• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
ieee80211_rx_stats(struct net_device * dev,u32 len)37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
ieee80211_get_bssid(struct ieee80211_hdr * hdr,size_t len,enum nl80211_iftype type)47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
remove_monitor_info(struct ieee80211_local * local,struct sk_buff * skb,unsigned int rtap_vendor_space)98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 					   struct sk_buff *skb,
100 					   unsigned int rtap_vendor_space)
101 {
102 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 		if (likely(skb->len > FCS_LEN))
104 			__pskb_trim(skb, skb->len - FCS_LEN);
105 		else {
106 			/* driver bug */
107 			WARN_ON(1);
108 			dev_kfree_skb(skb);
109 			return NULL;
110 		}
111 	}
112 
113 	__pskb_pull(skb, rtap_vendor_space);
114 
115 	return skb;
116 }
117 
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_vendor_space)118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 				     unsigned int rtap_vendor_space)
120 {
121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 	struct ieee80211_hdr *hdr;
123 
124 	hdr = (void *)(skb->data + rtap_vendor_space);
125 
126 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 			    RX_FLAG_FAILED_PLCP_CRC |
128 			    RX_FLAG_ONLY_MONITOR))
129 		return true;
130 
131 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 		return true;
133 
134 	if (ieee80211_is_ctl(hdr->frame_control) &&
135 	    !ieee80211_is_pspoll(hdr->frame_control) &&
136 	    !ieee80211_is_back_req(hdr->frame_control))
137 		return true;
138 
139 	return false;
140 }
141 
142 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 			     struct ieee80211_rx_status *status,
145 			     struct sk_buff *skb)
146 {
147 	int len;
148 
149 	/* always present fields */
150 	len = sizeof(struct ieee80211_radiotap_header) + 8;
151 
152 	/* allocate extra bitmaps */
153 	if (status->chains)
154 		len += 4 * hweight8(status->chains);
155 
156 	if (ieee80211_have_rx_timestamp(status)) {
157 		len = ALIGN(len, 8);
158 		len += 8;
159 	}
160 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 		len += 1;
162 
163 	/* antenna field, if we don't have per-chain info */
164 	if (!status->chains)
165 		len += 1;
166 
167 	/* padding for RX_FLAGS if necessary */
168 	len = ALIGN(len, 2);
169 
170 	if (status->flag & RX_FLAG_HT) /* HT info */
171 		len += 3;
172 
173 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 		len = ALIGN(len, 4);
175 		len += 8;
176 	}
177 
178 	if (status->flag & RX_FLAG_VHT) {
179 		len = ALIGN(len, 2);
180 		len += 12;
181 	}
182 
183 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 		len = ALIGN(len, 8);
185 		len += 12;
186 	}
187 
188 	if (status->chains) {
189 		/* antenna and antenna signal fields */
190 		len += 2 * hweight8(status->chains);
191 	}
192 
193 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
195 
196 		/* vendor presence bitmap */
197 		len += 4;
198 		/* alignment for fixed 6-byte vendor data header */
199 		len = ALIGN(len, 2);
200 		/* vendor data header */
201 		len += 6;
202 		if (WARN_ON(rtap->align == 0))
203 			rtap->align = 1;
204 		len = ALIGN(len, rtap->align);
205 		len += rtap->len + rtap->pad;
206 	}
207 
208 	return len;
209 }
210 
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_vendor_space)211 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
212 					 struct sk_buff *skb,
213 					 int rtap_vendor_space)
214 {
215 	struct {
216 		struct ieee80211_hdr_3addr hdr;
217 		u8 category;
218 		u8 action_code;
219 	} __packed action;
220 
221 	if (!sdata)
222 		return;
223 
224 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
225 
226 	if (skb->len < rtap_vendor_space + sizeof(action) +
227 		       VHT_MUMIMO_GROUPS_DATA_LEN)
228 		return;
229 
230 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
231 		return;
232 
233 	skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
234 
235 	if (!ieee80211_is_action(action.hdr.frame_control))
236 		return;
237 
238 	if (action.category != WLAN_CATEGORY_VHT)
239 		return;
240 
241 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
242 		return;
243 
244 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
245 		return;
246 
247 	skb = skb_copy(skb, GFP_ATOMIC);
248 	if (!skb)
249 		return;
250 
251 	skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
252 	skb_queue_tail(&sdata->skb_queue, skb);
253 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
254 }
255 
256 /*
257  * ieee80211_add_rx_radiotap_header - add radiotap header
258  *
259  * add a radiotap header containing all the fields which the hardware provided.
260  */
261 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)262 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
263 				 struct sk_buff *skb,
264 				 struct ieee80211_rate *rate,
265 				 int rtap_len, bool has_fcs)
266 {
267 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
268 	struct ieee80211_radiotap_header *rthdr;
269 	unsigned char *pos;
270 	__le32 *it_present;
271 	u32 it_present_val;
272 	u16 rx_flags = 0;
273 	u16 channel_flags = 0;
274 	int mpdulen, chain;
275 	unsigned long chains = status->chains;
276 	struct ieee80211_vendor_radiotap rtap = {};
277 
278 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
279 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
280 		/* rtap.len and rtap.pad are undone immediately */
281 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
282 	}
283 
284 	mpdulen = skb->len;
285 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
286 		mpdulen += FCS_LEN;
287 
288 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
289 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
290 	it_present = &rthdr->it_present;
291 
292 	/* radiotap header, set always present flags */
293 	rthdr->it_len = cpu_to_le16(rtap_len);
294 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
295 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
296 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
297 
298 	if (!status->chains)
299 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
300 
301 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
302 		it_present_val |=
303 			BIT(IEEE80211_RADIOTAP_EXT) |
304 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
305 		put_unaligned_le32(it_present_val, it_present);
306 		it_present++;
307 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
308 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
309 	}
310 
311 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
313 				  BIT(IEEE80211_RADIOTAP_EXT);
314 		put_unaligned_le32(it_present_val, it_present);
315 		it_present++;
316 		it_present_val = rtap.present;
317 	}
318 
319 	put_unaligned_le32(it_present_val, it_present);
320 
321 	pos = (void *)(it_present + 1);
322 
323 	/* the order of the following fields is important */
324 
325 	/* IEEE80211_RADIOTAP_TSFT */
326 	if (ieee80211_have_rx_timestamp(status)) {
327 		/* padding */
328 		while ((pos - (u8 *)rthdr) & 7)
329 			*pos++ = 0;
330 		put_unaligned_le64(
331 			ieee80211_calculate_rx_timestamp(local, status,
332 							 mpdulen, 0),
333 			pos);
334 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
335 		pos += 8;
336 	}
337 
338 	/* IEEE80211_RADIOTAP_FLAGS */
339 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
340 		*pos |= IEEE80211_RADIOTAP_F_FCS;
341 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
342 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
343 	if (status->flag & RX_FLAG_SHORTPRE)
344 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
345 	pos++;
346 
347 	/* IEEE80211_RADIOTAP_RATE */
348 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
349 		/*
350 		 * Without rate information don't add it. If we have,
351 		 * MCS information is a separate field in radiotap,
352 		 * added below. The byte here is needed as padding
353 		 * for the channel though, so initialise it to 0.
354 		 */
355 		*pos = 0;
356 	} else {
357 		int shift = 0;
358 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
359 		if (status->flag & RX_FLAG_10MHZ)
360 			shift = 1;
361 		else if (status->flag & RX_FLAG_5MHZ)
362 			shift = 2;
363 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
364 	}
365 	pos++;
366 
367 	/* IEEE80211_RADIOTAP_CHANNEL */
368 	put_unaligned_le16(status->freq, pos);
369 	pos += 2;
370 	if (status->flag & RX_FLAG_10MHZ)
371 		channel_flags |= IEEE80211_CHAN_HALF;
372 	else if (status->flag & RX_FLAG_5MHZ)
373 		channel_flags |= IEEE80211_CHAN_QUARTER;
374 
375 	if (status->band == NL80211_BAND_5GHZ)
376 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
377 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
378 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
379 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
380 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
381 	else if (rate)
382 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
383 	else
384 		channel_flags |= IEEE80211_CHAN_2GHZ;
385 	put_unaligned_le16(channel_flags, pos);
386 	pos += 2;
387 
388 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
389 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
390 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
391 		*pos = status->signal;
392 		rthdr->it_present |=
393 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
394 		pos++;
395 	}
396 
397 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
398 
399 	if (!status->chains) {
400 		/* IEEE80211_RADIOTAP_ANTENNA */
401 		*pos = status->antenna;
402 		pos++;
403 	}
404 
405 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
406 
407 	/* IEEE80211_RADIOTAP_RX_FLAGS */
408 	/* ensure 2 byte alignment for the 2 byte field as required */
409 	if ((pos - (u8 *)rthdr) & 1)
410 		*pos++ = 0;
411 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
412 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
413 	put_unaligned_le16(rx_flags, pos);
414 	pos += 2;
415 
416 	if (status->flag & RX_FLAG_HT) {
417 		unsigned int stbc;
418 
419 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
420 		*pos++ = local->hw.radiotap_mcs_details;
421 		*pos = 0;
422 		if (status->flag & RX_FLAG_SHORT_GI)
423 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
424 		if (status->flag & RX_FLAG_40MHZ)
425 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
426 		if (status->flag & RX_FLAG_HT_GF)
427 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
428 		if (status->flag & RX_FLAG_LDPC)
429 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
430 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
431 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
432 		pos++;
433 		*pos++ = status->rate_idx;
434 	}
435 
436 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
437 		u16 flags = 0;
438 
439 		/* ensure 4 byte alignment */
440 		while ((pos - (u8 *)rthdr) & 3)
441 			pos++;
442 		rthdr->it_present |=
443 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
444 		put_unaligned_le32(status->ampdu_reference, pos);
445 		pos += 4;
446 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
447 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
448 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
449 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
450 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
451 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
452 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
453 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
454 		put_unaligned_le16(flags, pos);
455 		pos += 2;
456 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
457 			*pos++ = status->ampdu_delimiter_crc;
458 		else
459 			*pos++ = 0;
460 		*pos++ = 0;
461 	}
462 
463 	if (status->flag & RX_FLAG_VHT) {
464 		u16 known = local->hw.radiotap_vht_details;
465 
466 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
467 		put_unaligned_le16(known, pos);
468 		pos += 2;
469 		/* flags */
470 		if (status->flag & RX_FLAG_SHORT_GI)
471 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
472 		/* in VHT, STBC is binary */
473 		if (status->flag & RX_FLAG_STBC_MASK)
474 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
475 		if (status->vht_flag & RX_VHT_FLAG_BF)
476 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
477 		pos++;
478 		/* bandwidth */
479 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
480 			*pos++ = 4;
481 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
482 			*pos++ = 11;
483 		else if (status->flag & RX_FLAG_40MHZ)
484 			*pos++ = 1;
485 		else /* 20 MHz */
486 			*pos++ = 0;
487 		/* MCS/NSS */
488 		*pos = (status->rate_idx << 4) | status->vht_nss;
489 		pos += 4;
490 		/* coding field */
491 		if (status->flag & RX_FLAG_LDPC)
492 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
493 		pos++;
494 		/* group ID */
495 		pos++;
496 		/* partial_aid */
497 		pos += 2;
498 	}
499 
500 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
501 		u16 accuracy = 0;
502 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
503 
504 		rthdr->it_present |=
505 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
506 
507 		/* ensure 8 byte alignment */
508 		while ((pos - (u8 *)rthdr) & 7)
509 			pos++;
510 
511 		put_unaligned_le64(status->device_timestamp, pos);
512 		pos += sizeof(u64);
513 
514 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
515 			accuracy = local->hw.radiotap_timestamp.accuracy;
516 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
517 		}
518 		put_unaligned_le16(accuracy, pos);
519 		pos += sizeof(u16);
520 
521 		*pos++ = local->hw.radiotap_timestamp.units_pos;
522 		*pos++ = flags;
523 	}
524 
525 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
526 		*pos++ = status->chain_signal[chain];
527 		*pos++ = chain;
528 	}
529 
530 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
531 		/* ensure 2 byte alignment for the vendor field as required */
532 		if ((pos - (u8 *)rthdr) & 1)
533 			*pos++ = 0;
534 		*pos++ = rtap.oui[0];
535 		*pos++ = rtap.oui[1];
536 		*pos++ = rtap.oui[2];
537 		*pos++ = rtap.subns;
538 		put_unaligned_le16(rtap.len, pos);
539 		pos += 2;
540 		/* align the actual payload as requested */
541 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
542 			*pos++ = 0;
543 		/* data (and possible padding) already follows */
544 	}
545 }
546 
547 /*
548  * This function copies a received frame to all monitor interfaces and
549  * returns a cleaned-up SKB that no longer includes the FCS nor the
550  * radiotap header the driver might have added.
551  */
552 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)553 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
554 		     struct ieee80211_rate *rate)
555 {
556 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
557 	struct ieee80211_sub_if_data *sdata;
558 	int rt_hdrlen, needed_headroom;
559 	struct sk_buff *skb, *skb2;
560 	struct net_device *prev_dev = NULL;
561 	int present_fcs_len = 0;
562 	unsigned int rtap_vendor_space = 0;
563 	struct ieee80211_sub_if_data *monitor_sdata =
564 		rcu_dereference(local->monitor_sdata);
565 
566 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
567 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
568 
569 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
570 	}
571 
572 	/*
573 	 * First, we may need to make a copy of the skb because
574 	 *  (1) we need to modify it for radiotap (if not present), and
575 	 *  (2) the other RX handlers will modify the skb we got.
576 	 *
577 	 * We don't need to, of course, if we aren't going to return
578 	 * the SKB because it has a bad FCS/PLCP checksum.
579 	 */
580 
581 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
582 		present_fcs_len = FCS_LEN;
583 
584 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
585 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
586 		dev_kfree_skb(origskb);
587 		return NULL;
588 	}
589 
590 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
591 		if (should_drop_frame(origskb, present_fcs_len,
592 				      rtap_vendor_space)) {
593 			dev_kfree_skb(origskb);
594 			return NULL;
595 		}
596 
597 		return remove_monitor_info(local, origskb, rtap_vendor_space);
598 	}
599 
600 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
601 
602 	/* room for the radiotap header based on driver features */
603 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
604 	needed_headroom = rt_hdrlen - rtap_vendor_space;
605 
606 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
607 		/* only need to expand headroom if necessary */
608 		skb = origskb;
609 		origskb = NULL;
610 
611 		/*
612 		 * This shouldn't trigger often because most devices have an
613 		 * RX header they pull before we get here, and that should
614 		 * be big enough for our radiotap information. We should
615 		 * probably export the length to drivers so that we can have
616 		 * them allocate enough headroom to start with.
617 		 */
618 		if (skb_headroom(skb) < needed_headroom &&
619 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
620 			dev_kfree_skb(skb);
621 			return NULL;
622 		}
623 	} else {
624 		/*
625 		 * Need to make a copy and possibly remove radiotap header
626 		 * and FCS from the original.
627 		 */
628 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
629 
630 		origskb = remove_monitor_info(local, origskb,
631 					      rtap_vendor_space);
632 
633 		if (!skb)
634 			return origskb;
635 	}
636 
637 	/* prepend radiotap information */
638 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
639 
640 	skb_reset_mac_header(skb);
641 	skb->ip_summed = CHECKSUM_UNNECESSARY;
642 	skb->pkt_type = PACKET_OTHERHOST;
643 	skb->protocol = htons(ETH_P_802_2);
644 
645 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
646 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
647 			continue;
648 
649 		if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
650 			continue;
651 
652 		if (!ieee80211_sdata_running(sdata))
653 			continue;
654 
655 		if (prev_dev) {
656 			skb2 = skb_clone(skb, GFP_ATOMIC);
657 			if (skb2) {
658 				skb2->dev = prev_dev;
659 				netif_receive_skb(skb2);
660 			}
661 		}
662 
663 		prev_dev = sdata->dev;
664 		ieee80211_rx_stats(sdata->dev, skb->len);
665 	}
666 
667 	if (prev_dev) {
668 		skb->dev = prev_dev;
669 		netif_receive_skb(skb);
670 	} else
671 		dev_kfree_skb(skb);
672 
673 	return origskb;
674 }
675 
ieee80211_parse_qos(struct ieee80211_rx_data * rx)676 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
677 {
678 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
679 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
680 	int tid, seqno_idx, security_idx;
681 
682 	/* does the frame have a qos control field? */
683 	if (ieee80211_is_data_qos(hdr->frame_control)) {
684 		u8 *qc = ieee80211_get_qos_ctl(hdr);
685 		/* frame has qos control */
686 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
687 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
688 			status->rx_flags |= IEEE80211_RX_AMSDU;
689 
690 		seqno_idx = tid;
691 		security_idx = tid;
692 	} else {
693 		/*
694 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
695 		 *
696 		 *	Sequence numbers for management frames, QoS data
697 		 *	frames with a broadcast/multicast address in the
698 		 *	Address 1 field, and all non-QoS data frames sent
699 		 *	by QoS STAs are assigned using an additional single
700 		 *	modulo-4096 counter, [...]
701 		 *
702 		 * We also use that counter for non-QoS STAs.
703 		 */
704 		seqno_idx = IEEE80211_NUM_TIDS;
705 		security_idx = 0;
706 		if (ieee80211_is_mgmt(hdr->frame_control))
707 			security_idx = IEEE80211_NUM_TIDS;
708 		tid = 0;
709 	}
710 
711 	rx->seqno_idx = seqno_idx;
712 	rx->security_idx = security_idx;
713 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
714 	 * For now, set skb->priority to 0 for other cases. */
715 	rx->skb->priority = (tid > 7) ? 0 : tid;
716 }
717 
718 /**
719  * DOC: Packet alignment
720  *
721  * Drivers always need to pass packets that are aligned to two-byte boundaries
722  * to the stack.
723  *
724  * Additionally, should, if possible, align the payload data in a way that
725  * guarantees that the contained IP header is aligned to a four-byte
726  * boundary. In the case of regular frames, this simply means aligning the
727  * payload to a four-byte boundary (because either the IP header is directly
728  * contained, or IV/RFC1042 headers that have a length divisible by four are
729  * in front of it).  If the payload data is not properly aligned and the
730  * architecture doesn't support efficient unaligned operations, mac80211
731  * will align the data.
732  *
733  * With A-MSDU frames, however, the payload data address must yield two modulo
734  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
735  * push the IP header further back to a multiple of four again. Thankfully, the
736  * specs were sane enough this time around to require padding each A-MSDU
737  * subframe to a length that is a multiple of four.
738  *
739  * Padding like Atheros hardware adds which is between the 802.11 header and
740  * the payload is not supported, the driver is required to move the 802.11
741  * header to be directly in front of the payload in that case.
742  */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)743 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
744 {
745 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
746 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
747 #endif
748 }
749 
750 
751 /* rx handlers */
752 
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)753 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
754 {
755 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756 
757 	if (is_multicast_ether_addr(hdr->addr1))
758 		return 0;
759 
760 	return ieee80211_is_robust_mgmt_frame(skb);
761 }
762 
763 
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)764 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
765 {
766 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
767 
768 	if (!is_multicast_ether_addr(hdr->addr1))
769 		return 0;
770 
771 	return ieee80211_is_robust_mgmt_frame(skb);
772 }
773 
774 
775 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)776 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
777 {
778 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
779 	struct ieee80211_mmie *mmie;
780 	struct ieee80211_mmie_16 *mmie16;
781 
782 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
783 		return -1;
784 
785 	if (!ieee80211_is_robust_mgmt_frame(skb))
786 		return -1; /* not a robust management frame */
787 
788 	mmie = (struct ieee80211_mmie *)
789 		(skb->data + skb->len - sizeof(*mmie));
790 	if (mmie->element_id == WLAN_EID_MMIE &&
791 	    mmie->length == sizeof(*mmie) - 2)
792 		return le16_to_cpu(mmie->key_id);
793 
794 	mmie16 = (struct ieee80211_mmie_16 *)
795 		(skb->data + skb->len - sizeof(*mmie16));
796 	if (skb->len >= 24 + sizeof(*mmie16) &&
797 	    mmie16->element_id == WLAN_EID_MMIE &&
798 	    mmie16->length == sizeof(*mmie16) - 2)
799 		return le16_to_cpu(mmie16->key_id);
800 
801 	return -1;
802 }
803 
ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme * cs,struct sk_buff * skb)804 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
805 				  struct sk_buff *skb)
806 {
807 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
808 	__le16 fc;
809 	int hdrlen;
810 	u8 keyid;
811 
812 	fc = hdr->frame_control;
813 	hdrlen = ieee80211_hdrlen(fc);
814 
815 	if (skb->len < hdrlen + cs->hdr_len)
816 		return -EINVAL;
817 
818 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
819 	keyid &= cs->key_idx_mask;
820 	keyid >>= cs->key_idx_shift;
821 
822 	return keyid;
823 }
824 
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)825 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
826 {
827 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
828 	char *dev_addr = rx->sdata->vif.addr;
829 
830 	if (ieee80211_is_data(hdr->frame_control)) {
831 		if (is_multicast_ether_addr(hdr->addr1)) {
832 			if (ieee80211_has_tods(hdr->frame_control) ||
833 			    !ieee80211_has_fromds(hdr->frame_control))
834 				return RX_DROP_MONITOR;
835 			if (ether_addr_equal(hdr->addr3, dev_addr))
836 				return RX_DROP_MONITOR;
837 		} else {
838 			if (!ieee80211_has_a4(hdr->frame_control))
839 				return RX_DROP_MONITOR;
840 			if (ether_addr_equal(hdr->addr4, dev_addr))
841 				return RX_DROP_MONITOR;
842 		}
843 	}
844 
845 	/* If there is not an established peer link and this is not a peer link
846 	 * establisment frame, beacon or probe, drop the frame.
847 	 */
848 
849 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
850 		struct ieee80211_mgmt *mgmt;
851 
852 		if (!ieee80211_is_mgmt(hdr->frame_control))
853 			return RX_DROP_MONITOR;
854 
855 		if (ieee80211_is_action(hdr->frame_control)) {
856 			u8 category;
857 
858 			/* make sure category field is present */
859 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
860 				return RX_DROP_MONITOR;
861 
862 			mgmt = (struct ieee80211_mgmt *)hdr;
863 			category = mgmt->u.action.category;
864 			if (category != WLAN_CATEGORY_MESH_ACTION &&
865 			    category != WLAN_CATEGORY_SELF_PROTECTED)
866 				return RX_DROP_MONITOR;
867 			return RX_CONTINUE;
868 		}
869 
870 		if (ieee80211_is_probe_req(hdr->frame_control) ||
871 		    ieee80211_is_probe_resp(hdr->frame_control) ||
872 		    ieee80211_is_beacon(hdr->frame_control) ||
873 		    ieee80211_is_auth(hdr->frame_control))
874 			return RX_CONTINUE;
875 
876 		return RX_DROP_MONITOR;
877 	}
878 
879 	return RX_CONTINUE;
880 }
881 
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)882 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
883 					      int index)
884 {
885 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
886 	struct sk_buff *tail = skb_peek_tail(frames);
887 	struct ieee80211_rx_status *status;
888 
889 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
890 		return true;
891 
892 	if (!tail)
893 		return false;
894 
895 	status = IEEE80211_SKB_RXCB(tail);
896 	if (status->flag & RX_FLAG_AMSDU_MORE)
897 		return false;
898 
899 	return true;
900 }
901 
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)902 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
903 					    struct tid_ampdu_rx *tid_agg_rx,
904 					    int index,
905 					    struct sk_buff_head *frames)
906 {
907 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
908 	struct sk_buff *skb;
909 	struct ieee80211_rx_status *status;
910 
911 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
912 
913 	if (skb_queue_empty(skb_list))
914 		goto no_frame;
915 
916 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
917 		__skb_queue_purge(skb_list);
918 		goto no_frame;
919 	}
920 
921 	/* release frames from the reorder ring buffer */
922 	tid_agg_rx->stored_mpdu_num--;
923 	while ((skb = __skb_dequeue(skb_list))) {
924 		status = IEEE80211_SKB_RXCB(skb);
925 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
926 		__skb_queue_tail(frames, skb);
927 	}
928 
929 no_frame:
930 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
931 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
932 }
933 
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)934 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
935 					     struct tid_ampdu_rx *tid_agg_rx,
936 					     u16 head_seq_num,
937 					     struct sk_buff_head *frames)
938 {
939 	int index;
940 
941 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
942 
943 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
944 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
945 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
946 						frames);
947 	}
948 }
949 
950 /*
951  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
952  * the skb was added to the buffer longer than this time ago, the earlier
953  * frames that have not yet been received are assumed to be lost and the skb
954  * can be released for processing. This may also release other skb's from the
955  * reorder buffer if there are no additional gaps between the frames.
956  *
957  * Callers must hold tid_agg_rx->reorder_lock.
958  */
959 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
960 
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)961 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
962 					  struct tid_ampdu_rx *tid_agg_rx,
963 					  struct sk_buff_head *frames)
964 {
965 	int index, i, j;
966 
967 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
968 
969 	/* release the buffer until next missing frame */
970 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
971 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
972 	    tid_agg_rx->stored_mpdu_num) {
973 		/*
974 		 * No buffers ready to be released, but check whether any
975 		 * frames in the reorder buffer have timed out.
976 		 */
977 		int skipped = 1;
978 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
979 		     j = (j + 1) % tid_agg_rx->buf_size) {
980 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
981 				skipped++;
982 				continue;
983 			}
984 			if (skipped &&
985 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
986 					HT_RX_REORDER_BUF_TIMEOUT))
987 				goto set_release_timer;
988 
989 			/* don't leave incomplete A-MSDUs around */
990 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
991 			     i = (i + 1) % tid_agg_rx->buf_size)
992 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
993 
994 			ht_dbg_ratelimited(sdata,
995 					   "release an RX reorder frame due to timeout on earlier frames\n");
996 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
997 							frames);
998 
999 			/*
1000 			 * Increment the head seq# also for the skipped slots.
1001 			 */
1002 			tid_agg_rx->head_seq_num =
1003 				(tid_agg_rx->head_seq_num +
1004 				 skipped) & IEEE80211_SN_MASK;
1005 			skipped = 0;
1006 		}
1007 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1008 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1009 						frames);
1010 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1011 	}
1012 
1013 	if (tid_agg_rx->stored_mpdu_num) {
1014 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1015 
1016 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1017 		     j = (j + 1) % tid_agg_rx->buf_size) {
1018 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1019 				break;
1020 		}
1021 
1022  set_release_timer:
1023 
1024 		if (!tid_agg_rx->removed)
1025 			mod_timer(&tid_agg_rx->reorder_timer,
1026 				  tid_agg_rx->reorder_time[j] + 1 +
1027 				  HT_RX_REORDER_BUF_TIMEOUT);
1028 	} else {
1029 		del_timer(&tid_agg_rx->reorder_timer);
1030 	}
1031 }
1032 
1033 /*
1034  * As this function belongs to the RX path it must be under
1035  * rcu_read_lock protection. It returns false if the frame
1036  * can be processed immediately, true if it was consumed.
1037  */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1038 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1039 					     struct tid_ampdu_rx *tid_agg_rx,
1040 					     struct sk_buff *skb,
1041 					     struct sk_buff_head *frames)
1042 {
1043 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1044 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1045 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1046 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1047 	u16 head_seq_num, buf_size;
1048 	int index;
1049 	bool ret = true;
1050 
1051 	spin_lock(&tid_agg_rx->reorder_lock);
1052 
1053 	/*
1054 	 * Offloaded BA sessions have no known starting sequence number so pick
1055 	 * one from first Rxed frame for this tid after BA was started.
1056 	 */
1057 	if (unlikely(tid_agg_rx->auto_seq)) {
1058 		tid_agg_rx->auto_seq = false;
1059 		tid_agg_rx->ssn = mpdu_seq_num;
1060 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1061 	}
1062 
1063 	buf_size = tid_agg_rx->buf_size;
1064 	head_seq_num = tid_agg_rx->head_seq_num;
1065 
1066 	/*
1067 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1068 	 * be reordered.
1069 	 */
1070 	if (unlikely(!tid_agg_rx->started)) {
1071 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1072 			ret = false;
1073 			goto out;
1074 		}
1075 		tid_agg_rx->started = true;
1076 	}
1077 
1078 	/* frame with out of date sequence number */
1079 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1080 		dev_kfree_skb(skb);
1081 		goto out;
1082 	}
1083 
1084 	/*
1085 	 * If frame the sequence number exceeds our buffering window
1086 	 * size release some previous frames to make room for this one.
1087 	 */
1088 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1089 		head_seq_num = ieee80211_sn_inc(
1090 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1091 		/* release stored frames up to new head to stack */
1092 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1093 						 head_seq_num, frames);
1094 	}
1095 
1096 	/* Now the new frame is always in the range of the reordering buffer */
1097 
1098 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1099 
1100 	/* check if we already stored this frame */
1101 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1102 		dev_kfree_skb(skb);
1103 		goto out;
1104 	}
1105 
1106 	/*
1107 	 * If the current MPDU is in the right order and nothing else
1108 	 * is stored we can process it directly, no need to buffer it.
1109 	 * If it is first but there's something stored, we may be able
1110 	 * to release frames after this one.
1111 	 */
1112 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1113 	    tid_agg_rx->stored_mpdu_num == 0) {
1114 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1115 			tid_agg_rx->head_seq_num =
1116 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1117 		ret = false;
1118 		goto out;
1119 	}
1120 
1121 	/* put the frame in the reordering buffer */
1122 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1123 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1124 		tid_agg_rx->reorder_time[index] = jiffies;
1125 		tid_agg_rx->stored_mpdu_num++;
1126 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1127 	}
1128 
1129  out:
1130 	spin_unlock(&tid_agg_rx->reorder_lock);
1131 	return ret;
1132 }
1133 
1134 /*
1135  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1136  * true if the MPDU was buffered, false if it should be processed.
1137  */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1138 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1139 				       struct sk_buff_head *frames)
1140 {
1141 	struct sk_buff *skb = rx->skb;
1142 	struct ieee80211_local *local = rx->local;
1143 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1144 	struct sta_info *sta = rx->sta;
1145 	struct tid_ampdu_rx *tid_agg_rx;
1146 	u16 sc;
1147 	u8 tid, ack_policy;
1148 
1149 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1150 	    is_multicast_ether_addr(hdr->addr1))
1151 		goto dont_reorder;
1152 
1153 	/*
1154 	 * filter the QoS data rx stream according to
1155 	 * STA/TID and check if this STA/TID is on aggregation
1156 	 */
1157 
1158 	if (!sta)
1159 		goto dont_reorder;
1160 
1161 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1162 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1163 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1164 
1165 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1166 	if (!tid_agg_rx) {
1167 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1168 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1169 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1170 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1171 					     WLAN_BACK_RECIPIENT,
1172 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1173 		goto dont_reorder;
1174 	}
1175 
1176 	/* qos null data frames are excluded */
1177 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1178 		goto dont_reorder;
1179 
1180 	/* not part of a BA session */
1181 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1182 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1183 		goto dont_reorder;
1184 
1185 	/* new, potentially un-ordered, ampdu frame - process it */
1186 
1187 	/* reset session timer */
1188 	if (tid_agg_rx->timeout)
1189 		tid_agg_rx->last_rx = jiffies;
1190 
1191 	/* if this mpdu is fragmented - terminate rx aggregation session */
1192 	sc = le16_to_cpu(hdr->seq_ctrl);
1193 	if (sc & IEEE80211_SCTL_FRAG) {
1194 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1195 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1196 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * No locking needed -- we will only ever process one
1202 	 * RX packet at a time, and thus own tid_agg_rx. All
1203 	 * other code manipulating it needs to (and does) make
1204 	 * sure that we cannot get to it any more before doing
1205 	 * anything with it.
1206 	 */
1207 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1208 					     frames))
1209 		return;
1210 
1211  dont_reorder:
1212 	__skb_queue_tail(frames, skb);
1213 }
1214 
1215 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1216 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1217 {
1218 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1219 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1220 
1221 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1222 		return RX_CONTINUE;
1223 
1224 	/*
1225 	 * Drop duplicate 802.11 retransmissions
1226 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1227 	 */
1228 
1229 	if (rx->skb->len < 24)
1230 		return RX_CONTINUE;
1231 
1232 	if (ieee80211_is_ctl(hdr->frame_control) ||
1233 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1234 	    is_multicast_ether_addr(hdr->addr1))
1235 		return RX_CONTINUE;
1236 
1237 	if (!rx->sta)
1238 		return RX_CONTINUE;
1239 
1240 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1241 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1242 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1243 		rx->sta->rx_stats.num_duplicates++;
1244 		return RX_DROP_UNUSABLE;
1245 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1246 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1247 	}
1248 
1249 	return RX_CONTINUE;
1250 }
1251 
1252 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1253 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1254 {
1255 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1256 
1257 	/* Drop disallowed frame classes based on STA auth/assoc state;
1258 	 * IEEE 802.11, Chap 5.5.
1259 	 *
1260 	 * mac80211 filters only based on association state, i.e. it drops
1261 	 * Class 3 frames from not associated stations. hostapd sends
1262 	 * deauth/disassoc frames when needed. In addition, hostapd is
1263 	 * responsible for filtering on both auth and assoc states.
1264 	 */
1265 
1266 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1267 		return ieee80211_rx_mesh_check(rx);
1268 
1269 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1270 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1271 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1272 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1273 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1274 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1275 		/*
1276 		 * accept port control frames from the AP even when it's not
1277 		 * yet marked ASSOC to prevent a race where we don't set the
1278 		 * assoc bit quickly enough before it sends the first frame
1279 		 */
1280 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1281 		    ieee80211_is_data_present(hdr->frame_control)) {
1282 			unsigned int hdrlen;
1283 			__be16 ethertype;
1284 
1285 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1286 
1287 			if (rx->skb->len < hdrlen + 8)
1288 				return RX_DROP_MONITOR;
1289 
1290 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1291 			if (ethertype == rx->sdata->control_port_protocol)
1292 				return RX_CONTINUE;
1293 		}
1294 
1295 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1296 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1297 					       hdr->addr2,
1298 					       GFP_ATOMIC))
1299 			return RX_DROP_UNUSABLE;
1300 
1301 		return RX_DROP_MONITOR;
1302 	}
1303 
1304 	return RX_CONTINUE;
1305 }
1306 
1307 
1308 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1309 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1310 {
1311 	struct ieee80211_local *local;
1312 	struct ieee80211_hdr *hdr;
1313 	struct sk_buff *skb;
1314 
1315 	local = rx->local;
1316 	skb = rx->skb;
1317 	hdr = (struct ieee80211_hdr *) skb->data;
1318 
1319 	if (!local->pspolling)
1320 		return RX_CONTINUE;
1321 
1322 	if (!ieee80211_has_fromds(hdr->frame_control))
1323 		/* this is not from AP */
1324 		return RX_CONTINUE;
1325 
1326 	if (!ieee80211_is_data(hdr->frame_control))
1327 		return RX_CONTINUE;
1328 
1329 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1330 		/* AP has no more frames buffered for us */
1331 		local->pspolling = false;
1332 		return RX_CONTINUE;
1333 	}
1334 
1335 	/* more data bit is set, let's request a new frame from the AP */
1336 	ieee80211_send_pspoll(local, rx->sdata);
1337 
1338 	return RX_CONTINUE;
1339 }
1340 
sta_ps_start(struct sta_info * sta)1341 static void sta_ps_start(struct sta_info *sta)
1342 {
1343 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1344 	struct ieee80211_local *local = sdata->local;
1345 	struct ps_data *ps;
1346 	int tid;
1347 
1348 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1349 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1350 		ps = &sdata->bss->ps;
1351 	else
1352 		return;
1353 
1354 	atomic_inc(&ps->num_sta_ps);
1355 	set_sta_flag(sta, WLAN_STA_PS_STA);
1356 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1357 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1358 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1359 	       sta->sta.addr, sta->sta.aid);
1360 
1361 	ieee80211_clear_fast_xmit(sta);
1362 
1363 	if (!sta->sta.txq[0])
1364 		return;
1365 
1366 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1367 		if (txq_has_queue(sta->sta.txq[tid]))
1368 			set_bit(tid, &sta->txq_buffered_tids);
1369 		else
1370 			clear_bit(tid, &sta->txq_buffered_tids);
1371 	}
1372 }
1373 
sta_ps_end(struct sta_info * sta)1374 static void sta_ps_end(struct sta_info *sta)
1375 {
1376 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1377 	       sta->sta.addr, sta->sta.aid);
1378 
1379 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1380 		/*
1381 		 * Clear the flag only if the other one is still set
1382 		 * so that the TX path won't start TX'ing new frames
1383 		 * directly ... In the case that the driver flag isn't
1384 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1385 		 */
1386 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1387 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1388 		       sta->sta.addr, sta->sta.aid);
1389 		return;
1390 	}
1391 
1392 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1393 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1394 	ieee80211_sta_ps_deliver_wakeup(sta);
1395 }
1396 
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1397 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1398 {
1399 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1400 	bool in_ps;
1401 
1402 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1403 
1404 	/* Don't let the same PS state be set twice */
1405 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1406 	if ((start && in_ps) || (!start && !in_ps))
1407 		return -EINVAL;
1408 
1409 	if (start)
1410 		sta_ps_start(sta);
1411 	else
1412 		sta_ps_end(sta);
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1417 
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1418 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1419 {
1420 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1421 
1422 	if (test_sta_flag(sta, WLAN_STA_SP))
1423 		return;
1424 
1425 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1426 		ieee80211_sta_ps_deliver_poll_response(sta);
1427 	else
1428 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1429 }
1430 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1431 
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1432 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1433 {
1434 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1435 	u8 ac = ieee802_1d_to_ac[tid & 7];
1436 
1437 	/*
1438 	 * If this AC is not trigger-enabled do nothing.
1439 	 *
1440 	 * NB: This could/should check a separate bitmap of trigger-
1441 	 * enabled queues, but for now we only implement uAPSD w/o
1442 	 * TSPEC changes to the ACs, so they're always the same.
1443 	 */
1444 	if (!(sta->sta.uapsd_queues & BIT(ac)))
1445 		return;
1446 
1447 	/* if we are in a service period, do nothing */
1448 	if (test_sta_flag(sta, WLAN_STA_SP))
1449 		return;
1450 
1451 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1452 		ieee80211_sta_ps_deliver_uapsd(sta);
1453 	else
1454 		set_sta_flag(sta, WLAN_STA_UAPSD);
1455 }
1456 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1457 
1458 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1459 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1460 {
1461 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1462 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1463 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1464 
1465 	if (!rx->sta)
1466 		return RX_CONTINUE;
1467 
1468 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1469 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1470 		return RX_CONTINUE;
1471 
1472 	/*
1473 	 * The device handles station powersave, so don't do anything about
1474 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1475 	 * it to mac80211 since they're handled.)
1476 	 */
1477 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1478 		return RX_CONTINUE;
1479 
1480 	/*
1481 	 * Don't do anything if the station isn't already asleep. In
1482 	 * the uAPSD case, the station will probably be marked asleep,
1483 	 * in the PS-Poll case the station must be confused ...
1484 	 */
1485 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1486 		return RX_CONTINUE;
1487 
1488 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1489 		ieee80211_sta_pspoll(&rx->sta->sta);
1490 
1491 		/* Free PS Poll skb here instead of returning RX_DROP that would
1492 		 * count as an dropped frame. */
1493 		dev_kfree_skb(rx->skb);
1494 
1495 		return RX_QUEUED;
1496 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1497 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1498 		   ieee80211_has_pm(hdr->frame_control) &&
1499 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1500 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1501 		u8 tid;
1502 
1503 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1504 
1505 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1506 	}
1507 
1508 	return RX_CONTINUE;
1509 }
1510 
1511 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1512 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1513 {
1514 	struct sta_info *sta = rx->sta;
1515 	struct sk_buff *skb = rx->skb;
1516 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1517 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1518 	int i;
1519 
1520 	if (!sta)
1521 		return RX_CONTINUE;
1522 
1523 	/*
1524 	 * Update last_rx only for IBSS packets which are for the current
1525 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1526 	 * current IBSS network alive in cases where other STAs start
1527 	 * using different BSSID. This will also give the station another
1528 	 * chance to restart the authentication/authorization in case
1529 	 * something went wrong the first time.
1530 	 */
1531 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1532 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1533 						NL80211_IFTYPE_ADHOC);
1534 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1535 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1536 			sta->rx_stats.last_rx = jiffies;
1537 			if (ieee80211_is_data(hdr->frame_control) &&
1538 			    !is_multicast_ether_addr(hdr->addr1))
1539 				sta->rx_stats.last_rate =
1540 					sta_stats_encode_rate(status);
1541 		}
1542 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1543 		sta->rx_stats.last_rx = jiffies;
1544 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1545 		/*
1546 		 * Mesh beacons will update last_rx when if they are found to
1547 		 * match the current local configuration when processed.
1548 		 */
1549 		sta->rx_stats.last_rx = jiffies;
1550 		if (ieee80211_is_data(hdr->frame_control))
1551 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1552 	}
1553 
1554 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1555 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1556 
1557 	sta->rx_stats.fragments++;
1558 
1559 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1560 	sta->rx_stats.bytes += rx->skb->len;
1561 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1562 
1563 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1564 		sta->rx_stats.last_signal = status->signal;
1565 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1566 	}
1567 
1568 	if (status->chains) {
1569 		sta->rx_stats.chains = status->chains;
1570 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1571 			int signal = status->chain_signal[i];
1572 
1573 			if (!(status->chains & BIT(i)))
1574 				continue;
1575 
1576 			sta->rx_stats.chain_signal_last[i] = signal;
1577 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1578 					-signal);
1579 		}
1580 	}
1581 
1582 	/*
1583 	 * Change STA power saving mode only at the end of a frame
1584 	 * exchange sequence.
1585 	 */
1586 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1587 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1588 	    !ieee80211_is_back_req(hdr->frame_control) &&
1589 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1590 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1591 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1592 	    /*
1593 	     * PM bit is only checked in frames where it isn't reserved,
1594 	     * in AP mode it's reserved in non-bufferable management frames
1595 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1596 	     * BAR frames should be ignored as specified in
1597 	     * IEEE 802.11-2012 10.2.1.2.
1598 	     */
1599 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1600 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1601 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1602 			if (!ieee80211_has_pm(hdr->frame_control))
1603 				sta_ps_end(sta);
1604 		} else {
1605 			if (ieee80211_has_pm(hdr->frame_control))
1606 				sta_ps_start(sta);
1607 		}
1608 	}
1609 
1610 	/* mesh power save support */
1611 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1612 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1613 
1614 	/*
1615 	 * Drop (qos-)data::nullfunc frames silently, since they
1616 	 * are used only to control station power saving mode.
1617 	 */
1618 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1619 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1620 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1621 
1622 		/*
1623 		 * If we receive a 4-addr nullfunc frame from a STA
1624 		 * that was not moved to a 4-addr STA vlan yet send
1625 		 * the event to userspace and for older hostapd drop
1626 		 * the frame to the monitor interface.
1627 		 */
1628 		if (ieee80211_has_a4(hdr->frame_control) &&
1629 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1630 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1631 		      !rx->sdata->u.vlan.sta))) {
1632 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1633 				cfg80211_rx_unexpected_4addr_frame(
1634 					rx->sdata->dev, sta->sta.addr,
1635 					GFP_ATOMIC);
1636 			return RX_DROP_MONITOR;
1637 		}
1638 		/*
1639 		 * Update counter and free packet here to avoid
1640 		 * counting this as a dropped packed.
1641 		 */
1642 		sta->rx_stats.packets++;
1643 		dev_kfree_skb(rx->skb);
1644 		return RX_QUEUED;
1645 	}
1646 
1647 	return RX_CONTINUE;
1648 } /* ieee80211_rx_h_sta_process */
1649 
1650 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1651 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1652 {
1653 	struct sk_buff *skb = rx->skb;
1654 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1655 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1656 	int keyidx;
1657 	int hdrlen;
1658 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1659 	struct ieee80211_key *sta_ptk = NULL;
1660 	int mmie_keyidx = -1;
1661 	__le16 fc;
1662 	const struct ieee80211_cipher_scheme *cs = NULL;
1663 
1664 	/*
1665 	 * Key selection 101
1666 	 *
1667 	 * There are four types of keys:
1668 	 *  - GTK (group keys)
1669 	 *  - IGTK (group keys for management frames)
1670 	 *  - PTK (pairwise keys)
1671 	 *  - STK (station-to-station pairwise keys)
1672 	 *
1673 	 * When selecting a key, we have to distinguish between multicast
1674 	 * (including broadcast) and unicast frames, the latter can only
1675 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1676 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1677 	 * unicast frames can also use key indices like GTKs. Hence, if we
1678 	 * don't have a PTK/STK we check the key index for a WEP key.
1679 	 *
1680 	 * Note that in a regular BSS, multicast frames are sent by the
1681 	 * AP only, associated stations unicast the frame to the AP first
1682 	 * which then multicasts it on their behalf.
1683 	 *
1684 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1685 	 * with each station, that is something we don't currently handle.
1686 	 * The spec seems to expect that one negotiates the same key with
1687 	 * every station but there's no such requirement; VLANs could be
1688 	 * possible.
1689 	 */
1690 
1691 	/* start without a key */
1692 	rx->key = NULL;
1693 	fc = hdr->frame_control;
1694 
1695 	if (rx->sta) {
1696 		int keyid = rx->sta->ptk_idx;
1697 
1698 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1699 			cs = rx->sta->cipher_scheme;
1700 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1701 			if (unlikely(keyid < 0))
1702 				return RX_DROP_UNUSABLE;
1703 		}
1704 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1705 	}
1706 
1707 	if (!ieee80211_has_protected(fc))
1708 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1709 
1710 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1711 		rx->key = sta_ptk;
1712 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1713 		    (status->flag & RX_FLAG_IV_STRIPPED))
1714 			return RX_CONTINUE;
1715 		/* Skip decryption if the frame is not protected. */
1716 		if (!ieee80211_has_protected(fc))
1717 			return RX_CONTINUE;
1718 	} else if (mmie_keyidx >= 0) {
1719 		/* Broadcast/multicast robust management frame / BIP */
1720 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1721 		    (status->flag & RX_FLAG_IV_STRIPPED))
1722 			return RX_CONTINUE;
1723 
1724 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1725 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1726 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1727 		if (rx->sta) {
1728 			if (ieee80211_is_group_privacy_action(skb) &&
1729 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1730 				return RX_DROP_MONITOR;
1731 
1732 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1733 		}
1734 		if (!rx->key)
1735 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1736 	} else if (!ieee80211_has_protected(fc)) {
1737 		/*
1738 		 * The frame was not protected, so skip decryption. However, we
1739 		 * need to set rx->key if there is a key that could have been
1740 		 * used so that the frame may be dropped if encryption would
1741 		 * have been expected.
1742 		 */
1743 		struct ieee80211_key *key = NULL;
1744 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1745 		int i;
1746 
1747 		if (ieee80211_is_mgmt(fc) &&
1748 		    is_multicast_ether_addr(hdr->addr1) &&
1749 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1750 			rx->key = key;
1751 		else {
1752 			if (rx->sta) {
1753 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1754 					key = rcu_dereference(rx->sta->gtk[i]);
1755 					if (key)
1756 						break;
1757 				}
1758 			}
1759 			if (!key) {
1760 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1761 					key = rcu_dereference(sdata->keys[i]);
1762 					if (key)
1763 						break;
1764 				}
1765 			}
1766 			if (key)
1767 				rx->key = key;
1768 		}
1769 		return RX_CONTINUE;
1770 	} else {
1771 		u8 keyid;
1772 
1773 		/*
1774 		 * The device doesn't give us the IV so we won't be
1775 		 * able to look up the key. That's ok though, we
1776 		 * don't need to decrypt the frame, we just won't
1777 		 * be able to keep statistics accurate.
1778 		 * Except for key threshold notifications, should
1779 		 * we somehow allow the driver to tell us which key
1780 		 * the hardware used if this flag is set?
1781 		 */
1782 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1783 		    (status->flag & RX_FLAG_IV_STRIPPED))
1784 			return RX_CONTINUE;
1785 
1786 		hdrlen = ieee80211_hdrlen(fc);
1787 
1788 		if (cs) {
1789 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1790 
1791 			if (unlikely(keyidx < 0))
1792 				return RX_DROP_UNUSABLE;
1793 		} else {
1794 			if (rx->skb->len < 8 + hdrlen)
1795 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1796 			/*
1797 			 * no need to call ieee80211_wep_get_keyidx,
1798 			 * it verifies a bunch of things we've done already
1799 			 */
1800 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1801 			keyidx = keyid >> 6;
1802 		}
1803 
1804 		/* check per-station GTK first, if multicast packet */
1805 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1806 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1807 
1808 		/* if not found, try default key */
1809 		if (!rx->key) {
1810 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1811 
1812 			/*
1813 			 * RSNA-protected unicast frames should always be
1814 			 * sent with pairwise or station-to-station keys,
1815 			 * but for WEP we allow using a key index as well.
1816 			 */
1817 			if (rx->key &&
1818 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1819 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1820 			    !is_multicast_ether_addr(hdr->addr1))
1821 				rx->key = NULL;
1822 		}
1823 	}
1824 
1825 	if (rx->key) {
1826 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1827 			return RX_DROP_MONITOR;
1828 
1829 		/* TODO: add threshold stuff again */
1830 	} else {
1831 		return RX_DROP_MONITOR;
1832 	}
1833 
1834 	switch (rx->key->conf.cipher) {
1835 	case WLAN_CIPHER_SUITE_WEP40:
1836 	case WLAN_CIPHER_SUITE_WEP104:
1837 		result = ieee80211_crypto_wep_decrypt(rx);
1838 		break;
1839 	case WLAN_CIPHER_SUITE_TKIP:
1840 		result = ieee80211_crypto_tkip_decrypt(rx);
1841 		break;
1842 	case WLAN_CIPHER_SUITE_CCMP:
1843 		result = ieee80211_crypto_ccmp_decrypt(
1844 			rx, IEEE80211_CCMP_MIC_LEN);
1845 		break;
1846 	case WLAN_CIPHER_SUITE_CCMP_256:
1847 		result = ieee80211_crypto_ccmp_decrypt(
1848 			rx, IEEE80211_CCMP_256_MIC_LEN);
1849 		break;
1850 	case WLAN_CIPHER_SUITE_AES_CMAC:
1851 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1852 		break;
1853 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1854 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1855 		break;
1856 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1857 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1858 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1859 		break;
1860 	case WLAN_CIPHER_SUITE_GCMP:
1861 	case WLAN_CIPHER_SUITE_GCMP_256:
1862 		result = ieee80211_crypto_gcmp_decrypt(rx);
1863 		break;
1864 	default:
1865 		result = ieee80211_crypto_hw_decrypt(rx);
1866 	}
1867 
1868 	/* the hdr variable is invalid after the decrypt handlers */
1869 
1870 	/* either the frame has been decrypted or will be dropped */
1871 	status->flag |= RX_FLAG_DECRYPTED;
1872 
1873 	return result;
1874 }
1875 
1876 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)1877 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1878 			 unsigned int frag, unsigned int seq, int rx_queue,
1879 			 struct sk_buff **skb)
1880 {
1881 	struct ieee80211_fragment_entry *entry;
1882 
1883 	entry = &sdata->fragments[sdata->fragment_next++];
1884 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1885 		sdata->fragment_next = 0;
1886 
1887 	if (!skb_queue_empty(&entry->skb_list))
1888 		__skb_queue_purge(&entry->skb_list);
1889 
1890 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1891 	*skb = NULL;
1892 	entry->first_frag_time = jiffies;
1893 	entry->seq = seq;
1894 	entry->rx_queue = rx_queue;
1895 	entry->last_frag = frag;
1896 	entry->check_sequential_pn = false;
1897 	entry->extra_len = 0;
1898 
1899 	return entry;
1900 }
1901 
1902 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)1903 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1904 			  unsigned int frag, unsigned int seq,
1905 			  int rx_queue, struct ieee80211_hdr *hdr)
1906 {
1907 	struct ieee80211_fragment_entry *entry;
1908 	int i, idx;
1909 
1910 	idx = sdata->fragment_next;
1911 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1912 		struct ieee80211_hdr *f_hdr;
1913 
1914 		idx--;
1915 		if (idx < 0)
1916 			idx = IEEE80211_FRAGMENT_MAX - 1;
1917 
1918 		entry = &sdata->fragments[idx];
1919 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1920 		    entry->rx_queue != rx_queue ||
1921 		    entry->last_frag + 1 != frag)
1922 			continue;
1923 
1924 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1925 
1926 		/*
1927 		 * Check ftype and addresses are equal, else check next fragment
1928 		 */
1929 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1930 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1931 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1932 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1933 			continue;
1934 
1935 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1936 			__skb_queue_purge(&entry->skb_list);
1937 			continue;
1938 		}
1939 		return entry;
1940 	}
1941 
1942 	return NULL;
1943 }
1944 
1945 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)1946 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1947 {
1948 	struct ieee80211_hdr *hdr;
1949 	u16 sc;
1950 	__le16 fc;
1951 	unsigned int frag, seq;
1952 	struct ieee80211_fragment_entry *entry;
1953 	struct sk_buff *skb;
1954 	struct ieee80211_rx_status *status;
1955 
1956 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1957 	fc = hdr->frame_control;
1958 
1959 	if (ieee80211_is_ctl(fc))
1960 		return RX_CONTINUE;
1961 
1962 	sc = le16_to_cpu(hdr->seq_ctrl);
1963 	frag = sc & IEEE80211_SCTL_FRAG;
1964 
1965 	if (is_multicast_ether_addr(hdr->addr1)) {
1966 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1967 		goto out_no_led;
1968 	}
1969 
1970 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1971 		goto out;
1972 
1973 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1974 
1975 	if (skb_linearize(rx->skb))
1976 		return RX_DROP_UNUSABLE;
1977 
1978 	/*
1979 	 *  skb_linearize() might change the skb->data and
1980 	 *  previously cached variables (in this case, hdr) need to
1981 	 *  be refreshed with the new data.
1982 	 */
1983 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1984 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1985 
1986 	if (frag == 0) {
1987 		/* This is the first fragment of a new frame. */
1988 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1989 						 rx->seqno_idx, &(rx->skb));
1990 		if (rx->key &&
1991 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1992 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1993 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1994 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1995 		    ieee80211_has_protected(fc)) {
1996 			int queue = rx->security_idx;
1997 
1998 			/* Store CCMP/GCMP PN so that we can verify that the
1999 			 * next fragment has a sequential PN value.
2000 			 */
2001 			entry->check_sequential_pn = true;
2002 			memcpy(entry->last_pn,
2003 			       rx->key->u.ccmp.rx_pn[queue],
2004 			       IEEE80211_CCMP_PN_LEN);
2005 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2006 					      u.ccmp.rx_pn) !=
2007 				     offsetof(struct ieee80211_key,
2008 					      u.gcmp.rx_pn));
2009 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2010 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2011 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2012 				     IEEE80211_GCMP_PN_LEN);
2013 		}
2014 		return RX_QUEUED;
2015 	}
2016 
2017 	/* This is a fragment for a frame that should already be pending in
2018 	 * fragment cache. Add this fragment to the end of the pending entry.
2019 	 */
2020 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2021 					  rx->seqno_idx, hdr);
2022 	if (!entry) {
2023 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2024 		return RX_DROP_MONITOR;
2025 	}
2026 
2027 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2028 	 *  MPDU PN values are not incrementing in steps of 1."
2029 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2030 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2031 	 */
2032 	if (entry->check_sequential_pn) {
2033 		int i;
2034 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2035 		int queue;
2036 
2037 		if (!rx->key ||
2038 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2039 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2040 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2041 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2042 			return RX_DROP_UNUSABLE;
2043 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2044 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2045 			pn[i]++;
2046 			if (pn[i])
2047 				break;
2048 		}
2049 		queue = rx->security_idx;
2050 		rpn = rx->key->u.ccmp.rx_pn[queue];
2051 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2052 			return RX_DROP_UNUSABLE;
2053 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2054 	}
2055 
2056 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2057 	__skb_queue_tail(&entry->skb_list, rx->skb);
2058 	entry->last_frag = frag;
2059 	entry->extra_len += rx->skb->len;
2060 	if (ieee80211_has_morefrags(fc)) {
2061 		rx->skb = NULL;
2062 		return RX_QUEUED;
2063 	}
2064 
2065 	rx->skb = __skb_dequeue(&entry->skb_list);
2066 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2067 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2068 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2069 					      GFP_ATOMIC))) {
2070 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2071 			__skb_queue_purge(&entry->skb_list);
2072 			return RX_DROP_UNUSABLE;
2073 		}
2074 	}
2075 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2076 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2077 		dev_kfree_skb(skb);
2078 	}
2079 
2080 	/* Complete frame has been reassembled - process it now */
2081 	status = IEEE80211_SKB_RXCB(rx->skb);
2082 
2083  out:
2084 	ieee80211_led_rx(rx->local);
2085  out_no_led:
2086 	if (rx->sta)
2087 		rx->sta->rx_stats.packets++;
2088 	return RX_CONTINUE;
2089 }
2090 
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2091 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2092 {
2093 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2094 		return -EACCES;
2095 
2096 	return 0;
2097 }
2098 
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2099 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2100 {
2101 	struct sk_buff *skb = rx->skb;
2102 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2103 
2104 	/*
2105 	 * Pass through unencrypted frames if the hardware has
2106 	 * decrypted them already.
2107 	 */
2108 	if (status->flag & RX_FLAG_DECRYPTED)
2109 		return 0;
2110 
2111 	/* Drop unencrypted frames if key is set. */
2112 	if (unlikely(!ieee80211_has_protected(fc) &&
2113 		     !ieee80211_is_nullfunc(fc) &&
2114 		     ieee80211_is_data(fc) && rx->key))
2115 		return -EACCES;
2116 
2117 	return 0;
2118 }
2119 
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2120 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2121 {
2122 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2123 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2124 	__le16 fc = hdr->frame_control;
2125 
2126 	/*
2127 	 * Pass through unencrypted frames if the hardware has
2128 	 * decrypted them already.
2129 	 */
2130 	if (status->flag & RX_FLAG_DECRYPTED)
2131 		return 0;
2132 
2133 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2134 		if (unlikely(!ieee80211_has_protected(fc) &&
2135 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2136 			     rx->key)) {
2137 			if (ieee80211_is_deauth(fc) ||
2138 			    ieee80211_is_disassoc(fc))
2139 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2140 							     rx->skb->data,
2141 							     rx->skb->len);
2142 			return -EACCES;
2143 		}
2144 		/* BIP does not use Protected field, so need to check MMIE */
2145 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2146 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2147 			if (ieee80211_is_deauth(fc) ||
2148 			    ieee80211_is_disassoc(fc))
2149 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2150 							     rx->skb->data,
2151 							     rx->skb->len);
2152 			return -EACCES;
2153 		}
2154 		/*
2155 		 * When using MFP, Action frames are not allowed prior to
2156 		 * having configured keys.
2157 		 */
2158 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2159 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2160 			return -EACCES;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2167 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2168 {
2169 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2170 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2171 	bool check_port_control = false;
2172 	struct ethhdr *ehdr;
2173 	int ret;
2174 
2175 	*port_control = false;
2176 	if (ieee80211_has_a4(hdr->frame_control) &&
2177 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2178 		return -1;
2179 
2180 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2181 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2182 
2183 		if (!sdata->u.mgd.use_4addr)
2184 			return -1;
2185 		else
2186 			check_port_control = true;
2187 	}
2188 
2189 	if (is_multicast_ether_addr(hdr->addr1) &&
2190 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2191 		return -1;
2192 
2193 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2194 	if (ret < 0)
2195 		return ret;
2196 
2197 	ehdr = (struct ethhdr *) rx->skb->data;
2198 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2199 		*port_control = true;
2200 	else if (check_port_control)
2201 		return -1;
2202 
2203 	return 0;
2204 }
2205 
2206 /*
2207  * requires that rx->skb is a frame with ethernet header
2208  */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2209 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2210 {
2211 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2212 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2213 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2214 
2215 	/*
2216 	 * Allow EAPOL frames to us/the PAE group address regardless
2217 	 * of whether the frame was encrypted or not.
2218 	 */
2219 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2220 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2221 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2222 		return true;
2223 
2224 	if (ieee80211_802_1x_port_control(rx) ||
2225 	    ieee80211_drop_unencrypted(rx, fc))
2226 		return false;
2227 
2228 	return true;
2229 }
2230 
2231 /*
2232  * requires that rx->skb is a frame with ethernet header
2233  */
2234 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2235 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2236 {
2237 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2238 	struct net_device *dev = sdata->dev;
2239 	struct sk_buff *skb, *xmit_skb;
2240 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2241 	struct sta_info *dsta;
2242 
2243 	skb = rx->skb;
2244 	xmit_skb = NULL;
2245 
2246 	ieee80211_rx_stats(dev, skb->len);
2247 
2248 	if (rx->sta) {
2249 		/* The seqno index has the same property as needed
2250 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2251 		 * for non-QoS-data frames. Here we know it's a data
2252 		 * frame, so count MSDUs.
2253 		 */
2254 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2255 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2256 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2257 	}
2258 
2259 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2260 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2261 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2262 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2263 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2264 			/*
2265 			 * send multicast frames both to higher layers in
2266 			 * local net stack and back to the wireless medium
2267 			 */
2268 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2269 			if (!xmit_skb)
2270 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2271 						    dev->name);
2272 		} else {
2273 			dsta = sta_info_get(sdata, skb->data);
2274 			if (dsta) {
2275 				/*
2276 				 * The destination station is associated to
2277 				 * this AP (in this VLAN), so send the frame
2278 				 * directly to it and do not pass it to local
2279 				 * net stack.
2280 				 */
2281 				xmit_skb = skb;
2282 				skb = NULL;
2283 			}
2284 		}
2285 	}
2286 
2287 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2288 	if (skb) {
2289 		/* 'align' will only take the values 0 or 2 here since all
2290 		 * frames are required to be aligned to 2-byte boundaries
2291 		 * when being passed to mac80211; the code here works just
2292 		 * as well if that isn't true, but mac80211 assumes it can
2293 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2294 		 */
2295 		int align;
2296 
2297 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2298 		if (align) {
2299 			if (WARN_ON(skb_headroom(skb) < 3)) {
2300 				dev_kfree_skb(skb);
2301 				skb = NULL;
2302 			} else {
2303 				u8 *data = skb->data;
2304 				size_t len = skb_headlen(skb);
2305 				skb->data -= align;
2306 				memmove(skb->data, data, len);
2307 				skb_set_tail_pointer(skb, len);
2308 			}
2309 		}
2310 	}
2311 #endif
2312 
2313 	if (skb) {
2314 		/* deliver to local stack */
2315 		skb->protocol = eth_type_trans(skb, dev);
2316 		memset(skb->cb, 0, sizeof(skb->cb));
2317 		if (rx->napi)
2318 			napi_gro_receive(rx->napi, skb);
2319 		else
2320 			netif_receive_skb(skb);
2321 	}
2322 
2323 	if (xmit_skb) {
2324 		/*
2325 		 * Send to wireless media and increase priority by 256 to
2326 		 * keep the received priority instead of reclassifying
2327 		 * the frame (see cfg80211_classify8021d).
2328 		 */
2329 		xmit_skb->priority += 256;
2330 		xmit_skb->protocol = htons(ETH_P_802_3);
2331 		skb_reset_network_header(xmit_skb);
2332 		skb_reset_mac_header(xmit_skb);
2333 		dev_queue_xmit(xmit_skb);
2334 	}
2335 }
2336 
2337 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2338 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2339 {
2340 	struct net_device *dev = rx->sdata->dev;
2341 	struct sk_buff *skb = rx->skb;
2342 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2343 	__le16 fc = hdr->frame_control;
2344 	struct sk_buff_head frame_list;
2345 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2346 	struct ethhdr ethhdr;
2347 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2348 
2349 	if (unlikely(!ieee80211_is_data(fc)))
2350 		return RX_CONTINUE;
2351 
2352 	if (unlikely(!ieee80211_is_data_present(fc)))
2353 		return RX_DROP_MONITOR;
2354 
2355 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2356 		return RX_CONTINUE;
2357 
2358 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2359 		switch (rx->sdata->vif.type) {
2360 		case NL80211_IFTYPE_AP_VLAN:
2361 			if (!rx->sdata->u.vlan.sta)
2362 				return RX_DROP_UNUSABLE;
2363 			break;
2364 		case NL80211_IFTYPE_STATION:
2365 			if (!rx->sdata->u.mgd.use_4addr)
2366 				return RX_DROP_UNUSABLE;
2367 			break;
2368 		default:
2369 			return RX_DROP_UNUSABLE;
2370 		}
2371 		check_da = NULL;
2372 		check_sa = NULL;
2373 	} else switch (rx->sdata->vif.type) {
2374 		case NL80211_IFTYPE_AP:
2375 		case NL80211_IFTYPE_AP_VLAN:
2376 			check_da = NULL;
2377 			break;
2378 		case NL80211_IFTYPE_STATION:
2379 			if (!rx->sta ||
2380 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2381 				check_sa = NULL;
2382 			break;
2383 		case NL80211_IFTYPE_MESH_POINT:
2384 			check_sa = NULL;
2385 			break;
2386 		default:
2387 			break;
2388 	}
2389 
2390 	if (is_multicast_ether_addr(hdr->addr1))
2391 		return RX_DROP_UNUSABLE;
2392 
2393 	skb->dev = dev;
2394 	__skb_queue_head_init(&frame_list);
2395 
2396 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2397 					  rx->sdata->vif.addr,
2398 					  rx->sdata->vif.type))
2399 		return RX_DROP_UNUSABLE;
2400 
2401 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2402 				 rx->sdata->vif.type,
2403 				 rx->local->hw.extra_tx_headroom,
2404 				 check_da, check_sa);
2405 
2406 	while (!skb_queue_empty(&frame_list)) {
2407 		rx->skb = __skb_dequeue(&frame_list);
2408 
2409 		if (!ieee80211_frame_allowed(rx, fc)) {
2410 			dev_kfree_skb(rx->skb);
2411 			continue;
2412 		}
2413 
2414 		ieee80211_deliver_skb(rx);
2415 	}
2416 
2417 	return RX_QUEUED;
2418 }
2419 
2420 #ifdef CONFIG_MAC80211_MESH
2421 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2422 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2423 {
2424 	struct ieee80211_hdr *fwd_hdr, *hdr;
2425 	struct ieee80211_tx_info *info;
2426 	struct ieee80211s_hdr *mesh_hdr;
2427 	struct sk_buff *skb = rx->skb, *fwd_skb;
2428 	struct ieee80211_local *local = rx->local;
2429 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2430 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2431 	u16 ac, q, hdrlen;
2432 
2433 	hdr = (struct ieee80211_hdr *) skb->data;
2434 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2435 
2436 	/* make sure fixed part of mesh header is there, also checks skb len */
2437 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2438 		return RX_DROP_MONITOR;
2439 
2440 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2441 
2442 	/* make sure full mesh header is there, also checks skb len */
2443 	if (!pskb_may_pull(rx->skb,
2444 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2445 		return RX_DROP_MONITOR;
2446 
2447 	/* reload pointers */
2448 	hdr = (struct ieee80211_hdr *) skb->data;
2449 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2450 
2451 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2452 		return RX_DROP_MONITOR;
2453 
2454 	/* frame is in RMC, don't forward */
2455 	if (ieee80211_is_data(hdr->frame_control) &&
2456 	    is_multicast_ether_addr(hdr->addr1) &&
2457 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2458 		return RX_DROP_MONITOR;
2459 
2460 	if (!ieee80211_is_data(hdr->frame_control))
2461 		return RX_CONTINUE;
2462 
2463 	if (!mesh_hdr->ttl)
2464 		return RX_DROP_MONITOR;
2465 
2466 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2467 		struct mesh_path *mppath;
2468 		char *proxied_addr;
2469 		char *mpp_addr;
2470 
2471 		if (is_multicast_ether_addr(hdr->addr1)) {
2472 			mpp_addr = hdr->addr3;
2473 			proxied_addr = mesh_hdr->eaddr1;
2474 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2475 			    MESH_FLAGS_AE_A5_A6) {
2476 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2477 			mpp_addr = hdr->addr4;
2478 			proxied_addr = mesh_hdr->eaddr2;
2479 		} else {
2480 			return RX_DROP_MONITOR;
2481 		}
2482 
2483 		rcu_read_lock();
2484 		mppath = mpp_path_lookup(sdata, proxied_addr);
2485 		if (!mppath) {
2486 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2487 		} else {
2488 			spin_lock_bh(&mppath->state_lock);
2489 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2490 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2491 			mppath->exp_time = jiffies;
2492 			spin_unlock_bh(&mppath->state_lock);
2493 		}
2494 		rcu_read_unlock();
2495 	}
2496 
2497 	/* Frame has reached destination.  Don't forward */
2498 	if (!is_multicast_ether_addr(hdr->addr1) &&
2499 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2500 		return RX_CONTINUE;
2501 
2502 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2503 	q = sdata->vif.hw_queue[ac];
2504 	if (ieee80211_queue_stopped(&local->hw, q)) {
2505 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2506 		return RX_DROP_MONITOR;
2507 	}
2508 	skb_set_queue_mapping(skb, q);
2509 
2510 	if (!--mesh_hdr->ttl) {
2511 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2512 		goto out;
2513 	}
2514 
2515 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2516 		goto out;
2517 
2518 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2519 	if (!fwd_skb) {
2520 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2521 				    sdata->name);
2522 		goto out;
2523 	}
2524 
2525 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2526 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2527 	info = IEEE80211_SKB_CB(fwd_skb);
2528 	memset(info, 0, sizeof(*info));
2529 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2530 	info->control.vif = &rx->sdata->vif;
2531 	info->control.jiffies = jiffies;
2532 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2533 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2534 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2535 		/* update power mode indication when forwarding */
2536 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2537 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2538 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2539 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2540 	} else {
2541 		/* unable to resolve next hop */
2542 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2543 				   fwd_hdr->addr3, 0,
2544 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2545 				   fwd_hdr->addr2);
2546 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2547 		kfree_skb(fwd_skb);
2548 		return RX_DROP_MONITOR;
2549 	}
2550 
2551 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2552 	ieee80211_add_pending_skb(local, fwd_skb);
2553  out:
2554 	if (is_multicast_ether_addr(hdr->addr1))
2555 		return RX_CONTINUE;
2556 	return RX_DROP_MONITOR;
2557 }
2558 #endif
2559 
2560 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2561 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2562 {
2563 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2564 	struct ieee80211_local *local = rx->local;
2565 	struct net_device *dev = sdata->dev;
2566 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2567 	__le16 fc = hdr->frame_control;
2568 	bool port_control;
2569 	int err;
2570 
2571 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2572 		return RX_CONTINUE;
2573 
2574 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2575 		return RX_DROP_MONITOR;
2576 
2577 	/*
2578 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2579 	 * also drop the frame to cooked monitor interfaces.
2580 	 */
2581 	if (ieee80211_has_a4(hdr->frame_control) &&
2582 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2583 		if (rx->sta &&
2584 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2585 			cfg80211_rx_unexpected_4addr_frame(
2586 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2587 		return RX_DROP_MONITOR;
2588 	}
2589 
2590 	err = __ieee80211_data_to_8023(rx, &port_control);
2591 	if (unlikely(err))
2592 		return RX_DROP_UNUSABLE;
2593 
2594 	if (!ieee80211_frame_allowed(rx, fc))
2595 		return RX_DROP_MONITOR;
2596 
2597 	/* directly handle TDLS channel switch requests/responses */
2598 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2599 						cpu_to_be16(ETH_P_TDLS))) {
2600 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2601 
2602 		if (pskb_may_pull(rx->skb,
2603 				  offsetof(struct ieee80211_tdls_data, u)) &&
2604 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2605 		    tf->category == WLAN_CATEGORY_TDLS &&
2606 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2607 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2608 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2609 			schedule_work(&local->tdls_chsw_work);
2610 			if (rx->sta)
2611 				rx->sta->rx_stats.packets++;
2612 
2613 			return RX_QUEUED;
2614 		}
2615 	}
2616 
2617 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2618 	    unlikely(port_control) && sdata->bss) {
2619 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2620 				     u.ap);
2621 		dev = sdata->dev;
2622 		rx->sdata = sdata;
2623 	}
2624 
2625 	rx->skb->dev = dev;
2626 
2627 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2628 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2629 	    !is_multicast_ether_addr(
2630 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2631 	    (!local->scanning &&
2632 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2633 		mod_timer(&local->dynamic_ps_timer, jiffies +
2634 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2635 
2636 	ieee80211_deliver_skb(rx);
2637 
2638 	return RX_QUEUED;
2639 }
2640 
2641 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)2642 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2643 {
2644 	struct sk_buff *skb = rx->skb;
2645 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2646 	struct tid_ampdu_rx *tid_agg_rx;
2647 	u16 start_seq_num;
2648 	u16 tid;
2649 
2650 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2651 		return RX_CONTINUE;
2652 
2653 	if (ieee80211_is_back_req(bar->frame_control)) {
2654 		struct {
2655 			__le16 control, start_seq_num;
2656 		} __packed bar_data;
2657 		struct ieee80211_event event = {
2658 			.type = BAR_RX_EVENT,
2659 		};
2660 
2661 		if (!rx->sta)
2662 			return RX_DROP_MONITOR;
2663 
2664 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2665 				  &bar_data, sizeof(bar_data)))
2666 			return RX_DROP_MONITOR;
2667 
2668 		tid = le16_to_cpu(bar_data.control) >> 12;
2669 
2670 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2671 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2672 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2673 					     WLAN_BACK_RECIPIENT,
2674 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2675 
2676 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2677 		if (!tid_agg_rx)
2678 			return RX_DROP_MONITOR;
2679 
2680 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2681 		event.u.ba.tid = tid;
2682 		event.u.ba.ssn = start_seq_num;
2683 		event.u.ba.sta = &rx->sta->sta;
2684 
2685 		/* reset session timer */
2686 		if (tid_agg_rx->timeout)
2687 			mod_timer(&tid_agg_rx->session_timer,
2688 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2689 
2690 		spin_lock(&tid_agg_rx->reorder_lock);
2691 		/* release stored frames up to start of BAR */
2692 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2693 						 start_seq_num, frames);
2694 		spin_unlock(&tid_agg_rx->reorder_lock);
2695 
2696 		drv_event_callback(rx->local, rx->sdata, &event);
2697 
2698 		kfree_skb(skb);
2699 		return RX_QUEUED;
2700 	}
2701 
2702 	/*
2703 	 * After this point, we only want management frames,
2704 	 * so we can drop all remaining control frames to
2705 	 * cooked monitor interfaces.
2706 	 */
2707 	return RX_DROP_MONITOR;
2708 }
2709 
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)2710 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2711 					   struct ieee80211_mgmt *mgmt,
2712 					   size_t len)
2713 {
2714 	struct ieee80211_local *local = sdata->local;
2715 	struct sk_buff *skb;
2716 	struct ieee80211_mgmt *resp;
2717 
2718 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2719 		/* Not to own unicast address */
2720 		return;
2721 	}
2722 
2723 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2724 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2725 		/* Not from the current AP or not associated yet. */
2726 		return;
2727 	}
2728 
2729 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2730 		/* Too short SA Query request frame */
2731 		return;
2732 	}
2733 
2734 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2735 	if (skb == NULL)
2736 		return;
2737 
2738 	skb_reserve(skb, local->hw.extra_tx_headroom);
2739 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2740 	memset(resp, 0, 24);
2741 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2742 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2743 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2744 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2745 					  IEEE80211_STYPE_ACTION);
2746 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2747 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2748 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2749 	memcpy(resp->u.action.u.sa_query.trans_id,
2750 	       mgmt->u.action.u.sa_query.trans_id,
2751 	       WLAN_SA_QUERY_TR_ID_LEN);
2752 
2753 	ieee80211_tx_skb(sdata, skb);
2754 }
2755 
2756 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)2757 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2758 {
2759 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2760 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2761 
2762 	/*
2763 	 * From here on, look only at management frames.
2764 	 * Data and control frames are already handled,
2765 	 * and unknown (reserved) frames are useless.
2766 	 */
2767 	if (rx->skb->len < 24)
2768 		return RX_DROP_MONITOR;
2769 
2770 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2771 		return RX_DROP_MONITOR;
2772 
2773 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2774 	    ieee80211_is_beacon(mgmt->frame_control) &&
2775 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2776 		int sig = 0;
2777 
2778 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2779 			sig = status->signal;
2780 
2781 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2782 					    rx->skb->data, rx->skb->len,
2783 					    status->freq, sig);
2784 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2785 	}
2786 
2787 	if (ieee80211_drop_unencrypted_mgmt(rx))
2788 		return RX_DROP_UNUSABLE;
2789 
2790 	return RX_CONTINUE;
2791 }
2792 
2793 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)2794 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2795 {
2796 	struct ieee80211_local *local = rx->local;
2797 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2798 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2799 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2800 	int len = rx->skb->len;
2801 
2802 	if (!ieee80211_is_action(mgmt->frame_control))
2803 		return RX_CONTINUE;
2804 
2805 	/* drop too small frames */
2806 	if (len < IEEE80211_MIN_ACTION_SIZE)
2807 		return RX_DROP_UNUSABLE;
2808 
2809 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2810 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2811 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2812 		return RX_DROP_UNUSABLE;
2813 
2814 	switch (mgmt->u.action.category) {
2815 	case WLAN_CATEGORY_HT:
2816 		/* reject HT action frames from stations not supporting HT */
2817 		if (!rx->sta->sta.ht_cap.ht_supported)
2818 			goto invalid;
2819 
2820 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2821 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2822 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2823 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2824 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2825 			break;
2826 
2827 		/* verify action & smps_control/chanwidth are present */
2828 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2829 			goto invalid;
2830 
2831 		switch (mgmt->u.action.u.ht_smps.action) {
2832 		case WLAN_HT_ACTION_SMPS: {
2833 			struct ieee80211_supported_band *sband;
2834 			enum ieee80211_smps_mode smps_mode;
2835 
2836 			/* convert to HT capability */
2837 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2838 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2839 				smps_mode = IEEE80211_SMPS_OFF;
2840 				break;
2841 			case WLAN_HT_SMPS_CONTROL_STATIC:
2842 				smps_mode = IEEE80211_SMPS_STATIC;
2843 				break;
2844 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2845 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2846 				break;
2847 			default:
2848 				goto invalid;
2849 			}
2850 
2851 			/* if no change do nothing */
2852 			if (rx->sta->sta.smps_mode == smps_mode)
2853 				goto handled;
2854 			rx->sta->sta.smps_mode = smps_mode;
2855 
2856 			sband = rx->local->hw.wiphy->bands[status->band];
2857 
2858 			rate_control_rate_update(local, sband, rx->sta,
2859 						 IEEE80211_RC_SMPS_CHANGED);
2860 			goto handled;
2861 		}
2862 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2863 			struct ieee80211_supported_band *sband;
2864 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2865 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2866 
2867 			/* If it doesn't support 40 MHz it can't change ... */
2868 			if (!(rx->sta->sta.ht_cap.cap &
2869 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2870 				goto handled;
2871 
2872 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2873 				max_bw = IEEE80211_STA_RX_BW_20;
2874 			else
2875 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2876 
2877 			/* set cur_max_bandwidth and recalc sta bw */
2878 			rx->sta->cur_max_bandwidth = max_bw;
2879 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2880 
2881 			if (rx->sta->sta.bandwidth == new_bw)
2882 				goto handled;
2883 
2884 			rx->sta->sta.bandwidth = new_bw;
2885 			sband = rx->local->hw.wiphy->bands[status->band];
2886 
2887 			rate_control_rate_update(local, sband, rx->sta,
2888 						 IEEE80211_RC_BW_CHANGED);
2889 			goto handled;
2890 		}
2891 		default:
2892 			goto invalid;
2893 		}
2894 
2895 		break;
2896 	case WLAN_CATEGORY_PUBLIC:
2897 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2898 			goto invalid;
2899 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2900 			break;
2901 		if (!rx->sta)
2902 			break;
2903 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2904 			break;
2905 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2906 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2907 			break;
2908 		if (len < offsetof(struct ieee80211_mgmt,
2909 				   u.action.u.ext_chan_switch.variable))
2910 			goto invalid;
2911 		goto queue;
2912 	case WLAN_CATEGORY_VHT:
2913 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2914 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2915 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2916 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2917 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2918 			break;
2919 
2920 		/* verify action code is present */
2921 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2922 			goto invalid;
2923 
2924 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2925 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2926 			/* verify opmode is present */
2927 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2928 				goto invalid;
2929 			goto queue;
2930 		}
2931 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2932 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2933 				goto invalid;
2934 			goto queue;
2935 		}
2936 		default:
2937 			break;
2938 		}
2939 		break;
2940 	case WLAN_CATEGORY_BACK:
2941 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2942 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2943 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2944 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2945 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2946 			break;
2947 
2948 		/* verify action_code is present */
2949 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2950 			break;
2951 
2952 		switch (mgmt->u.action.u.addba_req.action_code) {
2953 		case WLAN_ACTION_ADDBA_REQ:
2954 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2955 				   sizeof(mgmt->u.action.u.addba_req)))
2956 				goto invalid;
2957 			break;
2958 		case WLAN_ACTION_ADDBA_RESP:
2959 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2960 				   sizeof(mgmt->u.action.u.addba_resp)))
2961 				goto invalid;
2962 			break;
2963 		case WLAN_ACTION_DELBA:
2964 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2965 				   sizeof(mgmt->u.action.u.delba)))
2966 				goto invalid;
2967 			break;
2968 		default:
2969 			goto invalid;
2970 		}
2971 
2972 		goto queue;
2973 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2974 		/* verify action_code is present */
2975 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2976 			break;
2977 
2978 		switch (mgmt->u.action.u.measurement.action_code) {
2979 		case WLAN_ACTION_SPCT_MSR_REQ:
2980 			if (status->band != NL80211_BAND_5GHZ)
2981 				break;
2982 
2983 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2984 				   sizeof(mgmt->u.action.u.measurement)))
2985 				break;
2986 
2987 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2988 				break;
2989 
2990 			ieee80211_process_measurement_req(sdata, mgmt, len);
2991 			goto handled;
2992 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2993 			u8 *bssid;
2994 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2995 				   sizeof(mgmt->u.action.u.chan_switch)))
2996 				break;
2997 
2998 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2999 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3000 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3001 				break;
3002 
3003 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3004 				bssid = sdata->u.mgd.bssid;
3005 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3006 				bssid = sdata->u.ibss.bssid;
3007 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3008 				bssid = mgmt->sa;
3009 			else
3010 				break;
3011 
3012 			if (!ether_addr_equal(mgmt->bssid, bssid))
3013 				break;
3014 
3015 			goto queue;
3016 			}
3017 		}
3018 		break;
3019 	case WLAN_CATEGORY_SA_QUERY:
3020 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3021 			   sizeof(mgmt->u.action.u.sa_query)))
3022 			break;
3023 
3024 		switch (mgmt->u.action.u.sa_query.action) {
3025 		case WLAN_ACTION_SA_QUERY_REQUEST:
3026 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3027 				break;
3028 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3029 			goto handled;
3030 		}
3031 		break;
3032 	case WLAN_CATEGORY_SELF_PROTECTED:
3033 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3034 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3035 			break;
3036 
3037 		switch (mgmt->u.action.u.self_prot.action_code) {
3038 		case WLAN_SP_MESH_PEERING_OPEN:
3039 		case WLAN_SP_MESH_PEERING_CLOSE:
3040 		case WLAN_SP_MESH_PEERING_CONFIRM:
3041 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3042 				goto invalid;
3043 			if (sdata->u.mesh.user_mpm)
3044 				/* userspace handles this frame */
3045 				break;
3046 			goto queue;
3047 		case WLAN_SP_MGK_INFORM:
3048 		case WLAN_SP_MGK_ACK:
3049 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3050 				goto invalid;
3051 			break;
3052 		}
3053 		break;
3054 	case WLAN_CATEGORY_MESH_ACTION:
3055 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3056 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3057 			break;
3058 
3059 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3060 			break;
3061 		if (mesh_action_is_path_sel(mgmt) &&
3062 		    !mesh_path_sel_is_hwmp(sdata))
3063 			break;
3064 		goto queue;
3065 	}
3066 
3067 	return RX_CONTINUE;
3068 
3069  invalid:
3070 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3071 	/* will return in the next handlers */
3072 	return RX_CONTINUE;
3073 
3074  handled:
3075 	if (rx->sta)
3076 		rx->sta->rx_stats.packets++;
3077 	dev_kfree_skb(rx->skb);
3078 	return RX_QUEUED;
3079 
3080  queue:
3081 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3082 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3083 	ieee80211_queue_work(&local->hw, &sdata->work);
3084 	if (rx->sta)
3085 		rx->sta->rx_stats.packets++;
3086 	return RX_QUEUED;
3087 }
3088 
3089 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3090 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3091 {
3092 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3093 	int sig = 0;
3094 
3095 	/* skip known-bad action frames and return them in the next handler */
3096 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3097 		return RX_CONTINUE;
3098 
3099 	/*
3100 	 * Getting here means the kernel doesn't know how to handle
3101 	 * it, but maybe userspace does ... include returned frames
3102 	 * so userspace can register for those to know whether ones
3103 	 * it transmitted were processed or returned.
3104 	 */
3105 
3106 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3107 		sig = status->signal;
3108 
3109 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3110 			     rx->skb->data, rx->skb->len, 0)) {
3111 		if (rx->sta)
3112 			rx->sta->rx_stats.packets++;
3113 		dev_kfree_skb(rx->skb);
3114 		return RX_QUEUED;
3115 	}
3116 
3117 	return RX_CONTINUE;
3118 }
3119 
3120 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3121 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3122 {
3123 	struct ieee80211_local *local = rx->local;
3124 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3125 	struct sk_buff *nskb;
3126 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3127 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3128 
3129 	if (!ieee80211_is_action(mgmt->frame_control))
3130 		return RX_CONTINUE;
3131 
3132 	/*
3133 	 * For AP mode, hostapd is responsible for handling any action
3134 	 * frames that we didn't handle, including returning unknown
3135 	 * ones. For all other modes we will return them to the sender,
3136 	 * setting the 0x80 bit in the action category, as required by
3137 	 * 802.11-2012 9.24.4.
3138 	 * Newer versions of hostapd shall also use the management frame
3139 	 * registration mechanisms, but older ones still use cooked
3140 	 * monitor interfaces so push all frames there.
3141 	 */
3142 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3143 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3144 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3145 		return RX_DROP_MONITOR;
3146 
3147 	if (is_multicast_ether_addr(mgmt->da))
3148 		return RX_DROP_MONITOR;
3149 
3150 	/* do not return rejected action frames */
3151 	if (mgmt->u.action.category & 0x80)
3152 		return RX_DROP_UNUSABLE;
3153 
3154 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3155 			       GFP_ATOMIC);
3156 	if (nskb) {
3157 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3158 
3159 		nmgmt->u.action.category |= 0x80;
3160 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3161 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3162 
3163 		memset(nskb->cb, 0, sizeof(nskb->cb));
3164 
3165 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3166 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3167 
3168 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3169 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3170 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3171 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3172 				info->hw_queue =
3173 					local->hw.offchannel_tx_hw_queue;
3174 		}
3175 
3176 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3177 					    status->band);
3178 	}
3179 	dev_kfree_skb(rx->skb);
3180 	return RX_QUEUED;
3181 }
3182 
3183 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3184 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3185 {
3186 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3187 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3188 	__le16 stype;
3189 
3190 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3191 
3192 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3193 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3194 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3195 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3196 		return RX_DROP_MONITOR;
3197 
3198 	switch (stype) {
3199 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3200 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3201 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3202 		/* process for all: mesh, mlme, ibss */
3203 		break;
3204 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3205 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3206 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3207 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3208 		if (is_multicast_ether_addr(mgmt->da) &&
3209 		    !is_broadcast_ether_addr(mgmt->da))
3210 			return RX_DROP_MONITOR;
3211 
3212 		/* process only for station */
3213 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3214 			return RX_DROP_MONITOR;
3215 		break;
3216 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3217 		/* process only for ibss and mesh */
3218 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3219 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3220 			return RX_DROP_MONITOR;
3221 		break;
3222 	default:
3223 		return RX_DROP_MONITOR;
3224 	}
3225 
3226 	/* queue up frame and kick off work to process it */
3227 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3228 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3229 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3230 	if (rx->sta)
3231 		rx->sta->rx_stats.packets++;
3232 
3233 	return RX_QUEUED;
3234 }
3235 
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3236 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3237 					struct ieee80211_rate *rate)
3238 {
3239 	struct ieee80211_sub_if_data *sdata;
3240 	struct ieee80211_local *local = rx->local;
3241 	struct sk_buff *skb = rx->skb, *skb2;
3242 	struct net_device *prev_dev = NULL;
3243 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3244 	int needed_headroom;
3245 
3246 	/*
3247 	 * If cooked monitor has been processed already, then
3248 	 * don't do it again. If not, set the flag.
3249 	 */
3250 	if (rx->flags & IEEE80211_RX_CMNTR)
3251 		goto out_free_skb;
3252 	rx->flags |= IEEE80211_RX_CMNTR;
3253 
3254 	/* If there are no cooked monitor interfaces, just free the SKB */
3255 	if (!local->cooked_mntrs)
3256 		goto out_free_skb;
3257 
3258 	/* vendor data is long removed here */
3259 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3260 	/* room for the radiotap header based on driver features */
3261 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3262 
3263 	if (skb_headroom(skb) < needed_headroom &&
3264 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3265 		goto out_free_skb;
3266 
3267 	/* prepend radiotap information */
3268 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3269 					 false);
3270 
3271 	skb_reset_mac_header(skb);
3272 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3273 	skb->pkt_type = PACKET_OTHERHOST;
3274 	skb->protocol = htons(ETH_P_802_2);
3275 
3276 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3277 		if (!ieee80211_sdata_running(sdata))
3278 			continue;
3279 
3280 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3281 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3282 			continue;
3283 
3284 		if (prev_dev) {
3285 			skb2 = skb_clone(skb, GFP_ATOMIC);
3286 			if (skb2) {
3287 				skb2->dev = prev_dev;
3288 				netif_receive_skb(skb2);
3289 			}
3290 		}
3291 
3292 		prev_dev = sdata->dev;
3293 		ieee80211_rx_stats(sdata->dev, skb->len);
3294 	}
3295 
3296 	if (prev_dev) {
3297 		skb->dev = prev_dev;
3298 		netif_receive_skb(skb);
3299 		return;
3300 	}
3301 
3302  out_free_skb:
3303 	dev_kfree_skb(skb);
3304 }
3305 
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3306 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3307 					 ieee80211_rx_result res)
3308 {
3309 	switch (res) {
3310 	case RX_DROP_MONITOR:
3311 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3312 		if (rx->sta)
3313 			rx->sta->rx_stats.dropped++;
3314 		/* fall through */
3315 	case RX_CONTINUE: {
3316 		struct ieee80211_rate *rate = NULL;
3317 		struct ieee80211_supported_band *sband;
3318 		struct ieee80211_rx_status *status;
3319 
3320 		status = IEEE80211_SKB_RXCB((rx->skb));
3321 
3322 		sband = rx->local->hw.wiphy->bands[status->band];
3323 		if (!(status->flag & RX_FLAG_HT) &&
3324 		    !(status->flag & RX_FLAG_VHT))
3325 			rate = &sband->bitrates[status->rate_idx];
3326 
3327 		ieee80211_rx_cooked_monitor(rx, rate);
3328 		break;
3329 		}
3330 	case RX_DROP_UNUSABLE:
3331 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3332 		if (rx->sta)
3333 			rx->sta->rx_stats.dropped++;
3334 		dev_kfree_skb(rx->skb);
3335 		break;
3336 	case RX_QUEUED:
3337 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3338 		break;
3339 	}
3340 }
3341 
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3342 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3343 				  struct sk_buff_head *frames)
3344 {
3345 	ieee80211_rx_result res = RX_DROP_MONITOR;
3346 	struct sk_buff *skb;
3347 
3348 #define CALL_RXH(rxh)			\
3349 	do {				\
3350 		res = rxh(rx);		\
3351 		if (res != RX_CONTINUE)	\
3352 			goto rxh_next;  \
3353 	} while (0)
3354 
3355 	/* Lock here to avoid hitting all of the data used in the RX
3356 	 * path (e.g. key data, station data, ...) concurrently when
3357 	 * a frame is released from the reorder buffer due to timeout
3358 	 * from the timer, potentially concurrently with RX from the
3359 	 * driver.
3360 	 */
3361 	spin_lock_bh(&rx->local->rx_path_lock);
3362 
3363 	while ((skb = __skb_dequeue(frames))) {
3364 		/*
3365 		 * all the other fields are valid across frames
3366 		 * that belong to an aMPDU since they are on the
3367 		 * same TID from the same station
3368 		 */
3369 		rx->skb = skb;
3370 
3371 		CALL_RXH(ieee80211_rx_h_check_more_data);
3372 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3373 		CALL_RXH(ieee80211_rx_h_sta_process);
3374 		CALL_RXH(ieee80211_rx_h_decrypt);
3375 		CALL_RXH(ieee80211_rx_h_defragment);
3376 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3377 		/* must be after MMIC verify so header is counted in MPDU mic */
3378 #ifdef CONFIG_MAC80211_MESH
3379 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3380 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3381 #endif
3382 		CALL_RXH(ieee80211_rx_h_amsdu);
3383 		CALL_RXH(ieee80211_rx_h_data);
3384 
3385 		/* special treatment -- needs the queue */
3386 		res = ieee80211_rx_h_ctrl(rx, frames);
3387 		if (res != RX_CONTINUE)
3388 			goto rxh_next;
3389 
3390 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3391 		CALL_RXH(ieee80211_rx_h_action);
3392 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3393 		CALL_RXH(ieee80211_rx_h_action_return);
3394 		CALL_RXH(ieee80211_rx_h_mgmt);
3395 
3396  rxh_next:
3397 		ieee80211_rx_handlers_result(rx, res);
3398 
3399 #undef CALL_RXH
3400 	}
3401 
3402 	spin_unlock_bh(&rx->local->rx_path_lock);
3403 }
3404 
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3405 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3406 {
3407 	struct sk_buff_head reorder_release;
3408 	ieee80211_rx_result res = RX_DROP_MONITOR;
3409 
3410 	__skb_queue_head_init(&reorder_release);
3411 
3412 #define CALL_RXH(rxh)			\
3413 	do {				\
3414 		res = rxh(rx);		\
3415 		if (res != RX_CONTINUE)	\
3416 			goto rxh_next;  \
3417 	} while (0)
3418 
3419 	CALL_RXH(ieee80211_rx_h_check_dup);
3420 	CALL_RXH(ieee80211_rx_h_check);
3421 
3422 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3423 
3424 	ieee80211_rx_handlers(rx, &reorder_release);
3425 	return;
3426 
3427  rxh_next:
3428 	ieee80211_rx_handlers_result(rx, res);
3429 
3430 #undef CALL_RXH
3431 }
3432 
3433 /*
3434  * This function makes calls into the RX path, therefore
3435  * it has to be invoked under RCU read lock.
3436  */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3437 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3438 {
3439 	struct sk_buff_head frames;
3440 	struct ieee80211_rx_data rx = {
3441 		.sta = sta,
3442 		.sdata = sta->sdata,
3443 		.local = sta->local,
3444 		/* This is OK -- must be QoS data frame */
3445 		.security_idx = tid,
3446 		.seqno_idx = tid,
3447 		.napi = NULL, /* must be NULL to not have races */
3448 	};
3449 	struct tid_ampdu_rx *tid_agg_rx;
3450 
3451 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3452 	if (!tid_agg_rx)
3453 		return;
3454 
3455 	__skb_queue_head_init(&frames);
3456 
3457 	spin_lock(&tid_agg_rx->reorder_lock);
3458 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3459 	spin_unlock(&tid_agg_rx->reorder_lock);
3460 
3461 	if (!skb_queue_empty(&frames)) {
3462 		struct ieee80211_event event = {
3463 			.type = BA_FRAME_TIMEOUT,
3464 			.u.ba.tid = tid,
3465 			.u.ba.sta = &sta->sta,
3466 		};
3467 		drv_event_callback(rx.local, rx.sdata, &event);
3468 	}
3469 
3470 	ieee80211_rx_handlers(&rx, &frames);
3471 }
3472 
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)3473 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3474 					  u16 ssn, u64 filtered,
3475 					  u16 received_mpdus)
3476 {
3477 	struct sta_info *sta;
3478 	struct tid_ampdu_rx *tid_agg_rx;
3479 	struct sk_buff_head frames;
3480 	struct ieee80211_rx_data rx = {
3481 		/* This is OK -- must be QoS data frame */
3482 		.security_idx = tid,
3483 		.seqno_idx = tid,
3484 	};
3485 	int i, diff;
3486 
3487 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3488 		return;
3489 
3490 	__skb_queue_head_init(&frames);
3491 
3492 	sta = container_of(pubsta, struct sta_info, sta);
3493 
3494 	rx.sta = sta;
3495 	rx.sdata = sta->sdata;
3496 	rx.local = sta->local;
3497 
3498 	rcu_read_lock();
3499 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3500 	if (!tid_agg_rx)
3501 		goto out;
3502 
3503 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3504 
3505 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3506 		int release;
3507 
3508 		/* release all frames in the reorder buffer */
3509 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3510 			   IEEE80211_SN_MODULO;
3511 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3512 						 release, &frames);
3513 		/* update ssn to match received ssn */
3514 		tid_agg_rx->head_seq_num = ssn;
3515 	} else {
3516 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3517 						 &frames);
3518 	}
3519 
3520 	/* handle the case that received ssn is behind the mac ssn.
3521 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3522 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3523 	if (diff >= tid_agg_rx->buf_size) {
3524 		tid_agg_rx->reorder_buf_filtered = 0;
3525 		goto release;
3526 	}
3527 	filtered = filtered >> diff;
3528 	ssn += diff;
3529 
3530 	/* update bitmap */
3531 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3532 		int index = (ssn + i) % tid_agg_rx->buf_size;
3533 
3534 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3535 		if (filtered & BIT_ULL(i))
3536 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3537 	}
3538 
3539 	/* now process also frames that the filter marking released */
3540 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3541 
3542 release:
3543 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3544 
3545 	ieee80211_rx_handlers(&rx, &frames);
3546 
3547  out:
3548 	rcu_read_unlock();
3549 }
3550 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3551 
3552 /* main receive path */
3553 
ieee80211_accept_frame(struct ieee80211_rx_data * rx)3554 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3555 {
3556 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3557 	struct sk_buff *skb = rx->skb;
3558 	struct ieee80211_hdr *hdr = (void *)skb->data;
3559 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3560 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3561 	int multicast = is_multicast_ether_addr(hdr->addr1);
3562 
3563 	switch (sdata->vif.type) {
3564 	case NL80211_IFTYPE_STATION:
3565 		if (!bssid && !sdata->u.mgd.use_4addr)
3566 			return false;
3567 		if (multicast)
3568 			return true;
3569 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3570 	case NL80211_IFTYPE_ADHOC:
3571 		if (!bssid)
3572 			return false;
3573 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3574 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3575 			return false;
3576 		if (ieee80211_is_beacon(hdr->frame_control))
3577 			return true;
3578 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3579 			return false;
3580 		if (!multicast &&
3581 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3582 			return false;
3583 		if (!rx->sta) {
3584 			int rate_idx;
3585 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3586 				rate_idx = 0; /* TODO: HT/VHT rates */
3587 			else
3588 				rate_idx = status->rate_idx;
3589 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3590 						 BIT(rate_idx));
3591 		}
3592 		return true;
3593 	case NL80211_IFTYPE_OCB:
3594 		if (!bssid)
3595 			return false;
3596 		if (!ieee80211_is_data_present(hdr->frame_control))
3597 			return false;
3598 		if (!is_broadcast_ether_addr(bssid))
3599 			return false;
3600 		if (!multicast &&
3601 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3602 			return false;
3603 		if (!rx->sta) {
3604 			int rate_idx;
3605 			if (status->flag & RX_FLAG_HT)
3606 				rate_idx = 0; /* TODO: HT rates */
3607 			else
3608 				rate_idx = status->rate_idx;
3609 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3610 						BIT(rate_idx));
3611 		}
3612 		return true;
3613 	case NL80211_IFTYPE_MESH_POINT:
3614 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3615 			return false;
3616 		if (multicast)
3617 			return true;
3618 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3619 	case NL80211_IFTYPE_AP_VLAN:
3620 	case NL80211_IFTYPE_AP:
3621 		if (!bssid)
3622 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3623 
3624 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3625 			/*
3626 			 * Accept public action frames even when the
3627 			 * BSSID doesn't match, this is used for P2P
3628 			 * and location updates. Note that mac80211
3629 			 * itself never looks at these frames.
3630 			 */
3631 			if (!multicast &&
3632 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3633 				return false;
3634 			if (ieee80211_is_public_action(hdr, skb->len))
3635 				return true;
3636 			return ieee80211_is_beacon(hdr->frame_control);
3637 		}
3638 
3639 		if (!ieee80211_has_tods(hdr->frame_control)) {
3640 			/* ignore data frames to TDLS-peers */
3641 			if (ieee80211_is_data(hdr->frame_control))
3642 				return false;
3643 			/* ignore action frames to TDLS-peers */
3644 			if (ieee80211_is_action(hdr->frame_control) &&
3645 			    !is_broadcast_ether_addr(bssid) &&
3646 			    !ether_addr_equal(bssid, hdr->addr1))
3647 				return false;
3648 		}
3649 
3650 		/*
3651 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3652 		 * the BSSID - we've checked that already but may have accepted
3653 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3654 		 *
3655 		 * It also says:
3656 		 *	The BSSID of the Data frame is determined as follows:
3657 		 *	a) If the STA is contained within an AP or is associated
3658 		 *	   with an AP, the BSSID is the address currently in use
3659 		 *	   by the STA contained in the AP.
3660 		 *
3661 		 * So we should not accept data frames with an address that's
3662 		 * multicast.
3663 		 *
3664 		 * Accepting it also opens a security problem because stations
3665 		 * could encrypt it with the GTK and inject traffic that way.
3666 		 */
3667 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3668 			return false;
3669 
3670 		return true;
3671 	case NL80211_IFTYPE_WDS:
3672 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3673 			return false;
3674 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3675 	case NL80211_IFTYPE_P2P_DEVICE:
3676 		return ieee80211_is_public_action(hdr, skb->len) ||
3677 		       ieee80211_is_probe_req(hdr->frame_control) ||
3678 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3679 		       ieee80211_is_beacon(hdr->frame_control);
3680 	case NL80211_IFTYPE_NAN:
3681 		/* Currently no frames on NAN interface are allowed */
3682 		return false;
3683 	default:
3684 		break;
3685 	}
3686 
3687 	WARN_ON_ONCE(1);
3688 	return false;
3689 }
3690 
ieee80211_check_fast_rx(struct sta_info * sta)3691 void ieee80211_check_fast_rx(struct sta_info *sta)
3692 {
3693 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3694 	struct ieee80211_local *local = sdata->local;
3695 	struct ieee80211_key *key;
3696 	struct ieee80211_fast_rx fastrx = {
3697 		.dev = sdata->dev,
3698 		.vif_type = sdata->vif.type,
3699 		.control_port_protocol = sdata->control_port_protocol,
3700 	}, *old, *new = NULL;
3701 	bool assign = false;
3702 
3703 	/* use sparse to check that we don't return without updating */
3704 	__acquire(check_fast_rx);
3705 
3706 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3707 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3708 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3709 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3710 
3711 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3712 
3713 	/* fast-rx doesn't do reordering */
3714 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3715 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3716 		goto clear;
3717 
3718 	switch (sdata->vif.type) {
3719 	case NL80211_IFTYPE_STATION:
3720 		/* 4-addr is harder to deal with, later maybe */
3721 		if (sdata->u.mgd.use_4addr)
3722 			goto clear;
3723 		/* software powersave is a huge mess, avoid all of it */
3724 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3725 			goto clear;
3726 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3727 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3728 			goto clear;
3729 		if (sta->sta.tdls) {
3730 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3731 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3732 			fastrx.expected_ds_bits = 0;
3733 		} else {
3734 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3735 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3736 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3737 			fastrx.expected_ds_bits =
3738 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3739 		}
3740 		break;
3741 	case NL80211_IFTYPE_AP_VLAN:
3742 	case NL80211_IFTYPE_AP:
3743 		/* parallel-rx requires this, at least with calls to
3744 		 * ieee80211_sta_ps_transition()
3745 		 */
3746 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3747 			goto clear;
3748 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3749 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3750 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3751 
3752 		fastrx.internal_forward =
3753 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3754 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3755 			 !sdata->u.vlan.sta);
3756 		break;
3757 	default:
3758 		goto clear;
3759 	}
3760 
3761 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3762 		goto clear;
3763 
3764 	rcu_read_lock();
3765 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3766 	if (key) {
3767 		switch (key->conf.cipher) {
3768 		case WLAN_CIPHER_SUITE_TKIP:
3769 			/* we don't want to deal with MMIC in fast-rx */
3770 			goto clear_rcu;
3771 		case WLAN_CIPHER_SUITE_CCMP:
3772 		case WLAN_CIPHER_SUITE_CCMP_256:
3773 		case WLAN_CIPHER_SUITE_GCMP:
3774 		case WLAN_CIPHER_SUITE_GCMP_256:
3775 			break;
3776 		default:
3777 			/* we also don't want to deal with WEP or cipher scheme
3778 			 * since those require looking up the key idx in the
3779 			 * frame, rather than assuming the PTK is used
3780 			 * (we need to revisit this once we implement the real
3781 			 * PTK index, which is now valid in the spec, but we
3782 			 * haven't implemented that part yet)
3783 			 */
3784 			goto clear_rcu;
3785 		}
3786 
3787 		fastrx.key = true;
3788 		fastrx.icv_len = key->conf.icv_len;
3789 	}
3790 
3791 	assign = true;
3792  clear_rcu:
3793 	rcu_read_unlock();
3794  clear:
3795 	__release(check_fast_rx);
3796 
3797 	if (assign)
3798 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3799 
3800 	spin_lock_bh(&sta->lock);
3801 	old = rcu_dereference_protected(sta->fast_rx, true);
3802 	rcu_assign_pointer(sta->fast_rx, new);
3803 	spin_unlock_bh(&sta->lock);
3804 
3805 	if (old)
3806 		kfree_rcu(old, rcu_head);
3807 }
3808 
ieee80211_clear_fast_rx(struct sta_info * sta)3809 void ieee80211_clear_fast_rx(struct sta_info *sta)
3810 {
3811 	struct ieee80211_fast_rx *old;
3812 
3813 	spin_lock_bh(&sta->lock);
3814 	old = rcu_dereference_protected(sta->fast_rx, true);
3815 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3816 	spin_unlock_bh(&sta->lock);
3817 
3818 	if (old)
3819 		kfree_rcu(old, rcu_head);
3820 }
3821 
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)3822 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3823 {
3824 	struct ieee80211_local *local = sdata->local;
3825 	struct sta_info *sta;
3826 
3827 	lockdep_assert_held(&local->sta_mtx);
3828 
3829 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3830 		if (sdata != sta->sdata &&
3831 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3832 			continue;
3833 		ieee80211_check_fast_rx(sta);
3834 	}
3835 }
3836 
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)3837 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3838 {
3839 	struct ieee80211_local *local = sdata->local;
3840 
3841 	mutex_lock(&local->sta_mtx);
3842 	__ieee80211_check_fast_rx_iface(sdata);
3843 	mutex_unlock(&local->sta_mtx);
3844 }
3845 
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)3846 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3847 				     struct ieee80211_fast_rx *fast_rx)
3848 {
3849 	struct sk_buff *skb = rx->skb;
3850 	struct ieee80211_hdr *hdr = (void *)skb->data;
3851 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3852 	struct sta_info *sta = rx->sta;
3853 	int orig_len = skb->len;
3854 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3855 	struct {
3856 		u8 snap[sizeof(rfc1042_header)];
3857 		__be16 proto;
3858 	} *payload __aligned(2);
3859 	struct {
3860 		u8 da[ETH_ALEN];
3861 		u8 sa[ETH_ALEN];
3862 	} addrs __aligned(2);
3863 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3864 
3865 	if (fast_rx->uses_rss)
3866 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3867 
3868 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3869 	 * to a common data structure; drivers can implement that per queue
3870 	 * but we don't have that information in mac80211
3871 	 */
3872 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3873 		return false;
3874 
3875 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3876 
3877 	/* If using encryption, we also need to have:
3878 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3879 	 *  - DECRYPTED: necessary for PN_VALIDATED
3880 	 */
3881 	if (fast_rx->key &&
3882 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3883 		return false;
3884 
3885 	/* we don't deal with A-MSDU deaggregation here */
3886 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3887 		return false;
3888 
3889 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3890 		return false;
3891 
3892 	if (unlikely(ieee80211_is_frag(hdr)))
3893 		return false;
3894 
3895 	/* Since our interface address cannot be multicast, this
3896 	 * implicitly also rejects multicast frames without the
3897 	 * explicit check.
3898 	 *
3899 	 * We shouldn't get any *data* frames not addressed to us
3900 	 * (AP mode will accept multicast *management* frames), but
3901 	 * punting here will make it go through the full checks in
3902 	 * ieee80211_accept_frame().
3903 	 */
3904 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3905 		return false;
3906 
3907 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3908 					      IEEE80211_FCTL_TODS)) !=
3909 	    fast_rx->expected_ds_bits)
3910 		goto drop;
3911 
3912 	/* assign the key to drop unencrypted frames (later)
3913 	 * and strip the IV/MIC if necessary
3914 	 */
3915 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3916 		/* GCMP header length is the same */
3917 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3918 	}
3919 
3920 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3921 		goto drop;
3922 	payload = (void *)(skb->data + snap_offs);
3923 
3924 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3925 		return false;
3926 
3927 	/* Don't handle these here since they require special code.
3928 	 * Accept AARP and IPX even though they should come with a
3929 	 * bridge-tunnel header - but if we get them this way then
3930 	 * there's little point in discarding them.
3931 	 */
3932 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3933 		     payload->proto == fast_rx->control_port_protocol))
3934 		return false;
3935 
3936 	/* after this point, don't punt to the slowpath! */
3937 
3938 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3939 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3940 		goto drop;
3941 
3942 	if (unlikely(fast_rx->sta_notify)) {
3943 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3944 		fast_rx->sta_notify = false;
3945 	}
3946 
3947 	/* statistics part of ieee80211_rx_h_sta_process() */
3948 	stats->last_rx = jiffies;
3949 	stats->last_rate = sta_stats_encode_rate(status);
3950 
3951 	stats->fragments++;
3952 	stats->packets++;
3953 
3954 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3955 		stats->last_signal = status->signal;
3956 		if (!fast_rx->uses_rss)
3957 			ewma_signal_add(&sta->rx_stats_avg.signal,
3958 					-status->signal);
3959 	}
3960 
3961 	if (status->chains) {
3962 		int i;
3963 
3964 		stats->chains = status->chains;
3965 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3966 			int signal = status->chain_signal[i];
3967 
3968 			if (!(status->chains & BIT(i)))
3969 				continue;
3970 
3971 			stats->chain_signal_last[i] = signal;
3972 			if (!fast_rx->uses_rss)
3973 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3974 						-signal);
3975 		}
3976 	}
3977 	/* end of statistics */
3978 
3979 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3980 		goto drop;
3981 
3982 	/* do the header conversion - first grab the addresses */
3983 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3984 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3985 	/* remove the SNAP but leave the ethertype */
3986 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3987 	/* push the addresses in front */
3988 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3989 
3990 	skb->dev = fast_rx->dev;
3991 
3992 	ieee80211_rx_stats(fast_rx->dev, skb->len);
3993 
3994 	/* The seqno index has the same property as needed
3995 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3996 	 * for non-QoS-data frames. Here we know it's a data
3997 	 * frame, so count MSDUs.
3998 	 */
3999 	u64_stats_update_begin(&stats->syncp);
4000 	stats->msdu[rx->seqno_idx]++;
4001 	stats->bytes += orig_len;
4002 	u64_stats_update_end(&stats->syncp);
4003 
4004 	if (fast_rx->internal_forward) {
4005 		struct sk_buff *xmit_skb = NULL;
4006 		bool multicast = is_multicast_ether_addr(skb->data);
4007 
4008 		if (multicast) {
4009 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4010 		} else if (sta_info_get(rx->sdata, skb->data)) {
4011 			xmit_skb = skb;
4012 			skb = NULL;
4013 		}
4014 
4015 		if (xmit_skb) {
4016 			/*
4017 			 * Send to wireless media and increase priority by 256
4018 			 * to keep the received priority instead of
4019 			 * reclassifying the frame (see cfg80211_classify8021d).
4020 			 */
4021 			xmit_skb->priority += 256;
4022 			xmit_skb->protocol = htons(ETH_P_802_3);
4023 			skb_reset_network_header(xmit_skb);
4024 			skb_reset_mac_header(xmit_skb);
4025 			dev_queue_xmit(xmit_skb);
4026 		}
4027 
4028 		if (!skb)
4029 			return true;
4030 	}
4031 
4032 	/* deliver to local stack */
4033 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4034 	memset(skb->cb, 0, sizeof(skb->cb));
4035 	if (rx->napi)
4036 		napi_gro_receive(rx->napi, skb);
4037 	else
4038 		netif_receive_skb(skb);
4039 
4040 	return true;
4041  drop:
4042 	dev_kfree_skb(skb);
4043 	stats->dropped++;
4044 	return true;
4045 }
4046 
4047 /*
4048  * This function returns whether or not the SKB
4049  * was destined for RX processing or not, which,
4050  * if consume is true, is equivalent to whether
4051  * or not the skb was consumed.
4052  */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4053 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4054 					    struct sk_buff *skb, bool consume)
4055 {
4056 	struct ieee80211_local *local = rx->local;
4057 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4058 
4059 	rx->skb = skb;
4060 
4061 	/* See if we can do fast-rx; if we have to copy we already lost,
4062 	 * so punt in that case. We should never have to deliver a data
4063 	 * frame to multiple interfaces anyway.
4064 	 *
4065 	 * We skip the ieee80211_accept_frame() call and do the necessary
4066 	 * checking inside ieee80211_invoke_fast_rx().
4067 	 */
4068 	if (consume && rx->sta) {
4069 		struct ieee80211_fast_rx *fast_rx;
4070 
4071 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4072 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4073 			return true;
4074 	}
4075 
4076 	if (!ieee80211_accept_frame(rx))
4077 		return false;
4078 
4079 	if (!consume) {
4080 		skb = skb_copy(skb, GFP_ATOMIC);
4081 		if (!skb) {
4082 			if (net_ratelimit())
4083 				wiphy_debug(local->hw.wiphy,
4084 					"failed to copy skb for %s\n",
4085 					sdata->name);
4086 			return true;
4087 		}
4088 
4089 		rx->skb = skb;
4090 	}
4091 
4092 	ieee80211_invoke_rx_handlers(rx);
4093 	return true;
4094 }
4095 
4096 /*
4097  * This is the actual Rx frames handler. as it belongs to Rx path it must
4098  * be called with rcu_read_lock protection.
4099  */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4100 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4101 					 struct ieee80211_sta *pubsta,
4102 					 struct sk_buff *skb,
4103 					 struct napi_struct *napi)
4104 {
4105 	struct ieee80211_local *local = hw_to_local(hw);
4106 	struct ieee80211_sub_if_data *sdata;
4107 	struct ieee80211_hdr *hdr;
4108 	__le16 fc;
4109 	struct ieee80211_rx_data rx;
4110 	struct ieee80211_sub_if_data *prev;
4111 	struct rhlist_head *tmp;
4112 	int err = 0;
4113 
4114 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4115 	memset(&rx, 0, sizeof(rx));
4116 	rx.skb = skb;
4117 	rx.local = local;
4118 	rx.napi = napi;
4119 
4120 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4121 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4122 
4123 	if (ieee80211_is_mgmt(fc)) {
4124 		/* drop frame if too short for header */
4125 		if (skb->len < ieee80211_hdrlen(fc))
4126 			err = -ENOBUFS;
4127 		else
4128 			err = skb_linearize(skb);
4129 	} else {
4130 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4131 	}
4132 
4133 	if (err) {
4134 		dev_kfree_skb(skb);
4135 		return;
4136 	}
4137 
4138 	hdr = (struct ieee80211_hdr *)skb->data;
4139 	ieee80211_parse_qos(&rx);
4140 	ieee80211_verify_alignment(&rx);
4141 
4142 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4143 		     ieee80211_is_beacon(hdr->frame_control)))
4144 		ieee80211_scan_rx(local, skb);
4145 
4146 	if (ieee80211_is_data(fc)) {
4147 		struct sta_info *sta, *prev_sta;
4148 
4149 		if (pubsta) {
4150 			rx.sta = container_of(pubsta, struct sta_info, sta);
4151 			rx.sdata = rx.sta->sdata;
4152 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4153 				return;
4154 			goto out;
4155 		}
4156 
4157 		prev_sta = NULL;
4158 
4159 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4160 			if (!prev_sta) {
4161 				prev_sta = sta;
4162 				continue;
4163 			}
4164 
4165 			rx.sta = prev_sta;
4166 			rx.sdata = prev_sta->sdata;
4167 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4168 
4169 			prev_sta = sta;
4170 		}
4171 
4172 		if (prev_sta) {
4173 			rx.sta = prev_sta;
4174 			rx.sdata = prev_sta->sdata;
4175 
4176 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4177 				return;
4178 			goto out;
4179 		}
4180 	}
4181 
4182 	prev = NULL;
4183 
4184 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4185 		if (!ieee80211_sdata_running(sdata))
4186 			continue;
4187 
4188 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4189 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4190 			continue;
4191 
4192 		/*
4193 		 * frame is destined for this interface, but if it's
4194 		 * not also for the previous one we handle that after
4195 		 * the loop to avoid copying the SKB once too much
4196 		 */
4197 
4198 		if (!prev) {
4199 			prev = sdata;
4200 			continue;
4201 		}
4202 
4203 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4204 		rx.sdata = prev;
4205 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4206 
4207 		prev = sdata;
4208 	}
4209 
4210 	if (prev) {
4211 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4212 		rx.sdata = prev;
4213 
4214 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4215 			return;
4216 	}
4217 
4218  out:
4219 	dev_kfree_skb(skb);
4220 }
4221 
4222 /*
4223  * This is the receive path handler. It is called by a low level driver when an
4224  * 802.11 MPDU is received from the hardware.
4225  */
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4226 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4227 		       struct sk_buff *skb, struct napi_struct *napi)
4228 {
4229 	struct ieee80211_local *local = hw_to_local(hw);
4230 	struct ieee80211_rate *rate = NULL;
4231 	struct ieee80211_supported_band *sband;
4232 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4233 
4234 	WARN_ON_ONCE(softirq_count() == 0);
4235 
4236 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4237 		goto drop;
4238 
4239 	sband = local->hw.wiphy->bands[status->band];
4240 	if (WARN_ON(!sband))
4241 		goto drop;
4242 
4243 	/*
4244 	 * If we're suspending, it is possible although not too likely
4245 	 * that we'd be receiving frames after having already partially
4246 	 * quiesced the stack. We can't process such frames then since
4247 	 * that might, for example, cause stations to be added or other
4248 	 * driver callbacks be invoked.
4249 	 */
4250 	if (unlikely(local->quiescing || local->suspended))
4251 		goto drop;
4252 
4253 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4254 	if (unlikely(local->in_reconfig))
4255 		goto drop;
4256 
4257 	/*
4258 	 * The same happens when we're not even started,
4259 	 * but that's worth a warning.
4260 	 */
4261 	if (WARN_ON(!local->started))
4262 		goto drop;
4263 
4264 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4265 		/*
4266 		 * Validate the rate, unless a PLCP error means that
4267 		 * we probably can't have a valid rate here anyway.
4268 		 */
4269 
4270 		if (status->flag & RX_FLAG_HT) {
4271 			/*
4272 			 * rate_idx is MCS index, which can be [0-76]
4273 			 * as documented on:
4274 			 *
4275 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4276 			 *
4277 			 * Anything else would be some sort of driver or
4278 			 * hardware error. The driver should catch hardware
4279 			 * errors.
4280 			 */
4281 			if (WARN(status->rate_idx > 76,
4282 				 "Rate marked as an HT rate but passed "
4283 				 "status->rate_idx is not "
4284 				 "an MCS index [0-76]: %d (0x%02x)\n",
4285 				 status->rate_idx,
4286 				 status->rate_idx))
4287 				goto drop;
4288 		} else if (status->flag & RX_FLAG_VHT) {
4289 			if (WARN_ONCE(status->rate_idx > 9 ||
4290 				      !status->vht_nss ||
4291 				      status->vht_nss > 8,
4292 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4293 				      status->rate_idx, status->vht_nss))
4294 				goto drop;
4295 		} else {
4296 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4297 				goto drop;
4298 			rate = &sband->bitrates[status->rate_idx];
4299 		}
4300 	}
4301 
4302 	status->rx_flags = 0;
4303 
4304 	/*
4305 	 * key references and virtual interfaces are protected using RCU
4306 	 * and this requires that we are in a read-side RCU section during
4307 	 * receive processing
4308 	 */
4309 	rcu_read_lock();
4310 
4311 	/*
4312 	 * Frames with failed FCS/PLCP checksum are not returned,
4313 	 * all other frames are returned without radiotap header
4314 	 * if it was previously present.
4315 	 * Also, frames with less than 16 bytes are dropped.
4316 	 */
4317 	skb = ieee80211_rx_monitor(local, skb, rate);
4318 	if (!skb) {
4319 		rcu_read_unlock();
4320 		return;
4321 	}
4322 
4323 	ieee80211_tpt_led_trig_rx(local,
4324 			((struct ieee80211_hdr *)skb->data)->frame_control,
4325 			skb->len);
4326 
4327 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4328 
4329 	rcu_read_unlock();
4330 
4331 	return;
4332  drop:
4333 	kfree_skb(skb);
4334 }
4335 EXPORT_SYMBOL(ieee80211_rx_napi);
4336 
4337 /* This is a version of the rx handler that can be called from hard irq
4338  * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)4339 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4340 {
4341 	struct ieee80211_local *local = hw_to_local(hw);
4342 
4343 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4344 
4345 	skb->pkt_type = IEEE80211_RX_MSG;
4346 	skb_queue_tail(&local->skb_queue, skb);
4347 	tasklet_schedule(&local->tasklet);
4348 }
4349 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4350