• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_IA64_UACCESS_H
2 #define _ASM_IA64_UACCESS_H
3 
4 /*
5  * This file defines various macros to transfer memory areas across
6  * the user/kernel boundary.  This needs to be done carefully because
7  * this code is executed in kernel mode and uses user-specified
8  * addresses.  Thus, we need to be careful not to let the user to
9  * trick us into accessing kernel memory that would normally be
10  * inaccessible.  This code is also fairly performance sensitive,
11  * so we want to spend as little time doing safety checks as
12  * possible.
13  *
14  * To make matters a bit more interesting, these macros sometimes also
15  * called from within the kernel itself, in which case the address
16  * validity check must be skipped.  The get_fs() macro tells us what
17  * to do: if get_fs()==USER_DS, checking is performed, if
18  * get_fs()==KERNEL_DS, checking is bypassed.
19  *
20  * Note that even if the memory area specified by the user is in a
21  * valid address range, it is still possible that we'll get a page
22  * fault while accessing it.  This is handled by filling out an
23  * exception handler fixup entry for each instruction that has the
24  * potential to fault.  When such a fault occurs, the page fault
25  * handler checks to see whether the faulting instruction has a fixup
26  * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
27  * then resumes execution at the continuation point.
28  *
29  * Based on <asm-alpha/uaccess.h>.
30  *
31  * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
32  *	David Mosberger-Tang <davidm@hpl.hp.com>
33  */
34 
35 #include <linux/compiler.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/page-flags.h>
39 #include <linux/mm.h>
40 
41 #include <asm/intrinsics.h>
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 
45 /*
46  * For historical reasons, the following macros are grossly misnamed:
47  */
48 #define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
49 #define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */
50 
51 #define VERIFY_READ	0
52 #define VERIFY_WRITE	1
53 
54 #define get_ds()  (KERNEL_DS)
55 #define get_fs()  (current_thread_info()->addr_limit)
56 #define set_fs(x) (current_thread_info()->addr_limit = (x))
57 
58 #define segment_eq(a, b)	((a).seg == (b).seg)
59 
60 /*
61  * When accessing user memory, we need to make sure the entire area really is in
62  * user-level space.  In order to do this efficiently, we make sure that the page at
63  * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
64  * point inside the virtually mapped linear page table.
65  */
66 #define __access_ok(addr, size, segment)						\
67 ({											\
68 	__chk_user_ptr(addr);								\
69 	(likely((unsigned long) (addr) <= (segment).seg)				\
70 	 && ((segment).seg == KERNEL_DS.seg						\
71 	     || likely(REGION_OFFSET((unsigned long) (addr)) < RGN_MAP_LIMIT)));	\
72 })
73 #define access_ok(type, addr, size)	__access_ok((addr), (size), get_fs())
74 
75 /*
76  * These are the main single-value transfer routines.  They automatically
77  * use the right size if we just have the right pointer type.
78  *
79  * Careful to not
80  * (a) re-use the arguments for side effects (sizeof/typeof is ok)
81  * (b) require any knowledge of processes at this stage
82  */
83 #define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)), get_fs())
84 #define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)), get_fs())
85 
86 /*
87  * The "__xxx" versions do not do address space checking, useful when
88  * doing multiple accesses to the same area (the programmer has to do the
89  * checks by hand with "access_ok()")
90  */
91 #define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
92 #define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
93 
94 extern long __put_user_unaligned_unknown (void);
95 
96 #define __put_user_unaligned(x, ptr)								\
97 ({												\
98 	long __ret;										\
99 	switch (sizeof(*(ptr))) {								\
100 		case 1: __ret = __put_user((x), (ptr)); break;					\
101 		case 2: __ret = (__put_user((x), (u8 __user *)(ptr)))				\
102 			| (__put_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break;		\
103 		case 4: __ret = (__put_user((x), (u16 __user *)(ptr)))				\
104 			| (__put_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break;		\
105 		case 8: __ret = (__put_user((x), (u32 __user *)(ptr)))				\
106 			| (__put_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break;		\
107 		default: __ret = __put_user_unaligned_unknown();				\
108 	}											\
109 	__ret;											\
110 })
111 
112 extern long __get_user_unaligned_unknown (void);
113 
114 #define __get_user_unaligned(x, ptr)								\
115 ({												\
116 	long __ret;										\
117 	switch (sizeof(*(ptr))) {								\
118 		case 1: __ret = __get_user((x), (ptr)); break;					\
119 		case 2: __ret = (__get_user((x), (u8 __user *)(ptr)))				\
120 			| (__get_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break;		\
121 		case 4: __ret = (__get_user((x), (u16 __user *)(ptr)))				\
122 			| (__get_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break;		\
123 		case 8: __ret = (__get_user((x), (u32 __user *)(ptr)))				\
124 			| (__get_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break;		\
125 		default: __ret = __get_user_unaligned_unknown();				\
126 	}											\
127 	__ret;											\
128 })
129 
130 #ifdef ASM_SUPPORTED
131   struct __large_struct { unsigned long buf[100]; };
132 # define __m(x) (*(struct __large_struct __user *)(x))
133 
134 /* We need to declare the __ex_table section before we can use it in .xdata.  */
135 asm (".section \"__ex_table\", \"a\"\n\t.previous");
136 
137 # define __get_user_size(val, addr, n, err)							\
138 do {												\
139 	register long __gu_r8 asm ("r8") = 0;							\
140 	register long __gu_r9 asm ("r9");							\
141 	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
142 	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
143 	     "[1:]"										\
144 	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
145 	(err) = __gu_r8;									\
146 	(val) = __gu_r9;									\
147 } while (0)
148 
149 /*
150  * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
151  * is because they do not write to any memory gcc knows about, so there are no aliasing
152  * issues.
153  */
154 # define __put_user_size(val, addr, n, err)							\
155 do {												\
156 	register long __pu_r8 asm ("r8") = 0;							\
157 	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
158 		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
159 		      "[1:]"									\
160 		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
161 	(err) = __pu_r8;									\
162 } while (0)
163 
164 #else /* !ASM_SUPPORTED */
165 # define RELOC_TYPE	2	/* ip-rel */
166 # define __get_user_size(val, addr, n, err)				\
167 do {									\
168 	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
169 	(err) = ia64_getreg(_IA64_REG_R8);				\
170 	(val) = ia64_getreg(_IA64_REG_R9);				\
171 } while (0)
172 # define __put_user_size(val, addr, n, err)				\
173 do {									\
174 	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
175 		  (__force unsigned long) (val));			\
176 	(err) = ia64_getreg(_IA64_REG_R8);				\
177 } while (0)
178 #endif /* !ASM_SUPPORTED */
179 
180 extern void __get_user_unknown (void);
181 
182 /*
183  * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
184  * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
185  * using r8/r9.
186  */
187 #define __do_get_user(check, x, ptr, size, segment)					\
188 ({											\
189 	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
190 	__typeof__ (size) __gu_size = (size);						\
191 	long __gu_err = -EFAULT;							\
192 	unsigned long __gu_val = 0;							\
193 	if (!check || __access_ok(__gu_ptr, size, segment))				\
194 		switch (__gu_size) {							\
195 		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
196 		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
197 		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
198 		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
199 		      default: __get_user_unknown(); break;				\
200 		}									\
201 	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
202 	__gu_err;									\
203 })
204 
205 #define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size, KERNEL_DS)
206 #define __get_user_check(x, ptr, size, segment)	__do_get_user(1, x, ptr, size, segment)
207 
208 extern void __put_user_unknown (void);
209 
210 /*
211  * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
212  * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
213  */
214 #define __do_put_user(check, x, ptr, size, segment)					\
215 ({											\
216 	__typeof__ (x) __pu_x = (x);							\
217 	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
218 	__typeof__ (size) __pu_size = (size);						\
219 	long __pu_err = -EFAULT;							\
220 											\
221 	if (!check || __access_ok(__pu_ptr, __pu_size, segment))			\
222 		switch (__pu_size) {							\
223 		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
224 		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
225 		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
226 		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
227 		      default: __put_user_unknown(); break;				\
228 		}									\
229 	__pu_err;									\
230 })
231 
232 #define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size, KERNEL_DS)
233 #define __put_user_check(x, ptr, size, segment)	__do_put_user(1, x, ptr, size, segment)
234 
235 /*
236  * Complex access routines
237  */
238 extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
239 					       unsigned long count);
240 
241 static inline unsigned long
__copy_to_user(void __user * to,const void * from,unsigned long count)242 __copy_to_user (void __user *to, const void *from, unsigned long count)
243 {
244 	check_object_size(from, count, true);
245 
246 	return __copy_user(to, (__force void __user *) from, count);
247 }
248 
249 static inline unsigned long
__copy_from_user(void * to,const void __user * from,unsigned long count)250 __copy_from_user (void *to, const void __user *from, unsigned long count)
251 {
252 	check_object_size(to, count, false);
253 
254 	return __copy_user((__force void __user *) to, from, count);
255 }
256 
257 #define __copy_to_user_inatomic		__copy_to_user
258 #define __copy_from_user_inatomic	__copy_from_user
259 #define copy_to_user(to, from, n)							\
260 ({											\
261 	void __user *__cu_to = (to);							\
262 	const void *__cu_from = (from);							\
263 	long __cu_len = (n);								\
264 											\
265 	if (__access_ok(__cu_to, __cu_len, get_fs())) {					\
266 		check_object_size(__cu_from, __cu_len, true);			\
267 		__cu_len = __copy_user(__cu_to, (__force void __user *)  __cu_from, __cu_len);	\
268 	}										\
269 	__cu_len;									\
270 })
271 
272 static inline unsigned long
copy_from_user(void * to,const void __user * from,unsigned long n)273 copy_from_user(void *to, const void __user *from, unsigned long n)
274 {
275 	check_object_size(to, n, false);
276 	if (likely(__access_ok(from, n, get_fs())))
277 		n = __copy_user((__force void __user *) to, from, n);
278 	else
279 		memset(to, 0, n);
280 	return n;
281 }
282 
283 #define __copy_in_user(to, from, size)	__copy_user((to), (from), (size))
284 
285 static inline unsigned long
copy_in_user(void __user * to,const void __user * from,unsigned long n)286 copy_in_user (void __user *to, const void __user *from, unsigned long n)
287 {
288 	if (likely(access_ok(VERIFY_READ, from, n) && access_ok(VERIFY_WRITE, to, n)))
289 		n = __copy_user(to, from, n);
290 	return n;
291 }
292 
293 extern unsigned long __do_clear_user (void __user *, unsigned long);
294 
295 #define __clear_user(to, n)		__do_clear_user(to, n)
296 
297 #define clear_user(to, n)					\
298 ({								\
299 	unsigned long __cu_len = (n);				\
300 	if (__access_ok(to, __cu_len, get_fs()))		\
301 		__cu_len = __do_clear_user(to, __cu_len);	\
302 	__cu_len;						\
303 })
304 
305 
306 /*
307  * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
308  * strlen.
309  */
310 extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
311 
312 #define strncpy_from_user(to, from, n)					\
313 ({									\
314 	const char __user * __sfu_from = (from);			\
315 	long __sfu_ret = -EFAULT;					\
316 	if (__access_ok(__sfu_from, 0, get_fs()))			\
317 		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
318 	__sfu_ret;							\
319 })
320 
321 /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
322 extern unsigned long __strlen_user (const char __user *);
323 
324 #define strlen_user(str)				\
325 ({							\
326 	const char __user *__su_str = (str);		\
327 	unsigned long __su_ret = 0;			\
328 	if (__access_ok(__su_str, 0, get_fs()))		\
329 		__su_ret = __strlen_user(__su_str);	\
330 	__su_ret;					\
331 })
332 
333 /*
334  * Returns: 0 if exception before NUL or reaching the supplied limit
335  * (N), a value greater than N if the limit would be exceeded, else
336  * strlen.
337  */
338 extern unsigned long __strnlen_user (const char __user *, long);
339 
340 #define strnlen_user(str, len)					\
341 ({								\
342 	const char __user *__su_str = (str);			\
343 	unsigned long __su_ret = 0;				\
344 	if (__access_ok(__su_str, 0, get_fs()))			\
345 		__su_ret = __strnlen_user(__su_str, len);	\
346 	__su_ret;						\
347 })
348 
349 #define ARCH_HAS_RELATIVE_EXTABLE
350 
351 struct exception_table_entry {
352 	int insn;	/* location-relative address of insn this fixup is for */
353 	int fixup;	/* location-relative continuation addr.; if bit 2 is set, r9 is set to 0 */
354 };
355 
356 extern void ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e);
357 extern const struct exception_table_entry *search_exception_tables (unsigned long addr);
358 
359 static inline int
ia64_done_with_exception(struct pt_regs * regs)360 ia64_done_with_exception (struct pt_regs *regs)
361 {
362 	const struct exception_table_entry *e;
363 	e = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
364 	if (e) {
365 		ia64_handle_exception(regs, e);
366 		return 1;
367 	}
368 	return 0;
369 }
370 
371 #define ARCH_HAS_TRANSLATE_MEM_PTR	1
372 static __inline__ void *
xlate_dev_mem_ptr(phys_addr_t p)373 xlate_dev_mem_ptr(phys_addr_t p)
374 {
375 	struct page *page;
376 	void *ptr;
377 
378 	page = pfn_to_page(p >> PAGE_SHIFT);
379 	if (PageUncached(page))
380 		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
381 	else
382 		ptr = __va(p);
383 
384 	return ptr;
385 }
386 
387 /*
388  * Convert a virtual cached kernel memory pointer to an uncached pointer
389  */
390 static __inline__ void *
xlate_dev_kmem_ptr(void * p)391 xlate_dev_kmem_ptr(void *p)
392 {
393 	struct page *page;
394 	void *ptr;
395 
396 	page = virt_to_page((unsigned long)p);
397 	if (PageUncached(page))
398 		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
399 	else
400 		ptr = p;
401 
402 	return ptr;
403 }
404 
405 #endif /* _ASM_IA64_UACCESS_H */
406