1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56 [IB_EVENT_CQ_ERR] = "CQ error",
57 [IB_EVENT_QP_FATAL] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
60 [IB_EVENT_COMM_EST] = "communication established",
61 [IB_EVENT_SQ_DRAINED] = "send queue drained",
62 [IB_EVENT_PATH_MIG] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE] = "port active",
66 [IB_EVENT_PORT_ERR] = "port error",
67 [IB_EVENT_LID_CHANGE] = "LID change",
68 [IB_EVENT_PKEY_CHANGE] = "P_key change",
69 [IB_EVENT_SM_CHANGE] = "SM change",
70 [IB_EVENT_SRQ_ERR] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
74 [IB_EVENT_GID_CHANGE] = "GID changed",
75 };
76
ib_event_msg(enum ib_event_type event)77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79 size_t index = event;
80
81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87 [IB_WC_SUCCESS] = "success",
88 [IB_WC_LOC_LEN_ERR] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
93 [IB_WC_MW_BIND_ERR] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR] = "remote access error",
98 [IB_WC_REM_OP_ERR] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR] = "operation aborted",
104 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
106 [IB_WC_FATAL_ERR] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
108 [IB_WC_GENERAL_ERR] = "general error",
109 };
110
ib_wc_status_msg(enum ib_wc_status status)111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113 size_t index = status;
114
115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
ib_rate_to_mult(enum ib_rate rate)120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122 switch (rate) {
123 case IB_RATE_2_5_GBPS: return 1;
124 case IB_RATE_5_GBPS: return 2;
125 case IB_RATE_10_GBPS: return 4;
126 case IB_RATE_20_GBPS: return 8;
127 case IB_RATE_30_GBPS: return 12;
128 case IB_RATE_40_GBPS: return 16;
129 case IB_RATE_60_GBPS: return 24;
130 case IB_RATE_80_GBPS: return 32;
131 case IB_RATE_120_GBPS: return 48;
132 default: return -1;
133 }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
mult_to_ib_rate(int mult)137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139 switch (mult) {
140 case 1: return IB_RATE_2_5_GBPS;
141 case 2: return IB_RATE_5_GBPS;
142 case 4: return IB_RATE_10_GBPS;
143 case 8: return IB_RATE_20_GBPS;
144 case 12: return IB_RATE_30_GBPS;
145 case 16: return IB_RATE_40_GBPS;
146 case 24: return IB_RATE_60_GBPS;
147 case 32: return IB_RATE_80_GBPS;
148 case 48: return IB_RATE_120_GBPS;
149 default: return IB_RATE_PORT_CURRENT;
150 }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
ib_rate_to_mbps(enum ib_rate rate)154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156 switch (rate) {
157 case IB_RATE_2_5_GBPS: return 2500;
158 case IB_RATE_5_GBPS: return 5000;
159 case IB_RATE_10_GBPS: return 10000;
160 case IB_RATE_20_GBPS: return 20000;
161 case IB_RATE_30_GBPS: return 30000;
162 case IB_RATE_40_GBPS: return 40000;
163 case IB_RATE_60_GBPS: return 60000;
164 case IB_RATE_80_GBPS: return 80000;
165 case IB_RATE_120_GBPS: return 120000;
166 case IB_RATE_14_GBPS: return 14062;
167 case IB_RATE_56_GBPS: return 56250;
168 case IB_RATE_112_GBPS: return 112500;
169 case IB_RATE_168_GBPS: return 168750;
170 case IB_RATE_25_GBPS: return 25781;
171 case IB_RATE_100_GBPS: return 103125;
172 case IB_RATE_200_GBPS: return 206250;
173 case IB_RATE_300_GBPS: return 309375;
174 default: return -1;
175 }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182 switch (node_type) {
183 case RDMA_NODE_IB_CA:
184 case RDMA_NODE_IB_SWITCH:
185 case RDMA_NODE_IB_ROUTER:
186 return RDMA_TRANSPORT_IB;
187 case RDMA_NODE_RNIC:
188 return RDMA_TRANSPORT_IWARP;
189 case RDMA_NODE_USNIC:
190 return RDMA_TRANSPORT_USNIC;
191 case RDMA_NODE_USNIC_UDP:
192 return RDMA_TRANSPORT_USNIC_UDP;
193 default:
194 BUG();
195 return 0;
196 }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
rdma_port_get_link_layer(struct ib_device * device,u8 port_num)200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202 if (device->get_link_layer)
203 return device->get_link_layer(device, port_num);
204
205 switch (rdma_node_get_transport(device->node_type)) {
206 case RDMA_TRANSPORT_IB:
207 return IB_LINK_LAYER_INFINIBAND;
208 case RDMA_TRANSPORT_IWARP:
209 case RDMA_TRANSPORT_USNIC:
210 case RDMA_TRANSPORT_USNIC_UDP:
211 return IB_LINK_LAYER_ETHERNET;
212 default:
213 return IB_LINK_LAYER_UNSPECIFIED;
214 }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
223 *
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
226 *
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
228 * memory operations.
229 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)230 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
231 const char *caller)
232 {
233 struct ib_pd *pd;
234 int mr_access_flags = 0;
235
236 pd = device->alloc_pd(device, NULL, NULL);
237 if (IS_ERR(pd))
238 return pd;
239
240 pd->device = device;
241 pd->uobject = NULL;
242 pd->__internal_mr = NULL;
243 atomic_set(&pd->usecnt, 0);
244 pd->flags = flags;
245
246 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
247 pd->local_dma_lkey = device->local_dma_lkey;
248 else
249 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
250
251 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
252 pr_warn("%s: enabling unsafe global rkey\n", caller);
253 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
254 }
255
256 if (mr_access_flags) {
257 struct ib_mr *mr;
258
259 mr = pd->device->get_dma_mr(pd, mr_access_flags);
260 if (IS_ERR(mr)) {
261 ib_dealloc_pd(pd);
262 return ERR_CAST(mr);
263 }
264
265 mr->device = pd->device;
266 mr->pd = pd;
267 mr->uobject = NULL;
268 mr->need_inval = false;
269
270 pd->__internal_mr = mr;
271
272 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
273 pd->local_dma_lkey = pd->__internal_mr->lkey;
274
275 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
276 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
277 }
278
279 return pd;
280 }
281 EXPORT_SYMBOL(__ib_alloc_pd);
282
283 /**
284 * ib_dealloc_pd - Deallocates a protection domain.
285 * @pd: The protection domain to deallocate.
286 *
287 * It is an error to call this function while any resources in the pd still
288 * exist. The caller is responsible to synchronously destroy them and
289 * guarantee no new allocations will happen.
290 */
ib_dealloc_pd(struct ib_pd * pd)291 void ib_dealloc_pd(struct ib_pd *pd)
292 {
293 int ret;
294
295 if (pd->__internal_mr) {
296 ret = pd->device->dereg_mr(pd->__internal_mr);
297 WARN_ON(ret);
298 pd->__internal_mr = NULL;
299 }
300
301 /* uverbs manipulates usecnt with proper locking, while the kabi
302 requires the caller to guarantee we can't race here. */
303 WARN_ON(atomic_read(&pd->usecnt));
304
305 /* Making delalloc_pd a void return is a WIP, no driver should return
306 an error here. */
307 ret = pd->device->dealloc_pd(pd);
308 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
309 }
310 EXPORT_SYMBOL(ib_dealloc_pd);
311
312 /* Address handles */
313
ib_create_ah(struct ib_pd * pd,struct ib_ah_attr * ah_attr)314 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
315 {
316 struct ib_ah *ah;
317
318 ah = pd->device->create_ah(pd, ah_attr);
319
320 if (!IS_ERR(ah)) {
321 ah->device = pd->device;
322 ah->pd = pd;
323 ah->uobject = NULL;
324 atomic_inc(&pd->usecnt);
325 }
326
327 return ah;
328 }
329 EXPORT_SYMBOL(ib_create_ah);
330
ib_get_header_version(const union rdma_network_hdr * hdr)331 static int ib_get_header_version(const union rdma_network_hdr *hdr)
332 {
333 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
334 struct iphdr ip4h_checked;
335 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
336
337 /* If it's IPv6, the version must be 6, otherwise, the first
338 * 20 bytes (before the IPv4 header) are garbled.
339 */
340 if (ip6h->version != 6)
341 return (ip4h->version == 4) ? 4 : 0;
342 /* version may be 6 or 4 because the first 20 bytes could be garbled */
343
344 /* RoCE v2 requires no options, thus header length
345 * must be 5 words
346 */
347 if (ip4h->ihl != 5)
348 return 6;
349
350 /* Verify checksum.
351 * We can't write on scattered buffers so we need to copy to
352 * temp buffer.
353 */
354 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
355 ip4h_checked.check = 0;
356 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
357 /* if IPv4 header checksum is OK, believe it */
358 if (ip4h->check == ip4h_checked.check)
359 return 4;
360 return 6;
361 }
362
ib_get_net_type_by_grh(struct ib_device * device,u8 port_num,const struct ib_grh * grh)363 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
364 u8 port_num,
365 const struct ib_grh *grh)
366 {
367 int grh_version;
368
369 if (rdma_protocol_ib(device, port_num))
370 return RDMA_NETWORK_IB;
371
372 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
373
374 if (grh_version == 4)
375 return RDMA_NETWORK_IPV4;
376
377 if (grh->next_hdr == IPPROTO_UDP)
378 return RDMA_NETWORK_IPV6;
379
380 return RDMA_NETWORK_ROCE_V1;
381 }
382
383 struct find_gid_index_context {
384 u16 vlan_id;
385 enum ib_gid_type gid_type;
386 };
387
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)388 static bool find_gid_index(const union ib_gid *gid,
389 const struct ib_gid_attr *gid_attr,
390 void *context)
391 {
392 struct find_gid_index_context *ctx =
393 (struct find_gid_index_context *)context;
394
395 if (ctx->gid_type != gid_attr->gid_type)
396 return false;
397
398 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
399 (is_vlan_dev(gid_attr->ndev) &&
400 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
401 return false;
402
403 return true;
404 }
405
get_sgid_index_from_eth(struct ib_device * device,u8 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type,u16 * gid_index)406 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
407 u16 vlan_id, const union ib_gid *sgid,
408 enum ib_gid_type gid_type,
409 u16 *gid_index)
410 {
411 struct find_gid_index_context context = {.vlan_id = vlan_id,
412 .gid_type = gid_type};
413
414 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
415 &context, gid_index);
416 }
417
get_gids_from_rdma_hdr(union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)418 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
419 enum rdma_network_type net_type,
420 union ib_gid *sgid, union ib_gid *dgid)
421 {
422 struct sockaddr_in src_in;
423 struct sockaddr_in dst_in;
424 __be32 src_saddr, dst_saddr;
425
426 if (!sgid || !dgid)
427 return -EINVAL;
428
429 if (net_type == RDMA_NETWORK_IPV4) {
430 memcpy(&src_in.sin_addr.s_addr,
431 &hdr->roce4grh.saddr, 4);
432 memcpy(&dst_in.sin_addr.s_addr,
433 &hdr->roce4grh.daddr, 4);
434 src_saddr = src_in.sin_addr.s_addr;
435 dst_saddr = dst_in.sin_addr.s_addr;
436 ipv6_addr_set_v4mapped(src_saddr,
437 (struct in6_addr *)sgid);
438 ipv6_addr_set_v4mapped(dst_saddr,
439 (struct in6_addr *)dgid);
440 return 0;
441 } else if (net_type == RDMA_NETWORK_IPV6 ||
442 net_type == RDMA_NETWORK_IB) {
443 *dgid = hdr->ibgrh.dgid;
444 *sgid = hdr->ibgrh.sgid;
445 return 0;
446 } else {
447 return -EINVAL;
448 }
449 }
450
ib_init_ah_from_wc(struct ib_device * device,u8 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct ib_ah_attr * ah_attr)451 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
452 const struct ib_wc *wc, const struct ib_grh *grh,
453 struct ib_ah_attr *ah_attr)
454 {
455 u32 flow_class;
456 u16 gid_index;
457 int ret;
458 enum rdma_network_type net_type = RDMA_NETWORK_IB;
459 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
460 int hoplimit = 0xff;
461 union ib_gid dgid;
462 union ib_gid sgid;
463
464 memset(ah_attr, 0, sizeof *ah_attr);
465 if (rdma_cap_eth_ah(device, port_num)) {
466 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
467 net_type = wc->network_hdr_type;
468 else
469 net_type = ib_get_net_type_by_grh(device, port_num, grh);
470 gid_type = ib_network_to_gid_type(net_type);
471 }
472 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
473 &sgid, &dgid);
474 if (ret)
475 return ret;
476
477 if (rdma_protocol_roce(device, port_num)) {
478 int if_index = 0;
479 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
480 wc->vlan_id : 0xffff;
481 struct net_device *idev;
482 struct net_device *resolved_dev;
483
484 if (!(wc->wc_flags & IB_WC_GRH))
485 return -EPROTOTYPE;
486
487 if (!device->get_netdev)
488 return -EOPNOTSUPP;
489
490 idev = device->get_netdev(device, port_num);
491 if (!idev)
492 return -ENODEV;
493
494 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
495 ah_attr->dmac,
496 wc->wc_flags & IB_WC_WITH_VLAN ?
497 NULL : &vlan_id,
498 &if_index, &hoplimit);
499 if (ret) {
500 dev_put(idev);
501 return ret;
502 }
503
504 resolved_dev = dev_get_by_index(&init_net, if_index);
505 if (resolved_dev->flags & IFF_LOOPBACK) {
506 dev_put(resolved_dev);
507 resolved_dev = idev;
508 dev_hold(resolved_dev);
509 }
510 rcu_read_lock();
511 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
512 resolved_dev))
513 ret = -EHOSTUNREACH;
514 rcu_read_unlock();
515 dev_put(idev);
516 dev_put(resolved_dev);
517 if (ret)
518 return ret;
519
520 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
521 &dgid, gid_type, &gid_index);
522 if (ret)
523 return ret;
524 }
525
526 ah_attr->dlid = wc->slid;
527 ah_attr->sl = wc->sl;
528 ah_attr->src_path_bits = wc->dlid_path_bits;
529 ah_attr->port_num = port_num;
530
531 if (wc->wc_flags & IB_WC_GRH) {
532 ah_attr->ah_flags = IB_AH_GRH;
533 ah_attr->grh.dgid = sgid;
534
535 if (!rdma_cap_eth_ah(device, port_num)) {
536 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
537 ret = ib_find_cached_gid_by_port(device, &dgid,
538 IB_GID_TYPE_IB,
539 port_num, NULL,
540 &gid_index);
541 if (ret)
542 return ret;
543 } else {
544 gid_index = 0;
545 }
546 }
547
548 ah_attr->grh.sgid_index = (u8) gid_index;
549 flow_class = be32_to_cpu(grh->version_tclass_flow);
550 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
551 ah_attr->grh.hop_limit = hoplimit;
552 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
553 }
554 return 0;
555 }
556 EXPORT_SYMBOL(ib_init_ah_from_wc);
557
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u8 port_num)558 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
559 const struct ib_grh *grh, u8 port_num)
560 {
561 struct ib_ah_attr ah_attr;
562 int ret;
563
564 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
565 if (ret)
566 return ERR_PTR(ret);
567
568 return ib_create_ah(pd, &ah_attr);
569 }
570 EXPORT_SYMBOL(ib_create_ah_from_wc);
571
ib_modify_ah(struct ib_ah * ah,struct ib_ah_attr * ah_attr)572 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
573 {
574 return ah->device->modify_ah ?
575 ah->device->modify_ah(ah, ah_attr) :
576 -ENOSYS;
577 }
578 EXPORT_SYMBOL(ib_modify_ah);
579
ib_query_ah(struct ib_ah * ah,struct ib_ah_attr * ah_attr)580 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
581 {
582 return ah->device->query_ah ?
583 ah->device->query_ah(ah, ah_attr) :
584 -ENOSYS;
585 }
586 EXPORT_SYMBOL(ib_query_ah);
587
ib_destroy_ah(struct ib_ah * ah)588 int ib_destroy_ah(struct ib_ah *ah)
589 {
590 struct ib_pd *pd;
591 int ret;
592
593 pd = ah->pd;
594 ret = ah->device->destroy_ah(ah);
595 if (!ret)
596 atomic_dec(&pd->usecnt);
597
598 return ret;
599 }
600 EXPORT_SYMBOL(ib_destroy_ah);
601
602 /* Shared receive queues */
603
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)604 struct ib_srq *ib_create_srq(struct ib_pd *pd,
605 struct ib_srq_init_attr *srq_init_attr)
606 {
607 struct ib_srq *srq;
608
609 if (!pd->device->create_srq)
610 return ERR_PTR(-ENOSYS);
611
612 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
613
614 if (!IS_ERR(srq)) {
615 srq->device = pd->device;
616 srq->pd = pd;
617 srq->uobject = NULL;
618 srq->event_handler = srq_init_attr->event_handler;
619 srq->srq_context = srq_init_attr->srq_context;
620 srq->srq_type = srq_init_attr->srq_type;
621 if (srq->srq_type == IB_SRQT_XRC) {
622 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
623 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
624 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
625 atomic_inc(&srq->ext.xrc.cq->usecnt);
626 }
627 atomic_inc(&pd->usecnt);
628 atomic_set(&srq->usecnt, 0);
629 }
630
631 return srq;
632 }
633 EXPORT_SYMBOL(ib_create_srq);
634
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)635 int ib_modify_srq(struct ib_srq *srq,
636 struct ib_srq_attr *srq_attr,
637 enum ib_srq_attr_mask srq_attr_mask)
638 {
639 return srq->device->modify_srq ?
640 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
641 -ENOSYS;
642 }
643 EXPORT_SYMBOL(ib_modify_srq);
644
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)645 int ib_query_srq(struct ib_srq *srq,
646 struct ib_srq_attr *srq_attr)
647 {
648 return srq->device->query_srq ?
649 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_query_srq);
652
ib_destroy_srq(struct ib_srq * srq)653 int ib_destroy_srq(struct ib_srq *srq)
654 {
655 struct ib_pd *pd;
656 enum ib_srq_type srq_type;
657 struct ib_xrcd *uninitialized_var(xrcd);
658 struct ib_cq *uninitialized_var(cq);
659 int ret;
660
661 if (atomic_read(&srq->usecnt))
662 return -EBUSY;
663
664 pd = srq->pd;
665 srq_type = srq->srq_type;
666 if (srq_type == IB_SRQT_XRC) {
667 xrcd = srq->ext.xrc.xrcd;
668 cq = srq->ext.xrc.cq;
669 }
670
671 ret = srq->device->destroy_srq(srq);
672 if (!ret) {
673 atomic_dec(&pd->usecnt);
674 if (srq_type == IB_SRQT_XRC) {
675 atomic_dec(&xrcd->usecnt);
676 atomic_dec(&cq->usecnt);
677 }
678 }
679
680 return ret;
681 }
682 EXPORT_SYMBOL(ib_destroy_srq);
683
684 /* Queue pairs */
685
__ib_shared_qp_event_handler(struct ib_event * event,void * context)686 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
687 {
688 struct ib_qp *qp = context;
689 unsigned long flags;
690
691 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
692 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
693 if (event->element.qp->event_handler)
694 event->element.qp->event_handler(event, event->element.qp->qp_context);
695 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
696 }
697
__ib_insert_xrcd_qp(struct ib_xrcd * xrcd,struct ib_qp * qp)698 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
699 {
700 mutex_lock(&xrcd->tgt_qp_mutex);
701 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
702 mutex_unlock(&xrcd->tgt_qp_mutex);
703 }
704
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)705 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
706 void (*event_handler)(struct ib_event *, void *),
707 void *qp_context)
708 {
709 struct ib_qp *qp;
710 unsigned long flags;
711
712 qp = kzalloc(sizeof *qp, GFP_KERNEL);
713 if (!qp)
714 return ERR_PTR(-ENOMEM);
715
716 qp->real_qp = real_qp;
717 atomic_inc(&real_qp->usecnt);
718 qp->device = real_qp->device;
719 qp->event_handler = event_handler;
720 qp->qp_context = qp_context;
721 qp->qp_num = real_qp->qp_num;
722 qp->qp_type = real_qp->qp_type;
723
724 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
725 list_add(&qp->open_list, &real_qp->open_list);
726 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
727
728 return qp;
729 }
730
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)731 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
732 struct ib_qp_open_attr *qp_open_attr)
733 {
734 struct ib_qp *qp, *real_qp;
735
736 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
737 return ERR_PTR(-EINVAL);
738
739 qp = ERR_PTR(-EINVAL);
740 mutex_lock(&xrcd->tgt_qp_mutex);
741 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
742 if (real_qp->qp_num == qp_open_attr->qp_num) {
743 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
744 qp_open_attr->qp_context);
745 break;
746 }
747 }
748 mutex_unlock(&xrcd->tgt_qp_mutex);
749 return qp;
750 }
751 EXPORT_SYMBOL(ib_open_qp);
752
ib_create_xrc_qp(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)753 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
754 struct ib_qp_init_attr *qp_init_attr)
755 {
756 struct ib_qp *real_qp = qp;
757
758 qp->event_handler = __ib_shared_qp_event_handler;
759 qp->qp_context = qp;
760 qp->pd = NULL;
761 qp->send_cq = qp->recv_cq = NULL;
762 qp->srq = NULL;
763 qp->xrcd = qp_init_attr->xrcd;
764 atomic_inc(&qp_init_attr->xrcd->usecnt);
765 INIT_LIST_HEAD(&qp->open_list);
766
767 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
768 qp_init_attr->qp_context);
769 if (!IS_ERR(qp))
770 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
771 else
772 real_qp->device->destroy_qp(real_qp);
773 return qp;
774 }
775
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)776 struct ib_qp *ib_create_qp(struct ib_pd *pd,
777 struct ib_qp_init_attr *qp_init_attr)
778 {
779 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
780 struct ib_qp *qp;
781 int ret;
782
783 if (qp_init_attr->rwq_ind_tbl &&
784 (qp_init_attr->recv_cq ||
785 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
786 qp_init_attr->cap.max_recv_sge))
787 return ERR_PTR(-EINVAL);
788
789 /*
790 * If the callers is using the RDMA API calculate the resources
791 * needed for the RDMA READ/WRITE operations.
792 *
793 * Note that these callers need to pass in a port number.
794 */
795 if (qp_init_attr->cap.max_rdma_ctxs)
796 rdma_rw_init_qp(device, qp_init_attr);
797
798 qp = device->create_qp(pd, qp_init_attr, NULL);
799 if (IS_ERR(qp))
800 return qp;
801
802 qp->device = device;
803 qp->real_qp = qp;
804 qp->uobject = NULL;
805 qp->qp_type = qp_init_attr->qp_type;
806 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
807
808 atomic_set(&qp->usecnt, 0);
809 qp->mrs_used = 0;
810 spin_lock_init(&qp->mr_lock);
811 INIT_LIST_HEAD(&qp->rdma_mrs);
812 INIT_LIST_HEAD(&qp->sig_mrs);
813
814 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
815 return ib_create_xrc_qp(qp, qp_init_attr);
816
817 qp->event_handler = qp_init_attr->event_handler;
818 qp->qp_context = qp_init_attr->qp_context;
819 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
820 qp->recv_cq = NULL;
821 qp->srq = NULL;
822 } else {
823 qp->recv_cq = qp_init_attr->recv_cq;
824 if (qp_init_attr->recv_cq)
825 atomic_inc(&qp_init_attr->recv_cq->usecnt);
826 qp->srq = qp_init_attr->srq;
827 if (qp->srq)
828 atomic_inc(&qp_init_attr->srq->usecnt);
829 }
830
831 qp->pd = pd;
832 qp->send_cq = qp_init_attr->send_cq;
833 qp->xrcd = NULL;
834
835 atomic_inc(&pd->usecnt);
836 if (qp_init_attr->send_cq)
837 atomic_inc(&qp_init_attr->send_cq->usecnt);
838 if (qp_init_attr->rwq_ind_tbl)
839 atomic_inc(&qp->rwq_ind_tbl->usecnt);
840
841 if (qp_init_attr->cap.max_rdma_ctxs) {
842 ret = rdma_rw_init_mrs(qp, qp_init_attr);
843 if (ret) {
844 pr_err("failed to init MR pool ret= %d\n", ret);
845 ib_destroy_qp(qp);
846 return ERR_PTR(ret);
847 }
848 }
849
850 /*
851 * Note: all hw drivers guarantee that max_send_sge is lower than
852 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
853 * max_send_sge <= max_sge_rd.
854 */
855 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
856 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
857 device->attrs.max_sge_rd);
858
859 return qp;
860 }
861 EXPORT_SYMBOL(ib_create_qp);
862
863 static const struct {
864 int valid;
865 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
866 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
867 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
868 [IB_QPS_RESET] = {
869 [IB_QPS_RESET] = { .valid = 1 },
870 [IB_QPS_INIT] = {
871 .valid = 1,
872 .req_param = {
873 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
874 IB_QP_PORT |
875 IB_QP_QKEY),
876 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
877 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
878 IB_QP_PORT |
879 IB_QP_ACCESS_FLAGS),
880 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
881 IB_QP_PORT |
882 IB_QP_ACCESS_FLAGS),
883 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
884 IB_QP_PORT |
885 IB_QP_ACCESS_FLAGS),
886 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
887 IB_QP_PORT |
888 IB_QP_ACCESS_FLAGS),
889 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
890 IB_QP_QKEY),
891 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
892 IB_QP_QKEY),
893 }
894 },
895 },
896 [IB_QPS_INIT] = {
897 [IB_QPS_RESET] = { .valid = 1 },
898 [IB_QPS_ERR] = { .valid = 1 },
899 [IB_QPS_INIT] = {
900 .valid = 1,
901 .opt_param = {
902 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
903 IB_QP_PORT |
904 IB_QP_QKEY),
905 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
906 IB_QP_PORT |
907 IB_QP_ACCESS_FLAGS),
908 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
909 IB_QP_PORT |
910 IB_QP_ACCESS_FLAGS),
911 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
912 IB_QP_PORT |
913 IB_QP_ACCESS_FLAGS),
914 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
915 IB_QP_PORT |
916 IB_QP_ACCESS_FLAGS),
917 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
918 IB_QP_QKEY),
919 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
920 IB_QP_QKEY),
921 }
922 },
923 [IB_QPS_RTR] = {
924 .valid = 1,
925 .req_param = {
926 [IB_QPT_UC] = (IB_QP_AV |
927 IB_QP_PATH_MTU |
928 IB_QP_DEST_QPN |
929 IB_QP_RQ_PSN),
930 [IB_QPT_RC] = (IB_QP_AV |
931 IB_QP_PATH_MTU |
932 IB_QP_DEST_QPN |
933 IB_QP_RQ_PSN |
934 IB_QP_MAX_DEST_RD_ATOMIC |
935 IB_QP_MIN_RNR_TIMER),
936 [IB_QPT_XRC_INI] = (IB_QP_AV |
937 IB_QP_PATH_MTU |
938 IB_QP_DEST_QPN |
939 IB_QP_RQ_PSN),
940 [IB_QPT_XRC_TGT] = (IB_QP_AV |
941 IB_QP_PATH_MTU |
942 IB_QP_DEST_QPN |
943 IB_QP_RQ_PSN |
944 IB_QP_MAX_DEST_RD_ATOMIC |
945 IB_QP_MIN_RNR_TIMER),
946 },
947 .opt_param = {
948 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
949 IB_QP_QKEY),
950 [IB_QPT_UC] = (IB_QP_ALT_PATH |
951 IB_QP_ACCESS_FLAGS |
952 IB_QP_PKEY_INDEX),
953 [IB_QPT_RC] = (IB_QP_ALT_PATH |
954 IB_QP_ACCESS_FLAGS |
955 IB_QP_PKEY_INDEX),
956 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
957 IB_QP_ACCESS_FLAGS |
958 IB_QP_PKEY_INDEX),
959 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
960 IB_QP_ACCESS_FLAGS |
961 IB_QP_PKEY_INDEX),
962 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
963 IB_QP_QKEY),
964 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
965 IB_QP_QKEY),
966 },
967 },
968 },
969 [IB_QPS_RTR] = {
970 [IB_QPS_RESET] = { .valid = 1 },
971 [IB_QPS_ERR] = { .valid = 1 },
972 [IB_QPS_RTS] = {
973 .valid = 1,
974 .req_param = {
975 [IB_QPT_UD] = IB_QP_SQ_PSN,
976 [IB_QPT_UC] = IB_QP_SQ_PSN,
977 [IB_QPT_RC] = (IB_QP_TIMEOUT |
978 IB_QP_RETRY_CNT |
979 IB_QP_RNR_RETRY |
980 IB_QP_SQ_PSN |
981 IB_QP_MAX_QP_RD_ATOMIC),
982 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
983 IB_QP_RETRY_CNT |
984 IB_QP_RNR_RETRY |
985 IB_QP_SQ_PSN |
986 IB_QP_MAX_QP_RD_ATOMIC),
987 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
988 IB_QP_SQ_PSN),
989 [IB_QPT_SMI] = IB_QP_SQ_PSN,
990 [IB_QPT_GSI] = IB_QP_SQ_PSN,
991 },
992 .opt_param = {
993 [IB_QPT_UD] = (IB_QP_CUR_STATE |
994 IB_QP_QKEY),
995 [IB_QPT_UC] = (IB_QP_CUR_STATE |
996 IB_QP_ALT_PATH |
997 IB_QP_ACCESS_FLAGS |
998 IB_QP_PATH_MIG_STATE),
999 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1000 IB_QP_ALT_PATH |
1001 IB_QP_ACCESS_FLAGS |
1002 IB_QP_MIN_RNR_TIMER |
1003 IB_QP_PATH_MIG_STATE),
1004 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1005 IB_QP_ALT_PATH |
1006 IB_QP_ACCESS_FLAGS |
1007 IB_QP_PATH_MIG_STATE),
1008 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1009 IB_QP_ALT_PATH |
1010 IB_QP_ACCESS_FLAGS |
1011 IB_QP_MIN_RNR_TIMER |
1012 IB_QP_PATH_MIG_STATE),
1013 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1014 IB_QP_QKEY),
1015 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1016 IB_QP_QKEY),
1017 }
1018 }
1019 },
1020 [IB_QPS_RTS] = {
1021 [IB_QPS_RESET] = { .valid = 1 },
1022 [IB_QPS_ERR] = { .valid = 1 },
1023 [IB_QPS_RTS] = {
1024 .valid = 1,
1025 .opt_param = {
1026 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1027 IB_QP_QKEY),
1028 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1029 IB_QP_ACCESS_FLAGS |
1030 IB_QP_ALT_PATH |
1031 IB_QP_PATH_MIG_STATE),
1032 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1033 IB_QP_ACCESS_FLAGS |
1034 IB_QP_ALT_PATH |
1035 IB_QP_PATH_MIG_STATE |
1036 IB_QP_MIN_RNR_TIMER),
1037 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1038 IB_QP_ACCESS_FLAGS |
1039 IB_QP_ALT_PATH |
1040 IB_QP_PATH_MIG_STATE),
1041 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1042 IB_QP_ACCESS_FLAGS |
1043 IB_QP_ALT_PATH |
1044 IB_QP_PATH_MIG_STATE |
1045 IB_QP_MIN_RNR_TIMER),
1046 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1047 IB_QP_QKEY),
1048 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1049 IB_QP_QKEY),
1050 }
1051 },
1052 [IB_QPS_SQD] = {
1053 .valid = 1,
1054 .opt_param = {
1055 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1056 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1057 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1058 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1059 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1060 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1061 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1062 }
1063 },
1064 },
1065 [IB_QPS_SQD] = {
1066 [IB_QPS_RESET] = { .valid = 1 },
1067 [IB_QPS_ERR] = { .valid = 1 },
1068 [IB_QPS_RTS] = {
1069 .valid = 1,
1070 .opt_param = {
1071 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1072 IB_QP_QKEY),
1073 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1074 IB_QP_ALT_PATH |
1075 IB_QP_ACCESS_FLAGS |
1076 IB_QP_PATH_MIG_STATE),
1077 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1078 IB_QP_ALT_PATH |
1079 IB_QP_ACCESS_FLAGS |
1080 IB_QP_MIN_RNR_TIMER |
1081 IB_QP_PATH_MIG_STATE),
1082 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1083 IB_QP_ALT_PATH |
1084 IB_QP_ACCESS_FLAGS |
1085 IB_QP_PATH_MIG_STATE),
1086 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1087 IB_QP_ALT_PATH |
1088 IB_QP_ACCESS_FLAGS |
1089 IB_QP_MIN_RNR_TIMER |
1090 IB_QP_PATH_MIG_STATE),
1091 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1092 IB_QP_QKEY),
1093 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1094 IB_QP_QKEY),
1095 }
1096 },
1097 [IB_QPS_SQD] = {
1098 .valid = 1,
1099 .opt_param = {
1100 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1101 IB_QP_QKEY),
1102 [IB_QPT_UC] = (IB_QP_AV |
1103 IB_QP_ALT_PATH |
1104 IB_QP_ACCESS_FLAGS |
1105 IB_QP_PKEY_INDEX |
1106 IB_QP_PATH_MIG_STATE),
1107 [IB_QPT_RC] = (IB_QP_PORT |
1108 IB_QP_AV |
1109 IB_QP_TIMEOUT |
1110 IB_QP_RETRY_CNT |
1111 IB_QP_RNR_RETRY |
1112 IB_QP_MAX_QP_RD_ATOMIC |
1113 IB_QP_MAX_DEST_RD_ATOMIC |
1114 IB_QP_ALT_PATH |
1115 IB_QP_ACCESS_FLAGS |
1116 IB_QP_PKEY_INDEX |
1117 IB_QP_MIN_RNR_TIMER |
1118 IB_QP_PATH_MIG_STATE),
1119 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1120 IB_QP_AV |
1121 IB_QP_TIMEOUT |
1122 IB_QP_RETRY_CNT |
1123 IB_QP_RNR_RETRY |
1124 IB_QP_MAX_QP_RD_ATOMIC |
1125 IB_QP_ALT_PATH |
1126 IB_QP_ACCESS_FLAGS |
1127 IB_QP_PKEY_INDEX |
1128 IB_QP_PATH_MIG_STATE),
1129 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1130 IB_QP_AV |
1131 IB_QP_TIMEOUT |
1132 IB_QP_MAX_DEST_RD_ATOMIC |
1133 IB_QP_ALT_PATH |
1134 IB_QP_ACCESS_FLAGS |
1135 IB_QP_PKEY_INDEX |
1136 IB_QP_MIN_RNR_TIMER |
1137 IB_QP_PATH_MIG_STATE),
1138 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1139 IB_QP_QKEY),
1140 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1141 IB_QP_QKEY),
1142 }
1143 }
1144 },
1145 [IB_QPS_SQE] = {
1146 [IB_QPS_RESET] = { .valid = 1 },
1147 [IB_QPS_ERR] = { .valid = 1 },
1148 [IB_QPS_RTS] = {
1149 .valid = 1,
1150 .opt_param = {
1151 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1152 IB_QP_QKEY),
1153 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1154 IB_QP_ACCESS_FLAGS),
1155 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1156 IB_QP_QKEY),
1157 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1158 IB_QP_QKEY),
1159 }
1160 }
1161 },
1162 [IB_QPS_ERR] = {
1163 [IB_QPS_RESET] = { .valid = 1 },
1164 [IB_QPS_ERR] = { .valid = 1 }
1165 }
1166 };
1167
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask,enum rdma_link_layer ll)1168 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1169 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1170 enum rdma_link_layer ll)
1171 {
1172 enum ib_qp_attr_mask req_param, opt_param;
1173
1174 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1175 next_state < 0 || next_state > IB_QPS_ERR)
1176 return 0;
1177
1178 if (mask & IB_QP_CUR_STATE &&
1179 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1180 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1181 return 0;
1182
1183 if (!qp_state_table[cur_state][next_state].valid)
1184 return 0;
1185
1186 req_param = qp_state_table[cur_state][next_state].req_param[type];
1187 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1188
1189 if ((mask & req_param) != req_param)
1190 return 0;
1191
1192 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1193 return 0;
1194
1195 return 1;
1196 }
1197 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1198
ib_resolve_eth_dmac(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1199 int ib_resolve_eth_dmac(struct ib_qp *qp,
1200 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1201 {
1202 int ret = 0;
1203
1204 if (*qp_attr_mask & IB_QP_AV) {
1205 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1206 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1207 return -EINVAL;
1208
1209 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1210 return 0;
1211
1212 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1213 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1214 qp_attr->ah_attr.dmac);
1215 } else {
1216 union ib_gid sgid;
1217 struct ib_gid_attr sgid_attr;
1218 int ifindex;
1219 int hop_limit;
1220
1221 ret = ib_query_gid(qp->device,
1222 qp_attr->ah_attr.port_num,
1223 qp_attr->ah_attr.grh.sgid_index,
1224 &sgid, &sgid_attr);
1225
1226 if (ret || !sgid_attr.ndev) {
1227 if (!ret)
1228 ret = -ENXIO;
1229 goto out;
1230 }
1231
1232 ifindex = sgid_attr.ndev->ifindex;
1233
1234 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1235 &qp_attr->ah_attr.grh.dgid,
1236 qp_attr->ah_attr.dmac,
1237 NULL, &ifindex, &hop_limit);
1238
1239 dev_put(sgid_attr.ndev);
1240
1241 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1242 }
1243 }
1244 out:
1245 return ret;
1246 }
1247 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1248
1249
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1250 int ib_modify_qp(struct ib_qp *qp,
1251 struct ib_qp_attr *qp_attr,
1252 int qp_attr_mask)
1253 {
1254 int ret;
1255
1256 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1257 if (ret)
1258 return ret;
1259
1260 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1261 }
1262 EXPORT_SYMBOL(ib_modify_qp);
1263
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1264 int ib_query_qp(struct ib_qp *qp,
1265 struct ib_qp_attr *qp_attr,
1266 int qp_attr_mask,
1267 struct ib_qp_init_attr *qp_init_attr)
1268 {
1269 return qp->device->query_qp ?
1270 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1271 -ENOSYS;
1272 }
1273 EXPORT_SYMBOL(ib_query_qp);
1274
ib_close_qp(struct ib_qp * qp)1275 int ib_close_qp(struct ib_qp *qp)
1276 {
1277 struct ib_qp *real_qp;
1278 unsigned long flags;
1279
1280 real_qp = qp->real_qp;
1281 if (real_qp == qp)
1282 return -EINVAL;
1283
1284 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1285 list_del(&qp->open_list);
1286 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1287
1288 atomic_dec(&real_qp->usecnt);
1289 kfree(qp);
1290
1291 return 0;
1292 }
1293 EXPORT_SYMBOL(ib_close_qp);
1294
__ib_destroy_shared_qp(struct ib_qp * qp)1295 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1296 {
1297 struct ib_xrcd *xrcd;
1298 struct ib_qp *real_qp;
1299 int ret;
1300
1301 real_qp = qp->real_qp;
1302 xrcd = real_qp->xrcd;
1303
1304 mutex_lock(&xrcd->tgt_qp_mutex);
1305 ib_close_qp(qp);
1306 if (atomic_read(&real_qp->usecnt) == 0)
1307 list_del(&real_qp->xrcd_list);
1308 else
1309 real_qp = NULL;
1310 mutex_unlock(&xrcd->tgt_qp_mutex);
1311
1312 if (real_qp) {
1313 ret = ib_destroy_qp(real_qp);
1314 if (!ret)
1315 atomic_dec(&xrcd->usecnt);
1316 else
1317 __ib_insert_xrcd_qp(xrcd, real_qp);
1318 }
1319
1320 return 0;
1321 }
1322
ib_destroy_qp(struct ib_qp * qp)1323 int ib_destroy_qp(struct ib_qp *qp)
1324 {
1325 struct ib_pd *pd;
1326 struct ib_cq *scq, *rcq;
1327 struct ib_srq *srq;
1328 struct ib_rwq_ind_table *ind_tbl;
1329 int ret;
1330
1331 WARN_ON_ONCE(qp->mrs_used > 0);
1332
1333 if (atomic_read(&qp->usecnt))
1334 return -EBUSY;
1335
1336 if (qp->real_qp != qp)
1337 return __ib_destroy_shared_qp(qp);
1338
1339 pd = qp->pd;
1340 scq = qp->send_cq;
1341 rcq = qp->recv_cq;
1342 srq = qp->srq;
1343 ind_tbl = qp->rwq_ind_tbl;
1344
1345 if (!qp->uobject)
1346 rdma_rw_cleanup_mrs(qp);
1347
1348 ret = qp->device->destroy_qp(qp);
1349 if (!ret) {
1350 if (pd)
1351 atomic_dec(&pd->usecnt);
1352 if (scq)
1353 atomic_dec(&scq->usecnt);
1354 if (rcq)
1355 atomic_dec(&rcq->usecnt);
1356 if (srq)
1357 atomic_dec(&srq->usecnt);
1358 if (ind_tbl)
1359 atomic_dec(&ind_tbl->usecnt);
1360 }
1361
1362 return ret;
1363 }
1364 EXPORT_SYMBOL(ib_destroy_qp);
1365
1366 /* Completion queues */
1367
ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr)1368 struct ib_cq *ib_create_cq(struct ib_device *device,
1369 ib_comp_handler comp_handler,
1370 void (*event_handler)(struct ib_event *, void *),
1371 void *cq_context,
1372 const struct ib_cq_init_attr *cq_attr)
1373 {
1374 struct ib_cq *cq;
1375
1376 cq = device->create_cq(device, cq_attr, NULL, NULL);
1377
1378 if (!IS_ERR(cq)) {
1379 cq->device = device;
1380 cq->uobject = NULL;
1381 cq->comp_handler = comp_handler;
1382 cq->event_handler = event_handler;
1383 cq->cq_context = cq_context;
1384 atomic_set(&cq->usecnt, 0);
1385 }
1386
1387 return cq;
1388 }
1389 EXPORT_SYMBOL(ib_create_cq);
1390
ib_modify_cq(struct ib_cq * cq,u16 cq_count,u16 cq_period)1391 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1392 {
1393 return cq->device->modify_cq ?
1394 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1395 }
1396 EXPORT_SYMBOL(ib_modify_cq);
1397
ib_destroy_cq(struct ib_cq * cq)1398 int ib_destroy_cq(struct ib_cq *cq)
1399 {
1400 if (atomic_read(&cq->usecnt))
1401 return -EBUSY;
1402
1403 return cq->device->destroy_cq(cq);
1404 }
1405 EXPORT_SYMBOL(ib_destroy_cq);
1406
ib_resize_cq(struct ib_cq * cq,int cqe)1407 int ib_resize_cq(struct ib_cq *cq, int cqe)
1408 {
1409 return cq->device->resize_cq ?
1410 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1411 }
1412 EXPORT_SYMBOL(ib_resize_cq);
1413
1414 /* Memory regions */
1415
ib_dereg_mr(struct ib_mr * mr)1416 int ib_dereg_mr(struct ib_mr *mr)
1417 {
1418 struct ib_pd *pd = mr->pd;
1419 int ret;
1420
1421 ret = mr->device->dereg_mr(mr);
1422 if (!ret)
1423 atomic_dec(&pd->usecnt);
1424
1425 return ret;
1426 }
1427 EXPORT_SYMBOL(ib_dereg_mr);
1428
1429 /**
1430 * ib_alloc_mr() - Allocates a memory region
1431 * @pd: protection domain associated with the region
1432 * @mr_type: memory region type
1433 * @max_num_sg: maximum sg entries available for registration.
1434 *
1435 * Notes:
1436 * Memory registeration page/sg lists must not exceed max_num_sg.
1437 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1438 * max_num_sg * used_page_size.
1439 *
1440 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)1441 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1442 enum ib_mr_type mr_type,
1443 u32 max_num_sg)
1444 {
1445 struct ib_mr *mr;
1446
1447 if (!pd->device->alloc_mr)
1448 return ERR_PTR(-ENOSYS);
1449
1450 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1451 if (!IS_ERR(mr)) {
1452 mr->device = pd->device;
1453 mr->pd = pd;
1454 mr->uobject = NULL;
1455 atomic_inc(&pd->usecnt);
1456 mr->need_inval = false;
1457 }
1458
1459 return mr;
1460 }
1461 EXPORT_SYMBOL(ib_alloc_mr);
1462
1463 /* "Fast" memory regions */
1464
ib_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)1465 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1466 int mr_access_flags,
1467 struct ib_fmr_attr *fmr_attr)
1468 {
1469 struct ib_fmr *fmr;
1470
1471 if (!pd->device->alloc_fmr)
1472 return ERR_PTR(-ENOSYS);
1473
1474 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1475 if (!IS_ERR(fmr)) {
1476 fmr->device = pd->device;
1477 fmr->pd = pd;
1478 atomic_inc(&pd->usecnt);
1479 }
1480
1481 return fmr;
1482 }
1483 EXPORT_SYMBOL(ib_alloc_fmr);
1484
ib_unmap_fmr(struct list_head * fmr_list)1485 int ib_unmap_fmr(struct list_head *fmr_list)
1486 {
1487 struct ib_fmr *fmr;
1488
1489 if (list_empty(fmr_list))
1490 return 0;
1491
1492 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1493 return fmr->device->unmap_fmr(fmr_list);
1494 }
1495 EXPORT_SYMBOL(ib_unmap_fmr);
1496
ib_dealloc_fmr(struct ib_fmr * fmr)1497 int ib_dealloc_fmr(struct ib_fmr *fmr)
1498 {
1499 struct ib_pd *pd;
1500 int ret;
1501
1502 pd = fmr->pd;
1503 ret = fmr->device->dealloc_fmr(fmr);
1504 if (!ret)
1505 atomic_dec(&pd->usecnt);
1506
1507 return ret;
1508 }
1509 EXPORT_SYMBOL(ib_dealloc_fmr);
1510
1511 /* Multicast groups */
1512
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)1513 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1514 {
1515 int ret;
1516
1517 if (!qp->device->attach_mcast)
1518 return -ENOSYS;
1519 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1520 lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1521 lid == be16_to_cpu(IB_LID_PERMISSIVE))
1522 return -EINVAL;
1523
1524 ret = qp->device->attach_mcast(qp, gid, lid);
1525 if (!ret)
1526 atomic_inc(&qp->usecnt);
1527 return ret;
1528 }
1529 EXPORT_SYMBOL(ib_attach_mcast);
1530
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)1531 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1532 {
1533 int ret;
1534
1535 if (!qp->device->detach_mcast)
1536 return -ENOSYS;
1537 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1538 lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1539 lid == be16_to_cpu(IB_LID_PERMISSIVE))
1540 return -EINVAL;
1541
1542 ret = qp->device->detach_mcast(qp, gid, lid);
1543 if (!ret)
1544 atomic_dec(&qp->usecnt);
1545 return ret;
1546 }
1547 EXPORT_SYMBOL(ib_detach_mcast);
1548
ib_alloc_xrcd(struct ib_device * device)1549 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1550 {
1551 struct ib_xrcd *xrcd;
1552
1553 if (!device->alloc_xrcd)
1554 return ERR_PTR(-ENOSYS);
1555
1556 xrcd = device->alloc_xrcd(device, NULL, NULL);
1557 if (!IS_ERR(xrcd)) {
1558 xrcd->device = device;
1559 xrcd->inode = NULL;
1560 atomic_set(&xrcd->usecnt, 0);
1561 mutex_init(&xrcd->tgt_qp_mutex);
1562 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1563 }
1564
1565 return xrcd;
1566 }
1567 EXPORT_SYMBOL(ib_alloc_xrcd);
1568
ib_dealloc_xrcd(struct ib_xrcd * xrcd)1569 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1570 {
1571 struct ib_qp *qp;
1572 int ret;
1573
1574 if (atomic_read(&xrcd->usecnt))
1575 return -EBUSY;
1576
1577 while (!list_empty(&xrcd->tgt_qp_list)) {
1578 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1579 ret = ib_destroy_qp(qp);
1580 if (ret)
1581 return ret;
1582 }
1583
1584 return xrcd->device->dealloc_xrcd(xrcd);
1585 }
1586 EXPORT_SYMBOL(ib_dealloc_xrcd);
1587
1588 /**
1589 * ib_create_wq - Creates a WQ associated with the specified protection
1590 * domain.
1591 * @pd: The protection domain associated with the WQ.
1592 * @wq_init_attr: A list of initial attributes required to create the
1593 * WQ. If WQ creation succeeds, then the attributes are updated to
1594 * the actual capabilities of the created WQ.
1595 *
1596 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1597 * the requested size of the WQ, and set to the actual values allocated
1598 * on return.
1599 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1600 * at least as large as the requested values.
1601 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)1602 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1603 struct ib_wq_init_attr *wq_attr)
1604 {
1605 struct ib_wq *wq;
1606
1607 if (!pd->device->create_wq)
1608 return ERR_PTR(-ENOSYS);
1609
1610 wq = pd->device->create_wq(pd, wq_attr, NULL);
1611 if (!IS_ERR(wq)) {
1612 wq->event_handler = wq_attr->event_handler;
1613 wq->wq_context = wq_attr->wq_context;
1614 wq->wq_type = wq_attr->wq_type;
1615 wq->cq = wq_attr->cq;
1616 wq->device = pd->device;
1617 wq->pd = pd;
1618 wq->uobject = NULL;
1619 atomic_inc(&pd->usecnt);
1620 atomic_inc(&wq_attr->cq->usecnt);
1621 atomic_set(&wq->usecnt, 0);
1622 }
1623 return wq;
1624 }
1625 EXPORT_SYMBOL(ib_create_wq);
1626
1627 /**
1628 * ib_destroy_wq - Destroys the specified WQ.
1629 * @wq: The WQ to destroy.
1630 */
ib_destroy_wq(struct ib_wq * wq)1631 int ib_destroy_wq(struct ib_wq *wq)
1632 {
1633 int err;
1634 struct ib_cq *cq = wq->cq;
1635 struct ib_pd *pd = wq->pd;
1636
1637 if (atomic_read(&wq->usecnt))
1638 return -EBUSY;
1639
1640 err = wq->device->destroy_wq(wq);
1641 if (!err) {
1642 atomic_dec(&pd->usecnt);
1643 atomic_dec(&cq->usecnt);
1644 }
1645 return err;
1646 }
1647 EXPORT_SYMBOL(ib_destroy_wq);
1648
1649 /**
1650 * ib_modify_wq - Modifies the specified WQ.
1651 * @wq: The WQ to modify.
1652 * @wq_attr: On input, specifies the WQ attributes to modify.
1653 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1654 * are being modified.
1655 * On output, the current values of selected WQ attributes are returned.
1656 */
ib_modify_wq(struct ib_wq * wq,struct ib_wq_attr * wq_attr,u32 wq_attr_mask)1657 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1658 u32 wq_attr_mask)
1659 {
1660 int err;
1661
1662 if (!wq->device->modify_wq)
1663 return -ENOSYS;
1664
1665 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1666 return err;
1667 }
1668 EXPORT_SYMBOL(ib_modify_wq);
1669
1670 /*
1671 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1672 * @device: The device on which to create the rwq indirection table.
1673 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1674 * create the Indirection Table.
1675 *
1676 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1677 * than the created ib_rwq_ind_table object and the caller is responsible
1678 * for its memory allocation/free.
1679 */
ib_create_rwq_ind_table(struct ib_device * device,struct ib_rwq_ind_table_init_attr * init_attr)1680 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1681 struct ib_rwq_ind_table_init_attr *init_attr)
1682 {
1683 struct ib_rwq_ind_table *rwq_ind_table;
1684 int i;
1685 u32 table_size;
1686
1687 if (!device->create_rwq_ind_table)
1688 return ERR_PTR(-ENOSYS);
1689
1690 table_size = (1 << init_attr->log_ind_tbl_size);
1691 rwq_ind_table = device->create_rwq_ind_table(device,
1692 init_attr, NULL);
1693 if (IS_ERR(rwq_ind_table))
1694 return rwq_ind_table;
1695
1696 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1697 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1698 rwq_ind_table->device = device;
1699 rwq_ind_table->uobject = NULL;
1700 atomic_set(&rwq_ind_table->usecnt, 0);
1701
1702 for (i = 0; i < table_size; i++)
1703 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1704
1705 return rwq_ind_table;
1706 }
1707 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1708
1709 /*
1710 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1711 * @wq_ind_table: The Indirection Table to destroy.
1712 */
ib_destroy_rwq_ind_table(struct ib_rwq_ind_table * rwq_ind_table)1713 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1714 {
1715 int err, i;
1716 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1717 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1718
1719 if (atomic_read(&rwq_ind_table->usecnt))
1720 return -EBUSY;
1721
1722 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1723 if (!err) {
1724 for (i = 0; i < table_size; i++)
1725 atomic_dec(&ind_tbl[i]->usecnt);
1726 }
1727
1728 return err;
1729 }
1730 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1731
ib_create_flow(struct ib_qp * qp,struct ib_flow_attr * flow_attr,int domain)1732 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1733 struct ib_flow_attr *flow_attr,
1734 int domain)
1735 {
1736 struct ib_flow *flow_id;
1737 if (!qp->device->create_flow)
1738 return ERR_PTR(-ENOSYS);
1739
1740 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1741 if (!IS_ERR(flow_id))
1742 atomic_inc(&qp->usecnt);
1743 return flow_id;
1744 }
1745 EXPORT_SYMBOL(ib_create_flow);
1746
ib_destroy_flow(struct ib_flow * flow_id)1747 int ib_destroy_flow(struct ib_flow *flow_id)
1748 {
1749 int err;
1750 struct ib_qp *qp = flow_id->qp;
1751
1752 err = qp->device->destroy_flow(flow_id);
1753 if (!err)
1754 atomic_dec(&qp->usecnt);
1755 return err;
1756 }
1757 EXPORT_SYMBOL(ib_destroy_flow);
1758
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)1759 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1760 struct ib_mr_status *mr_status)
1761 {
1762 return mr->device->check_mr_status ?
1763 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1764 }
1765 EXPORT_SYMBOL(ib_check_mr_status);
1766
ib_set_vf_link_state(struct ib_device * device,int vf,u8 port,int state)1767 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1768 int state)
1769 {
1770 if (!device->set_vf_link_state)
1771 return -ENOSYS;
1772
1773 return device->set_vf_link_state(device, vf, port, state);
1774 }
1775 EXPORT_SYMBOL(ib_set_vf_link_state);
1776
ib_get_vf_config(struct ib_device * device,int vf,u8 port,struct ifla_vf_info * info)1777 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1778 struct ifla_vf_info *info)
1779 {
1780 if (!device->get_vf_config)
1781 return -ENOSYS;
1782
1783 return device->get_vf_config(device, vf, port, info);
1784 }
1785 EXPORT_SYMBOL(ib_get_vf_config);
1786
ib_get_vf_stats(struct ib_device * device,int vf,u8 port,struct ifla_vf_stats * stats)1787 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1788 struct ifla_vf_stats *stats)
1789 {
1790 if (!device->get_vf_stats)
1791 return -ENOSYS;
1792
1793 return device->get_vf_stats(device, vf, port, stats);
1794 }
1795 EXPORT_SYMBOL(ib_get_vf_stats);
1796
ib_set_vf_guid(struct ib_device * device,int vf,u8 port,u64 guid,int type)1797 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1798 int type)
1799 {
1800 if (!device->set_vf_guid)
1801 return -ENOSYS;
1802
1803 return device->set_vf_guid(device, vf, port, guid, type);
1804 }
1805 EXPORT_SYMBOL(ib_set_vf_guid);
1806
1807 /**
1808 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1809 * and set it the memory region.
1810 * @mr: memory region
1811 * @sg: dma mapped scatterlist
1812 * @sg_nents: number of entries in sg
1813 * @sg_offset: offset in bytes into sg
1814 * @page_size: page vector desired page size
1815 *
1816 * Constraints:
1817 * - The first sg element is allowed to have an offset.
1818 * - Each sg element must either be aligned to page_size or virtually
1819 * contiguous to the previous element. In case an sg element has a
1820 * non-contiguous offset, the mapping prefix will not include it.
1821 * - The last sg element is allowed to have length less than page_size.
1822 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1823 * then only max_num_sg entries will be mapped.
1824 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1825 * constraints holds and the page_size argument is ignored.
1826 *
1827 * Returns the number of sg elements that were mapped to the memory region.
1828 *
1829 * After this completes successfully, the memory region
1830 * is ready for registration.
1831 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)1832 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1833 unsigned int *sg_offset, unsigned int page_size)
1834 {
1835 if (unlikely(!mr->device->map_mr_sg))
1836 return -ENOSYS;
1837
1838 mr->page_size = page_size;
1839
1840 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1841 }
1842 EXPORT_SYMBOL(ib_map_mr_sg);
1843
1844 /**
1845 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1846 * to a page vector
1847 * @mr: memory region
1848 * @sgl: dma mapped scatterlist
1849 * @sg_nents: number of entries in sg
1850 * @sg_offset_p: IN: start offset in bytes into sg
1851 * OUT: offset in bytes for element n of the sg of the first
1852 * byte that has not been processed where n is the return
1853 * value of this function.
1854 * @set_page: driver page assignment function pointer
1855 *
1856 * Core service helper for drivers to convert the largest
1857 * prefix of given sg list to a page vector. The sg list
1858 * prefix converted is the prefix that meet the requirements
1859 * of ib_map_mr_sg.
1860 *
1861 * Returns the number of sg elements that were assigned to
1862 * a page vector.
1863 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))1864 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1865 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1866 {
1867 struct scatterlist *sg;
1868 u64 last_end_dma_addr = 0;
1869 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1870 unsigned int last_page_off = 0;
1871 u64 page_mask = ~((u64)mr->page_size - 1);
1872 int i, ret;
1873
1874 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1875 return -EINVAL;
1876
1877 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1878 mr->length = 0;
1879
1880 for_each_sg(sgl, sg, sg_nents, i) {
1881 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1882 u64 prev_addr = dma_addr;
1883 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1884 u64 end_dma_addr = dma_addr + dma_len;
1885 u64 page_addr = dma_addr & page_mask;
1886
1887 /*
1888 * For the second and later elements, check whether either the
1889 * end of element i-1 or the start of element i is not aligned
1890 * on a page boundary.
1891 */
1892 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1893 /* Stop mapping if there is a gap. */
1894 if (last_end_dma_addr != dma_addr)
1895 break;
1896
1897 /*
1898 * Coalesce this element with the last. If it is small
1899 * enough just update mr->length. Otherwise start
1900 * mapping from the next page.
1901 */
1902 goto next_page;
1903 }
1904
1905 do {
1906 ret = set_page(mr, page_addr);
1907 if (unlikely(ret < 0)) {
1908 sg_offset = prev_addr - sg_dma_address(sg);
1909 mr->length += prev_addr - dma_addr;
1910 if (sg_offset_p)
1911 *sg_offset_p = sg_offset;
1912 return i || sg_offset ? i : ret;
1913 }
1914 prev_addr = page_addr;
1915 next_page:
1916 page_addr += mr->page_size;
1917 } while (page_addr < end_dma_addr);
1918
1919 mr->length += dma_len;
1920 last_end_dma_addr = end_dma_addr;
1921 last_page_off = end_dma_addr & ~page_mask;
1922
1923 sg_offset = 0;
1924 }
1925
1926 if (sg_offset_p)
1927 *sg_offset_p = 0;
1928 return i;
1929 }
1930 EXPORT_SYMBOL(ib_sg_to_pages);
1931
1932 struct ib_drain_cqe {
1933 struct ib_cqe cqe;
1934 struct completion done;
1935 };
1936
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)1937 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1938 {
1939 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1940 cqe);
1941
1942 complete(&cqe->done);
1943 }
1944
1945 /*
1946 * Post a WR and block until its completion is reaped for the SQ.
1947 */
__ib_drain_sq(struct ib_qp * qp)1948 static void __ib_drain_sq(struct ib_qp *qp)
1949 {
1950 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1951 struct ib_drain_cqe sdrain;
1952 struct ib_send_wr swr = {}, *bad_swr;
1953 int ret;
1954
1955 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1956 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1957 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1958 return;
1959 }
1960
1961 swr.wr_cqe = &sdrain.cqe;
1962 sdrain.cqe.done = ib_drain_qp_done;
1963 init_completion(&sdrain.done);
1964
1965 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1966 if (ret) {
1967 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1968 return;
1969 }
1970
1971 ret = ib_post_send(qp, &swr, &bad_swr);
1972 if (ret) {
1973 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1974 return;
1975 }
1976
1977 wait_for_completion(&sdrain.done);
1978 }
1979
1980 /*
1981 * Post a WR and block until its completion is reaped for the RQ.
1982 */
__ib_drain_rq(struct ib_qp * qp)1983 static void __ib_drain_rq(struct ib_qp *qp)
1984 {
1985 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1986 struct ib_drain_cqe rdrain;
1987 struct ib_recv_wr rwr = {}, *bad_rwr;
1988 int ret;
1989
1990 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1991 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1992 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1993 return;
1994 }
1995
1996 rwr.wr_cqe = &rdrain.cqe;
1997 rdrain.cqe.done = ib_drain_qp_done;
1998 init_completion(&rdrain.done);
1999
2000 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2001 if (ret) {
2002 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2003 return;
2004 }
2005
2006 ret = ib_post_recv(qp, &rwr, &bad_rwr);
2007 if (ret) {
2008 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2009 return;
2010 }
2011
2012 wait_for_completion(&rdrain.done);
2013 }
2014
2015 /**
2016 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2017 * application.
2018 * @qp: queue pair to drain
2019 *
2020 * If the device has a provider-specific drain function, then
2021 * call that. Otherwise call the generic drain function
2022 * __ib_drain_sq().
2023 *
2024 * The caller must:
2025 *
2026 * ensure there is room in the CQ and SQ for the drain work request and
2027 * completion.
2028 *
2029 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2030 * IB_POLL_DIRECT.
2031 *
2032 * ensure that there are no other contexts that are posting WRs concurrently.
2033 * Otherwise the drain is not guaranteed.
2034 */
ib_drain_sq(struct ib_qp * qp)2035 void ib_drain_sq(struct ib_qp *qp)
2036 {
2037 if (qp->device->drain_sq)
2038 qp->device->drain_sq(qp);
2039 else
2040 __ib_drain_sq(qp);
2041 }
2042 EXPORT_SYMBOL(ib_drain_sq);
2043
2044 /**
2045 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2046 * application.
2047 * @qp: queue pair to drain
2048 *
2049 * If the device has a provider-specific drain function, then
2050 * call that. Otherwise call the generic drain function
2051 * __ib_drain_rq().
2052 *
2053 * The caller must:
2054 *
2055 * ensure there is room in the CQ and RQ for the drain work request and
2056 * completion.
2057 *
2058 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2059 * IB_POLL_DIRECT.
2060 *
2061 * ensure that there are no other contexts that are posting WRs concurrently.
2062 * Otherwise the drain is not guaranteed.
2063 */
ib_drain_rq(struct ib_qp * qp)2064 void ib_drain_rq(struct ib_qp *qp)
2065 {
2066 if (qp->device->drain_rq)
2067 qp->device->drain_rq(qp);
2068 else
2069 __ib_drain_rq(qp);
2070 }
2071 EXPORT_SYMBOL(ib_drain_rq);
2072
2073 /**
2074 * ib_drain_qp() - Block until all CQEs have been consumed by the
2075 * application on both the RQ and SQ.
2076 * @qp: queue pair to drain
2077 *
2078 * The caller must:
2079 *
2080 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2081 * and completions.
2082 *
2083 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2084 * IB_POLL_DIRECT.
2085 *
2086 * ensure that there are no other contexts that are posting WRs concurrently.
2087 * Otherwise the drain is not guaranteed.
2088 */
ib_drain_qp(struct ib_qp * qp)2089 void ib_drain_qp(struct ib_qp *qp)
2090 {
2091 ib_drain_sq(qp);
2092 if (!qp->srq)
2093 ib_drain_rq(qp);
2094 }
2095 EXPORT_SYMBOL(ib_drain_qp);
2096