL if the aio_context
1668 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1669 * *iocbpp[0] is not properly initialized, if the operation specified
1670 * is invalid for the file descriptor in the iocb. May fail with
1671 * -EFAULT if any of the data structures point to invalid data. May
1672 * fail with -EBADF if the file descriptor specified in the first
1673 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1674 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1675 * fail with -ENOSYS if not implemented.
1676 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1677 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1678 struct iocb __user * __user *, iocbpp)
1679 {
1680 return do_io_submit(ctx_id, nr, iocbpp, 0);
1681 }
1682
1683 /* lookup_kiocb
1684 * Finds a given iocb for cancellation.
1685 */
1686 static struct aio_kiocb *
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1687 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1688 {
1689 struct aio_kiocb *kiocb;
1690
1691 assert_spin_locked(&ctx->ctx_lock);
1692
1693 if (key != KIOCB_KEY)
1694 return NULL;
1695
1696 /* TODO: use a hash or array, this sucks. */
1697 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1698 if (kiocb->ki_user_iocb == iocb)
1699 return kiocb;
1700 }
1701 return NULL;
1702 }
1703
1704 /* sys_io_cancel:
1705 * Attempts to cancel an iocb previously passed to io_submit. If
1706 * the operation is successfully cancelled, the resulting event is
1707 * copied into the memory pointed to by result without being placed
1708 * into the completion queue and 0 is returned. May fail with
1709 * -EFAULT if any of the data structures pointed to are invalid.
1710 * May fail with -EINVAL if aio_context specified by ctx_id is
1711 * invalid. May fail with -EAGAIN if the iocb specified was not
1712 * cancelled. Will fail with -ENOSYS if not implemented.
1713 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1714 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1715 struct io_event __user *, result)
1716 {
1717 struct kioctx *ctx;
1718 struct aio_kiocb *kiocb;
1719 u32 key;
1720 int ret;
1721
1722 ret = get_user(key, &iocb->aio_key);
1723 if (unlikely(ret))
1724 return -EFAULT;
1725
1726 ctx = lookup_ioctx(ctx_id);
1727 if (unlikely(!ctx))
1728 return -EINVAL;
1729
1730 spin_lock_irq(&ctx->ctx_lock);
1731
1732 kiocb = lookup_kiocb(ctx, iocb, key);
1733 if (kiocb)
1734 ret = kiocb_cancel(kiocb);
1735 else
1736 ret = -EINVAL;
1737
1738 spin_unlock_irq(&ctx->ctx_lock);
1739
1740 if (!ret) {
1741 /*
1742 * The result argument is no longer used - the io_event is
1743 * always delivered via the ring buffer. -EINPROGRESS indicates
1744 * cancellation is progress:
1745 */
1746 ret = -EINPROGRESS;
1747 }
1748
1749 percpu_ref_put(&ctx->users);
1750
1751 return ret;
1752 }
1753
1754 /* io_getevents:
1755 * Attempts to read at least min_nr events and up to nr events from
1756 * the completion queue for the aio_context specified by ctx_id. If
1757 * it succeeds, the number of read events is returned. May fail with
1758 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1759 * out of range, if timeout is out of range. May fail with -EFAULT
1760 * if any of the memory specified is invalid. May return 0 or
1761 * < min_nr if the timeout specified by timeout has elapsed
1762 * before sufficient events are available, where timeout == NULL
1763 * specifies an infinite timeout. Note that the timeout pointed to by
1764 * timeout is relative. Will fail with -ENOSYS if not implemented.
1765 */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1766 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1767 long, min_nr,
1768 long, nr,
1769 struct io_event __user *, events,
1770 struct timespec __user *, timeout)
1771 {
1772 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1773 long ret = -EINVAL;
1774
1775 if (likely(ioctx)) {
1776 if (likely(min_nr <= nr && min_nr >= 0))
1777 ret = read_events(ioctx, min_nr, nr, events, timeout);
1778 percpu_ref_put(&ioctx->users);
1779 }
1780 return ret;
1781 }
1782