• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39 
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44 
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48 
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/text-patching.h>
55 #include <asm/ftrace.h>
56 #include <asm/traps.h>
57 #include <asm/desc.h>
58 #include <asm/fpu/internal.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/trace/mpx.h>
65 #include <asm/mpx.h>
66 #include <asm/vm86.h>
67 
68 #ifdef CONFIG_X86_64
69 #include <asm/x86_init.h>
70 #include <asm/pgalloc.h>
71 #include <asm/proto.h>
72 
73 /* No need to be aligned, but done to keep all IDTs defined the same way. */
74 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
75 #else
76 #include <asm/processor-flags.h>
77 #include <asm/setup.h>
78 #include <asm/proto.h>
79 #endif
80 
81 /* Must be page-aligned because the real IDT is used in a fixmap. */
82 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
83 
84 DECLARE_BITMAP(used_vectors, NR_VECTORS);
85 EXPORT_SYMBOL_GPL(used_vectors);
86 
cond_local_irq_enable(struct pt_regs * regs)87 static inline void cond_local_irq_enable(struct pt_regs *regs)
88 {
89 	if (regs->flags & X86_EFLAGS_IF)
90 		local_irq_enable();
91 }
92 
cond_local_irq_disable(struct pt_regs * regs)93 static inline void cond_local_irq_disable(struct pt_regs *regs)
94 {
95 	if (regs->flags & X86_EFLAGS_IF)
96 		local_irq_disable();
97 }
98 
99 /*
100  * In IST context, we explicitly disable preemption.  This serves two
101  * purposes: it makes it much less likely that we would accidentally
102  * schedule in IST context and it will force a warning if we somehow
103  * manage to schedule by accident.
104  */
ist_enter(struct pt_regs * regs)105 void ist_enter(struct pt_regs *regs)
106 {
107 	if (user_mode(regs)) {
108 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
109 	} else {
110 		/*
111 		 * We might have interrupted pretty much anything.  In
112 		 * fact, if we're a machine check, we can even interrupt
113 		 * NMI processing.  We don't want in_nmi() to return true,
114 		 * but we need to notify RCU.
115 		 */
116 		rcu_nmi_enter();
117 	}
118 
119 	preempt_disable();
120 
121 	/* This code is a bit fragile.  Test it. */
122 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
123 }
124 
ist_exit(struct pt_regs * regs)125 void ist_exit(struct pt_regs *regs)
126 {
127 	preempt_enable_no_resched();
128 
129 	if (!user_mode(regs))
130 		rcu_nmi_exit();
131 }
132 
133 /**
134  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
135  * @regs:	regs passed to the IST exception handler
136  *
137  * IST exception handlers normally cannot schedule.  As a special
138  * exception, if the exception interrupted userspace code (i.e.
139  * user_mode(regs) would return true) and the exception was not
140  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
141  * begins a non-atomic section within an ist_enter()/ist_exit() region.
142  * Callers are responsible for enabling interrupts themselves inside
143  * the non-atomic section, and callers must call ist_end_non_atomic()
144  * before ist_exit().
145  */
ist_begin_non_atomic(struct pt_regs * regs)146 void ist_begin_non_atomic(struct pt_regs *regs)
147 {
148 	BUG_ON(!user_mode(regs));
149 
150 	/*
151 	 * Sanity check: we need to be on the normal thread stack.  This
152 	 * will catch asm bugs and any attempt to use ist_preempt_enable
153 	 * from double_fault.
154 	 */
155 	BUG_ON((unsigned long)(current_top_of_stack() -
156 			       current_stack_pointer) >= THREAD_SIZE);
157 
158 	preempt_enable_no_resched();
159 }
160 
161 /**
162  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
163  *
164  * Ends a non-atomic section started with ist_begin_non_atomic().
165  */
ist_end_non_atomic(void)166 void ist_end_non_atomic(void)
167 {
168 	preempt_disable();
169 }
170 
171 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,char * str,struct pt_regs * regs,long error_code)172 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
173 		  struct pt_regs *regs,	long error_code)
174 {
175 	if (v8086_mode(regs)) {
176 		/*
177 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
178 		 * On nmi (interrupt 2), do_trap should not be called.
179 		 */
180 		if (trapnr < X86_TRAP_UD) {
181 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
182 						error_code, trapnr))
183 				return 0;
184 		}
185 		return -1;
186 	}
187 
188 	if (!user_mode(regs)) {
189 		if (!fixup_exception(regs, trapnr)) {
190 			tsk->thread.error_code = error_code;
191 			tsk->thread.trap_nr = trapnr;
192 			die(str, regs, error_code);
193 		}
194 		return 0;
195 	}
196 
197 	return -1;
198 }
199 
fill_trap_info(struct pt_regs * regs,int signr,int trapnr,siginfo_t * info)200 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
201 				siginfo_t *info)
202 {
203 	unsigned long siaddr;
204 	int sicode;
205 
206 	switch (trapnr) {
207 	default:
208 		return SEND_SIG_PRIV;
209 
210 	case X86_TRAP_DE:
211 		sicode = FPE_INTDIV;
212 		siaddr = uprobe_get_trap_addr(regs);
213 		break;
214 	case X86_TRAP_UD:
215 		sicode = ILL_ILLOPN;
216 		siaddr = uprobe_get_trap_addr(regs);
217 		break;
218 	case X86_TRAP_AC:
219 		sicode = BUS_ADRALN;
220 		siaddr = 0;
221 		break;
222 	}
223 
224 	info->si_signo = signr;
225 	info->si_errno = 0;
226 	info->si_code = sicode;
227 	info->si_addr = (void __user *)siaddr;
228 	return info;
229 }
230 
231 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,siginfo_t * info)232 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
233 	long error_code, siginfo_t *info)
234 {
235 	struct task_struct *tsk = current;
236 
237 
238 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
239 		return;
240 	/*
241 	 * We want error_code and trap_nr set for userspace faults and
242 	 * kernelspace faults which result in die(), but not
243 	 * kernelspace faults which are fixed up.  die() gives the
244 	 * process no chance to handle the signal and notice the
245 	 * kernel fault information, so that won't result in polluting
246 	 * the information about previously queued, but not yet
247 	 * delivered, faults.  See also do_general_protection below.
248 	 */
249 	tsk->thread.error_code = error_code;
250 	tsk->thread.trap_nr = trapnr;
251 
252 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
253 	    printk_ratelimit()) {
254 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
255 			tsk->comm, tsk->pid, str,
256 			regs->ip, regs->sp, error_code);
257 		print_vma_addr(" in ", regs->ip);
258 		pr_cont("\n");
259 	}
260 
261 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
262 }
263 NOKPROBE_SYMBOL(do_trap);
264 
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr)265 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
266 			  unsigned long trapnr, int signr)
267 {
268 	siginfo_t info;
269 
270 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
271 
272 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
273 			NOTIFY_STOP) {
274 		cond_local_irq_enable(regs);
275 		do_trap(trapnr, signr, str, regs, error_code,
276 			fill_trap_info(regs, signr, trapnr, &info));
277 	}
278 }
279 
280 #define DO_ERROR(trapnr, signr, str, name)				\
281 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
282 {									\
283 	do_error_trap(regs, error_code, str, trapnr, signr);		\
284 }
285 
286 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
287 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
288 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
289 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
290 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
291 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
292 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
293 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
294 
295 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(const char * message,struct pt_regs * regs,unsigned long fault_address)296 __visible void __noreturn handle_stack_overflow(const char *message,
297 						struct pt_regs *regs,
298 						unsigned long fault_address)
299 {
300 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
301 		 (void *)fault_address, current->stack,
302 		 (char *)current->stack + THREAD_SIZE - 1);
303 	die(message, regs, 0);
304 
305 	/* Be absolutely certain we don't return. */
306 	panic(message);
307 }
308 #endif
309 
310 #ifdef CONFIG_X86_64
311 /* Runs on IST stack */
do_double_fault(struct pt_regs * regs,long error_code)312 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
313 {
314 	static const char str[] = "double fault";
315 	struct task_struct *tsk = current;
316 #ifdef CONFIG_VMAP_STACK
317 	unsigned long cr2;
318 #endif
319 
320 #ifdef CONFIG_X86_ESPFIX64
321 	extern unsigned char native_irq_return_iret[];
322 
323 	/*
324 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
325 	 * end up promoting it to a doublefault.  In that case, modify
326 	 * the stack to make it look like we just entered the #GP
327 	 * handler from user space, similar to bad_iret.
328 	 *
329 	 * No need for ist_enter here because we don't use RCU.
330 	 */
331 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
332 		regs->cs == __KERNEL_CS &&
333 		regs->ip == (unsigned long)native_irq_return_iret)
334 	{
335 		struct pt_regs *normal_regs = task_pt_regs(current);
336 
337 		/* Fake a #GP(0) from userspace. */
338 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
339 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
340 		regs->ip = (unsigned long)general_protection;
341 		regs->sp = (unsigned long)&normal_regs->orig_ax;
342 
343 		return;
344 	}
345 #endif
346 
347 	ist_enter(regs);
348 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
349 
350 	tsk->thread.error_code = error_code;
351 	tsk->thread.trap_nr = X86_TRAP_DF;
352 
353 #ifdef CONFIG_VMAP_STACK
354 	/*
355 	 * If we overflow the stack into a guard page, the CPU will fail
356 	 * to deliver #PF and will send #DF instead.  Similarly, if we
357 	 * take any non-IST exception while too close to the bottom of
358 	 * the stack, the processor will get a page fault while
359 	 * delivering the exception and will generate a double fault.
360 	 *
361 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
362 	 * Page-Fault Exception (#PF):
363 	 *
364 	 *   Processors update CR2 whenever a page fault is detected. If a
365 	 *   second page fault occurs while an earlier page fault is being
366 	 *   deliv- ered, the faulting linear address of the second fault will
367 	 *   overwrite the contents of CR2 (replacing the previous
368 	 *   address). These updates to CR2 occur even if the page fault
369 	 *   results in a double fault or occurs during the delivery of a
370 	 *   double fault.
371 	 *
372 	 * The logic below has a small possibility of incorrectly diagnosing
373 	 * some errors as stack overflows.  For example, if the IDT or GDT
374 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
375 	 * causing #GP and we hit this condition while CR2 coincidentally
376 	 * points to the stack guard page, we'll think we overflowed the
377 	 * stack.  Given that we're going to panic one way or another
378 	 * if this happens, this isn't necessarily worth fixing.
379 	 *
380 	 * If necessary, we could improve the test by only diagnosing
381 	 * a stack overflow if the saved RSP points within 47 bytes of
382 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
383 	 * take an exception, the stack is already aligned and there
384 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
385 	 * possible error code, so a stack overflow would *not* double
386 	 * fault.  With any less space left, exception delivery could
387 	 * fail, and, as a practical matter, we've overflowed the
388 	 * stack even if the actual trigger for the double fault was
389 	 * something else.
390 	 */
391 	cr2 = read_cr2();
392 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
393 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
394 #endif
395 
396 #ifdef CONFIG_DOUBLEFAULT
397 	df_debug(regs, error_code);
398 #endif
399 	/*
400 	 * This is always a kernel trap and never fixable (and thus must
401 	 * never return).
402 	 */
403 	for (;;)
404 		die(str, regs, error_code);
405 }
406 #endif
407 
do_bounds(struct pt_regs * regs,long error_code)408 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
409 {
410 	const struct mpx_bndcsr *bndcsr;
411 	siginfo_t *info;
412 
413 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
414 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
415 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
416 		return;
417 	cond_local_irq_enable(regs);
418 
419 	if (!user_mode(regs))
420 		die("bounds", regs, error_code);
421 
422 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
423 		/* The exception is not from Intel MPX */
424 		goto exit_trap;
425 	}
426 
427 	/*
428 	 * We need to look at BNDSTATUS to resolve this exception.
429 	 * A NULL here might mean that it is in its 'init state',
430 	 * which is all zeros which indicates MPX was not
431 	 * responsible for the exception.
432 	 */
433 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
434 	if (!bndcsr)
435 		goto exit_trap;
436 
437 	trace_bounds_exception_mpx(bndcsr);
438 	/*
439 	 * The error code field of the BNDSTATUS register communicates status
440 	 * information of a bound range exception #BR or operation involving
441 	 * bound directory.
442 	 */
443 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
444 	case 2:	/* Bound directory has invalid entry. */
445 		if (mpx_handle_bd_fault())
446 			goto exit_trap;
447 		break; /* Success, it was handled */
448 	case 1: /* Bound violation. */
449 		info = mpx_generate_siginfo(regs);
450 		if (IS_ERR(info)) {
451 			/*
452 			 * We failed to decode the MPX instruction.  Act as if
453 			 * the exception was not caused by MPX.
454 			 */
455 			goto exit_trap;
456 		}
457 		/*
458 		 * Success, we decoded the instruction and retrieved
459 		 * an 'info' containing the address being accessed
460 		 * which caused the exception.  This information
461 		 * allows and application to possibly handle the
462 		 * #BR exception itself.
463 		 */
464 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
465 		kfree(info);
466 		break;
467 	case 0: /* No exception caused by Intel MPX operations. */
468 		goto exit_trap;
469 	default:
470 		die("bounds", regs, error_code);
471 	}
472 
473 	return;
474 
475 exit_trap:
476 	/*
477 	 * This path out is for all the cases where we could not
478 	 * handle the exception in some way (like allocating a
479 	 * table or telling userspace about it.  We will also end
480 	 * up here if the kernel has MPX turned off at compile
481 	 * time..
482 	 */
483 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
484 }
485 
486 dotraplinkage void
do_general_protection(struct pt_regs * regs,long error_code)487 do_general_protection(struct pt_regs *regs, long error_code)
488 {
489 	struct task_struct *tsk;
490 
491 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
492 	cond_local_irq_enable(regs);
493 
494 	if (v8086_mode(regs)) {
495 		local_irq_enable();
496 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
497 		return;
498 	}
499 
500 	tsk = current;
501 	if (!user_mode(regs)) {
502 		if (fixup_exception(regs, X86_TRAP_GP))
503 			return;
504 
505 		tsk->thread.error_code = error_code;
506 		tsk->thread.trap_nr = X86_TRAP_GP;
507 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
508 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
509 			die("general protection fault", regs, error_code);
510 		return;
511 	}
512 
513 	tsk->thread.error_code = error_code;
514 	tsk->thread.trap_nr = X86_TRAP_GP;
515 
516 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
517 			printk_ratelimit()) {
518 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
519 			tsk->comm, task_pid_nr(tsk),
520 			regs->ip, regs->sp, error_code);
521 		print_vma_addr(" in ", regs->ip);
522 		pr_cont("\n");
523 	}
524 
525 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
526 }
527 NOKPROBE_SYMBOL(do_general_protection);
528 
do_int3(struct pt_regs * regs,long error_code)529 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
530 {
531 #ifdef CONFIG_DYNAMIC_FTRACE
532 	/*
533 	 * ftrace must be first, everything else may cause a recursive crash.
534 	 * See note by declaration of modifying_ftrace_code in ftrace.c
535 	 */
536 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
537 	    ftrace_int3_handler(regs))
538 		return;
539 #endif
540 	if (poke_int3_handler(regs))
541 		return;
542 
543 	/*
544 	 * Use ist_enter despite the fact that we don't use an IST stack.
545 	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
546 	 * mode or even during context tracking state changes.
547 	 *
548 	 * This means that we can't schedule.  That's okay.
549 	 */
550 	ist_enter(regs);
551 
552 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
553 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
554 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
555 				SIGTRAP) == NOTIFY_STOP)
556 		goto exit;
557 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
558 
559 #ifdef CONFIG_KPROBES
560 	if (kprobe_int3_handler(regs))
561 		goto exit;
562 #endif
563 
564 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
565 			SIGTRAP) == NOTIFY_STOP)
566 		goto exit;
567 
568 	preempt_disable();
569 	cond_local_irq_enable(regs);
570 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
571 	cond_local_irq_disable(regs);
572 	preempt_enable_no_resched();
573 exit:
574 	ist_exit(regs);
575 }
576 NOKPROBE_SYMBOL(do_int3);
577 
578 #ifdef CONFIG_X86_64
579 /*
580  * Help handler running on IST stack to switch off the IST stack if the
581  * interrupted code was in user mode. The actual stack switch is done in
582  * entry_64.S
583  */
sync_regs(struct pt_regs * eregs)584 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
585 {
586 	struct pt_regs *regs = task_pt_regs(current);
587 	*regs = *eregs;
588 	return regs;
589 }
590 NOKPROBE_SYMBOL(sync_regs);
591 
592 struct bad_iret_stack {
593 	void *error_entry_ret;
594 	struct pt_regs regs;
595 };
596 
597 asmlinkage __visible notrace
fixup_bad_iret(struct bad_iret_stack * s)598 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
599 {
600 	/*
601 	 * This is called from entry_64.S early in handling a fault
602 	 * caused by a bad iret to user mode.  To handle the fault
603 	 * correctly, we want move our stack frame to task_pt_regs
604 	 * and we want to pretend that the exception came from the
605 	 * iret target.
606 	 */
607 	struct bad_iret_stack *new_stack =
608 		container_of(task_pt_regs(current),
609 			     struct bad_iret_stack, regs);
610 
611 	/* Copy the IRET target to the new stack. */
612 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
613 
614 	/* Copy the remainder of the stack from the current stack. */
615 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
616 
617 	BUG_ON(!user_mode(&new_stack->regs));
618 	return new_stack;
619 }
620 NOKPROBE_SYMBOL(fixup_bad_iret);
621 #endif
622 
is_sysenter_singlestep(struct pt_regs * regs)623 static bool is_sysenter_singlestep(struct pt_regs *regs)
624 {
625 	/*
626 	 * We don't try for precision here.  If we're anywhere in the region of
627 	 * code that can be single-stepped in the SYSENTER entry path, then
628 	 * assume that this is a useless single-step trap due to SYSENTER
629 	 * being invoked with TF set.  (We don't know in advance exactly
630 	 * which instructions will be hit because BTF could plausibly
631 	 * be set.)
632 	 */
633 #ifdef CONFIG_X86_32
634 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
635 		(unsigned long)__end_SYSENTER_singlestep_region -
636 		(unsigned long)__begin_SYSENTER_singlestep_region;
637 #elif defined(CONFIG_IA32_EMULATION)
638 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
639 		(unsigned long)__end_entry_SYSENTER_compat -
640 		(unsigned long)entry_SYSENTER_compat;
641 #else
642 	return false;
643 #endif
644 }
645 
646 /*
647  * Our handling of the processor debug registers is non-trivial.
648  * We do not clear them on entry and exit from the kernel. Therefore
649  * it is possible to get a watchpoint trap here from inside the kernel.
650  * However, the code in ./ptrace.c has ensured that the user can
651  * only set watchpoints on userspace addresses. Therefore the in-kernel
652  * watchpoint trap can only occur in code which is reading/writing
653  * from user space. Such code must not hold kernel locks (since it
654  * can equally take a page fault), therefore it is safe to call
655  * force_sig_info even though that claims and releases locks.
656  *
657  * Code in ./signal.c ensures that the debug control register
658  * is restored before we deliver any signal, and therefore that
659  * user code runs with the correct debug control register even though
660  * we clear it here.
661  *
662  * Being careful here means that we don't have to be as careful in a
663  * lot of more complicated places (task switching can be a bit lazy
664  * about restoring all the debug state, and ptrace doesn't have to
665  * find every occurrence of the TF bit that could be saved away even
666  * by user code)
667  *
668  * May run on IST stack.
669  */
do_debug(struct pt_regs * regs,long error_code)670 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
671 {
672 	struct task_struct *tsk = current;
673 	int user_icebp = 0;
674 	unsigned long dr6;
675 	int si_code;
676 
677 	ist_enter(regs);
678 
679 	get_debugreg(dr6, 6);
680 	/*
681 	 * The Intel SDM says:
682 	 *
683 	 *   Certain debug exceptions may clear bits 0-3. The remaining
684 	 *   contents of the DR6 register are never cleared by the
685 	 *   processor. To avoid confusion in identifying debug
686 	 *   exceptions, debug handlers should clear the register before
687 	 *   returning to the interrupted task.
688 	 *
689 	 * Keep it simple: clear DR6 immediately.
690 	 */
691 	set_debugreg(0, 6);
692 
693 	/* Filter out all the reserved bits which are preset to 1 */
694 	dr6 &= ~DR6_RESERVED;
695 
696 	/*
697 	 * The SDM says "The processor clears the BTF flag when it
698 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
699 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
700 	 */
701 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
702 
703 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
704 		     is_sysenter_singlestep(regs))) {
705 		dr6 &= ~DR_STEP;
706 		if (!dr6)
707 			goto exit;
708 		/*
709 		 * else we might have gotten a single-step trap and hit a
710 		 * watchpoint at the same time, in which case we should fall
711 		 * through and handle the watchpoint.
712 		 */
713 	}
714 
715 	/*
716 	 * If dr6 has no reason to give us about the origin of this trap,
717 	 * then it's very likely the result of an icebp/int01 trap.
718 	 * User wants a sigtrap for that.
719 	 */
720 	if (!dr6 && user_mode(regs))
721 		user_icebp = 1;
722 
723 	/* Catch kmemcheck conditions! */
724 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
725 		goto exit;
726 
727 	/* Store the virtualized DR6 value */
728 	tsk->thread.debugreg6 = dr6;
729 
730 #ifdef CONFIG_KPROBES
731 	if (kprobe_debug_handler(regs))
732 		goto exit;
733 #endif
734 
735 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
736 							SIGTRAP) == NOTIFY_STOP)
737 		goto exit;
738 
739 	/*
740 	 * Let others (NMI) know that the debug stack is in use
741 	 * as we may switch to the interrupt stack.
742 	 */
743 	debug_stack_usage_inc();
744 
745 	/* It's safe to allow irq's after DR6 has been saved */
746 	preempt_disable();
747 	cond_local_irq_enable(regs);
748 
749 	if (v8086_mode(regs)) {
750 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
751 					X86_TRAP_DB);
752 		cond_local_irq_disable(regs);
753 		preempt_enable_no_resched();
754 		debug_stack_usage_dec();
755 		goto exit;
756 	}
757 
758 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
759 		/*
760 		 * Historical junk that used to handle SYSENTER single-stepping.
761 		 * This should be unreachable now.  If we survive for a while
762 		 * without anyone hitting this warning, we'll turn this into
763 		 * an oops.
764 		 */
765 		tsk->thread.debugreg6 &= ~DR_STEP;
766 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
767 		regs->flags &= ~X86_EFLAGS_TF;
768 	}
769 	si_code = get_si_code(tsk->thread.debugreg6);
770 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
771 		send_sigtrap(tsk, regs, error_code, si_code);
772 	cond_local_irq_disable(regs);
773 	preempt_enable_no_resched();
774 	debug_stack_usage_dec();
775 
776 exit:
777 #if defined(CONFIG_X86_32)
778 	/*
779 	 * This is the most likely code path that involves non-trivial use
780 	 * of the SYSENTER stack.  Check that we haven't overrun it.
781 	 */
782 	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
783 	     "Overran or corrupted SYSENTER stack\n");
784 #endif
785 	ist_exit(regs);
786 }
787 NOKPROBE_SYMBOL(do_debug);
788 
789 /*
790  * Note that we play around with the 'TS' bit in an attempt to get
791  * the correct behaviour even in the presence of the asynchronous
792  * IRQ13 behaviour
793  */
math_error(struct pt_regs * regs,int error_code,int trapnr)794 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
795 {
796 	struct task_struct *task = current;
797 	struct fpu *fpu = &task->thread.fpu;
798 	siginfo_t info;
799 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
800 						"simd exception";
801 
802 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
803 		return;
804 	cond_local_irq_enable(regs);
805 
806 	if (!user_mode(regs)) {
807 		if (!fixup_exception(regs, trapnr)) {
808 			task->thread.error_code = error_code;
809 			task->thread.trap_nr = trapnr;
810 			die(str, regs, error_code);
811 		}
812 		return;
813 	}
814 
815 	/*
816 	 * Save the info for the exception handler and clear the error.
817 	 */
818 	fpu__save(fpu);
819 
820 	task->thread.trap_nr	= trapnr;
821 	task->thread.error_code = error_code;
822 	info.si_signo		= SIGFPE;
823 	info.si_errno		= 0;
824 	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
825 
826 	info.si_code = fpu__exception_code(fpu, trapnr);
827 
828 	/* Retry when we get spurious exceptions: */
829 	if (!info.si_code)
830 		return;
831 
832 	force_sig_info(SIGFPE, &info, task);
833 }
834 
do_coprocessor_error(struct pt_regs * regs,long error_code)835 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
836 {
837 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
838 	math_error(regs, error_code, X86_TRAP_MF);
839 }
840 
841 dotraplinkage void
do_simd_coprocessor_error(struct pt_regs * regs,long error_code)842 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
843 {
844 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
845 	math_error(regs, error_code, X86_TRAP_XF);
846 }
847 
848 dotraplinkage void
do_spurious_interrupt_bug(struct pt_regs * regs,long error_code)849 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
850 {
851 	cond_local_irq_enable(regs);
852 }
853 
854 dotraplinkage void
do_device_not_available(struct pt_regs * regs,long error_code)855 do_device_not_available(struct pt_regs *regs, long error_code)
856 {
857 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
858 
859 #ifdef CONFIG_MATH_EMULATION
860 	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
861 		struct math_emu_info info = { };
862 
863 		cond_local_irq_enable(regs);
864 
865 		info.regs = regs;
866 		math_emulate(&info);
867 		return;
868 	}
869 #endif
870 	fpu__restore(&current->thread.fpu); /* interrupts still off */
871 #ifdef CONFIG_X86_32
872 	cond_local_irq_enable(regs);
873 #endif
874 }
875 NOKPROBE_SYMBOL(do_device_not_available);
876 
877 #ifdef CONFIG_X86_32
do_iret_error(struct pt_regs * regs,long error_code)878 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
879 {
880 	siginfo_t info;
881 
882 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
883 	local_irq_enable();
884 
885 	info.si_signo = SIGILL;
886 	info.si_errno = 0;
887 	info.si_code = ILL_BADSTK;
888 	info.si_addr = NULL;
889 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
890 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
891 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
892 			&info);
893 	}
894 }
895 #endif
896 
897 /* Set of traps needed for early debugging. */
early_trap_init(void)898 void __init early_trap_init(void)
899 {
900 	/*
901 	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
902 	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
903 	 * CPU runs at ring 0 so it is impossible to hit an invalid
904 	 * stack.  Using the original stack works well enough at this
905 	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
906 	 * trap_init().
907 	 *
908 	 * We don't need to set trace_idt_table like set_intr_gate(),
909 	 * since we don't have trace_debug and it will be reset to
910 	 * 'debug' in trap_init() by set_intr_gate_ist().
911 	 */
912 	set_intr_gate_notrace(X86_TRAP_DB, debug);
913 	/* int3 can be called from all */
914 	set_system_intr_gate(X86_TRAP_BP, &int3);
915 #ifdef CONFIG_X86_32
916 	set_intr_gate(X86_TRAP_PF, page_fault);
917 #endif
918 	load_idt(&idt_descr);
919 }
920 
early_trap_pf_init(void)921 void __init early_trap_pf_init(void)
922 {
923 #ifdef CONFIG_X86_64
924 	set_intr_gate(X86_TRAP_PF, page_fault);
925 #endif
926 }
927 
trap_init(void)928 void __init trap_init(void)
929 {
930 	int i;
931 
932 #ifdef CONFIG_EISA
933 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
934 
935 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
936 		EISA_bus = 1;
937 	early_iounmap(p, 4);
938 #endif
939 
940 	set_intr_gate(X86_TRAP_DE, divide_error);
941 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
942 	/* int4 can be called from all */
943 	set_system_intr_gate(X86_TRAP_OF, &overflow);
944 	set_intr_gate(X86_TRAP_BR, bounds);
945 	set_intr_gate(X86_TRAP_UD, invalid_op);
946 	set_intr_gate(X86_TRAP_NM, device_not_available);
947 #ifdef CONFIG_X86_32
948 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
949 #else
950 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
951 #endif
952 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
953 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
954 	set_intr_gate(X86_TRAP_NP, segment_not_present);
955 	set_intr_gate(X86_TRAP_SS, stack_segment);
956 	set_intr_gate(X86_TRAP_GP, general_protection);
957 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
958 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
959 	set_intr_gate(X86_TRAP_AC, alignment_check);
960 #ifdef CONFIG_X86_MCE
961 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
962 #endif
963 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
964 
965 	/* Reserve all the builtin and the syscall vector: */
966 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
967 		set_bit(i, used_vectors);
968 
969 #ifdef CONFIG_IA32_EMULATION
970 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
971 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
972 #endif
973 
974 #ifdef CONFIG_X86_32
975 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
976 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
977 #endif
978 
979 	/*
980 	 * Set the IDT descriptor to a fixed read-only location, so that the
981 	 * "sidt" instruction will not leak the location of the kernel, and
982 	 * to defend the IDT against arbitrary memory write vulnerabilities.
983 	 * It will be reloaded in cpu_init() */
984 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
985 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
986 
987 	/*
988 	 * Should be a barrier for any external CPU state:
989 	 */
990 	cpu_init();
991 
992 	/*
993 	 * X86_TRAP_DB was installed in early_trap_init(). However,
994 	 * IST works only after cpu_init() loads TSS. See comments
995 	 * in early_trap_init().
996 	 */
997 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
998 
999 	x86_init.irqs.trap_init();
1000 
1001 #ifdef CONFIG_X86_64
1002 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1003 	set_nmi_gate(X86_TRAP_DB, &debug);
1004 #endif
1005 }
1006