• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE			(1<<0)
55 #define INTEL_RC6p_ENABLE			(1<<1)
56 #define INTEL_RC6pp_ENABLE			(1<<2)
57 
gen9_init_clock_gating(struct drm_device * dev)58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60 	struct drm_i915_private *dev_priv = dev->dev_private;
61 
62 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 	I915_WRITE(CHICKEN_PAR1_1,
64 		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65 
66 	I915_WRITE(GEN8_CONFIG0,
67 		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 
69 	/* WaEnableChickenDCPR:skl,bxt,kbl */
70 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
71 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 
73 	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 	/* WaFbcWakeMemOn:skl,bxt,kbl */
75 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76 		   DISP_FBC_WM_DIS |
77 		   DISP_FBC_MEMORY_WAKE);
78 
79 	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81 		   ILK_DPFC_DISABLE_DUMMY0);
82 }
83 
bxt_init_clock_gating(struct drm_device * dev)84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86 	struct drm_i915_private *dev_priv = to_i915(dev);
87 
88 	gen9_init_clock_gating(dev);
89 
90 	/* WaDisableSDEUnitClockGating:bxt */
91 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93 
94 	/*
95 	 * FIXME:
96 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 	 */
98 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 
101 	/*
102 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
103 	 * to stay fully on.
104 	 */
105 	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107 			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109 
i915_pineview_get_mem_freq(struct drm_device * dev)110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112 	struct drm_i915_private *dev_priv = to_i915(dev);
113 	u32 tmp;
114 
115 	tmp = I915_READ(CLKCFG);
116 
117 	switch (tmp & CLKCFG_FSB_MASK) {
118 	case CLKCFG_FSB_533:
119 		dev_priv->fsb_freq = 533; /* 133*4 */
120 		break;
121 	case CLKCFG_FSB_800:
122 		dev_priv->fsb_freq = 800; /* 200*4 */
123 		break;
124 	case CLKCFG_FSB_667:
125 		dev_priv->fsb_freq =  667; /* 167*4 */
126 		break;
127 	case CLKCFG_FSB_400:
128 		dev_priv->fsb_freq = 400; /* 100*4 */
129 		break;
130 	}
131 
132 	switch (tmp & CLKCFG_MEM_MASK) {
133 	case CLKCFG_MEM_533:
134 		dev_priv->mem_freq = 533;
135 		break;
136 	case CLKCFG_MEM_667:
137 		dev_priv->mem_freq = 667;
138 		break;
139 	case CLKCFG_MEM_800:
140 		dev_priv->mem_freq = 800;
141 		break;
142 	}
143 
144 	/* detect pineview DDR3 setting */
145 	tmp = I915_READ(CSHRDDR3CTL);
146 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148 
i915_ironlake_get_mem_freq(struct drm_device * dev)149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151 	struct drm_i915_private *dev_priv = to_i915(dev);
152 	u16 ddrpll, csipll;
153 
154 	ddrpll = I915_READ16(DDRMPLL1);
155 	csipll = I915_READ16(CSIPLL0);
156 
157 	switch (ddrpll & 0xff) {
158 	case 0xc:
159 		dev_priv->mem_freq = 800;
160 		break;
161 	case 0x10:
162 		dev_priv->mem_freq = 1066;
163 		break;
164 	case 0x14:
165 		dev_priv->mem_freq = 1333;
166 		break;
167 	case 0x18:
168 		dev_priv->mem_freq = 1600;
169 		break;
170 	default:
171 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172 				 ddrpll & 0xff);
173 		dev_priv->mem_freq = 0;
174 		break;
175 	}
176 
177 	dev_priv->ips.r_t = dev_priv->mem_freq;
178 
179 	switch (csipll & 0x3ff) {
180 	case 0x00c:
181 		dev_priv->fsb_freq = 3200;
182 		break;
183 	case 0x00e:
184 		dev_priv->fsb_freq = 3733;
185 		break;
186 	case 0x010:
187 		dev_priv->fsb_freq = 4266;
188 		break;
189 	case 0x012:
190 		dev_priv->fsb_freq = 4800;
191 		break;
192 	case 0x014:
193 		dev_priv->fsb_freq = 5333;
194 		break;
195 	case 0x016:
196 		dev_priv->fsb_freq = 5866;
197 		break;
198 	case 0x018:
199 		dev_priv->fsb_freq = 6400;
200 		break;
201 	default:
202 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203 				 csipll & 0x3ff);
204 		dev_priv->fsb_freq = 0;
205 		break;
206 	}
207 
208 	if (dev_priv->fsb_freq == 3200) {
209 		dev_priv->ips.c_m = 0;
210 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211 		dev_priv->ips.c_m = 1;
212 	} else {
213 		dev_priv->ips.c_m = 2;
214 	}
215 }
216 
217 static const struct cxsr_latency cxsr_latency_table[] = {
218 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
219 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
220 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
221 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
222 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
223 
224 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
225 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
226 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
227 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
228 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
229 
230 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
231 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
232 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
233 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
234 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
235 
236 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
237 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
238 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
239 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
240 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
241 
242 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
243 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
244 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
245 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
246 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
247 
248 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
249 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
250 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
251 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
252 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
253 };
254 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 							 int is_ddr3,
257 							 int fsb,
258 							 int mem)
259 {
260 	const struct cxsr_latency *latency;
261 	int i;
262 
263 	if (fsb == 0 || mem == 0)
264 		return NULL;
265 
266 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267 		latency = &cxsr_latency_table[i];
268 		if (is_desktop == latency->is_desktop &&
269 		    is_ddr3 == latency->is_ddr3 &&
270 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
271 			return latency;
272 	}
273 
274 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275 
276 	return NULL;
277 }
278 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281 	u32 val;
282 
283 	mutex_lock(&dev_priv->rps.hw_lock);
284 
285 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286 	if (enable)
287 		val &= ~FORCE_DDR_HIGH_FREQ;
288 	else
289 		val |= FORCE_DDR_HIGH_FREQ;
290 	val &= ~FORCE_DDR_LOW_FREQ;
291 	val |= FORCE_DDR_FREQ_REQ_ACK;
292 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293 
294 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297 
298 	mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303 	u32 val;
304 
305 	mutex_lock(&dev_priv->rps.hw_lock);
306 
307 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308 	if (enable)
309 		val |= DSP_MAXFIFO_PM5_ENABLE;
310 	else
311 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
312 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313 
314 	mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316 
317 #define FW_WM(value, plane) \
318 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319 
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322 	struct drm_device *dev = &dev_priv->drm;
323 	u32 val;
324 
325 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327 		POSTING_READ(FW_BLC_SELF_VLV);
328 		dev_priv->wm.vlv.cxsr = enable;
329 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331 		POSTING_READ(FW_BLC_SELF);
332 	} else if (IS_PINEVIEW(dev)) {
333 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335 		I915_WRITE(DSPFW3, val);
336 		POSTING_READ(DSPFW3);
337 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
338 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340 		I915_WRITE(FW_BLC_SELF, val);
341 		POSTING_READ(FW_BLC_SELF);
342 	} else if (IS_I915GM(dev)) {
343 		/*
344 		 * FIXME can't find a bit like this for 915G, and
345 		 * and yet it does have the related watermark in
346 		 * FW_BLC_SELF. What's going on?
347 		 */
348 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
349 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
350 		I915_WRITE(INSTPM, val);
351 		POSTING_READ(INSTPM);
352 	} else {
353 		return;
354 	}
355 
356 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
357 		      enable ? "enabled" : "disabled");
358 }
359 
360 
361 /*
362  * Latency for FIFO fetches is dependent on several factors:
363  *   - memory configuration (speed, channels)
364  *   - chipset
365  *   - current MCH state
366  * It can be fairly high in some situations, so here we assume a fairly
367  * pessimal value.  It's a tradeoff between extra memory fetches (if we
368  * set this value too high, the FIFO will fetch frequently to stay full)
369  * and power consumption (set it too low to save power and we might see
370  * FIFO underruns and display "flicker").
371  *
372  * A value of 5us seems to be a good balance; safe for very low end
373  * platforms but not overly aggressive on lower latency configs.
374  */
375 static const int pessimal_latency_ns = 5000;
376 
377 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
378 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
379 
vlv_get_fifo_size(struct drm_device * dev,enum pipe pipe,int plane)380 static int vlv_get_fifo_size(struct drm_device *dev,
381 			      enum pipe pipe, int plane)
382 {
383 	struct drm_i915_private *dev_priv = to_i915(dev);
384 	int sprite0_start, sprite1_start, size;
385 
386 	switch (pipe) {
387 		uint32_t dsparb, dsparb2, dsparb3;
388 	case PIPE_A:
389 		dsparb = I915_READ(DSPARB);
390 		dsparb2 = I915_READ(DSPARB2);
391 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
392 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
393 		break;
394 	case PIPE_B:
395 		dsparb = I915_READ(DSPARB);
396 		dsparb2 = I915_READ(DSPARB2);
397 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
398 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
399 		break;
400 	case PIPE_C:
401 		dsparb2 = I915_READ(DSPARB2);
402 		dsparb3 = I915_READ(DSPARB3);
403 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
404 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
405 		break;
406 	default:
407 		return 0;
408 	}
409 
410 	switch (plane) {
411 	case 0:
412 		size = sprite0_start;
413 		break;
414 	case 1:
415 		size = sprite1_start - sprite0_start;
416 		break;
417 	case 2:
418 		size = 512 - 1 - sprite1_start;
419 		break;
420 	default:
421 		return 0;
422 	}
423 
424 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
425 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
426 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
427 		      size);
428 
429 	return size;
430 }
431 
i9xx_get_fifo_size(struct drm_device * dev,int plane)432 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433 {
434 	struct drm_i915_private *dev_priv = to_i915(dev);
435 	uint32_t dsparb = I915_READ(DSPARB);
436 	int size;
437 
438 	size = dsparb & 0x7f;
439 	if (plane)
440 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
441 
442 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
443 		      plane ? "B" : "A", size);
444 
445 	return size;
446 }
447 
i830_get_fifo_size(struct drm_device * dev,int plane)448 static int i830_get_fifo_size(struct drm_device *dev, int plane)
449 {
450 	struct drm_i915_private *dev_priv = to_i915(dev);
451 	uint32_t dsparb = I915_READ(DSPARB);
452 	int size;
453 
454 	size = dsparb & 0x1ff;
455 	if (plane)
456 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
457 	size >>= 1; /* Convert to cachelines */
458 
459 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460 		      plane ? "B" : "A", size);
461 
462 	return size;
463 }
464 
i845_get_fifo_size(struct drm_device * dev,int plane)465 static int i845_get_fifo_size(struct drm_device *dev, int plane)
466 {
467 	struct drm_i915_private *dev_priv = to_i915(dev);
468 	uint32_t dsparb = I915_READ(DSPARB);
469 	int size;
470 
471 	size = dsparb & 0x7f;
472 	size >>= 2; /* Convert to cachelines */
473 
474 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
475 		      plane ? "B" : "A",
476 		      size);
477 
478 	return size;
479 }
480 
481 /* Pineview has different values for various configs */
482 static const struct intel_watermark_params pineview_display_wm = {
483 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
484 	.max_wm = PINEVIEW_MAX_WM,
485 	.default_wm = PINEVIEW_DFT_WM,
486 	.guard_size = PINEVIEW_GUARD_WM,
487 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
491 	.max_wm = PINEVIEW_MAX_WM,
492 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
493 	.guard_size = PINEVIEW_GUARD_WM,
494 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params pineview_cursor_wm = {
497 	.fifo_size = PINEVIEW_CURSOR_FIFO,
498 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
499 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
500 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
501 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 	.fifo_size = PINEVIEW_CURSOR_FIFO,
505 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
506 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
507 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
508 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params g4x_wm_info = {
511 	.fifo_size = G4X_FIFO_SIZE,
512 	.max_wm = G4X_MAX_WM,
513 	.default_wm = G4X_MAX_WM,
514 	.guard_size = 2,
515 	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params g4x_cursor_wm_info = {
518 	.fifo_size = I965_CURSOR_FIFO,
519 	.max_wm = I965_CURSOR_MAX_WM,
520 	.default_wm = I965_CURSOR_DFT_WM,
521 	.guard_size = 2,
522 	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i965_cursor_wm_info = {
525 	.fifo_size = I965_CURSOR_FIFO,
526 	.max_wm = I965_CURSOR_MAX_WM,
527 	.default_wm = I965_CURSOR_DFT_WM,
528 	.guard_size = 2,
529 	.cacheline_size = I915_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i945_wm_info = {
532 	.fifo_size = I945_FIFO_SIZE,
533 	.max_wm = I915_MAX_WM,
534 	.default_wm = 1,
535 	.guard_size = 2,
536 	.cacheline_size = I915_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i915_wm_info = {
539 	.fifo_size = I915_FIFO_SIZE,
540 	.max_wm = I915_MAX_WM,
541 	.default_wm = 1,
542 	.guard_size = 2,
543 	.cacheline_size = I915_FIFO_LINE_SIZE,
544 };
545 static const struct intel_watermark_params i830_a_wm_info = {
546 	.fifo_size = I855GM_FIFO_SIZE,
547 	.max_wm = I915_MAX_WM,
548 	.default_wm = 1,
549 	.guard_size = 2,
550 	.cacheline_size = I830_FIFO_LINE_SIZE,
551 };
552 static const struct intel_watermark_params i830_bc_wm_info = {
553 	.fifo_size = I855GM_FIFO_SIZE,
554 	.max_wm = I915_MAX_WM/2,
555 	.default_wm = 1,
556 	.guard_size = 2,
557 	.cacheline_size = I830_FIFO_LINE_SIZE,
558 };
559 static const struct intel_watermark_params i845_wm_info = {
560 	.fifo_size = I830_FIFO_SIZE,
561 	.max_wm = I915_MAX_WM,
562 	.default_wm = 1,
563 	.guard_size = 2,
564 	.cacheline_size = I830_FIFO_LINE_SIZE,
565 };
566 
567 /**
568  * intel_calculate_wm - calculate watermark level
569  * @clock_in_khz: pixel clock
570  * @wm: chip FIFO params
571  * @cpp: bytes per pixel
572  * @latency_ns: memory latency for the platform
573  *
574  * Calculate the watermark level (the level at which the display plane will
575  * start fetching from memory again).  Each chip has a different display
576  * FIFO size and allocation, so the caller needs to figure that out and pass
577  * in the correct intel_watermark_params structure.
578  *
579  * As the pixel clock runs, the FIFO will be drained at a rate that depends
580  * on the pixel size.  When it reaches the watermark level, it'll start
581  * fetching FIFO line sized based chunks from memory until the FIFO fills
582  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
583  * will occur, and a display engine hang could result.
584  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned long latency_ns)585 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
586 					const struct intel_watermark_params *wm,
587 					int fifo_size, int cpp,
588 					unsigned long latency_ns)
589 {
590 	long entries_required, wm_size;
591 
592 	/*
593 	 * Note: we need to make sure we don't overflow for various clock &
594 	 * latency values.
595 	 * clocks go from a few thousand to several hundred thousand.
596 	 * latency is usually a few thousand
597 	 */
598 	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 		1000;
600 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
601 
602 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
603 
604 	wm_size = fifo_size - (entries_required + wm->guard_size);
605 
606 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
607 
608 	/* Don't promote wm_size to unsigned... */
609 	if (wm_size > (long)wm->max_wm)
610 		wm_size = wm->max_wm;
611 	if (wm_size <= 0)
612 		wm_size = wm->default_wm;
613 
614 	/*
615 	 * Bspec seems to indicate that the value shouldn't be lower than
616 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
617 	 * Lets go for 8 which is the burst size since certain platforms
618 	 * already use a hardcoded 8 (which is what the spec says should be
619 	 * done).
620 	 */
621 	if (wm_size <= 8)
622 		wm_size = 8;
623 
624 	return wm_size;
625 }
626 
single_enabled_crtc(struct drm_device * dev)627 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
628 {
629 	struct drm_crtc *crtc, *enabled = NULL;
630 
631 	for_each_crtc(dev, crtc) {
632 		if (intel_crtc_active(crtc)) {
633 			if (enabled)
634 				return NULL;
635 			enabled = crtc;
636 		}
637 	}
638 
639 	return enabled;
640 }
641 
pineview_update_wm(struct drm_crtc * unused_crtc)642 static void pineview_update_wm(struct drm_crtc *unused_crtc)
643 {
644 	struct drm_device *dev = unused_crtc->dev;
645 	struct drm_i915_private *dev_priv = to_i915(dev);
646 	struct drm_crtc *crtc;
647 	const struct cxsr_latency *latency;
648 	u32 reg;
649 	unsigned long wm;
650 
651 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
652 					 dev_priv->fsb_freq, dev_priv->mem_freq);
653 	if (!latency) {
654 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655 		intel_set_memory_cxsr(dev_priv, false);
656 		return;
657 	}
658 
659 	crtc = single_enabled_crtc(dev);
660 	if (crtc) {
661 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663 		int clock = adjusted_mode->crtc_clock;
664 
665 		/* Display SR */
666 		wm = intel_calculate_wm(clock, &pineview_display_wm,
667 					pineview_display_wm.fifo_size,
668 					cpp, latency->display_sr);
669 		reg = I915_READ(DSPFW1);
670 		reg &= ~DSPFW_SR_MASK;
671 		reg |= FW_WM(wm, SR);
672 		I915_WRITE(DSPFW1, reg);
673 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
674 
675 		/* cursor SR */
676 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
677 					pineview_display_wm.fifo_size,
678 					cpp, latency->cursor_sr);
679 		reg = I915_READ(DSPFW3);
680 		reg &= ~DSPFW_CURSOR_SR_MASK;
681 		reg |= FW_WM(wm, CURSOR_SR);
682 		I915_WRITE(DSPFW3, reg);
683 
684 		/* Display HPLL off SR */
685 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
686 					pineview_display_hplloff_wm.fifo_size,
687 					cpp, latency->display_hpll_disable);
688 		reg = I915_READ(DSPFW3);
689 		reg &= ~DSPFW_HPLL_SR_MASK;
690 		reg |= FW_WM(wm, HPLL_SR);
691 		I915_WRITE(DSPFW3, reg);
692 
693 		/* cursor HPLL off SR */
694 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
695 					pineview_display_hplloff_wm.fifo_size,
696 					cpp, latency->cursor_hpll_disable);
697 		reg = I915_READ(DSPFW3);
698 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
699 		reg |= FW_WM(wm, HPLL_CURSOR);
700 		I915_WRITE(DSPFW3, reg);
701 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
702 
703 		intel_set_memory_cxsr(dev_priv, true);
704 	} else {
705 		intel_set_memory_cxsr(dev_priv, false);
706 	}
707 }
708 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)709 static bool g4x_compute_wm0(struct drm_device *dev,
710 			    int plane,
711 			    const struct intel_watermark_params *display,
712 			    int display_latency_ns,
713 			    const struct intel_watermark_params *cursor,
714 			    int cursor_latency_ns,
715 			    int *plane_wm,
716 			    int *cursor_wm)
717 {
718 	struct drm_crtc *crtc;
719 	const struct drm_display_mode *adjusted_mode;
720 	int htotal, hdisplay, clock, cpp;
721 	int line_time_us, line_count;
722 	int entries, tlb_miss;
723 
724 	crtc = intel_get_crtc_for_plane(dev, plane);
725 	if (!intel_crtc_active(crtc)) {
726 		*cursor_wm = cursor->guard_size;
727 		*plane_wm = display->guard_size;
728 		return false;
729 	}
730 
731 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732 	clock = adjusted_mode->crtc_clock;
733 	htotal = adjusted_mode->crtc_htotal;
734 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735 	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736 
737 	/* Use the small buffer method to calculate plane watermark */
738 	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
740 	if (tlb_miss > 0)
741 		entries += tlb_miss;
742 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
743 	*plane_wm = entries + display->guard_size;
744 	if (*plane_wm > (int)display->max_wm)
745 		*plane_wm = display->max_wm;
746 
747 	/* Use the large buffer method to calculate cursor watermark */
748 	line_time_us = max(htotal * 1000 / clock, 1);
749 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750 	entries = line_count * crtc->cursor->state->crtc_w * cpp;
751 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
752 	if (tlb_miss > 0)
753 		entries += tlb_miss;
754 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
755 	*cursor_wm = entries + cursor->guard_size;
756 	if (*cursor_wm > (int)cursor->max_wm)
757 		*cursor_wm = (int)cursor->max_wm;
758 
759 	return true;
760 }
761 
762 /*
763  * Check the wm result.
764  *
765  * If any calculated watermark values is larger than the maximum value that
766  * can be programmed into the associated watermark register, that watermark
767  * must be disabled.
768  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)769 static bool g4x_check_srwm(struct drm_device *dev,
770 			   int display_wm, int cursor_wm,
771 			   const struct intel_watermark_params *display,
772 			   const struct intel_watermark_params *cursor)
773 {
774 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
775 		      display_wm, cursor_wm);
776 
777 	if (display_wm > display->max_wm) {
778 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
779 			      display_wm, display->max_wm);
780 		return false;
781 	}
782 
783 	if (cursor_wm > cursor->max_wm) {
784 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
785 			      cursor_wm, cursor->max_wm);
786 		return false;
787 	}
788 
789 	if (!(display_wm || cursor_wm)) {
790 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
791 		return false;
792 	}
793 
794 	return true;
795 }
796 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)797 static bool g4x_compute_srwm(struct drm_device *dev,
798 			     int plane,
799 			     int latency_ns,
800 			     const struct intel_watermark_params *display,
801 			     const struct intel_watermark_params *cursor,
802 			     int *display_wm, int *cursor_wm)
803 {
804 	struct drm_crtc *crtc;
805 	const struct drm_display_mode *adjusted_mode;
806 	int hdisplay, htotal, cpp, clock;
807 	unsigned long line_time_us;
808 	int line_count, line_size;
809 	int small, large;
810 	int entries;
811 
812 	if (!latency_ns) {
813 		*display_wm = *cursor_wm = 0;
814 		return false;
815 	}
816 
817 	crtc = intel_get_crtc_for_plane(dev, plane);
818 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819 	clock = adjusted_mode->crtc_clock;
820 	htotal = adjusted_mode->crtc_htotal;
821 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822 	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823 
824 	line_time_us = max(htotal * 1000 / clock, 1);
825 	line_count = (latency_ns / line_time_us + 1000) / 1000;
826 	line_size = hdisplay * cpp;
827 
828 	/* Use the minimum of the small and large buffer method for primary */
829 	small = ((clock * cpp / 1000) * latency_ns) / 1000;
830 	large = line_count * line_size;
831 
832 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
833 	*display_wm = entries + display->guard_size;
834 
835 	/* calculate the self-refresh watermark for display cursor */
836 	entries = line_count * cpp * crtc->cursor->state->crtc_w;
837 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
838 	*cursor_wm = entries + cursor->guard_size;
839 
840 	return g4x_check_srwm(dev,
841 			      *display_wm, *cursor_wm,
842 			      display, cursor);
843 }
844 
845 #define FW_WM_VLV(value, plane) \
846 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
847 
vlv_write_wm_values(struct intel_crtc * crtc,const struct vlv_wm_values * wm)848 static void vlv_write_wm_values(struct intel_crtc *crtc,
849 				const struct vlv_wm_values *wm)
850 {
851 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
852 	enum pipe pipe = crtc->pipe;
853 
854 	I915_WRITE(VLV_DDL(pipe),
855 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
856 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
857 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
858 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
859 
860 	I915_WRITE(DSPFW1,
861 		   FW_WM(wm->sr.plane, SR) |
862 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
863 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
864 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865 	I915_WRITE(DSPFW2,
866 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
867 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
868 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869 	I915_WRITE(DSPFW3,
870 		   FW_WM(wm->sr.cursor, CURSOR_SR));
871 
872 	if (IS_CHERRYVIEW(dev_priv)) {
873 		I915_WRITE(DSPFW7_CHV,
874 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 		I915_WRITE(DSPFW8_CHV,
877 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
878 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879 		I915_WRITE(DSPFW9_CHV,
880 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
881 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882 		I915_WRITE(DSPHOWM,
883 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
884 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
885 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
886 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
887 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
888 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
889 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
890 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
891 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
892 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893 	} else {
894 		I915_WRITE(DSPFW7,
895 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
896 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897 		I915_WRITE(DSPHOWM,
898 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
899 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
900 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
901 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
902 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
903 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
904 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905 	}
906 
907 	/* zero (unused) WM1 watermarks */
908 	I915_WRITE(DSPFW4, 0);
909 	I915_WRITE(DSPFW5, 0);
910 	I915_WRITE(DSPFW6, 0);
911 	I915_WRITE(DSPHOWM1, 0);
912 
913 	POSTING_READ(DSPFW1);
914 }
915 
916 #undef FW_WM_VLV
917 
918 enum vlv_wm_level {
919 	VLV_WM_LEVEL_PM2,
920 	VLV_WM_LEVEL_PM5,
921 	VLV_WM_LEVEL_DDR_DVFS,
922 };
923 
924 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int pipe_htotal,unsigned int horiz_pixels,unsigned int cpp,unsigned int latency)925 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
926 				   unsigned int pipe_htotal,
927 				   unsigned int horiz_pixels,
928 				   unsigned int cpp,
929 				   unsigned int latency)
930 {
931 	unsigned int ret;
932 
933 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934 	ret = (ret + 1) * horiz_pixels * cpp;
935 	ret = DIV_ROUND_UP(ret, 64);
936 
937 	return ret;
938 }
939 
vlv_setup_wm_latency(struct drm_device * dev)940 static void vlv_setup_wm_latency(struct drm_device *dev)
941 {
942 	struct drm_i915_private *dev_priv = to_i915(dev);
943 
944 	/* all latencies in usec */
945 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
946 
947 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
948 
949 	if (IS_CHERRYVIEW(dev_priv)) {
950 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
951 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952 
953 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954 	}
955 }
956 
vlv_compute_wm_level(struct intel_plane * plane,struct intel_crtc * crtc,const struct intel_plane_state * state,int level)957 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
958 				     struct intel_crtc *crtc,
959 				     const struct intel_plane_state *state,
960 				     int level)
961 {
962 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963 	int clock, htotal, cpp, width, wm;
964 
965 	if (dev_priv->wm.pri_latency[level] == 0)
966 		return USHRT_MAX;
967 
968 	if (!state->base.visible)
969 		return 0;
970 
971 	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972 	clock = crtc->config->base.adjusted_mode.crtc_clock;
973 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
974 	width = crtc->config->pipe_src_w;
975 	if (WARN_ON(htotal == 0))
976 		htotal = 1;
977 
978 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
979 		/*
980 		 * FIXME the formula gives values that are
981 		 * too big for the cursor FIFO, and hence we
982 		 * would never be able to use cursors. For
983 		 * now just hardcode the watermark.
984 		 */
985 		wm = 63;
986 	} else {
987 		wm = vlv_wm_method2(clock, htotal, width, cpp,
988 				    dev_priv->wm.pri_latency[level] * 10);
989 	}
990 
991 	return min_t(int, wm, USHRT_MAX);
992 }
993 
vlv_compute_fifo(struct intel_crtc * crtc)994 static void vlv_compute_fifo(struct intel_crtc *crtc)
995 {
996 	struct drm_device *dev = crtc->base.dev;
997 	struct vlv_wm_state *wm_state = &crtc->wm_state;
998 	struct intel_plane *plane;
999 	unsigned int total_rate = 0;
1000 	const int fifo_size = 512 - 1;
1001 	int fifo_extra, fifo_left = fifo_size;
1002 
1003 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1004 		struct intel_plane_state *state =
1005 			to_intel_plane_state(plane->base.state);
1006 
1007 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1008 			continue;
1009 
1010 		if (state->base.visible) {
1011 			wm_state->num_active_planes++;
1012 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1013 		}
1014 	}
1015 
1016 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1017 		struct intel_plane_state *state =
1018 			to_intel_plane_state(plane->base.state);
1019 		unsigned int rate;
1020 
1021 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1022 			plane->wm.fifo_size = 63;
1023 			continue;
1024 		}
1025 
1026 		if (!state->base.visible) {
1027 			plane->wm.fifo_size = 0;
1028 			continue;
1029 		}
1030 
1031 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1032 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1033 		fifo_left -= plane->wm.fifo_size;
1034 	}
1035 
1036 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1037 
1038 	/* spread the remainder evenly */
1039 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1040 		int plane_extra;
1041 
1042 		if (fifo_left == 0)
1043 			break;
1044 
1045 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1046 			continue;
1047 
1048 		/* give it all to the first plane if none are active */
1049 		if (plane->wm.fifo_size == 0 &&
1050 		    wm_state->num_active_planes)
1051 			continue;
1052 
1053 		plane_extra = min(fifo_extra, fifo_left);
1054 		plane->wm.fifo_size += plane_extra;
1055 		fifo_left -= plane_extra;
1056 	}
1057 
1058 	WARN_ON(fifo_left != 0);
1059 }
1060 
vlv_invert_wms(struct intel_crtc * crtc)1061 static void vlv_invert_wms(struct intel_crtc *crtc)
1062 {
1063 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1064 	int level;
1065 
1066 	for (level = 0; level < wm_state->num_levels; level++) {
1067 		struct drm_device *dev = crtc->base.dev;
1068 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1069 		struct intel_plane *plane;
1070 
1071 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1072 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1073 
1074 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1075 			switch (plane->base.type) {
1076 				int sprite;
1077 			case DRM_PLANE_TYPE_CURSOR:
1078 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1079 					wm_state->wm[level].cursor;
1080 				break;
1081 			case DRM_PLANE_TYPE_PRIMARY:
1082 				wm_state->wm[level].primary = plane->wm.fifo_size -
1083 					wm_state->wm[level].primary;
1084 				break;
1085 			case DRM_PLANE_TYPE_OVERLAY:
1086 				sprite = plane->plane;
1087 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1088 					wm_state->wm[level].sprite[sprite];
1089 				break;
1090 			}
1091 		}
1092 	}
1093 }
1094 
vlv_compute_wm(struct intel_crtc * crtc)1095 static void vlv_compute_wm(struct intel_crtc *crtc)
1096 {
1097 	struct drm_device *dev = crtc->base.dev;
1098 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1099 	struct intel_plane *plane;
1100 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1101 	int level;
1102 
1103 	memset(wm_state, 0, sizeof(*wm_state));
1104 
1105 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107 
1108 	wm_state->num_active_planes = 0;
1109 
1110 	vlv_compute_fifo(crtc);
1111 
1112 	if (wm_state->num_active_planes != 1)
1113 		wm_state->cxsr = false;
1114 
1115 	if (wm_state->cxsr) {
1116 		for (level = 0; level < wm_state->num_levels; level++) {
1117 			wm_state->sr[level].plane = sr_fifo_size;
1118 			wm_state->sr[level].cursor = 63;
1119 		}
1120 	}
1121 
1122 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1123 		struct intel_plane_state *state =
1124 			to_intel_plane_state(plane->base.state);
1125 
1126 		if (!state->base.visible)
1127 			continue;
1128 
1129 		/* normal watermarks */
1130 		for (level = 0; level < wm_state->num_levels; level++) {
1131 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1132 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1133 
1134 			/* hack */
1135 			if (WARN_ON(level == 0 && wm > max_wm))
1136 				wm = max_wm;
1137 
1138 			if (wm > plane->wm.fifo_size)
1139 				break;
1140 
1141 			switch (plane->base.type) {
1142 				int sprite;
1143 			case DRM_PLANE_TYPE_CURSOR:
1144 				wm_state->wm[level].cursor = wm;
1145 				break;
1146 			case DRM_PLANE_TYPE_PRIMARY:
1147 				wm_state->wm[level].primary = wm;
1148 				break;
1149 			case DRM_PLANE_TYPE_OVERLAY:
1150 				sprite = plane->plane;
1151 				wm_state->wm[level].sprite[sprite] = wm;
1152 				break;
1153 			}
1154 		}
1155 
1156 		wm_state->num_levels = level;
1157 
1158 		if (!wm_state->cxsr)
1159 			continue;
1160 
1161 		/* maxfifo watermarks */
1162 		switch (plane->base.type) {
1163 			int sprite, level;
1164 		case DRM_PLANE_TYPE_CURSOR:
1165 			for (level = 0; level < wm_state->num_levels; level++)
1166 				wm_state->sr[level].cursor =
1167 					wm_state->wm[level].cursor;
1168 			break;
1169 		case DRM_PLANE_TYPE_PRIMARY:
1170 			for (level = 0; level < wm_state->num_levels; level++)
1171 				wm_state->sr[level].plane =
1172 					min(wm_state->sr[level].plane,
1173 					    wm_state->wm[level].primary);
1174 			break;
1175 		case DRM_PLANE_TYPE_OVERLAY:
1176 			sprite = plane->plane;
1177 			for (level = 0; level < wm_state->num_levels; level++)
1178 				wm_state->sr[level].plane =
1179 					min(wm_state->sr[level].plane,
1180 					    wm_state->wm[level].sprite[sprite]);
1181 			break;
1182 		}
1183 	}
1184 
1185 	/* clear any (partially) filled invalid levels */
1186 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1188 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1189 	}
1190 
1191 	vlv_invert_wms(crtc);
1192 }
1193 
1194 #define VLV_FIFO(plane, value) \
1195 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1196 
vlv_pipe_set_fifo_size(struct intel_crtc * crtc)1197 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1198 {
1199 	struct drm_device *dev = crtc->base.dev;
1200 	struct drm_i915_private *dev_priv = to_i915(dev);
1201 	struct intel_plane *plane;
1202 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1203 
1204 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1205 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1206 			WARN_ON(plane->wm.fifo_size != 63);
1207 			continue;
1208 		}
1209 
1210 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1211 			sprite0_start = plane->wm.fifo_size;
1212 		else if (plane->plane == 0)
1213 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1214 		else
1215 			fifo_size = sprite1_start + plane->wm.fifo_size;
1216 	}
1217 
1218 	WARN_ON(fifo_size != 512 - 1);
1219 
1220 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1221 		      pipe_name(crtc->pipe), sprite0_start,
1222 		      sprite1_start, fifo_size);
1223 
1224 	switch (crtc->pipe) {
1225 		uint32_t dsparb, dsparb2, dsparb3;
1226 	case PIPE_A:
1227 		dsparb = I915_READ(DSPARB);
1228 		dsparb2 = I915_READ(DSPARB2);
1229 
1230 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1231 			    VLV_FIFO(SPRITEB, 0xff));
1232 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1233 			   VLV_FIFO(SPRITEB, sprite1_start));
1234 
1235 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1236 			     VLV_FIFO(SPRITEB_HI, 0x1));
1237 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1238 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1239 
1240 		I915_WRITE(DSPARB, dsparb);
1241 		I915_WRITE(DSPARB2, dsparb2);
1242 		break;
1243 	case PIPE_B:
1244 		dsparb = I915_READ(DSPARB);
1245 		dsparb2 = I915_READ(DSPARB2);
1246 
1247 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1248 			    VLV_FIFO(SPRITED, 0xff));
1249 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1250 			   VLV_FIFO(SPRITED, sprite1_start));
1251 
1252 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1253 			     VLV_FIFO(SPRITED_HI, 0xff));
1254 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1255 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1256 
1257 		I915_WRITE(DSPARB, dsparb);
1258 		I915_WRITE(DSPARB2, dsparb2);
1259 		break;
1260 	case PIPE_C:
1261 		dsparb3 = I915_READ(DSPARB3);
1262 		dsparb2 = I915_READ(DSPARB2);
1263 
1264 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1265 			     VLV_FIFO(SPRITEF, 0xff));
1266 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1267 			    VLV_FIFO(SPRITEF, sprite1_start));
1268 
1269 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1270 			     VLV_FIFO(SPRITEF_HI, 0xff));
1271 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1272 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1273 
1274 		I915_WRITE(DSPARB3, dsparb3);
1275 		I915_WRITE(DSPARB2, dsparb2);
1276 		break;
1277 	default:
1278 		break;
1279 	}
1280 }
1281 
1282 #undef VLV_FIFO
1283 
vlv_merge_wm(struct drm_device * dev,struct vlv_wm_values * wm)1284 static void vlv_merge_wm(struct drm_device *dev,
1285 			 struct vlv_wm_values *wm)
1286 {
1287 	struct intel_crtc *crtc;
1288 	int num_active_crtcs = 0;
1289 
1290 	wm->level = to_i915(dev)->wm.max_level;
1291 	wm->cxsr = true;
1292 
1293 	for_each_intel_crtc(dev, crtc) {
1294 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1295 
1296 		if (!crtc->active)
1297 			continue;
1298 
1299 		if (!wm_state->cxsr)
1300 			wm->cxsr = false;
1301 
1302 		num_active_crtcs++;
1303 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1304 	}
1305 
1306 	if (num_active_crtcs != 1)
1307 		wm->cxsr = false;
1308 
1309 	if (num_active_crtcs > 1)
1310 		wm->level = VLV_WM_LEVEL_PM2;
1311 
1312 	for_each_intel_crtc(dev, crtc) {
1313 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1314 		enum pipe pipe = crtc->pipe;
1315 
1316 		if (!crtc->active)
1317 			continue;
1318 
1319 		wm->pipe[pipe] = wm_state->wm[wm->level];
1320 		if (wm->cxsr)
1321 			wm->sr = wm_state->sr[wm->level];
1322 
1323 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1324 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1325 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1326 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1327 	}
1328 }
1329 
vlv_update_wm(struct drm_crtc * crtc)1330 static void vlv_update_wm(struct drm_crtc *crtc)
1331 {
1332 	struct drm_device *dev = crtc->dev;
1333 	struct drm_i915_private *dev_priv = to_i915(dev);
1334 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1335 	enum pipe pipe = intel_crtc->pipe;
1336 	struct vlv_wm_values wm = {};
1337 
1338 	vlv_compute_wm(intel_crtc);
1339 	vlv_merge_wm(dev, &wm);
1340 
1341 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1342 		/* FIXME should be part of crtc atomic commit */
1343 		vlv_pipe_set_fifo_size(intel_crtc);
1344 		return;
1345 	}
1346 
1347 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1348 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1349 		chv_set_memory_dvfs(dev_priv, false);
1350 
1351 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1352 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1353 		chv_set_memory_pm5(dev_priv, false);
1354 
1355 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 		intel_set_memory_cxsr(dev_priv, false);
1357 
1358 	/* FIXME should be part of crtc atomic commit */
1359 	vlv_pipe_set_fifo_size(intel_crtc);
1360 
1361 	vlv_write_wm_values(intel_crtc, &wm);
1362 
1363 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1364 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1365 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1366 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1367 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1368 
1369 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 		intel_set_memory_cxsr(dev_priv, true);
1371 
1372 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1373 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1374 		chv_set_memory_pm5(dev_priv, true);
1375 
1376 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1377 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1378 		chv_set_memory_dvfs(dev_priv, true);
1379 
1380 	dev_priv->wm.vlv = wm;
1381 }
1382 
1383 #define single_plane_enabled(mask) is_power_of_2(mask)
1384 
g4x_update_wm(struct drm_crtc * crtc)1385 static void g4x_update_wm(struct drm_crtc *crtc)
1386 {
1387 	struct drm_device *dev = crtc->dev;
1388 	static const int sr_latency_ns = 12000;
1389 	struct drm_i915_private *dev_priv = to_i915(dev);
1390 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1391 	int plane_sr, cursor_sr;
1392 	unsigned int enabled = 0;
1393 	bool cxsr_enabled;
1394 
1395 	if (g4x_compute_wm0(dev, PIPE_A,
1396 			    &g4x_wm_info, pessimal_latency_ns,
1397 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1398 			    &planea_wm, &cursora_wm))
1399 		enabled |= 1 << PIPE_A;
1400 
1401 	if (g4x_compute_wm0(dev, PIPE_B,
1402 			    &g4x_wm_info, pessimal_latency_ns,
1403 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1404 			    &planeb_wm, &cursorb_wm))
1405 		enabled |= 1 << PIPE_B;
1406 
1407 	if (single_plane_enabled(enabled) &&
1408 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1409 			     sr_latency_ns,
1410 			     &g4x_wm_info,
1411 			     &g4x_cursor_wm_info,
1412 			     &plane_sr, &cursor_sr)) {
1413 		cxsr_enabled = true;
1414 	} else {
1415 		cxsr_enabled = false;
1416 		intel_set_memory_cxsr(dev_priv, false);
1417 		plane_sr = cursor_sr = 0;
1418 	}
1419 
1420 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1421 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422 		      planea_wm, cursora_wm,
1423 		      planeb_wm, cursorb_wm,
1424 		      plane_sr, cursor_sr);
1425 
1426 	I915_WRITE(DSPFW1,
1427 		   FW_WM(plane_sr, SR) |
1428 		   FW_WM(cursorb_wm, CURSORB) |
1429 		   FW_WM(planeb_wm, PLANEB) |
1430 		   FW_WM(planea_wm, PLANEA));
1431 	I915_WRITE(DSPFW2,
1432 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433 		   FW_WM(cursora_wm, CURSORA));
1434 	/* HPLL off in SR has some issues on G4x... disable it */
1435 	I915_WRITE(DSPFW3,
1436 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437 		   FW_WM(cursor_sr, CURSOR_SR));
1438 
1439 	if (cxsr_enabled)
1440 		intel_set_memory_cxsr(dev_priv, true);
1441 }
1442 
i965_update_wm(struct drm_crtc * unused_crtc)1443 static void i965_update_wm(struct drm_crtc *unused_crtc)
1444 {
1445 	struct drm_device *dev = unused_crtc->dev;
1446 	struct drm_i915_private *dev_priv = to_i915(dev);
1447 	struct drm_crtc *crtc;
1448 	int srwm = 1;
1449 	int cursor_sr = 16;
1450 	bool cxsr_enabled;
1451 
1452 	/* Calc sr entries for one plane configs */
1453 	crtc = single_enabled_crtc(dev);
1454 	if (crtc) {
1455 		/* self-refresh has much higher latency */
1456 		static const int sr_latency_ns = 12000;
1457 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458 		int clock = adjusted_mode->crtc_clock;
1459 		int htotal = adjusted_mode->crtc_htotal;
1460 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462 		unsigned long line_time_us;
1463 		int entries;
1464 
1465 		line_time_us = max(htotal * 1000 / clock, 1);
1466 
1467 		/* Use ns/us then divide to preserve precision */
1468 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469 			cpp * hdisplay;
1470 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1471 		srwm = I965_FIFO_SIZE - entries;
1472 		if (srwm < 0)
1473 			srwm = 1;
1474 		srwm &= 0x1ff;
1475 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1476 			      entries, srwm);
1477 
1478 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479 			cpp * crtc->cursor->state->crtc_w;
1480 		entries = DIV_ROUND_UP(entries,
1481 					  i965_cursor_wm_info.cacheline_size);
1482 		cursor_sr = i965_cursor_wm_info.fifo_size -
1483 			(entries + i965_cursor_wm_info.guard_size);
1484 
1485 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1486 			cursor_sr = i965_cursor_wm_info.max_wm;
1487 
1488 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1489 			      "cursor %d\n", srwm, cursor_sr);
1490 
1491 		cxsr_enabled = true;
1492 	} else {
1493 		cxsr_enabled = false;
1494 		/* Turn off self refresh if both pipes are enabled */
1495 		intel_set_memory_cxsr(dev_priv, false);
1496 	}
1497 
1498 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1499 		      srwm);
1500 
1501 	/* 965 has limitations... */
1502 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1503 		   FW_WM(8, CURSORB) |
1504 		   FW_WM(8, PLANEB) |
1505 		   FW_WM(8, PLANEA));
1506 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1507 		   FW_WM(8, PLANEC_OLD));
1508 	/* update cursor SR watermark */
1509 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510 
1511 	if (cxsr_enabled)
1512 		intel_set_memory_cxsr(dev_priv, true);
1513 }
1514 
1515 #undef FW_WM
1516 
i9xx_update_wm(struct drm_crtc * unused_crtc)1517 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518 {
1519 	struct drm_device *dev = unused_crtc->dev;
1520 	struct drm_i915_private *dev_priv = to_i915(dev);
1521 	const struct intel_watermark_params *wm_info;
1522 	uint32_t fwater_lo;
1523 	uint32_t fwater_hi;
1524 	int cwm, srwm = 1;
1525 	int fifo_size;
1526 	int planea_wm, planeb_wm;
1527 	struct drm_crtc *crtc, *enabled = NULL;
1528 
1529 	if (IS_I945GM(dev))
1530 		wm_info = &i945_wm_info;
1531 	else if (!IS_GEN2(dev))
1532 		wm_info = &i915_wm_info;
1533 	else
1534 		wm_info = &i830_a_wm_info;
1535 
1536 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1537 	crtc = intel_get_crtc_for_plane(dev, 0);
1538 	if (intel_crtc_active(crtc)) {
1539 		const struct drm_display_mode *adjusted_mode;
1540 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541 		if (IS_GEN2(dev))
1542 			cpp = 4;
1543 
1544 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546 					       wm_info, fifo_size, cpp,
1547 					       pessimal_latency_ns);
1548 		enabled = crtc;
1549 	} else {
1550 		planea_wm = fifo_size - wm_info->guard_size;
1551 		if (planea_wm > (long)wm_info->max_wm)
1552 			planea_wm = wm_info->max_wm;
1553 	}
1554 
1555 	if (IS_GEN2(dev))
1556 		wm_info = &i830_bc_wm_info;
1557 
1558 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1559 	crtc = intel_get_crtc_for_plane(dev, 1);
1560 	if (intel_crtc_active(crtc)) {
1561 		const struct drm_display_mode *adjusted_mode;
1562 		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563 		if (IS_GEN2(dev))
1564 			cpp = 4;
1565 
1566 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568 					       wm_info, fifo_size, cpp,
1569 					       pessimal_latency_ns);
1570 		if (enabled == NULL)
1571 			enabled = crtc;
1572 		else
1573 			enabled = NULL;
1574 	} else {
1575 		planeb_wm = fifo_size - wm_info->guard_size;
1576 		if (planeb_wm > (long)wm_info->max_wm)
1577 			planeb_wm = wm_info->max_wm;
1578 	}
1579 
1580 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581 
1582 	if (IS_I915GM(dev) && enabled) {
1583 		struct drm_i915_gem_object *obj;
1584 
1585 		obj = intel_fb_obj(enabled->primary->state->fb);
1586 
1587 		/* self-refresh seems busted with untiled */
1588 		if (!i915_gem_object_is_tiled(obj))
1589 			enabled = NULL;
1590 	}
1591 
1592 	/*
1593 	 * Overlay gets an aggressive default since video jitter is bad.
1594 	 */
1595 	cwm = 2;
1596 
1597 	/* Play safe and disable self-refresh before adjusting watermarks. */
1598 	intel_set_memory_cxsr(dev_priv, false);
1599 
1600 	/* Calc sr entries for one plane configs */
1601 	if (HAS_FW_BLC(dev) && enabled) {
1602 		/* self-refresh has much higher latency */
1603 		static const int sr_latency_ns = 6000;
1604 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605 		int clock = adjusted_mode->crtc_clock;
1606 		int htotal = adjusted_mode->crtc_htotal;
1607 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608 		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609 		unsigned long line_time_us;
1610 		int entries;
1611 
1612 		if (IS_I915GM(dev) || IS_I945GM(dev))
1613 			cpp = 4;
1614 
1615 		line_time_us = max(htotal * 1000 / clock, 1);
1616 
1617 		/* Use ns/us then divide to preserve precision */
1618 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619 			cpp * hdisplay;
1620 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1621 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1622 		srwm = wm_info->fifo_size - entries;
1623 		if (srwm < 0)
1624 			srwm = 1;
1625 
1626 		if (IS_I945G(dev) || IS_I945GM(dev))
1627 			I915_WRITE(FW_BLC_SELF,
1628 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629 		else
1630 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1631 	}
1632 
1633 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1634 		      planea_wm, planeb_wm, cwm, srwm);
1635 
1636 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1637 	fwater_hi = (cwm & 0x1f);
1638 
1639 	/* Set request length to 8 cachelines per fetch */
1640 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1641 	fwater_hi = fwater_hi | (1 << 8);
1642 
1643 	I915_WRITE(FW_BLC, fwater_lo);
1644 	I915_WRITE(FW_BLC2, fwater_hi);
1645 
1646 	if (enabled)
1647 		intel_set_memory_cxsr(dev_priv, true);
1648 }
1649 
i845_update_wm(struct drm_crtc * unused_crtc)1650 static void i845_update_wm(struct drm_crtc *unused_crtc)
1651 {
1652 	struct drm_device *dev = unused_crtc->dev;
1653 	struct drm_i915_private *dev_priv = to_i915(dev);
1654 	struct drm_crtc *crtc;
1655 	const struct drm_display_mode *adjusted_mode;
1656 	uint32_t fwater_lo;
1657 	int planea_wm;
1658 
1659 	crtc = single_enabled_crtc(dev);
1660 	if (crtc == NULL)
1661 		return;
1662 
1663 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665 				       &i845_wm_info,
1666 				       dev_priv->display.get_fifo_size(dev, 0),
1667 				       4, pessimal_latency_ns);
1668 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1669 	fwater_lo |= (3<<8) | planea_wm;
1670 
1671 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1672 
1673 	I915_WRITE(FW_BLC, fwater_lo);
1674 }
1675 
ilk_pipe_pixel_rate(const struct intel_crtc_state * pipe_config)1676 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677 {
1678 	uint32_t pixel_rate;
1679 
1680 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681 
1682 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1683 	 * adjust the pixel_rate here. */
1684 
1685 	if (pipe_config->pch_pfit.enabled) {
1686 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1688 
1689 		pipe_w = pipe_config->pipe_src_w;
1690 		pipe_h = pipe_config->pipe_src_h;
1691 
1692 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1693 		pfit_h = pfit_size & 0xFFFF;
1694 		if (pipe_w < pfit_w)
1695 			pipe_w = pfit_w;
1696 		if (pipe_h < pfit_h)
1697 			pipe_h = pfit_h;
1698 
1699 		if (WARN_ON(!pfit_w || !pfit_h))
1700 			return pixel_rate;
1701 
1702 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1703 				     pfit_w * pfit_h);
1704 	}
1705 
1706 	return pixel_rate;
1707 }
1708 
1709 /* latency must be in 0.1us units. */
ilk_wm_method1(uint32_t pixel_rate,uint8_t cpp,uint32_t latency)1710 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 {
1712 	uint64_t ret;
1713 
1714 	if (WARN(latency == 0, "Latency value missing\n"))
1715 		return UINT_MAX;
1716 
1717 	ret = (uint64_t) pixel_rate * cpp * latency;
1718 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1719 
1720 	return ret;
1721 }
1722 
1723 /* latency must be in 0.1us units. */
ilk_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t cpp,uint32_t latency)1724 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725 			       uint32_t horiz_pixels, uint8_t cpp,
1726 			       uint32_t latency)
1727 {
1728 	uint32_t ret;
1729 
1730 	if (WARN(latency == 0, "Latency value missing\n"))
1731 		return UINT_MAX;
1732 	if (WARN_ON(!pipe_htotal))
1733 		return UINT_MAX;
1734 
1735 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736 	ret = (ret + 1) * horiz_pixels * cpp;
1737 	ret = DIV_ROUND_UP(ret, 64) + 2;
1738 	return ret;
1739 }
1740 
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t cpp)1741 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742 			   uint8_t cpp)
1743 {
1744 	/*
1745 	 * Neither of these should be possible since this function shouldn't be
1746 	 * called if the CRTC is off or the plane is invisible.  But let's be
1747 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
1748 	 * elsewhere in the driver.
1749 	 */
1750 	if (WARN_ON(!cpp))
1751 		return 0;
1752 	if (WARN_ON(!horiz_pixels))
1753 		return 0;
1754 
1755 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 }
1757 
1758 struct ilk_wm_maximums {
1759 	uint16_t pri;
1760 	uint16_t spr;
1761 	uint16_t cur;
1762 	uint16_t fbc;
1763 };
1764 
1765 /*
1766  * For both WM_PIPE and WM_LP.
1767  * mem_value must be in 0.1us units.
1768  */
ilk_compute_pri_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value,bool is_lp)1769 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770 				   const struct intel_plane_state *pstate,
1771 				   uint32_t mem_value,
1772 				   bool is_lp)
1773 {
1774 	int cpp = pstate->base.fb ?
1775 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 	uint32_t method1, method2;
1777 
1778 	if (!cstate->base.active || !pstate->base.visible)
1779 		return 0;
1780 
1781 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782 
1783 	if (!is_lp)
1784 		return method1;
1785 
1786 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1787 				 cstate->base.adjusted_mode.crtc_htotal,
1788 				 drm_rect_width(&pstate->base.dst),
1789 				 cpp, mem_value);
1790 
1791 	return min(method1, method2);
1792 }
1793 
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
ilk_compute_spr_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1798 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799 				   const struct intel_plane_state *pstate,
1800 				   uint32_t mem_value)
1801 {
1802 	int cpp = pstate->base.fb ?
1803 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 	uint32_t method1, method2;
1805 
1806 	if (!cstate->base.active || !pstate->base.visible)
1807 		return 0;
1808 
1809 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1811 				 cstate->base.adjusted_mode.crtc_htotal,
1812 				 drm_rect_width(&pstate->base.dst),
1813 				 cpp, mem_value);
1814 	return min(method1, method2);
1815 }
1816 
1817 /*
1818  * For both WM_PIPE and WM_LP.
1819  * mem_value must be in 0.1us units.
1820  */
ilk_compute_cur_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1821 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822 				   const struct intel_plane_state *pstate,
1823 				   uint32_t mem_value)
1824 {
1825 	/*
1826 	 * We treat the cursor plane as always-on for the purposes of watermark
1827 	 * calculation.  Until we have two-stage watermark programming merged,
1828 	 * this is necessary to avoid flickering.
1829 	 */
1830 	int cpp = 4;
1831 	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1832 
1833 	if (!cstate->base.active)
1834 		return 0;
1835 
1836 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1837 			      cstate->base.adjusted_mode.crtc_htotal,
1838 			      width, cpp, mem_value);
1839 }
1840 
1841 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t pri_val)1842 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843 				   const struct intel_plane_state *pstate,
1844 				   uint32_t pri_val)
1845 {
1846 	int cpp = pstate->base.fb ?
1847 		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848 
1849 	if (!cstate->base.active || !pstate->base.visible)
1850 		return 0;
1851 
1852 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1853 }
1854 
ilk_display_fifo_size(const struct drm_device * dev)1855 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1856 {
1857 	if (INTEL_INFO(dev)->gen >= 8)
1858 		return 3072;
1859 	else if (INTEL_INFO(dev)->gen >= 7)
1860 		return 768;
1861 	else
1862 		return 512;
1863 }
1864 
ilk_plane_wm_reg_max(const struct drm_device * dev,int level,bool is_sprite)1865 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1866 					 int level, bool is_sprite)
1867 {
1868 	if (INTEL_INFO(dev)->gen >= 8)
1869 		/* BDW primary/sprite plane watermarks */
1870 		return level == 0 ? 255 : 2047;
1871 	else if (INTEL_INFO(dev)->gen >= 7)
1872 		/* IVB/HSW primary/sprite plane watermarks */
1873 		return level == 0 ? 127 : 1023;
1874 	else if (!is_sprite)
1875 		/* ILK/SNB primary plane watermarks */
1876 		return level == 0 ? 127 : 511;
1877 	else
1878 		/* ILK/SNB sprite plane watermarks */
1879 		return level == 0 ? 63 : 255;
1880 }
1881 
ilk_cursor_wm_reg_max(const struct drm_device * dev,int level)1882 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1883 					  int level)
1884 {
1885 	if (INTEL_INFO(dev)->gen >= 7)
1886 		return level == 0 ? 63 : 255;
1887 	else
1888 		return level == 0 ? 31 : 63;
1889 }
1890 
ilk_fbc_wm_reg_max(const struct drm_device * dev)1891 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1892 {
1893 	if (INTEL_INFO(dev)->gen >= 8)
1894 		return 31;
1895 	else
1896 		return 15;
1897 }
1898 
1899 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)1900 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1901 				     int level,
1902 				     const struct intel_wm_config *config,
1903 				     enum intel_ddb_partitioning ddb_partitioning,
1904 				     bool is_sprite)
1905 {
1906 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1907 
1908 	/* if sprites aren't enabled, sprites get nothing */
1909 	if (is_sprite && !config->sprites_enabled)
1910 		return 0;
1911 
1912 	/* HSW allows LP1+ watermarks even with multiple pipes */
1913 	if (level == 0 || config->num_pipes_active > 1) {
1914 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1915 
1916 		/*
1917 		 * For some reason the non self refresh
1918 		 * FIFO size is only half of the self
1919 		 * refresh FIFO size on ILK/SNB.
1920 		 */
1921 		if (INTEL_INFO(dev)->gen <= 6)
1922 			fifo_size /= 2;
1923 	}
1924 
1925 	if (config->sprites_enabled) {
1926 		/* level 0 is always calculated with 1:1 split */
1927 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1928 			if (is_sprite)
1929 				fifo_size *= 5;
1930 			fifo_size /= 6;
1931 		} else {
1932 			fifo_size /= 2;
1933 		}
1934 	}
1935 
1936 	/* clamp to max that the registers can hold */
1937 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 }
1939 
1940 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)1941 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942 				      int level,
1943 				      const struct intel_wm_config *config)
1944 {
1945 	/* HSW LP1+ watermarks w/ multiple pipes */
1946 	if (level > 0 && config->num_pipes_active > 1)
1947 		return 64;
1948 
1949 	/* otherwise just report max that registers can hold */
1950 	return ilk_cursor_wm_reg_max(dev, level);
1951 }
1952 
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)1953 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954 				    int level,
1955 				    const struct intel_wm_config *config,
1956 				    enum intel_ddb_partitioning ddb_partitioning,
1957 				    struct ilk_wm_maximums *max)
1958 {
1959 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1960 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1961 	max->cur = ilk_cursor_wm_max(dev, level, config);
1962 	max->fbc = ilk_fbc_wm_reg_max(dev);
1963 }
1964 
ilk_compute_wm_reg_maximums(struct drm_device * dev,int level,struct ilk_wm_maximums * max)1965 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1966 					int level,
1967 					struct ilk_wm_maximums *max)
1968 {
1969 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1970 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1971 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1972 	max->fbc = ilk_fbc_wm_reg_max(dev);
1973 }
1974 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)1975 static bool ilk_validate_wm_level(int level,
1976 				  const struct ilk_wm_maximums *max,
1977 				  struct intel_wm_level *result)
1978 {
1979 	bool ret;
1980 
1981 	/* already determined to be invalid? */
1982 	if (!result->enable)
1983 		return false;
1984 
1985 	result->enable = result->pri_val <= max->pri &&
1986 			 result->spr_val <= max->spr &&
1987 			 result->cur_val <= max->cur;
1988 
1989 	ret = result->enable;
1990 
1991 	/*
1992 	 * HACK until we can pre-compute everything,
1993 	 * and thus fail gracefully if LP0 watermarks
1994 	 * are exceeded...
1995 	 */
1996 	if (level == 0 && !result->enable) {
1997 		if (result->pri_val > max->pri)
1998 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1999 				      level, result->pri_val, max->pri);
2000 		if (result->spr_val > max->spr)
2001 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2002 				      level, result->spr_val, max->spr);
2003 		if (result->cur_val > max->cur)
2004 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2005 				      level, result->cur_val, max->cur);
2006 
2007 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2008 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2009 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2010 		result->enable = true;
2011 	}
2012 
2013 	return ret;
2014 }
2015 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * cstate,struct intel_plane_state * pristate,struct intel_plane_state * sprstate,struct intel_plane_state * curstate,struct intel_wm_level * result)2016 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017 				 const struct intel_crtc *intel_crtc,
2018 				 int level,
2019 				 struct intel_crtc_state *cstate,
2020 				 struct intel_plane_state *pristate,
2021 				 struct intel_plane_state *sprstate,
2022 				 struct intel_plane_state *curstate,
2023 				 struct intel_wm_level *result)
2024 {
2025 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2026 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2027 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2028 
2029 	/* WM1+ latency values stored in 0.5us units */
2030 	if (level > 0) {
2031 		pri_latency *= 5;
2032 		spr_latency *= 5;
2033 		cur_latency *= 5;
2034 	}
2035 
2036 	if (pristate) {
2037 		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2038 						     pri_latency, level);
2039 		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2040 	}
2041 
2042 	if (sprstate)
2043 		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2044 
2045 	if (curstate)
2046 		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2047 
2048 	result->enable = true;
2049 }
2050 
2051 static uint32_t
hsw_compute_linetime_wm(const struct intel_crtc_state * cstate)2052 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053 {
2054 	const struct intel_atomic_state *intel_state =
2055 		to_intel_atomic_state(cstate->base.state);
2056 	const struct drm_display_mode *adjusted_mode =
2057 		&cstate->base.adjusted_mode;
2058 	u32 linetime, ips_linetime;
2059 
2060 	if (!cstate->base.active)
2061 		return 0;
2062 	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2063 		return 0;
2064 	if (WARN_ON(intel_state->cdclk == 0))
2065 		return 0;
2066 
2067 	/* The WM are computed with base on how long it takes to fill a single
2068 	 * row at the given clock rate, multiplied by 8.
2069 	 * */
2070 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2071 				     adjusted_mode->crtc_clock);
2072 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073 					 intel_state->cdclk);
2074 
2075 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2076 	       PIPE_WM_LINETIME_TIME(linetime);
2077 }
2078 
intel_read_wm_latency(struct drm_device * dev,uint16_t wm[8])2079 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080 {
2081 	struct drm_i915_private *dev_priv = to_i915(dev);
2082 
2083 	if (IS_GEN9(dev)) {
2084 		uint32_t val;
2085 		int ret, i;
2086 		int level, max_level = ilk_wm_max_level(dev);
2087 
2088 		/* read the first set of memory latencies[0:3] */
2089 		val = 0; /* data0 to be programmed to 0 for first set */
2090 		mutex_lock(&dev_priv->rps.hw_lock);
2091 		ret = sandybridge_pcode_read(dev_priv,
2092 					     GEN9_PCODE_READ_MEM_LATENCY,
2093 					     &val);
2094 		mutex_unlock(&dev_priv->rps.hw_lock);
2095 
2096 		if (ret) {
2097 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2098 			return;
2099 		}
2100 
2101 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2102 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2103 				GEN9_MEM_LATENCY_LEVEL_MASK;
2104 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2105 				GEN9_MEM_LATENCY_LEVEL_MASK;
2106 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2107 				GEN9_MEM_LATENCY_LEVEL_MASK;
2108 
2109 		/* read the second set of memory latencies[4:7] */
2110 		val = 1; /* data0 to be programmed to 1 for second set */
2111 		mutex_lock(&dev_priv->rps.hw_lock);
2112 		ret = sandybridge_pcode_read(dev_priv,
2113 					     GEN9_PCODE_READ_MEM_LATENCY,
2114 					     &val);
2115 		mutex_unlock(&dev_priv->rps.hw_lock);
2116 		if (ret) {
2117 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2118 			return;
2119 		}
2120 
2121 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2122 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2123 				GEN9_MEM_LATENCY_LEVEL_MASK;
2124 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2125 				GEN9_MEM_LATENCY_LEVEL_MASK;
2126 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2127 				GEN9_MEM_LATENCY_LEVEL_MASK;
2128 
2129 		/*
2130 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2131 		 * need to be disabled. We make sure to sanitize the values out
2132 		 * of the punit to satisfy this requirement.
2133 		 */
2134 		for (level = 1; level <= max_level; level++) {
2135 			if (wm[level] == 0) {
2136 				for (i = level + 1; i <= max_level; i++)
2137 					wm[i] = 0;
2138 				break;
2139 			}
2140 		}
2141 
2142 		/*
2143 		 * WaWmMemoryReadLatency:skl
2144 		 *
2145 		 * punit doesn't take into account the read latency so we need
2146 		 * to add 2us to the various latency levels we retrieve from the
2147 		 * punit when level 0 response data us 0us.
2148 		 */
2149 		if (wm[0] == 0) {
2150 			wm[0] += 2;
2151 			for (level = 1; level <= max_level; level++) {
2152 				if (wm[level] == 0)
2153 					break;
2154 				wm[level] += 2;
2155 			}
2156 		}
2157 
2158 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2159 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2160 
2161 		wm[0] = (sskpd >> 56) & 0xFF;
2162 		if (wm[0] == 0)
2163 			wm[0] = sskpd & 0xF;
2164 		wm[1] = (sskpd >> 4) & 0xFF;
2165 		wm[2] = (sskpd >> 12) & 0xFF;
2166 		wm[3] = (sskpd >> 20) & 0x1FF;
2167 		wm[4] = (sskpd >> 32) & 0x1FF;
2168 	} else if (INTEL_INFO(dev)->gen >= 6) {
2169 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2170 
2171 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2172 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2173 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2174 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2175 	} else if (INTEL_INFO(dev)->gen >= 5) {
2176 		uint32_t mltr = I915_READ(MLTR_ILK);
2177 
2178 		/* ILK primary LP0 latency is 700 ns */
2179 		wm[0] = 7;
2180 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2181 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2182 	}
2183 }
2184 
intel_fixup_spr_wm_latency(struct drm_device * dev,uint16_t wm[5])2185 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2186 {
2187 	/* ILK sprite LP0 latency is 1300 ns */
2188 	if (IS_GEN5(dev))
2189 		wm[0] = 13;
2190 }
2191 
intel_fixup_cur_wm_latency(struct drm_device * dev,uint16_t wm[5])2192 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2193 {
2194 	/* ILK cursor LP0 latency is 1300 ns */
2195 	if (IS_GEN5(dev))
2196 		wm[0] = 13;
2197 
2198 	/* WaDoubleCursorLP3Latency:ivb */
2199 	if (IS_IVYBRIDGE(dev))
2200 		wm[3] *= 2;
2201 }
2202 
ilk_wm_max_level(const struct drm_device * dev)2203 int ilk_wm_max_level(const struct drm_device *dev)
2204 {
2205 	/* how many WM levels are we expecting */
2206 	if (INTEL_INFO(dev)->gen >= 9)
2207 		return 7;
2208 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2209 		return 4;
2210 	else if (INTEL_INFO(dev)->gen >= 6)
2211 		return 3;
2212 	else
2213 		return 2;
2214 }
2215 
intel_print_wm_latency(struct drm_device * dev,const char * name,const uint16_t wm[8])2216 static void intel_print_wm_latency(struct drm_device *dev,
2217 				   const char *name,
2218 				   const uint16_t wm[8])
2219 {
2220 	int level, max_level = ilk_wm_max_level(dev);
2221 
2222 	for (level = 0; level <= max_level; level++) {
2223 		unsigned int latency = wm[level];
2224 
2225 		if (latency == 0) {
2226 			DRM_ERROR("%s WM%d latency not provided\n",
2227 				  name, level);
2228 			continue;
2229 		}
2230 
2231 		/*
2232 		 * - latencies are in us on gen9.
2233 		 * - before then, WM1+ latency values are in 0.5us units
2234 		 */
2235 		if (IS_GEN9(dev))
2236 			latency *= 10;
2237 		else if (level > 0)
2238 			latency *= 5;
2239 
2240 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2241 			      name, level, wm[level],
2242 			      latency / 10, latency % 10);
2243 	}
2244 }
2245 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)2246 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2247 				    uint16_t wm[5], uint16_t min)
2248 {
2249 	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2250 
2251 	if (wm[0] >= min)
2252 		return false;
2253 
2254 	wm[0] = max(wm[0], min);
2255 	for (level = 1; level <= max_level; level++)
2256 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2257 
2258 	return true;
2259 }
2260 
snb_wm_latency_quirk(struct drm_device * dev)2261 static void snb_wm_latency_quirk(struct drm_device *dev)
2262 {
2263 	struct drm_i915_private *dev_priv = to_i915(dev);
2264 	bool changed;
2265 
2266 	/*
2267 	 * The BIOS provided WM memory latency values are often
2268 	 * inadequate for high resolution displays. Adjust them.
2269 	 */
2270 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2271 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2272 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2273 
2274 	if (!changed)
2275 		return;
2276 
2277 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2278 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2279 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2280 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2281 }
2282 
ilk_setup_wm_latency(struct drm_device * dev)2283 static void ilk_setup_wm_latency(struct drm_device *dev)
2284 {
2285 	struct drm_i915_private *dev_priv = to_i915(dev);
2286 
2287 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2288 
2289 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2290 	       sizeof(dev_priv->wm.pri_latency));
2291 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2292 	       sizeof(dev_priv->wm.pri_latency));
2293 
2294 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2295 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2296 
2297 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2298 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2299 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2300 
2301 	if (IS_GEN6(dev))
2302 		snb_wm_latency_quirk(dev);
2303 }
2304 
skl_setup_wm_latency(struct drm_device * dev)2305 static void skl_setup_wm_latency(struct drm_device *dev)
2306 {
2307 	struct drm_i915_private *dev_priv = to_i915(dev);
2308 
2309 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2310 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2311 }
2312 
ilk_validate_pipe_wm(struct drm_device * dev,struct intel_pipe_wm * pipe_wm)2313 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2314 				 struct intel_pipe_wm *pipe_wm)
2315 {
2316 	/* LP0 watermark maximums depend on this pipe alone */
2317 	const struct intel_wm_config config = {
2318 		.num_pipes_active = 1,
2319 		.sprites_enabled = pipe_wm->sprites_enabled,
2320 		.sprites_scaled = pipe_wm->sprites_scaled,
2321 	};
2322 	struct ilk_wm_maximums max;
2323 
2324 	/* LP0 watermarks always use 1/2 DDB partitioning */
2325 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2326 
2327 	/* At least LP0 must be valid */
2328 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2329 		DRM_DEBUG_KMS("LP0 watermark invalid\n");
2330 		return false;
2331 	}
2332 
2333 	return true;
2334 }
2335 
2336 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_crtc_state * cstate)2337 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2338 {
2339 	struct drm_atomic_state *state = cstate->base.state;
2340 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2341 	struct intel_pipe_wm *pipe_wm;
2342 	struct drm_device *dev = state->dev;
2343 	const struct drm_i915_private *dev_priv = to_i915(dev);
2344 	struct intel_plane *intel_plane;
2345 	struct intel_plane_state *pristate = NULL;
2346 	struct intel_plane_state *sprstate = NULL;
2347 	struct intel_plane_state *curstate = NULL;
2348 	int level, max_level = ilk_wm_max_level(dev), usable_level;
2349 	struct ilk_wm_maximums max;
2350 
2351 	pipe_wm = &cstate->wm.ilk.optimal;
2352 
2353 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2354 		struct intel_plane_state *ps;
2355 
2356 		ps = intel_atomic_get_existing_plane_state(state,
2357 							   intel_plane);
2358 		if (!ps)
2359 			continue;
2360 
2361 		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2362 			pristate = ps;
2363 		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2364 			sprstate = ps;
2365 		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2366 			curstate = ps;
2367 	}
2368 
2369 	pipe_wm->pipe_enabled = cstate->base.active;
2370 	if (sprstate) {
2371 		pipe_wm->sprites_enabled = sprstate->base.visible;
2372 		pipe_wm->sprites_scaled = sprstate->base.visible &&
2373 			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2374 			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2375 	}
2376 
2377 	usable_level = max_level;
2378 
2379 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2380 	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2381 		usable_level = 1;
2382 
2383 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2384 	if (pipe_wm->sprites_scaled)
2385 		usable_level = 0;
2386 
2387 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2388 			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2389 
2390 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2391 	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2392 
2393 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2394 		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2395 
2396 	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2397 		return -EINVAL;
2398 
2399 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2400 
2401 	for (level = 1; level <= max_level; level++) {
2402 		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2403 
2404 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2405 				     pristate, sprstate, curstate, wm);
2406 
2407 		/*
2408 		 * Disable any watermark level that exceeds the
2409 		 * register maximums since such watermarks are
2410 		 * always invalid.
2411 		 */
2412 		if (level > usable_level)
2413 			continue;
2414 
2415 		if (ilk_validate_wm_level(level, &max, wm))
2416 			pipe_wm->wm[level] = *wm;
2417 		else
2418 			usable_level = level;
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 /*
2425  * Build a set of 'intermediate' watermark values that satisfy both the old
2426  * state and the new state.  These can be programmed to the hardware
2427  * immediately.
2428  */
ilk_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * newstate)2429 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2430 				       struct intel_crtc *intel_crtc,
2431 				       struct intel_crtc_state *newstate)
2432 {
2433 	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2434 	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2435 	int level, max_level = ilk_wm_max_level(dev);
2436 
2437 	/*
2438 	 * Start with the final, target watermarks, then combine with the
2439 	 * currently active watermarks to get values that are safe both before
2440 	 * and after the vblank.
2441 	 */
2442 	*a = newstate->wm.ilk.optimal;
2443 	a->pipe_enabled |= b->pipe_enabled;
2444 	a->sprites_enabled |= b->sprites_enabled;
2445 	a->sprites_scaled |= b->sprites_scaled;
2446 
2447 	for (level = 0; level <= max_level; level++) {
2448 		struct intel_wm_level *a_wm = &a->wm[level];
2449 		const struct intel_wm_level *b_wm = &b->wm[level];
2450 
2451 		a_wm->enable &= b_wm->enable;
2452 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2453 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2454 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2455 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2456 	}
2457 
2458 	/*
2459 	 * We need to make sure that these merged watermark values are
2460 	 * actually a valid configuration themselves.  If they're not,
2461 	 * there's no safe way to transition from the old state to
2462 	 * the new state, so we need to fail the atomic transaction.
2463 	 */
2464 	if (!ilk_validate_pipe_wm(dev, a))
2465 		return -EINVAL;
2466 
2467 	/*
2468 	 * If our intermediate WM are identical to the final WM, then we can
2469 	 * omit the post-vblank programming; only update if it's different.
2470 	 */
2471 	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2472 		newstate->wm.need_postvbl_update = false;
2473 
2474 	return 0;
2475 }
2476 
2477 /*
2478  * Merge the watermarks from all active pipes for a specific level.
2479  */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)2480 static void ilk_merge_wm_level(struct drm_device *dev,
2481 			       int level,
2482 			       struct intel_wm_level *ret_wm)
2483 {
2484 	const struct intel_crtc *intel_crtc;
2485 
2486 	ret_wm->enable = true;
2487 
2488 	for_each_intel_crtc(dev, intel_crtc) {
2489 		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2490 		const struct intel_wm_level *wm = &active->wm[level];
2491 
2492 		if (!active->pipe_enabled)
2493 			continue;
2494 
2495 		/*
2496 		 * The watermark values may have been used in the past,
2497 		 * so we must maintain them in the registers for some
2498 		 * time even if the level is now disabled.
2499 		 */
2500 		if (!wm->enable)
2501 			ret_wm->enable = false;
2502 
2503 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2504 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2505 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2506 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2507 	}
2508 }
2509 
2510 /*
2511  * Merge all low power watermarks for all active pipes.
2512  */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)2513 static void ilk_wm_merge(struct drm_device *dev,
2514 			 const struct intel_wm_config *config,
2515 			 const struct ilk_wm_maximums *max,
2516 			 struct intel_pipe_wm *merged)
2517 {
2518 	struct drm_i915_private *dev_priv = to_i915(dev);
2519 	int level, max_level = ilk_wm_max_level(dev);
2520 	int last_enabled_level = max_level;
2521 
2522 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2523 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2524 	    config->num_pipes_active > 1)
2525 		last_enabled_level = 0;
2526 
2527 	/* ILK: FBC WM must be disabled always */
2528 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2529 
2530 	/* merge each WM1+ level */
2531 	for (level = 1; level <= max_level; level++) {
2532 		struct intel_wm_level *wm = &merged->wm[level];
2533 
2534 		ilk_merge_wm_level(dev, level, wm);
2535 
2536 		if (level > last_enabled_level)
2537 			wm->enable = false;
2538 		else if (!ilk_validate_wm_level(level, max, wm))
2539 			/* make sure all following levels get disabled */
2540 			last_enabled_level = level - 1;
2541 
2542 		/*
2543 		 * The spec says it is preferred to disable
2544 		 * FBC WMs instead of disabling a WM level.
2545 		 */
2546 		if (wm->fbc_val > max->fbc) {
2547 			if (wm->enable)
2548 				merged->fbc_wm_enabled = false;
2549 			wm->fbc_val = 0;
2550 		}
2551 	}
2552 
2553 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2554 	/*
2555 	 * FIXME this is racy. FBC might get enabled later.
2556 	 * What we should check here is whether FBC can be
2557 	 * enabled sometime later.
2558 	 */
2559 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2560 	    intel_fbc_is_active(dev_priv)) {
2561 		for (level = 2; level <= max_level; level++) {
2562 			struct intel_wm_level *wm = &merged->wm[level];
2563 
2564 			wm->enable = false;
2565 		}
2566 	}
2567 }
2568 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)2569 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2570 {
2571 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2572 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2573 }
2574 
2575 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)2576 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2577 {
2578 	struct drm_i915_private *dev_priv = to_i915(dev);
2579 
2580 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2581 		return 2 * level;
2582 	else
2583 		return dev_priv->wm.pri_latency[level];
2584 }
2585 
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)2586 static void ilk_compute_wm_results(struct drm_device *dev,
2587 				   const struct intel_pipe_wm *merged,
2588 				   enum intel_ddb_partitioning partitioning,
2589 				   struct ilk_wm_values *results)
2590 {
2591 	struct intel_crtc *intel_crtc;
2592 	int level, wm_lp;
2593 
2594 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2595 	results->partitioning = partitioning;
2596 
2597 	/* LP1+ register values */
2598 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2599 		const struct intel_wm_level *r;
2600 
2601 		level = ilk_wm_lp_to_level(wm_lp, merged);
2602 
2603 		r = &merged->wm[level];
2604 
2605 		/*
2606 		 * Maintain the watermark values even if the level is
2607 		 * disabled. Doing otherwise could cause underruns.
2608 		 */
2609 		results->wm_lp[wm_lp - 1] =
2610 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2611 			(r->pri_val << WM1_LP_SR_SHIFT) |
2612 			r->cur_val;
2613 
2614 		if (r->enable)
2615 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2616 
2617 		if (INTEL_INFO(dev)->gen >= 8)
2618 			results->wm_lp[wm_lp - 1] |=
2619 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2620 		else
2621 			results->wm_lp[wm_lp - 1] |=
2622 				r->fbc_val << WM1_LP_FBC_SHIFT;
2623 
2624 		/*
2625 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2626 		 * level is disabled. Doing otherwise could cause underruns.
2627 		 */
2628 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2629 			WARN_ON(wm_lp != 1);
2630 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2631 		} else
2632 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2633 	}
2634 
2635 	/* LP0 register values */
2636 	for_each_intel_crtc(dev, intel_crtc) {
2637 		enum pipe pipe = intel_crtc->pipe;
2638 		const struct intel_wm_level *r =
2639 			&intel_crtc->wm.active.ilk.wm[0];
2640 
2641 		if (WARN_ON(!r->enable))
2642 			continue;
2643 
2644 		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2645 
2646 		results->wm_pipe[pipe] =
2647 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2648 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2649 			r->cur_val;
2650 	}
2651 }
2652 
2653 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2654  * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)2655 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2656 						  struct intel_pipe_wm *r1,
2657 						  struct intel_pipe_wm *r2)
2658 {
2659 	int level, max_level = ilk_wm_max_level(dev);
2660 	int level1 = 0, level2 = 0;
2661 
2662 	for (level = 1; level <= max_level; level++) {
2663 		if (r1->wm[level].enable)
2664 			level1 = level;
2665 		if (r2->wm[level].enable)
2666 			level2 = level;
2667 	}
2668 
2669 	if (level1 == level2) {
2670 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2671 			return r2;
2672 		else
2673 			return r1;
2674 	} else if (level1 > level2) {
2675 		return r1;
2676 	} else {
2677 		return r2;
2678 	}
2679 }
2680 
2681 /* dirty bits used to track which watermarks need changes */
2682 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2683 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2684 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2685 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2686 #define WM_DIRTY_FBC (1 << 24)
2687 #define WM_DIRTY_DDB (1 << 25)
2688 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)2689 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2690 					 const struct ilk_wm_values *old,
2691 					 const struct ilk_wm_values *new)
2692 {
2693 	unsigned int dirty = 0;
2694 	enum pipe pipe;
2695 	int wm_lp;
2696 
2697 	for_each_pipe(dev_priv, pipe) {
2698 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2699 			dirty |= WM_DIRTY_LINETIME(pipe);
2700 			/* Must disable LP1+ watermarks too */
2701 			dirty |= WM_DIRTY_LP_ALL;
2702 		}
2703 
2704 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2705 			dirty |= WM_DIRTY_PIPE(pipe);
2706 			/* Must disable LP1+ watermarks too */
2707 			dirty |= WM_DIRTY_LP_ALL;
2708 		}
2709 	}
2710 
2711 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2712 		dirty |= WM_DIRTY_FBC;
2713 		/* Must disable LP1+ watermarks too */
2714 		dirty |= WM_DIRTY_LP_ALL;
2715 	}
2716 
2717 	if (old->partitioning != new->partitioning) {
2718 		dirty |= WM_DIRTY_DDB;
2719 		/* Must disable LP1+ watermarks too */
2720 		dirty |= WM_DIRTY_LP_ALL;
2721 	}
2722 
2723 	/* LP1+ watermarks already deemed dirty, no need to continue */
2724 	if (dirty & WM_DIRTY_LP_ALL)
2725 		return dirty;
2726 
2727 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2728 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2729 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2730 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2731 			break;
2732 	}
2733 
2734 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2735 	for (; wm_lp <= 3; wm_lp++)
2736 		dirty |= WM_DIRTY_LP(wm_lp);
2737 
2738 	return dirty;
2739 }
2740 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)2741 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2742 			       unsigned int dirty)
2743 {
2744 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745 	bool changed = false;
2746 
2747 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2748 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2749 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2750 		changed = true;
2751 	}
2752 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2753 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2754 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2755 		changed = true;
2756 	}
2757 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2758 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2759 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2760 		changed = true;
2761 	}
2762 
2763 	/*
2764 	 * Don't touch WM1S_LP_EN here.
2765 	 * Doing so could cause underruns.
2766 	 */
2767 
2768 	return changed;
2769 }
2770 
2771 /*
2772  * The spec says we shouldn't write when we don't need, because every write
2773  * causes WMs to be re-evaluated, expending some power.
2774  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)2775 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2776 				struct ilk_wm_values *results)
2777 {
2778 	struct drm_device *dev = &dev_priv->drm;
2779 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2780 	unsigned int dirty;
2781 	uint32_t val;
2782 
2783 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2784 	if (!dirty)
2785 		return;
2786 
2787 	_ilk_disable_lp_wm(dev_priv, dirty);
2788 
2789 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2790 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2791 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2792 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2793 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2794 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2795 
2796 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2797 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2798 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2799 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2800 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2801 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2802 
2803 	if (dirty & WM_DIRTY_DDB) {
2804 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2805 			val = I915_READ(WM_MISC);
2806 			if (results->partitioning == INTEL_DDB_PART_1_2)
2807 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2808 			else
2809 				val |= WM_MISC_DATA_PARTITION_5_6;
2810 			I915_WRITE(WM_MISC, val);
2811 		} else {
2812 			val = I915_READ(DISP_ARB_CTL2);
2813 			if (results->partitioning == INTEL_DDB_PART_1_2)
2814 				val &= ~DISP_DATA_PARTITION_5_6;
2815 			else
2816 				val |= DISP_DATA_PARTITION_5_6;
2817 			I915_WRITE(DISP_ARB_CTL2, val);
2818 		}
2819 	}
2820 
2821 	if (dirty & WM_DIRTY_FBC) {
2822 		val = I915_READ(DISP_ARB_CTL);
2823 		if (results->enable_fbc_wm)
2824 			val &= ~DISP_FBC_WM_DIS;
2825 		else
2826 			val |= DISP_FBC_WM_DIS;
2827 		I915_WRITE(DISP_ARB_CTL, val);
2828 	}
2829 
2830 	if (dirty & WM_DIRTY_LP(1) &&
2831 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2832 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2833 
2834 	if (INTEL_INFO(dev)->gen >= 7) {
2835 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2836 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2837 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2838 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2839 	}
2840 
2841 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2842 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2843 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2844 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2845 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2846 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2847 
2848 	dev_priv->wm.hw = *results;
2849 }
2850 
ilk_disable_lp_wm(struct drm_device * dev)2851 bool ilk_disable_lp_wm(struct drm_device *dev)
2852 {
2853 	struct drm_i915_private *dev_priv = to_i915(dev);
2854 
2855 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2856 }
2857 
2858 #define SKL_SAGV_BLOCK_TIME	30 /* µs */
2859 
2860 /*
2861  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2862  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2863  * other universal planes are in indices 1..n.  Note that this may leave unused
2864  * indices between the top "sprite" plane and the cursor.
2865  */
2866 static int
skl_wm_plane_id(const struct intel_plane * plane)2867 skl_wm_plane_id(const struct intel_plane *plane)
2868 {
2869 	switch (plane->base.type) {
2870 	case DRM_PLANE_TYPE_PRIMARY:
2871 		return 0;
2872 	case DRM_PLANE_TYPE_CURSOR:
2873 		return PLANE_CURSOR;
2874 	case DRM_PLANE_TYPE_OVERLAY:
2875 		return plane->plane + 1;
2876 	default:
2877 		MISSING_CASE(plane->base.type);
2878 		return plane->plane;
2879 	}
2880 }
2881 
2882 /*
2883  * FIXME: We still don't have the proper code detect if we need to apply the WA,
2884  * so assume we'll always need it in order to avoid underruns.
2885  */
skl_needs_memory_bw_wa(struct intel_atomic_state * state)2886 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2887 {
2888 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2889 
2890 	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2891 	    IS_KABYLAKE(dev_priv))
2892 		return true;
2893 
2894 	return false;
2895 }
2896 
2897 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)2898 intel_has_sagv(struct drm_i915_private *dev_priv)
2899 {
2900 	if (IS_KABYLAKE(dev_priv))
2901 		return true;
2902 
2903 	if (IS_SKYLAKE(dev_priv) &&
2904 	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2905 		return true;
2906 
2907 	return false;
2908 }
2909 
2910 /*
2911  * SAGV dynamically adjusts the system agent voltage and clock frequencies
2912  * depending on power and performance requirements. The display engine access
2913  * to system memory is blocked during the adjustment time. Because of the
2914  * blocking time, having this enabled can cause full system hangs and/or pipe
2915  * underruns if we don't meet all of the following requirements:
2916  *
2917  *  - <= 1 pipe enabled
2918  *  - All planes can enable watermarks for latencies >= SAGV engine block time
2919  *  - We're not using an interlaced display configuration
2920  */
2921 int
intel_enable_sagv(struct drm_i915_private * dev_priv)2922 intel_enable_sagv(struct drm_i915_private *dev_priv)
2923 {
2924 	int ret;
2925 
2926 	if (!intel_has_sagv(dev_priv))
2927 		return 0;
2928 
2929 	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2930 		return 0;
2931 
2932 	DRM_DEBUG_KMS("Enabling the SAGV\n");
2933 	mutex_lock(&dev_priv->rps.hw_lock);
2934 
2935 	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2936 				      GEN9_SAGV_ENABLE);
2937 
2938 	/* We don't need to wait for the SAGV when enabling */
2939 	mutex_unlock(&dev_priv->rps.hw_lock);
2940 
2941 	/*
2942 	 * Some skl systems, pre-release machines in particular,
2943 	 * don't actually have an SAGV.
2944 	 */
2945 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2946 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2947 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2948 		return 0;
2949 	} else if (ret < 0) {
2950 		DRM_ERROR("Failed to enable the SAGV\n");
2951 		return ret;
2952 	}
2953 
2954 	dev_priv->sagv_status = I915_SAGV_ENABLED;
2955 	return 0;
2956 }
2957 
2958 int
intel_disable_sagv(struct drm_i915_private * dev_priv)2959 intel_disable_sagv(struct drm_i915_private *dev_priv)
2960 {
2961 	int ret;
2962 
2963 	if (!intel_has_sagv(dev_priv))
2964 		return 0;
2965 
2966 	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2967 		return 0;
2968 
2969 	DRM_DEBUG_KMS("Disabling the SAGV\n");
2970 	mutex_lock(&dev_priv->rps.hw_lock);
2971 
2972 	/* bspec says to keep retrying for at least 1 ms */
2973 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2974 				GEN9_SAGV_DISABLE,
2975 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
2976 				1);
2977 	mutex_unlock(&dev_priv->rps.hw_lock);
2978 
2979 	/*
2980 	 * Some skl systems, pre-release machines in particular,
2981 	 * don't actually have an SAGV.
2982 	 */
2983 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2984 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2985 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2986 		return 0;
2987 	} else if (ret < 0) {
2988 		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
2989 		return ret;
2990 	}
2991 
2992 	dev_priv->sagv_status = I915_SAGV_DISABLED;
2993 	return 0;
2994 }
2995 
intel_can_enable_sagv(struct drm_atomic_state * state)2996 bool intel_can_enable_sagv(struct drm_atomic_state *state)
2997 {
2998 	struct drm_device *dev = state->dev;
2999 	struct drm_i915_private *dev_priv = to_i915(dev);
3000 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3001 	struct intel_crtc *crtc;
3002 	struct intel_plane *plane;
3003 	enum pipe pipe;
3004 	int level, id, latency;
3005 
3006 	if (!intel_has_sagv(dev_priv))
3007 		return false;
3008 
3009 	/*
3010 	 * SKL workaround: bspec recommends we disable the SAGV when we have
3011 	 * more then one pipe enabled
3012 	 *
3013 	 * If there are no active CRTCs, no additional checks need be performed
3014 	 */
3015 	if (hweight32(intel_state->active_crtcs) == 0)
3016 		return true;
3017 	else if (hweight32(intel_state->active_crtcs) > 1)
3018 		return false;
3019 
3020 	/* Since we're now guaranteed to only have one active CRTC... */
3021 	pipe = ffs(intel_state->active_crtcs) - 1;
3022 	crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3023 
3024 	if (crtc->base.state->mode.flags & DRM_MODE_FLAG_INTERLACE)
3025 		return false;
3026 
3027 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3028 		id = skl_wm_plane_id(plane);
3029 
3030 		/* Skip this plane if it's not enabled */
3031 		if (intel_state->wm_results.plane[pipe][id][0] == 0)
3032 			continue;
3033 
3034 		/* Find the highest enabled wm level for this plane */
3035 		for (level = ilk_wm_max_level(dev);
3036 		     intel_state->wm_results.plane[pipe][id][level] == 0; --level)
3037 		     { }
3038 
3039 		latency = dev_priv->wm.skl_latency[level];
3040 
3041 		if (skl_needs_memory_bw_wa(intel_state) &&
3042 		    plane->base.state->fb->modifier[0] ==
3043 		    I915_FORMAT_MOD_X_TILED)
3044 			latency += 15;
3045 
3046 		/*
3047 		 * If any of the planes on this pipe don't enable wm levels
3048 		 * that incur memory latencies higher then 30µs we can't enable
3049 		 * the SAGV
3050 		 */
3051 		if (latency < SKL_SAGV_BLOCK_TIME)
3052 			return false;
3053 	}
3054 
3055 	return true;
3056 }
3057 
3058 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,const struct intel_crtc_state * cstate,struct skl_ddb_entry * alloc,int * num_active)3059 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3060 				   const struct intel_crtc_state *cstate,
3061 				   struct skl_ddb_entry *alloc, /* out */
3062 				   int *num_active /* out */)
3063 {
3064 	struct drm_atomic_state *state = cstate->base.state;
3065 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3066 	struct drm_i915_private *dev_priv = to_i915(dev);
3067 	struct drm_crtc *for_crtc = cstate->base.crtc;
3068 	unsigned int pipe_size, ddb_size;
3069 	int nth_active_pipe;
3070 	int pipe = to_intel_crtc(for_crtc)->pipe;
3071 
3072 	if (WARN_ON(!state) || !cstate->base.active) {
3073 		alloc->start = 0;
3074 		alloc->end = 0;
3075 		*num_active = hweight32(dev_priv->active_crtcs);
3076 		return;
3077 	}
3078 
3079 	if (intel_state->active_pipe_changes)
3080 		*num_active = hweight32(intel_state->active_crtcs);
3081 	else
3082 		*num_active = hweight32(dev_priv->active_crtcs);
3083 
3084 	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3085 	WARN_ON(ddb_size == 0);
3086 
3087 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
3088 
3089 	/*
3090 	 * If the state doesn't change the active CRTC's, then there's
3091 	 * no need to recalculate; the existing pipe allocation limits
3092 	 * should remain unchanged.  Note that we're safe from racing
3093 	 * commits since any racing commit that changes the active CRTC
3094 	 * list would need to grab _all_ crtc locks, including the one
3095 	 * we currently hold.
3096 	 */
3097 	if (!intel_state->active_pipe_changes) {
3098 		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
3099 		return;
3100 	}
3101 
3102 	nth_active_pipe = hweight32(intel_state->active_crtcs &
3103 				    (drm_crtc_mask(for_crtc) - 1));
3104 	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3105 	alloc->start = nth_active_pipe * ddb_size / *num_active;
3106 	alloc->end = alloc->start + pipe_size;
3107 }
3108 
skl_cursor_allocation(int num_active)3109 static unsigned int skl_cursor_allocation(int num_active)
3110 {
3111 	if (num_active == 1)
3112 		return 32;
3113 
3114 	return 8;
3115 }
3116 
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)3117 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3118 {
3119 	entry->start = reg & 0x3ff;
3120 	entry->end = (reg >> 16) & 0x3ff;
3121 	if (entry->end)
3122 		entry->end += 1;
3123 }
3124 
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)3125 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3126 			  struct skl_ddb_allocation *ddb /* out */)
3127 {
3128 	enum pipe pipe;
3129 	int plane;
3130 	u32 val;
3131 
3132 	memset(ddb, 0, sizeof(*ddb));
3133 
3134 	for_each_pipe(dev_priv, pipe) {
3135 		enum intel_display_power_domain power_domain;
3136 
3137 		power_domain = POWER_DOMAIN_PIPE(pipe);
3138 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3139 			continue;
3140 
3141 		for_each_plane(dev_priv, pipe, plane) {
3142 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3143 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3144 						   val);
3145 		}
3146 
3147 		val = I915_READ(CUR_BUF_CFG(pipe));
3148 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3149 					   val);
3150 
3151 		intel_display_power_put(dev_priv, power_domain);
3152 	}
3153 }
3154 
3155 /*
3156  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3157  * The bspec defines downscale amount as:
3158  *
3159  * """
3160  * Horizontal down scale amount = maximum[1, Horizontal source size /
3161  *                                           Horizontal destination size]
3162  * Vertical down scale amount = maximum[1, Vertical source size /
3163  *                                         Vertical destination size]
3164  * Total down scale amount = Horizontal down scale amount *
3165  *                           Vertical down scale amount
3166  * """
3167  *
3168  * Return value is provided in 16.16 fixed point form to retain fractional part.
3169  * Caller should take care of dividing & rounding off the value.
3170  */
3171 static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state * pstate)3172 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3173 {
3174 	uint32_t downscale_h, downscale_w;
3175 	uint32_t src_w, src_h, dst_w, dst_h;
3176 
3177 	if (WARN_ON(!pstate->base.visible))
3178 		return DRM_PLANE_HELPER_NO_SCALING;
3179 
3180 	/* n.b., src is 16.16 fixed point, dst is whole integer */
3181 	src_w = drm_rect_width(&pstate->base.src);
3182 	src_h = drm_rect_height(&pstate->base.src);
3183 	dst_w = drm_rect_width(&pstate->base.dst);
3184 	dst_h = drm_rect_height(&pstate->base.dst);
3185 	if (intel_rotation_90_or_270(pstate->base.rotation))
3186 		swap(dst_w, dst_h);
3187 
3188 	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3189 	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3190 
3191 	/* Provide result in 16.16 fixed point */
3192 	return (uint64_t)downscale_w * downscale_h >> 16;
3193 }
3194 
3195 static unsigned int
skl_plane_relative_data_rate(const struct intel_crtc_state * cstate,const struct drm_plane_state * pstate,int y)3196 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3197 			     const struct drm_plane_state *pstate,
3198 			     int y)
3199 {
3200 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3201 	struct drm_framebuffer *fb = pstate->fb;
3202 	uint32_t down_scale_amount, data_rate;
3203 	uint32_t width = 0, height = 0;
3204 	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3205 
3206 	if (!intel_pstate->base.visible)
3207 		return 0;
3208 	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3209 		return 0;
3210 	if (y && format != DRM_FORMAT_NV12)
3211 		return 0;
3212 
3213 	width = drm_rect_width(&intel_pstate->base.src) >> 16;
3214 	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3215 
3216 	if (intel_rotation_90_or_270(pstate->rotation))
3217 		swap(width, height);
3218 
3219 	/* for planar format */
3220 	if (format == DRM_FORMAT_NV12) {
3221 		if (y)  /* y-plane data rate */
3222 			data_rate = width * height *
3223 				drm_format_plane_cpp(format, 0);
3224 		else    /* uv-plane data rate */
3225 			data_rate = (width / 2) * (height / 2) *
3226 				drm_format_plane_cpp(format, 1);
3227 	} else {
3228 		/* for packed formats */
3229 		data_rate = width * height * drm_format_plane_cpp(format, 0);
3230 	}
3231 
3232 	down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3233 
3234 	return (uint64_t)data_rate * down_scale_amount >> 16;
3235 }
3236 
3237 /*
3238  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3239  * a 8192x4096@32bpp framebuffer:
3240  *   3 * 4096 * 8192  * 4 < 2^32
3241  */
3242 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc_state * intel_cstate)3243 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3244 {
3245 	struct drm_crtc_state *cstate = &intel_cstate->base;
3246 	struct drm_atomic_state *state = cstate->state;
3247 	struct drm_crtc *crtc = cstate->crtc;
3248 	struct drm_device *dev = crtc->dev;
3249 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3250 	const struct drm_plane *plane;
3251 	const struct intel_plane *intel_plane;
3252 	struct drm_plane_state *pstate;
3253 	unsigned int rate, total_data_rate = 0;
3254 	int id;
3255 	int i;
3256 
3257 	if (WARN_ON(!state))
3258 		return 0;
3259 
3260 	/* Calculate and cache data rate for each plane */
3261 	for_each_plane_in_state(state, plane, pstate, i) {
3262 		id = skl_wm_plane_id(to_intel_plane(plane));
3263 		intel_plane = to_intel_plane(plane);
3264 
3265 		if (intel_plane->pipe != intel_crtc->pipe)
3266 			continue;
3267 
3268 		/* packed/uv */
3269 		rate = skl_plane_relative_data_rate(intel_cstate,
3270 						    pstate, 0);
3271 		intel_cstate->wm.skl.plane_data_rate[id] = rate;
3272 
3273 		/* y-plane */
3274 		rate = skl_plane_relative_data_rate(intel_cstate,
3275 						    pstate, 1);
3276 		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3277 	}
3278 
3279 	/* Calculate CRTC's total data rate from cached values */
3280 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3281 		int id = skl_wm_plane_id(intel_plane);
3282 
3283 		/* packed/uv */
3284 		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3285 		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3286 	}
3287 
3288 	return total_data_rate;
3289 }
3290 
3291 static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state * pstate,const int y)3292 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3293 		  const int y)
3294 {
3295 	struct drm_framebuffer *fb = pstate->fb;
3296 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3297 	uint32_t src_w, src_h;
3298 	uint32_t min_scanlines = 8;
3299 	uint8_t plane_bpp;
3300 
3301 	if (WARN_ON(!fb))
3302 		return 0;
3303 
3304 	/* For packed formats, no y-plane, return 0 */
3305 	if (y && fb->pixel_format != DRM_FORMAT_NV12)
3306 		return 0;
3307 
3308 	/* For Non Y-tile return 8-blocks */
3309 	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3310 	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3311 		return 8;
3312 
3313 	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3314 	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3315 
3316 	if (intel_rotation_90_or_270(pstate->rotation))
3317 		swap(src_w, src_h);
3318 
3319 	/* Halve UV plane width and height for NV12 */
3320 	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3321 		src_w /= 2;
3322 		src_h /= 2;
3323 	}
3324 
3325 	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3326 		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3327 	else
3328 		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3329 
3330 	if (intel_rotation_90_or_270(pstate->rotation)) {
3331 		switch (plane_bpp) {
3332 		case 1:
3333 			min_scanlines = 32;
3334 			break;
3335 		case 2:
3336 			min_scanlines = 16;
3337 			break;
3338 		case 4:
3339 			min_scanlines = 8;
3340 			break;
3341 		case 8:
3342 			min_scanlines = 4;
3343 			break;
3344 		default:
3345 			WARN(1, "Unsupported pixel depth %u for rotation",
3346 			     plane_bpp);
3347 			min_scanlines = 32;
3348 		}
3349 	}
3350 
3351 	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3352 }
3353 
3354 static int
skl_allocate_pipe_ddb(struct intel_crtc_state * cstate,struct skl_ddb_allocation * ddb)3355 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3356 		      struct skl_ddb_allocation *ddb /* out */)
3357 {
3358 	struct drm_atomic_state *state = cstate->base.state;
3359 	struct drm_crtc *crtc = cstate->base.crtc;
3360 	struct drm_device *dev = crtc->dev;
3361 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3362 	struct intel_plane *intel_plane;
3363 	struct drm_plane *plane;
3364 	struct drm_plane_state *pstate;
3365 	enum pipe pipe = intel_crtc->pipe;
3366 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3367 	uint16_t alloc_size, start, cursor_blocks;
3368 	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3369 	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3370 	unsigned int total_data_rate;
3371 	int num_active;
3372 	int id, i;
3373 
3374 	/* Clear the partitioning for disabled planes. */
3375 	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3376 	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3377 
3378 	if (WARN_ON(!state))
3379 		return 0;
3380 
3381 	if (!cstate->base.active) {
3382 		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3383 		return 0;
3384 	}
3385 
3386 	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3387 	alloc_size = skl_ddb_entry_size(alloc);
3388 	if (alloc_size == 0) {
3389 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3390 		return 0;
3391 	}
3392 
3393 	cursor_blocks = skl_cursor_allocation(num_active);
3394 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3395 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3396 
3397 	alloc_size -= cursor_blocks;
3398 
3399 	/* 1. Allocate the mininum required blocks for each active plane */
3400 	for_each_plane_in_state(state, plane, pstate, i) {
3401 		intel_plane = to_intel_plane(plane);
3402 		id = skl_wm_plane_id(intel_plane);
3403 
3404 		if (intel_plane->pipe != pipe)
3405 			continue;
3406 
3407 		if (!to_intel_plane_state(pstate)->base.visible) {
3408 			minimum[id] = 0;
3409 			y_minimum[id] = 0;
3410 			continue;
3411 		}
3412 		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3413 			minimum[id] = 0;
3414 			y_minimum[id] = 0;
3415 			continue;
3416 		}
3417 
3418 		minimum[id] = skl_ddb_min_alloc(pstate, 0);
3419 		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3420 	}
3421 
3422 	for (i = 0; i < PLANE_CURSOR; i++) {
3423 		alloc_size -= minimum[i];
3424 		alloc_size -= y_minimum[i];
3425 	}
3426 
3427 	/*
3428 	 * 2. Distribute the remaining space in proportion to the amount of
3429 	 * data each plane needs to fetch from memory.
3430 	 *
3431 	 * FIXME: we may not allocate every single block here.
3432 	 */
3433 	total_data_rate = skl_get_total_relative_data_rate(cstate);
3434 	if (total_data_rate == 0)
3435 		return 0;
3436 
3437 	start = alloc->start;
3438 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3439 		unsigned int data_rate, y_data_rate;
3440 		uint16_t plane_blocks, y_plane_blocks = 0;
3441 		int id = skl_wm_plane_id(intel_plane);
3442 
3443 		data_rate = cstate->wm.skl.plane_data_rate[id];
3444 
3445 		/*
3446 		 * allocation for (packed formats) or (uv-plane part of planar format):
3447 		 * promote the expression to 64 bits to avoid overflowing, the
3448 		 * result is < available as data_rate / total_data_rate < 1
3449 		 */
3450 		plane_blocks = minimum[id];
3451 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3452 					total_data_rate);
3453 
3454 		/* Leave disabled planes at (0,0) */
3455 		if (data_rate) {
3456 			ddb->plane[pipe][id].start = start;
3457 			ddb->plane[pipe][id].end = start + plane_blocks;
3458 		}
3459 
3460 		start += plane_blocks;
3461 
3462 		/*
3463 		 * allocation for y_plane part of planar format:
3464 		 */
3465 		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3466 
3467 		y_plane_blocks = y_minimum[id];
3468 		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3469 					total_data_rate);
3470 
3471 		if (y_data_rate) {
3472 			ddb->y_plane[pipe][id].start = start;
3473 			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3474 		}
3475 
3476 		start += y_plane_blocks;
3477 	}
3478 
3479 	return 0;
3480 }
3481 
3482 /*
3483  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3484  * for the read latency) and cpp should always be <= 8, so that
3485  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3486  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3487 */
skl_wm_method1(uint32_t pixel_rate,uint8_t cpp,uint32_t latency)3488 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3489 {
3490 	uint32_t wm_intermediate_val, ret;
3491 
3492 	if (latency == 0)
3493 		return UINT_MAX;
3494 
3495 	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3496 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3497 
3498 	return ret;
3499 }
3500 
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t latency,uint32_t plane_blocks_per_line)3501 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3502 			       uint32_t latency, uint32_t plane_blocks_per_line)
3503 {
3504 	uint32_t ret;
3505 	uint32_t wm_intermediate_val;
3506 
3507 	if (latency == 0)
3508 		return UINT_MAX;
3509 
3510 	wm_intermediate_val = latency * pixel_rate;
3511 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3512 				plane_blocks_per_line;
3513 
3514 	return ret;
3515 }
3516 
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state * cstate,struct intel_plane_state * pstate)3517 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3518 					      struct intel_plane_state *pstate)
3519 {
3520 	uint64_t adjusted_pixel_rate;
3521 	uint64_t downscale_amount;
3522 	uint64_t pixel_rate;
3523 
3524 	/* Shouldn't reach here on disabled planes... */
3525 	if (WARN_ON(!pstate->base.visible))
3526 		return 0;
3527 
3528 	/*
3529 	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3530 	 * with additional adjustments for plane-specific scaling.
3531 	 */
3532 	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3533 	downscale_amount = skl_plane_downscale_amount(pstate);
3534 
3535 	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3536 	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3537 
3538 	return pixel_rate;
3539 }
3540 
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct intel_crtc_state * cstate,struct intel_plane_state * intel_pstate,uint16_t ddb_allocation,int level,uint16_t * out_blocks,uint8_t * out_lines,bool * enabled)3541 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3542 				struct intel_crtc_state *cstate,
3543 				struct intel_plane_state *intel_pstate,
3544 				uint16_t ddb_allocation,
3545 				int level,
3546 				uint16_t *out_blocks, /* out */
3547 				uint8_t *out_lines, /* out */
3548 				bool *enabled /* out */)
3549 {
3550 	struct drm_plane_state *pstate = &intel_pstate->base;
3551 	struct drm_framebuffer *fb = pstate->fb;
3552 	uint32_t latency = dev_priv->wm.skl_latency[level];
3553 	uint32_t method1, method2;
3554 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3555 	uint32_t res_blocks, res_lines;
3556 	uint32_t selected_result;
3557 	uint8_t cpp;
3558 	uint32_t width = 0, height = 0;
3559 	uint32_t plane_pixel_rate;
3560 	uint32_t y_tile_minimum, y_min_scanlines;
3561 	struct intel_atomic_state *state =
3562 		to_intel_atomic_state(cstate->base.state);
3563 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3564 
3565 	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3566 		*enabled = false;
3567 		return 0;
3568 	}
3569 
3570 	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3571 		latency += 15;
3572 
3573 	width = drm_rect_width(&intel_pstate->base.src) >> 16;
3574 	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3575 
3576 	if (intel_rotation_90_or_270(pstate->rotation))
3577 		swap(width, height);
3578 
3579 	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3580 	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3581 
3582 	if (intel_rotation_90_or_270(pstate->rotation)) {
3583 		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3584 			drm_format_plane_cpp(fb->pixel_format, 1) :
3585 			drm_format_plane_cpp(fb->pixel_format, 0);
3586 
3587 		switch (cpp) {
3588 		case 1:
3589 			y_min_scanlines = 16;
3590 			break;
3591 		case 2:
3592 			y_min_scanlines = 8;
3593 			break;
3594 		default:
3595 			WARN(1, "Unsupported pixel depth for rotation");
3596 		case 4:
3597 			y_min_scanlines = 4;
3598 			break;
3599 		}
3600 	} else {
3601 		y_min_scanlines = 4;
3602 	}
3603 
3604 	if (apply_memory_bw_wa)
3605 		y_min_scanlines *= 2;
3606 
3607 	plane_bytes_per_line = width * cpp;
3608 	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3609 	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3610 		plane_blocks_per_line =
3611 		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3612 		plane_blocks_per_line /= y_min_scanlines;
3613 	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
3614 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3615 					+ 1;
3616 	} else {
3617 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3618 	}
3619 
3620 	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3621 	method2 = skl_wm_method2(plane_pixel_rate,
3622 				 cstate->base.adjusted_mode.crtc_htotal,
3623 				 latency,
3624 				 plane_blocks_per_line);
3625 
3626 	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3627 
3628 	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3629 	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3630 		selected_result = max(method2, y_tile_minimum);
3631 	} else {
3632 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3633 			selected_result = min(method1, method2);
3634 		else
3635 			selected_result = method1;
3636 	}
3637 
3638 	res_blocks = selected_result + 1;
3639 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3640 
3641 	if (level >= 1 && level <= 7) {
3642 		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3643 		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3644 			res_blocks += y_tile_minimum;
3645 			res_lines += y_min_scanlines;
3646 		} else {
3647 			res_blocks++;
3648 		}
3649 	}
3650 
3651 	if (res_blocks >= ddb_allocation || res_lines > 31) {
3652 		*enabled = false;
3653 
3654 		/*
3655 		 * If there are no valid level 0 watermarks, then we can't
3656 		 * support this display configuration.
3657 		 */
3658 		if (level) {
3659 			return 0;
3660 		} else {
3661 			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3662 			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3663 				      to_intel_crtc(cstate->base.crtc)->pipe,
3664 				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
3665 				      res_blocks, ddb_allocation, res_lines);
3666 
3667 			return -EINVAL;
3668 		}
3669 	}
3670 
3671 	*out_blocks = res_blocks;
3672 	*out_lines = res_lines;
3673 	*enabled = true;
3674 
3675 	return 0;
3676 }
3677 
3678 static int
skl_compute_wm_level(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct intel_crtc_state * cstate,int level,struct skl_wm_level * result)3679 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3680 		     struct skl_ddb_allocation *ddb,
3681 		     struct intel_crtc_state *cstate,
3682 		     int level,
3683 		     struct skl_wm_level *result)
3684 {
3685 	struct drm_atomic_state *state = cstate->base.state;
3686 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3687 	struct drm_plane *plane;
3688 	struct intel_plane *intel_plane;
3689 	struct intel_plane_state *intel_pstate;
3690 	uint16_t ddb_blocks;
3691 	enum pipe pipe = intel_crtc->pipe;
3692 	int ret;
3693 
3694 	/*
3695 	 * We'll only calculate watermarks for planes that are actually
3696 	 * enabled, so make sure all other planes are set as disabled.
3697 	 */
3698 	memset(result, 0, sizeof(*result));
3699 
3700 	for_each_intel_plane_mask(&dev_priv->drm,
3701 				  intel_plane,
3702 				  cstate->base.plane_mask) {
3703 		int i = skl_wm_plane_id(intel_plane);
3704 
3705 		plane = &intel_plane->base;
3706 		intel_pstate = NULL;
3707 		if (state)
3708 			intel_pstate =
3709 				intel_atomic_get_existing_plane_state(state,
3710 								      intel_plane);
3711 
3712 		/*
3713 		 * Note: If we start supporting multiple pending atomic commits
3714 		 * against the same planes/CRTC's in the future, plane->state
3715 		 * will no longer be the correct pre-state to use for the
3716 		 * calculations here and we'll need to change where we get the
3717 		 * 'unchanged' plane data from.
3718 		 *
3719 		 * For now this is fine because we only allow one queued commit
3720 		 * against a CRTC.  Even if the plane isn't modified by this
3721 		 * transaction and we don't have a plane lock, we still have
3722 		 * the CRTC's lock, so we know that no other transactions are
3723 		 * racing with us to update it.
3724 		 */
3725 		if (!intel_pstate)
3726 			intel_pstate = to_intel_plane_state(plane->state);
3727 
3728 		WARN_ON(!intel_pstate->base.fb);
3729 
3730 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3731 
3732 		ret = skl_compute_plane_wm(dev_priv,
3733 					   cstate,
3734 					   intel_pstate,
3735 					   ddb_blocks,
3736 					   level,
3737 					   &result->plane_res_b[i],
3738 					   &result->plane_res_l[i],
3739 					   &result->plane_en[i]);
3740 		if (ret)
3741 			return ret;
3742 	}
3743 
3744 	return 0;
3745 }
3746 
3747 static uint32_t
skl_compute_linetime_wm(struct intel_crtc_state * cstate)3748 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3749 {
3750 	if (!cstate->base.active)
3751 		return 0;
3752 
3753 	if (WARN_ON(ilk_pipe_pixel_rate(cstate) == 0))
3754 		return 0;
3755 
3756 	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3757 			    ilk_pipe_pixel_rate(cstate));
3758 }
3759 
skl_compute_transition_wm(struct intel_crtc_state * cstate,struct skl_wm_level * trans_wm)3760 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3761 				      struct skl_wm_level *trans_wm /* out */)
3762 {
3763 	struct drm_crtc *crtc = cstate->base.crtc;
3764 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3765 	struct intel_plane *intel_plane;
3766 
3767 	if (!cstate->base.active)
3768 		return;
3769 
3770 	/* Until we know more, just disable transition WMs */
3771 	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3772 		int i = skl_wm_plane_id(intel_plane);
3773 
3774 		trans_wm->plane_en[i] = false;
3775 	}
3776 }
3777 
skl_build_pipe_wm(struct intel_crtc_state * cstate,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)3778 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3779 			     struct skl_ddb_allocation *ddb,
3780 			     struct skl_pipe_wm *pipe_wm)
3781 {
3782 	struct drm_device *dev = cstate->base.crtc->dev;
3783 	const struct drm_i915_private *dev_priv = to_i915(dev);
3784 	int level, max_level = ilk_wm_max_level(dev);
3785 	int ret;
3786 
3787 	for (level = 0; level <= max_level; level++) {
3788 		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3789 					   level, &pipe_wm->wm[level]);
3790 		if (ret)
3791 			return ret;
3792 	}
3793 	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3794 
3795 	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3796 
3797 	return 0;
3798 }
3799 
skl_compute_wm_results(struct drm_device * dev,struct skl_pipe_wm * p_wm,struct skl_wm_values * r,struct intel_crtc * intel_crtc)3800 static void skl_compute_wm_results(struct drm_device *dev,
3801 				   struct skl_pipe_wm *p_wm,
3802 				   struct skl_wm_values *r,
3803 				   struct intel_crtc *intel_crtc)
3804 {
3805 	int level, max_level = ilk_wm_max_level(dev);
3806 	enum pipe pipe = intel_crtc->pipe;
3807 	uint32_t temp;
3808 	int i;
3809 
3810 	for (level = 0; level <= max_level; level++) {
3811 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3812 			temp = 0;
3813 
3814 			temp |= p_wm->wm[level].plane_res_l[i] <<
3815 					PLANE_WM_LINES_SHIFT;
3816 			temp |= p_wm->wm[level].plane_res_b[i];
3817 			if (p_wm->wm[level].plane_en[i])
3818 				temp |= PLANE_WM_EN;
3819 
3820 			r->plane[pipe][i][level] = temp;
3821 		}
3822 
3823 		temp = 0;
3824 
3825 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3826 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3827 
3828 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3829 			temp |= PLANE_WM_EN;
3830 
3831 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3832 
3833 	}
3834 
3835 	/* transition WMs */
3836 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3837 		temp = 0;
3838 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3839 		temp |= p_wm->trans_wm.plane_res_b[i];
3840 		if (p_wm->trans_wm.plane_en[i])
3841 			temp |= PLANE_WM_EN;
3842 
3843 		r->plane_trans[pipe][i] = temp;
3844 	}
3845 
3846 	temp = 0;
3847 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3848 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3849 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3850 		temp |= PLANE_WM_EN;
3851 
3852 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3853 
3854 	r->wm_linetime[pipe] = p_wm->linetime;
3855 }
3856 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)3857 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3858 				i915_reg_t reg,
3859 				const struct skl_ddb_entry *entry)
3860 {
3861 	if (entry->end)
3862 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3863 	else
3864 		I915_WRITE(reg, 0);
3865 }
3866 
skl_write_plane_wm(struct intel_crtc * intel_crtc,const struct skl_wm_values * wm,int plane)3867 void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3868 			const struct skl_wm_values *wm,
3869 			int plane)
3870 {
3871 	struct drm_crtc *crtc = &intel_crtc->base;
3872 	struct drm_device *dev = crtc->dev;
3873 	struct drm_i915_private *dev_priv = to_i915(dev);
3874 	int level, max_level = ilk_wm_max_level(dev);
3875 	enum pipe pipe = intel_crtc->pipe;
3876 
3877 	for (level = 0; level <= max_level; level++) {
3878 		I915_WRITE(PLANE_WM(pipe, plane, level),
3879 			   wm->plane[pipe][plane][level]);
3880 	}
3881 	I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3882 
3883 	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3884 			    &wm->ddb.plane[pipe][plane]);
3885 	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3886 			    &wm->ddb.y_plane[pipe][plane]);
3887 }
3888 
skl_write_cursor_wm(struct intel_crtc * intel_crtc,const struct skl_wm_values * wm)3889 void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3890 			 const struct skl_wm_values *wm)
3891 {
3892 	struct drm_crtc *crtc = &intel_crtc->base;
3893 	struct drm_device *dev = crtc->dev;
3894 	struct drm_i915_private *dev_priv = to_i915(dev);
3895 	int level, max_level = ilk_wm_max_level(dev);
3896 	enum pipe pipe = intel_crtc->pipe;
3897 
3898 	for (level = 0; level <= max_level; level++) {
3899 		I915_WRITE(CUR_WM(pipe, level),
3900 			   wm->plane[pipe][PLANE_CURSOR][level]);
3901 	}
3902 	I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3903 
3904 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3905 			    &wm->ddb.plane[pipe][PLANE_CURSOR]);
3906 }
3907 
skl_ddb_allocation_equals(const struct skl_ddb_allocation * old,const struct skl_ddb_allocation * new,enum pipe pipe)3908 bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
3909 			       const struct skl_ddb_allocation *new,
3910 			       enum pipe pipe)
3911 {
3912 	return new->pipe[pipe].start == old->pipe[pipe].start &&
3913 	       new->pipe[pipe].end == old->pipe[pipe].end;
3914 }
3915 
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)3916 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3917 					   const struct skl_ddb_entry *b)
3918 {
3919 	return a->start < b->end && b->start < a->end;
3920 }
3921 
skl_ddb_allocation_overlaps(struct drm_atomic_state * state,const struct skl_ddb_allocation * old,const struct skl_ddb_allocation * new,enum pipe pipe)3922 bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3923 				 const struct skl_ddb_allocation *old,
3924 				 const struct skl_ddb_allocation *new,
3925 				 enum pipe pipe)
3926 {
3927 	struct drm_device *dev = state->dev;
3928 	struct intel_crtc *intel_crtc;
3929 	enum pipe otherp;
3930 
3931 	for_each_intel_crtc(dev, intel_crtc) {
3932 		otherp = intel_crtc->pipe;
3933 
3934 		if (otherp == pipe)
3935 			continue;
3936 
3937 		if (skl_ddb_entries_overlap(&new->pipe[pipe],
3938 					    &old->pipe[otherp]))
3939 			return true;
3940 	}
3941 
3942 	return false;
3943 }
3944 
skl_update_pipe_wm(struct drm_crtc_state * cstate,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm,bool * changed)3945 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3946 			      struct skl_ddb_allocation *ddb, /* out */
3947 			      struct skl_pipe_wm *pipe_wm, /* out */
3948 			      bool *changed /* out */)
3949 {
3950 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3951 	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3952 	int ret;
3953 
3954 	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3955 	if (ret)
3956 		return ret;
3957 
3958 	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3959 		*changed = false;
3960 	else
3961 		*changed = true;
3962 
3963 	return 0;
3964 }
3965 
3966 static uint32_t
pipes_modified(struct drm_atomic_state * state)3967 pipes_modified(struct drm_atomic_state *state)
3968 {
3969 	struct drm_crtc *crtc;
3970 	struct drm_crtc_state *cstate;
3971 	uint32_t i, ret = 0;
3972 
3973 	for_each_crtc_in_state(state, crtc, cstate, i)
3974 		ret |= drm_crtc_mask(crtc);
3975 
3976 	return ret;
3977 }
3978 
3979 int
skl_ddb_add_affected_planes(struct intel_crtc_state * cstate)3980 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3981 {
3982 	struct drm_atomic_state *state = cstate->base.state;
3983 	struct drm_device *dev = state->dev;
3984 	struct drm_crtc *crtc = cstate->base.crtc;
3985 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3986 	struct drm_i915_private *dev_priv = to_i915(dev);
3987 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3988 	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3989 	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3990 	struct drm_plane_state *plane_state;
3991 	struct drm_plane *plane;
3992 	enum pipe pipe = intel_crtc->pipe;
3993 	int id;
3994 
3995 	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3996 
3997 	drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
3998 		id = skl_wm_plane_id(to_intel_plane(plane));
3999 
4000 		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
4001 					&new_ddb->plane[pipe][id]) &&
4002 		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
4003 					&new_ddb->y_plane[pipe][id]))
4004 			continue;
4005 
4006 		plane_state = drm_atomic_get_plane_state(state, plane);
4007 		if (IS_ERR(plane_state))
4008 			return PTR_ERR(plane_state);
4009 	}
4010 
4011 	return 0;
4012 }
4013 
4014 static int
skl_compute_ddb(struct drm_atomic_state * state)4015 skl_compute_ddb(struct drm_atomic_state *state)
4016 {
4017 	struct drm_device *dev = state->dev;
4018 	struct drm_i915_private *dev_priv = to_i915(dev);
4019 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4020 	struct intel_crtc *intel_crtc;
4021 	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4022 	uint32_t realloc_pipes = pipes_modified(state);
4023 	int ret;
4024 
4025 	/*
4026 	 * If this is our first atomic update following hardware readout,
4027 	 * we can't trust the DDB that the BIOS programmed for us.  Let's
4028 	 * pretend that all pipes switched active status so that we'll
4029 	 * ensure a full DDB recompute.
4030 	 */
4031 	if (dev_priv->wm.distrust_bios_wm) {
4032 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4033 				       state->acquire_ctx);
4034 		if (ret)
4035 			return ret;
4036 
4037 		intel_state->active_pipe_changes = ~0;
4038 
4039 		/*
4040 		 * We usually only initialize intel_state->active_crtcs if we
4041 		 * we're doing a modeset; make sure this field is always
4042 		 * initialized during the sanitization process that happens
4043 		 * on the first commit too.
4044 		 */
4045 		if (!intel_state->modeset)
4046 			intel_state->active_crtcs = dev_priv->active_crtcs;
4047 	}
4048 
4049 	/*
4050 	 * If the modeset changes which CRTC's are active, we need to
4051 	 * recompute the DDB allocation for *all* active pipes, even
4052 	 * those that weren't otherwise being modified in any way by this
4053 	 * atomic commit.  Due to the shrinking of the per-pipe allocations
4054 	 * when new active CRTC's are added, it's possible for a pipe that
4055 	 * we were already using and aren't changing at all here to suddenly
4056 	 * become invalid if its DDB needs exceeds its new allocation.
4057 	 *
4058 	 * Note that if we wind up doing a full DDB recompute, we can't let
4059 	 * any other display updates race with this transaction, so we need
4060 	 * to grab the lock on *all* CRTC's.
4061 	 */
4062 	if (intel_state->active_pipe_changes) {
4063 		realloc_pipes = ~0;
4064 		intel_state->wm_results.dirty_pipes = ~0;
4065 	}
4066 
4067 	/*
4068 	 * We're not recomputing for the pipes not included in the commit, so
4069 	 * make sure we start with the current state.
4070 	 */
4071 	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4072 
4073 	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4074 		struct intel_crtc_state *cstate;
4075 
4076 		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4077 		if (IS_ERR(cstate))
4078 			return PTR_ERR(cstate);
4079 
4080 		ret = skl_allocate_pipe_ddb(cstate, ddb);
4081 		if (ret)
4082 			return ret;
4083 
4084 		ret = skl_ddb_add_affected_planes(cstate);
4085 		if (ret)
4086 			return ret;
4087 	}
4088 
4089 	return 0;
4090 }
4091 
4092 static void
skl_copy_wm_for_pipe(struct skl_wm_values * dst,struct skl_wm_values * src,enum pipe pipe)4093 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4094 		     struct skl_wm_values *src,
4095 		     enum pipe pipe)
4096 {
4097 	dst->wm_linetime[pipe] = src->wm_linetime[pipe];
4098 	memcpy(dst->plane[pipe], src->plane[pipe],
4099 	       sizeof(dst->plane[pipe]));
4100 	memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
4101 	       sizeof(dst->plane_trans[pipe]));
4102 
4103 	dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
4104 	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4105 	       sizeof(dst->ddb.y_plane[pipe]));
4106 	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4107 	       sizeof(dst->ddb.plane[pipe]));
4108 }
4109 
4110 static int
skl_compute_wm(struct drm_atomic_state * state)4111 skl_compute_wm(struct drm_atomic_state *state)
4112 {
4113 	struct drm_crtc *crtc;
4114 	struct drm_crtc_state *cstate;
4115 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4116 	struct skl_wm_values *results = &intel_state->wm_results;
4117 	struct drm_device *dev = state->dev;
4118 	struct skl_pipe_wm *pipe_wm;
4119 	bool changed = false;
4120 	int ret, i;
4121 
4122 	/*
4123 	 * When we distrust bios wm we always need to recompute to set the
4124 	 * expected DDB allocations for each CRTC.
4125 	 */
4126 	if (to_i915(dev)->wm.distrust_bios_wm)
4127 		changed = true;
4128 
4129 	/*
4130 	 * If this transaction isn't actually touching any CRTC's, don't
4131 	 * bother with watermark calculation.  Note that if we pass this
4132 	 * test, we're guaranteed to hold at least one CRTC state mutex,
4133 	 * which means we can safely use values like dev_priv->active_crtcs
4134 	 * since any racing commits that want to update them would need to
4135 	 * hold _all_ CRTC state mutexes.
4136 	 */
4137 	for_each_crtc_in_state(state, crtc, cstate, i)
4138 		changed = true;
4139 
4140 	if (!changed)
4141 		return 0;
4142 
4143 	/* Clear all dirty flags */
4144 	results->dirty_pipes = 0;
4145 
4146 	ret = skl_compute_ddb(state);
4147 	if (ret)
4148 		return ret;
4149 
4150 	/*
4151 	 * Calculate WM's for all pipes that are part of this transaction.
4152 	 * Note that the DDB allocation above may have added more CRTC's that
4153 	 * weren't otherwise being modified (and set bits in dirty_pipes) if
4154 	 * pipe allocations had to change.
4155 	 *
4156 	 * FIXME:  Now that we're doing this in the atomic check phase, we
4157 	 * should allow skl_update_pipe_wm() to return failure in cases where
4158 	 * no suitable watermark values can be found.
4159 	 */
4160 	for_each_crtc_in_state(state, crtc, cstate, i) {
4161 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4162 		struct intel_crtc_state *intel_cstate =
4163 			to_intel_crtc_state(cstate);
4164 
4165 		pipe_wm = &intel_cstate->wm.skl.optimal;
4166 		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4167 					 &changed);
4168 		if (ret)
4169 			return ret;
4170 
4171 		if (changed)
4172 			results->dirty_pipes |= drm_crtc_mask(crtc);
4173 
4174 		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4175 			/* This pipe's WM's did not change */
4176 			continue;
4177 
4178 		intel_cstate->update_wm_pre = true;
4179 		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4180 	}
4181 
4182 	return 0;
4183 }
4184 
skl_update_wm(struct drm_crtc * crtc)4185 static void skl_update_wm(struct drm_crtc *crtc)
4186 {
4187 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4188 	struct drm_device *dev = crtc->dev;
4189 	struct drm_i915_private *dev_priv = to_i915(dev);
4190 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4191 	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4192 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4193 	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4194 	enum pipe pipe = intel_crtc->pipe;
4195 
4196 	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4197 		return;
4198 
4199 	intel_crtc->wm.active.skl = *pipe_wm;
4200 
4201 	mutex_lock(&dev_priv->wm.wm_mutex);
4202 
4203 	/*
4204 	 * If this pipe isn't active already, we're going to be enabling it
4205 	 * very soon. Since it's safe to update a pipe's ddb allocation while
4206 	 * the pipe's shut off, just do so here. Already active pipes will have
4207 	 * their watermarks updated once we update their planes.
4208 	 */
4209 	if (crtc->state->active_changed) {
4210 		int plane;
4211 
4212 		for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
4213 			skl_write_plane_wm(intel_crtc, results, plane);
4214 
4215 		skl_write_cursor_wm(intel_crtc, results);
4216 	}
4217 
4218 	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4219 
4220 	mutex_unlock(&dev_priv->wm.wm_mutex);
4221 }
4222 
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)4223 static void ilk_compute_wm_config(struct drm_device *dev,
4224 				  struct intel_wm_config *config)
4225 {
4226 	struct intel_crtc *crtc;
4227 
4228 	/* Compute the currently _active_ config */
4229 	for_each_intel_crtc(dev, crtc) {
4230 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4231 
4232 		if (!wm->pipe_enabled)
4233 			continue;
4234 
4235 		config->sprites_enabled |= wm->sprites_enabled;
4236 		config->sprites_scaled |= wm->sprites_scaled;
4237 		config->num_pipes_active++;
4238 	}
4239 }
4240 
ilk_program_watermarks(struct drm_i915_private * dev_priv)4241 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4242 {
4243 	struct drm_device *dev = &dev_priv->drm;
4244 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4245 	struct ilk_wm_maximums max;
4246 	struct intel_wm_config config = {};
4247 	struct ilk_wm_values results = {};
4248 	enum intel_ddb_partitioning partitioning;
4249 
4250 	ilk_compute_wm_config(dev, &config);
4251 
4252 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4253 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4254 
4255 	/* 5/6 split only in single pipe config on IVB+ */
4256 	if (INTEL_INFO(dev)->gen >= 7 &&
4257 	    config.num_pipes_active == 1 && config.sprites_enabled) {
4258 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4259 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4260 
4261 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4262 	} else {
4263 		best_lp_wm = &lp_wm_1_2;
4264 	}
4265 
4266 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4267 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4268 
4269 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4270 
4271 	ilk_write_wm_values(dev_priv, &results);
4272 }
4273 
ilk_initial_watermarks(struct intel_crtc_state * cstate)4274 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4275 {
4276 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4277 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4278 
4279 	mutex_lock(&dev_priv->wm.wm_mutex);
4280 	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4281 	ilk_program_watermarks(dev_priv);
4282 	mutex_unlock(&dev_priv->wm.wm_mutex);
4283 }
4284 
ilk_optimize_watermarks(struct intel_crtc_state * cstate)4285 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4286 {
4287 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4288 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4289 
4290 	mutex_lock(&dev_priv->wm.wm_mutex);
4291 	if (cstate->wm.need_postvbl_update) {
4292 		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4293 		ilk_program_watermarks(dev_priv);
4294 	}
4295 	mutex_unlock(&dev_priv->wm.wm_mutex);
4296 }
4297 
skl_pipe_wm_active_state(uint32_t val,struct skl_pipe_wm * active,bool is_transwm,bool is_cursor,int i,int level)4298 static void skl_pipe_wm_active_state(uint32_t val,
4299 				     struct skl_pipe_wm *active,
4300 				     bool is_transwm,
4301 				     bool is_cursor,
4302 				     int i,
4303 				     int level)
4304 {
4305 	bool is_enabled = (val & PLANE_WM_EN) != 0;
4306 
4307 	if (!is_transwm) {
4308 		if (!is_cursor) {
4309 			active->wm[level].plane_en[i] = is_enabled;
4310 			active->wm[level].plane_res_b[i] =
4311 					val & PLANE_WM_BLOCKS_MASK;
4312 			active->wm[level].plane_res_l[i] =
4313 					(val >> PLANE_WM_LINES_SHIFT) &
4314 						PLANE_WM_LINES_MASK;
4315 		} else {
4316 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4317 			active->wm[level].plane_res_b[PLANE_CURSOR] =
4318 					val & PLANE_WM_BLOCKS_MASK;
4319 			active->wm[level].plane_res_l[PLANE_CURSOR] =
4320 					(val >> PLANE_WM_LINES_SHIFT) &
4321 						PLANE_WM_LINES_MASK;
4322 		}
4323 	} else {
4324 		if (!is_cursor) {
4325 			active->trans_wm.plane_en[i] = is_enabled;
4326 			active->trans_wm.plane_res_b[i] =
4327 					val & PLANE_WM_BLOCKS_MASK;
4328 			active->trans_wm.plane_res_l[i] =
4329 					(val >> PLANE_WM_LINES_SHIFT) &
4330 						PLANE_WM_LINES_MASK;
4331 		} else {
4332 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4333 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4334 					val & PLANE_WM_BLOCKS_MASK;
4335 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4336 					(val >> PLANE_WM_LINES_SHIFT) &
4337 						PLANE_WM_LINES_MASK;
4338 		}
4339 	}
4340 }
4341 
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc)4342 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4343 {
4344 	struct drm_device *dev = crtc->dev;
4345 	struct drm_i915_private *dev_priv = to_i915(dev);
4346 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4347 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4348 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4349 	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4350 	enum pipe pipe = intel_crtc->pipe;
4351 	int level, i, max_level;
4352 	uint32_t temp;
4353 
4354 	max_level = ilk_wm_max_level(dev);
4355 
4356 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4357 
4358 	for (level = 0; level <= max_level; level++) {
4359 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
4360 			hw->plane[pipe][i][level] =
4361 					I915_READ(PLANE_WM(pipe, i, level));
4362 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4363 	}
4364 
4365 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
4366 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4367 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4368 
4369 	if (!intel_crtc->active)
4370 		return;
4371 
4372 	hw->dirty_pipes |= drm_crtc_mask(crtc);
4373 
4374 	active->linetime = hw->wm_linetime[pipe];
4375 
4376 	for (level = 0; level <= max_level; level++) {
4377 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4378 			temp = hw->plane[pipe][i][level];
4379 			skl_pipe_wm_active_state(temp, active, false,
4380 						false, i, level);
4381 		}
4382 		temp = hw->plane[pipe][PLANE_CURSOR][level];
4383 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
4384 	}
4385 
4386 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4387 		temp = hw->plane_trans[pipe][i];
4388 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4389 	}
4390 
4391 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4392 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4393 
4394 	intel_crtc->wm.active.skl = *active;
4395 }
4396 
skl_wm_get_hw_state(struct drm_device * dev)4397 void skl_wm_get_hw_state(struct drm_device *dev)
4398 {
4399 	struct drm_i915_private *dev_priv = to_i915(dev);
4400 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4401 	struct drm_crtc *crtc;
4402 
4403 	skl_ddb_get_hw_state(dev_priv, ddb);
4404 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4405 		skl_pipe_wm_get_hw_state(crtc);
4406 
4407 	if (dev_priv->active_crtcs) {
4408 		/* Fully recompute DDB on first atomic commit */
4409 		dev_priv->wm.distrust_bios_wm = true;
4410 	} else {
4411 		/* Easy/common case; just sanitize DDB now if everything off */
4412 		memset(ddb, 0, sizeof(*ddb));
4413 	}
4414 }
4415 
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)4416 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4417 {
4418 	struct drm_device *dev = crtc->dev;
4419 	struct drm_i915_private *dev_priv = to_i915(dev);
4420 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4421 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4422 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4423 	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4424 	enum pipe pipe = intel_crtc->pipe;
4425 	static const i915_reg_t wm0_pipe_reg[] = {
4426 		[PIPE_A] = WM0_PIPEA_ILK,
4427 		[PIPE_B] = WM0_PIPEB_ILK,
4428 		[PIPE_C] = WM0_PIPEC_IVB,
4429 	};
4430 
4431 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4432 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4433 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4434 
4435 	memset(active, 0, sizeof(*active));
4436 
4437 	active->pipe_enabled = intel_crtc->active;
4438 
4439 	if (active->pipe_enabled) {
4440 		u32 tmp = hw->wm_pipe[pipe];
4441 
4442 		/*
4443 		 * For active pipes LP0 watermark is marked as
4444 		 * enabled, and LP1+ watermaks as disabled since
4445 		 * we can't really reverse compute them in case
4446 		 * multiple pipes are active.
4447 		 */
4448 		active->wm[0].enable = true;
4449 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4450 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4451 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4452 		active->linetime = hw->wm_linetime[pipe];
4453 	} else {
4454 		int level, max_level = ilk_wm_max_level(dev);
4455 
4456 		/*
4457 		 * For inactive pipes, all watermark levels
4458 		 * should be marked as enabled but zeroed,
4459 		 * which is what we'd compute them to.
4460 		 */
4461 		for (level = 0; level <= max_level; level++)
4462 			active->wm[level].enable = true;
4463 	}
4464 
4465 	intel_crtc->wm.active.ilk = *active;
4466 }
4467 
4468 #define _FW_WM(value, plane) \
4469 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4470 #define _FW_WM_VLV(value, plane) \
4471 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4472 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)4473 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4474 			       struct vlv_wm_values *wm)
4475 {
4476 	enum pipe pipe;
4477 	uint32_t tmp;
4478 
4479 	for_each_pipe(dev_priv, pipe) {
4480 		tmp = I915_READ(VLV_DDL(pipe));
4481 
4482 		wm->ddl[pipe].primary =
4483 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4484 		wm->ddl[pipe].cursor =
4485 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4486 		wm->ddl[pipe].sprite[0] =
4487 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4488 		wm->ddl[pipe].sprite[1] =
4489 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4490 	}
4491 
4492 	tmp = I915_READ(DSPFW1);
4493 	wm->sr.plane = _FW_WM(tmp, SR);
4494 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4495 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4496 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4497 
4498 	tmp = I915_READ(DSPFW2);
4499 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4500 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4501 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4502 
4503 	tmp = I915_READ(DSPFW3);
4504 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4505 
4506 	if (IS_CHERRYVIEW(dev_priv)) {
4507 		tmp = I915_READ(DSPFW7_CHV);
4508 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4509 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4510 
4511 		tmp = I915_READ(DSPFW8_CHV);
4512 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4513 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4514 
4515 		tmp = I915_READ(DSPFW9_CHV);
4516 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4517 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4518 
4519 		tmp = I915_READ(DSPHOWM);
4520 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4521 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4522 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4523 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4524 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4525 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4526 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4527 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4528 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4529 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4530 	} else {
4531 		tmp = I915_READ(DSPFW7);
4532 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4533 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4534 
4535 		tmp = I915_READ(DSPHOWM);
4536 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4537 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4538 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4539 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4540 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4541 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4542 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4543 	}
4544 }
4545 
4546 #undef _FW_WM
4547 #undef _FW_WM_VLV
4548 
vlv_wm_get_hw_state(struct drm_device * dev)4549 void vlv_wm_get_hw_state(struct drm_device *dev)
4550 {
4551 	struct drm_i915_private *dev_priv = to_i915(dev);
4552 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4553 	struct intel_plane *plane;
4554 	enum pipe pipe;
4555 	u32 val;
4556 
4557 	vlv_read_wm_values(dev_priv, wm);
4558 
4559 	for_each_intel_plane(dev, plane) {
4560 		switch (plane->base.type) {
4561 			int sprite;
4562 		case DRM_PLANE_TYPE_CURSOR:
4563 			plane->wm.fifo_size = 63;
4564 			break;
4565 		case DRM_PLANE_TYPE_PRIMARY:
4566 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4567 			break;
4568 		case DRM_PLANE_TYPE_OVERLAY:
4569 			sprite = plane->plane;
4570 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4571 			break;
4572 		}
4573 	}
4574 
4575 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4576 	wm->level = VLV_WM_LEVEL_PM2;
4577 
4578 	if (IS_CHERRYVIEW(dev_priv)) {
4579 		mutex_lock(&dev_priv->rps.hw_lock);
4580 
4581 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4582 		if (val & DSP_MAXFIFO_PM5_ENABLE)
4583 			wm->level = VLV_WM_LEVEL_PM5;
4584 
4585 		/*
4586 		 * If DDR DVFS is disabled in the BIOS, Punit
4587 		 * will never ack the request. So if that happens
4588 		 * assume we don't have to enable/disable DDR DVFS
4589 		 * dynamically. To test that just set the REQ_ACK
4590 		 * bit to poke the Punit, but don't change the
4591 		 * HIGH/LOW bits so that we don't actually change
4592 		 * the current state.
4593 		 */
4594 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4595 		val |= FORCE_DDR_FREQ_REQ_ACK;
4596 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4597 
4598 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4599 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4600 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4601 				      "assuming DDR DVFS is disabled\n");
4602 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4603 		} else {
4604 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4605 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4606 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4607 		}
4608 
4609 		mutex_unlock(&dev_priv->rps.hw_lock);
4610 	}
4611 
4612 	for_each_pipe(dev_priv, pipe)
4613 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4614 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4615 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4616 
4617 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4618 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4619 }
4620 
ilk_wm_get_hw_state(struct drm_device * dev)4621 void ilk_wm_get_hw_state(struct drm_device *dev)
4622 {
4623 	struct drm_i915_private *dev_priv = to_i915(dev);
4624 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4625 	struct drm_crtc *crtc;
4626 
4627 	for_each_crtc(dev, crtc)
4628 		ilk_pipe_wm_get_hw_state(crtc);
4629 
4630 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4631 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4632 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4633 
4634 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4635 	if (INTEL_INFO(dev)->gen >= 7) {
4636 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4637 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4638 	}
4639 
4640 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4641 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4642 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4643 	else if (IS_IVYBRIDGE(dev))
4644 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4645 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4646 
4647 	hw->enable_fbc_wm =
4648 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4649 }
4650 
4651 /**
4652  * intel_update_watermarks - update FIFO watermark values based on current modes
4653  *
4654  * Calculate watermark values for the various WM regs based on current mode
4655  * and plane configuration.
4656  *
4657  * There are several cases to deal with here:
4658  *   - normal (i.e. non-self-refresh)
4659  *   - self-refresh (SR) mode
4660  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4661  *   - lines are small relative to FIFO size (buffer can hold more than 2
4662  *     lines), so need to account for TLB latency
4663  *
4664  *   The normal calculation is:
4665  *     watermark = dotclock * bytes per pixel * latency
4666  *   where latency is platform & configuration dependent (we assume pessimal
4667  *   values here).
4668  *
4669  *   The SR calculation is:
4670  *     watermark = (trunc(latency/line time)+1) * surface width *
4671  *       bytes per pixel
4672  *   where
4673  *     line time = htotal / dotclock
4674  *     surface width = hdisplay for normal plane and 64 for cursor
4675  *   and latency is assumed to be high, as above.
4676  *
4677  * The final value programmed to the register should always be rounded up,
4678  * and include an extra 2 entries to account for clock crossings.
4679  *
4680  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4681  * to set the non-SR watermarks to 8.
4682  */
intel_update_watermarks(struct drm_crtc * crtc)4683 void intel_update_watermarks(struct drm_crtc *crtc)
4684 {
4685 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4686 
4687 	if (dev_priv->display.update_wm)
4688 		dev_priv->display.update_wm(crtc);
4689 }
4690 
4691 /*
4692  * Lock protecting IPS related data structures
4693  */
4694 DEFINE_SPINLOCK(mchdev_lock);
4695 
4696 /* Global for IPS driver to get at the current i915 device. Protected by
4697  * mchdev_lock. */
4698 static struct drm_i915_private *i915_mch_dev;
4699 
ironlake_set_drps(struct drm_i915_private * dev_priv,u8 val)4700 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4701 {
4702 	u16 rgvswctl;
4703 
4704 	assert_spin_locked(&mchdev_lock);
4705 
4706 	rgvswctl = I915_READ16(MEMSWCTL);
4707 	if (rgvswctl & MEMCTL_CMD_STS) {
4708 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4709 		return false; /* still busy with another command */
4710 	}
4711 
4712 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4713 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4714 	I915_WRITE16(MEMSWCTL, rgvswctl);
4715 	POSTING_READ16(MEMSWCTL);
4716 
4717 	rgvswctl |= MEMCTL_CMD_STS;
4718 	I915_WRITE16(MEMSWCTL, rgvswctl);
4719 
4720 	return true;
4721 }
4722 
ironlake_enable_drps(struct drm_i915_private * dev_priv)4723 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4724 {
4725 	u32 rgvmodectl;
4726 	u8 fmax, fmin, fstart, vstart;
4727 
4728 	spin_lock_irq(&mchdev_lock);
4729 
4730 	rgvmodectl = I915_READ(MEMMODECTL);
4731 
4732 	/* Enable temp reporting */
4733 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4734 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4735 
4736 	/* 100ms RC evaluation intervals */
4737 	I915_WRITE(RCUPEI, 100000);
4738 	I915_WRITE(RCDNEI, 100000);
4739 
4740 	/* Set max/min thresholds to 90ms and 80ms respectively */
4741 	I915_WRITE(RCBMAXAVG, 90000);
4742 	I915_WRITE(RCBMINAVG, 80000);
4743 
4744 	I915_WRITE(MEMIHYST, 1);
4745 
4746 	/* Set up min, max, and cur for interrupt handling */
4747 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4748 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4749 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4750 		MEMMODE_FSTART_SHIFT;
4751 
4752 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4753 		PXVFREQ_PX_SHIFT;
4754 
4755 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4756 	dev_priv->ips.fstart = fstart;
4757 
4758 	dev_priv->ips.max_delay = fstart;
4759 	dev_priv->ips.min_delay = fmin;
4760 	dev_priv->ips.cur_delay = fstart;
4761 
4762 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4763 			 fmax, fmin, fstart);
4764 
4765 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4766 
4767 	/*
4768 	 * Interrupts will be enabled in ironlake_irq_postinstall
4769 	 */
4770 
4771 	I915_WRITE(VIDSTART, vstart);
4772 	POSTING_READ(VIDSTART);
4773 
4774 	rgvmodectl |= MEMMODE_SWMODE_EN;
4775 	I915_WRITE(MEMMODECTL, rgvmodectl);
4776 
4777 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4778 		DRM_ERROR("stuck trying to change perf mode\n");
4779 	mdelay(1);
4780 
4781 	ironlake_set_drps(dev_priv, fstart);
4782 
4783 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4784 		I915_READ(DDREC) + I915_READ(CSIEC);
4785 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4786 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4787 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4788 
4789 	spin_unlock_irq(&mchdev_lock);
4790 }
4791 
ironlake_disable_drps(struct drm_i915_private * dev_priv)4792 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4793 {
4794 	u16 rgvswctl;
4795 
4796 	spin_lock_irq(&mchdev_lock);
4797 
4798 	rgvswctl = I915_READ16(MEMSWCTL);
4799 
4800 	/* Ack interrupts, disable EFC interrupt */
4801 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4802 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4803 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4804 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4805 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4806 
4807 	/* Go back to the starting frequency */
4808 	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4809 	mdelay(1);
4810 	rgvswctl |= MEMCTL_CMD_STS;
4811 	I915_WRITE(MEMSWCTL, rgvswctl);
4812 	mdelay(1);
4813 
4814 	spin_unlock_irq(&mchdev_lock);
4815 }
4816 
4817 /* There's a funny hw issue where the hw returns all 0 when reading from
4818  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4819  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4820  * all limits and the gpu stuck at whatever frequency it is at atm).
4821  */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)4822 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4823 {
4824 	u32 limits;
4825 
4826 	/* Only set the down limit when we've reached the lowest level to avoid
4827 	 * getting more interrupts, otherwise leave this clear. This prevents a
4828 	 * race in the hw when coming out of rc6: There's a tiny window where
4829 	 * the hw runs at the minimal clock before selecting the desired
4830 	 * frequency, if the down threshold expires in that window we will not
4831 	 * receive a down interrupt. */
4832 	if (IS_GEN9(dev_priv)) {
4833 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4834 		if (val <= dev_priv->rps.min_freq_softlimit)
4835 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4836 	} else {
4837 		limits = dev_priv->rps.max_freq_softlimit << 24;
4838 		if (val <= dev_priv->rps.min_freq_softlimit)
4839 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4840 	}
4841 
4842 	return limits;
4843 }
4844 
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)4845 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4846 {
4847 	int new_power;
4848 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4849 	u32 ei_up = 0, ei_down = 0;
4850 
4851 	new_power = dev_priv->rps.power;
4852 	switch (dev_priv->rps.power) {
4853 	case LOW_POWER:
4854 		if (val > dev_priv->rps.efficient_freq + 1 &&
4855 		    val > dev_priv->rps.cur_freq)
4856 			new_power = BETWEEN;
4857 		break;
4858 
4859 	case BETWEEN:
4860 		if (val <= dev_priv->rps.efficient_freq &&
4861 		    val < dev_priv->rps.cur_freq)
4862 			new_power = LOW_POWER;
4863 		else if (val >= dev_priv->rps.rp0_freq &&
4864 			 val > dev_priv->rps.cur_freq)
4865 			new_power = HIGH_POWER;
4866 		break;
4867 
4868 	case HIGH_POWER:
4869 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4870 		    val < dev_priv->rps.cur_freq)
4871 			new_power = BETWEEN;
4872 		break;
4873 	}
4874 	/* Max/min bins are special */
4875 	if (val <= dev_priv->rps.min_freq_softlimit)
4876 		new_power = LOW_POWER;
4877 	if (val >= dev_priv->rps.max_freq_softlimit)
4878 		new_power = HIGH_POWER;
4879 	if (new_power == dev_priv->rps.power)
4880 		return;
4881 
4882 	/* Note the units here are not exactly 1us, but 1280ns. */
4883 	switch (new_power) {
4884 	case LOW_POWER:
4885 		/* Upclock if more than 95% busy over 16ms */
4886 		ei_up = 16000;
4887 		threshold_up = 95;
4888 
4889 		/* Downclock if less than 85% busy over 32ms */
4890 		ei_down = 32000;
4891 		threshold_down = 85;
4892 		break;
4893 
4894 	case BETWEEN:
4895 		/* Upclock if more than 90% busy over 13ms */
4896 		ei_up = 13000;
4897 		threshold_up = 90;
4898 
4899 		/* Downclock if less than 75% busy over 32ms */
4900 		ei_down = 32000;
4901 		threshold_down = 75;
4902 		break;
4903 
4904 	case HIGH_POWER:
4905 		/* Upclock if more than 85% busy over 10ms */
4906 		ei_up = 10000;
4907 		threshold_up = 85;
4908 
4909 		/* Downclock if less than 60% busy over 32ms */
4910 		ei_down = 32000;
4911 		threshold_down = 60;
4912 		break;
4913 	}
4914 
4915 	/* When byt can survive without system hang with dynamic
4916 	 * sw freq adjustments, this restriction can be lifted.
4917 	 */
4918 	if (IS_VALLEYVIEW(dev_priv))
4919 		goto skip_hw_write;
4920 
4921 	I915_WRITE(GEN6_RP_UP_EI,
4922 		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4923 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4924 		   GT_INTERVAL_FROM_US(dev_priv,
4925 				       ei_up * threshold_up / 100));
4926 
4927 	I915_WRITE(GEN6_RP_DOWN_EI,
4928 		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4929 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4930 		   GT_INTERVAL_FROM_US(dev_priv,
4931 				       ei_down * threshold_down / 100));
4932 
4933 	I915_WRITE(GEN6_RP_CONTROL,
4934 		   GEN6_RP_MEDIA_TURBO |
4935 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4936 		   GEN6_RP_MEDIA_IS_GFX |
4937 		   GEN6_RP_ENABLE |
4938 		   GEN6_RP_UP_BUSY_AVG |
4939 		   GEN6_RP_DOWN_IDLE_AVG);
4940 
4941 skip_hw_write:
4942 	dev_priv->rps.power = new_power;
4943 	dev_priv->rps.up_threshold = threshold_up;
4944 	dev_priv->rps.down_threshold = threshold_down;
4945 	dev_priv->rps.last_adj = 0;
4946 }
4947 
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)4948 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4949 {
4950 	u32 mask = 0;
4951 
4952 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4953 	if (val > dev_priv->rps.min_freq_softlimit)
4954 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4955 	if (val < dev_priv->rps.max_freq_softlimit)
4956 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4957 
4958 	mask &= dev_priv->pm_rps_events;
4959 
4960 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4961 }
4962 
4963 /* gen6_set_rps is called to update the frequency request, but should also be
4964  * called when the range (min_delay and max_delay) is modified so that we can
4965  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_i915_private * dev_priv,u8 val)4966 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4967 {
4968 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4969 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4970 		return;
4971 
4972 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973 	WARN_ON(val > dev_priv->rps.max_freq);
4974 	WARN_ON(val < dev_priv->rps.min_freq);
4975 
4976 	/* min/max delay may still have been modified so be sure to
4977 	 * write the limits value.
4978 	 */
4979 	if (val != dev_priv->rps.cur_freq) {
4980 		gen6_set_rps_thresholds(dev_priv, val);
4981 
4982 		if (IS_GEN9(dev_priv))
4983 			I915_WRITE(GEN6_RPNSWREQ,
4984 				   GEN9_FREQUENCY(val));
4985 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4986 			I915_WRITE(GEN6_RPNSWREQ,
4987 				   HSW_FREQUENCY(val));
4988 		else
4989 			I915_WRITE(GEN6_RPNSWREQ,
4990 				   GEN6_FREQUENCY(val) |
4991 				   GEN6_OFFSET(0) |
4992 				   GEN6_AGGRESSIVE_TURBO);
4993 	}
4994 
4995 	/* Make sure we continue to get interrupts
4996 	 * until we hit the minimum or maximum frequencies.
4997 	 */
4998 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4999 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5000 
5001 	POSTING_READ(GEN6_RPNSWREQ);
5002 
5003 	dev_priv->rps.cur_freq = val;
5004 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5005 }
5006 
valleyview_set_rps(struct drm_i915_private * dev_priv,u8 val)5007 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5008 {
5009 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5010 	WARN_ON(val > dev_priv->rps.max_freq);
5011 	WARN_ON(val < dev_priv->rps.min_freq);
5012 
5013 	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5014 		      "Odd GPU freq value\n"))
5015 		val &= ~1;
5016 
5017 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5018 
5019 	if (val != dev_priv->rps.cur_freq) {
5020 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5021 		if (!IS_CHERRYVIEW(dev_priv))
5022 			gen6_set_rps_thresholds(dev_priv, val);
5023 	}
5024 
5025 	dev_priv->rps.cur_freq = val;
5026 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5027 }
5028 
5029 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5030  *
5031  * * If Gfx is Idle, then
5032  * 1. Forcewake Media well.
5033  * 2. Request idle freq.
5034  * 3. Release Forcewake of Media well.
5035 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)5036 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5037 {
5038 	u32 val = dev_priv->rps.idle_freq;
5039 
5040 	if (dev_priv->rps.cur_freq <= val)
5041 		return;
5042 
5043 	/* Wake up the media well, as that takes a lot less
5044 	 * power than the Render well. */
5045 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5046 	valleyview_set_rps(dev_priv, val);
5047 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5048 }
5049 
gen6_rps_busy(struct drm_i915_private * dev_priv)5050 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5051 {
5052 	mutex_lock(&dev_priv->rps.hw_lock);
5053 	if (dev_priv->rps.enabled) {
5054 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5055 			gen6_rps_reset_ei(dev_priv);
5056 		I915_WRITE(GEN6_PMINTRMSK,
5057 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5058 
5059 		gen6_enable_rps_interrupts(dev_priv);
5060 
5061 		/* Ensure we start at the user's desired frequency */
5062 		intel_set_rps(dev_priv,
5063 			      clamp(dev_priv->rps.cur_freq,
5064 				    dev_priv->rps.min_freq_softlimit,
5065 				    dev_priv->rps.max_freq_softlimit));
5066 	}
5067 	mutex_unlock(&dev_priv->rps.hw_lock);
5068 }
5069 
gen6_rps_idle(struct drm_i915_private * dev_priv)5070 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5071 {
5072 	/* Flush our bottom-half so that it does not race with us
5073 	 * setting the idle frequency and so that it is bounded by
5074 	 * our rpm wakeref. And then disable the interrupts to stop any
5075 	 * futher RPS reclocking whilst we are asleep.
5076 	 */
5077 	gen6_disable_rps_interrupts(dev_priv);
5078 
5079 	mutex_lock(&dev_priv->rps.hw_lock);
5080 	if (dev_priv->rps.enabled) {
5081 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5082 			vlv_set_rps_idle(dev_priv);
5083 		else
5084 			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5085 		dev_priv->rps.last_adj = 0;
5086 		I915_WRITE(GEN6_PMINTRMSK,
5087 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5088 	}
5089 	mutex_unlock(&dev_priv->rps.hw_lock);
5090 
5091 	spin_lock(&dev_priv->rps.client_lock);
5092 	while (!list_empty(&dev_priv->rps.clients))
5093 		list_del_init(dev_priv->rps.clients.next);
5094 	spin_unlock(&dev_priv->rps.client_lock);
5095 }
5096 
gen6_rps_boost(struct drm_i915_private * dev_priv,struct intel_rps_client * rps,unsigned long submitted)5097 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5098 		    struct intel_rps_client *rps,
5099 		    unsigned long submitted)
5100 {
5101 	/* This is intentionally racy! We peek at the state here, then
5102 	 * validate inside the RPS worker.
5103 	 */
5104 	if (!(dev_priv->gt.awake &&
5105 	      dev_priv->rps.enabled &&
5106 	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5107 		return;
5108 
5109 	/* Force a RPS boost (and don't count it against the client) if
5110 	 * the GPU is severely congested.
5111 	 */
5112 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5113 		rps = NULL;
5114 
5115 	spin_lock(&dev_priv->rps.client_lock);
5116 	if (rps == NULL || list_empty(&rps->link)) {
5117 		spin_lock_irq(&dev_priv->irq_lock);
5118 		if (dev_priv->rps.interrupts_enabled) {
5119 			dev_priv->rps.client_boost = true;
5120 			schedule_work(&dev_priv->rps.work);
5121 		}
5122 		spin_unlock_irq(&dev_priv->irq_lock);
5123 
5124 		if (rps != NULL) {
5125 			list_add(&rps->link, &dev_priv->rps.clients);
5126 			rps->boosts++;
5127 		} else
5128 			dev_priv->rps.boosts++;
5129 	}
5130 	spin_unlock(&dev_priv->rps.client_lock);
5131 }
5132 
intel_set_rps(struct drm_i915_private * dev_priv,u8 val)5133 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5134 {
5135 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5136 		valleyview_set_rps(dev_priv, val);
5137 	else
5138 		gen6_set_rps(dev_priv, val);
5139 }
5140 
gen9_disable_rc6(struct drm_i915_private * dev_priv)5141 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5142 {
5143 	I915_WRITE(GEN6_RC_CONTROL, 0);
5144 	I915_WRITE(GEN9_PG_ENABLE, 0);
5145 }
5146 
gen9_disable_rps(struct drm_i915_private * dev_priv)5147 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5148 {
5149 	I915_WRITE(GEN6_RP_CONTROL, 0);
5150 }
5151 
gen6_disable_rps(struct drm_i915_private * dev_priv)5152 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5153 {
5154 	I915_WRITE(GEN6_RC_CONTROL, 0);
5155 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5156 	I915_WRITE(GEN6_RP_CONTROL, 0);
5157 }
5158 
cherryview_disable_rps(struct drm_i915_private * dev_priv)5159 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5160 {
5161 	I915_WRITE(GEN6_RC_CONTROL, 0);
5162 }
5163 
valleyview_disable_rps(struct drm_i915_private * dev_priv)5164 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5165 {
5166 	/* we're doing forcewake before Disabling RC6,
5167 	 * This what the BIOS expects when going into suspend */
5168 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5169 
5170 	I915_WRITE(GEN6_RC_CONTROL, 0);
5171 
5172 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173 }
5174 
intel_print_rc6_info(struct drm_i915_private * dev_priv,u32 mode)5175 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5176 {
5177 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5178 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5179 			mode = GEN6_RC_CTL_RC6_ENABLE;
5180 		else
5181 			mode = 0;
5182 	}
5183 	if (HAS_RC6p(dev_priv))
5184 		DRM_DEBUG_DRIVER("Enabling RC6 states: "
5185 				 "RC6 %s RC6p %s RC6pp %s\n",
5186 				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5187 				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5188 				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5189 
5190 	else
5191 		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5192 				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5193 }
5194 
bxt_check_bios_rc6_setup(struct drm_i915_private * dev_priv)5195 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5196 {
5197 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5198 	bool enable_rc6 = true;
5199 	unsigned long rc6_ctx_base;
5200 	u32 rc_ctl;
5201 	int rc_sw_target;
5202 
5203 	rc_ctl = I915_READ(GEN6_RC_CONTROL);
5204 	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5205 		       RC_SW_TARGET_STATE_SHIFT;
5206 	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5207 			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5208 			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5209 			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5210 			 rc_sw_target);
5211 
5212 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5213 		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5214 		enable_rc6 = false;
5215 	}
5216 
5217 	/*
5218 	 * The exact context size is not known for BXT, so assume a page size
5219 	 * for this check.
5220 	 */
5221 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5222 	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5223 	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5224 					ggtt->stolen_reserved_size))) {
5225 		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5226 		enable_rc6 = false;
5227 	}
5228 
5229 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5230 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5231 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5232 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5233 		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5234 		enable_rc6 = false;
5235 	}
5236 
5237 	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5238 	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5239 	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5240 		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5241 		enable_rc6 = false;
5242 	}
5243 
5244 	if (!I915_READ(GEN6_GFXPAUSE)) {
5245 		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5246 		enable_rc6 = false;
5247 	}
5248 
5249 	if (!I915_READ(GEN8_MISC_CTRL0)) {
5250 		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5251 		enable_rc6 = false;
5252 	}
5253 
5254 	return enable_rc6;
5255 }
5256 
sanitize_rc6_option(struct drm_i915_private * dev_priv,int enable_rc6)5257 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5258 {
5259 	/* No RC6 before Ironlake and code is gone for ilk. */
5260 	if (INTEL_INFO(dev_priv)->gen < 6)
5261 		return 0;
5262 
5263 	if (!enable_rc6)
5264 		return 0;
5265 
5266 	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5267 		DRM_INFO("RC6 disabled by BIOS\n");
5268 		return 0;
5269 	}
5270 
5271 	/* Respect the kernel parameter if it is set */
5272 	if (enable_rc6 >= 0) {
5273 		int mask;
5274 
5275 		if (HAS_RC6p(dev_priv))
5276 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5277 			       INTEL_RC6pp_ENABLE;
5278 		else
5279 			mask = INTEL_RC6_ENABLE;
5280 
5281 		if ((enable_rc6 & mask) != enable_rc6)
5282 			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5283 					 "(requested %d, valid %d)\n",
5284 					 enable_rc6 & mask, enable_rc6, mask);
5285 
5286 		return enable_rc6 & mask;
5287 	}
5288 
5289 	if (IS_IVYBRIDGE(dev_priv))
5290 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5291 
5292 	return INTEL_RC6_ENABLE;
5293 }
5294 
gen6_init_rps_frequencies(struct drm_i915_private * dev_priv)5295 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5296 {
5297 	/* All of these values are in units of 50MHz */
5298 
5299 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5300 	if (IS_BROXTON(dev_priv)) {
5301 		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5302 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5303 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5304 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5305 	} else {
5306 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5307 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5308 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5309 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5310 	}
5311 	/* hw_max = RP0 until we check for overclocking */
5312 	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5313 
5314 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5315 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5316 	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5317 		u32 ddcc_status = 0;
5318 
5319 		if (sandybridge_pcode_read(dev_priv,
5320 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5321 					   &ddcc_status) == 0)
5322 			dev_priv->rps.efficient_freq =
5323 				clamp_t(u8,
5324 					((ddcc_status >> 8) & 0xff),
5325 					dev_priv->rps.min_freq,
5326 					dev_priv->rps.max_freq);
5327 	}
5328 
5329 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5330 		/* Store the frequency values in 16.66 MHZ units, which is
5331 		 * the natural hardware unit for SKL
5332 		 */
5333 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5334 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5335 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5336 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5337 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5338 	}
5339 }
5340 
reset_rps(struct drm_i915_private * dev_priv,void (* set)(struct drm_i915_private *,u8))5341 static void reset_rps(struct drm_i915_private *dev_priv,
5342 		      void (*set)(struct drm_i915_private *, u8))
5343 {
5344 	u8 freq = dev_priv->rps.cur_freq;
5345 
5346 	/* force a reset */
5347 	dev_priv->rps.power = -1;
5348 	dev_priv->rps.cur_freq = -1;
5349 
5350 	set(dev_priv, freq);
5351 }
5352 
5353 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_i915_private * dev_priv)5354 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5355 {
5356 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5357 
5358 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5359 	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5360 		/*
5361 		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5362 		 * clear out the Control register just to avoid inconsitency
5363 		 * with debugfs interface, which will show  Turbo as enabled
5364 		 * only and that is not expected by the User after adding the
5365 		 * WaGsvDisableTurbo. Apart from this there is no problem even
5366 		 * if the Turbo is left enabled in the Control register, as the
5367 		 * Up/Down interrupts would remain masked.
5368 		 */
5369 		gen9_disable_rps(dev_priv);
5370 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5371 		return;
5372 	}
5373 
5374 	/* Program defaults and thresholds for RPS*/
5375 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
5376 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5377 
5378 	/* 1 second timeout*/
5379 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5380 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
5381 
5382 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5383 
5384 	/* Leaning on the below call to gen6_set_rps to program/setup the
5385 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5386 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5387 	reset_rps(dev_priv, gen6_set_rps);
5388 
5389 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5390 }
5391 
gen9_enable_rc6(struct drm_i915_private * dev_priv)5392 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5393 {
5394 	struct intel_engine_cs *engine;
5395 	uint32_t rc6_mask = 0;
5396 
5397 	/* 1a: Software RC state - RC0 */
5398 	I915_WRITE(GEN6_RC_STATE, 0);
5399 
5400 	/* 1b: Get forcewake during program sequence. Although the driver
5401 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5402 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5403 
5404 	/* 2a: Disable RC states. */
5405 	I915_WRITE(GEN6_RC_CONTROL, 0);
5406 
5407 	/* 2b: Program RC6 thresholds.*/
5408 
5409 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5410 	if (IS_SKYLAKE(dev_priv))
5411 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5412 	else
5413 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5414 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5415 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5416 	for_each_engine(engine, dev_priv)
5417 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5418 
5419 	if (HAS_GUC(dev_priv))
5420 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5421 
5422 	I915_WRITE(GEN6_RC_SLEEP, 0);
5423 
5424 	/* 2c: Program Coarse Power Gating Policies. */
5425 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5426 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5427 
5428 	/* 3a: Enable RC6 */
5429 	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5430 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5431 	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5432 	/* WaRsUseTimeoutMode */
5433 	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5434 	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5435 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5436 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5437 			   GEN7_RC_CTL_TO_MODE |
5438 			   rc6_mask);
5439 	} else {
5440 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5441 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5442 			   GEN6_RC_CTL_EI_MODE(1) |
5443 			   rc6_mask);
5444 	}
5445 
5446 	/*
5447 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5448 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5449 	 */
5450 	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5451 		I915_WRITE(GEN9_PG_ENABLE, 0);
5452 	else
5453 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5454 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5455 
5456 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5457 }
5458 
gen8_enable_rps(struct drm_i915_private * dev_priv)5459 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5460 {
5461 	struct intel_engine_cs *engine;
5462 	uint32_t rc6_mask = 0;
5463 
5464 	/* 1a: Software RC state - RC0 */
5465 	I915_WRITE(GEN6_RC_STATE, 0);
5466 
5467 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
5468 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5469 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5470 
5471 	/* 2a: Disable RC states. */
5472 	I915_WRITE(GEN6_RC_CONTROL, 0);
5473 
5474 	/* 2b: Program RC6 thresholds.*/
5475 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5476 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5477 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5478 	for_each_engine(engine, dev_priv)
5479 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5480 	I915_WRITE(GEN6_RC_SLEEP, 0);
5481 	if (IS_BROADWELL(dev_priv))
5482 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5483 	else
5484 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5485 
5486 	/* 3: Enable RC6 */
5487 	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5488 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5489 	intel_print_rc6_info(dev_priv, rc6_mask);
5490 	if (IS_BROADWELL(dev_priv))
5491 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5492 				GEN7_RC_CTL_TO_MODE |
5493 				rc6_mask);
5494 	else
5495 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5496 				GEN6_RC_CTL_EI_MODE(1) |
5497 				rc6_mask);
5498 
5499 	/* 4 Program defaults and thresholds for RPS*/
5500 	I915_WRITE(GEN6_RPNSWREQ,
5501 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5502 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
5503 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5504 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5505 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5506 
5507 	/* Docs recommend 900MHz, and 300 MHz respectively */
5508 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5509 		   dev_priv->rps.max_freq_softlimit << 24 |
5510 		   dev_priv->rps.min_freq_softlimit << 16);
5511 
5512 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5513 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5514 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5515 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5516 
5517 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5518 
5519 	/* 5: Enable RPS */
5520 	I915_WRITE(GEN6_RP_CONTROL,
5521 		   GEN6_RP_MEDIA_TURBO |
5522 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5523 		   GEN6_RP_MEDIA_IS_GFX |
5524 		   GEN6_RP_ENABLE |
5525 		   GEN6_RP_UP_BUSY_AVG |
5526 		   GEN6_RP_DOWN_IDLE_AVG);
5527 
5528 	/* 6: Ring frequency + overclocking (our driver does this later */
5529 
5530 	reset_rps(dev_priv, gen6_set_rps);
5531 
5532 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5533 }
5534 
gen6_enable_rps(struct drm_i915_private * dev_priv)5535 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5536 {
5537 	struct intel_engine_cs *engine;
5538 	u32 rc6vids, rc6_mask = 0;
5539 	u32 gtfifodbg;
5540 	int rc6_mode;
5541 	int ret;
5542 
5543 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5544 
5545 	/* Here begins a magic sequence of register writes to enable
5546 	 * auto-downclocking.
5547 	 *
5548 	 * Perhaps there might be some value in exposing these to
5549 	 * userspace...
5550 	 */
5551 	I915_WRITE(GEN6_RC_STATE, 0);
5552 
5553 	/* Clear the DBG now so we don't confuse earlier errors */
5554 	gtfifodbg = I915_READ(GTFIFODBG);
5555 	if (gtfifodbg) {
5556 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5557 		I915_WRITE(GTFIFODBG, gtfifodbg);
5558 	}
5559 
5560 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5561 
5562 	/* disable the counters and set deterministic thresholds */
5563 	I915_WRITE(GEN6_RC_CONTROL, 0);
5564 
5565 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5566 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5567 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5568 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5569 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5570 
5571 	for_each_engine(engine, dev_priv)
5572 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5573 
5574 	I915_WRITE(GEN6_RC_SLEEP, 0);
5575 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5576 	if (IS_IVYBRIDGE(dev_priv))
5577 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5578 	else
5579 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5580 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5581 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5582 
5583 	/* Check if we are enabling RC6 */
5584 	rc6_mode = intel_enable_rc6();
5585 	if (rc6_mode & INTEL_RC6_ENABLE)
5586 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5587 
5588 	/* We don't use those on Haswell */
5589 	if (!IS_HASWELL(dev_priv)) {
5590 		if (rc6_mode & INTEL_RC6p_ENABLE)
5591 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5592 
5593 		if (rc6_mode & INTEL_RC6pp_ENABLE)
5594 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5595 	}
5596 
5597 	intel_print_rc6_info(dev_priv, rc6_mask);
5598 
5599 	I915_WRITE(GEN6_RC_CONTROL,
5600 		   rc6_mask |
5601 		   GEN6_RC_CTL_EI_MODE(1) |
5602 		   GEN6_RC_CTL_HW_ENABLE);
5603 
5604 	/* Power down if completely idle for over 50ms */
5605 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5606 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5607 
5608 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5609 	if (ret)
5610 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5611 
5612 	reset_rps(dev_priv, gen6_set_rps);
5613 
5614 	rc6vids = 0;
5615 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5616 	if (IS_GEN6(dev_priv) && ret) {
5617 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5618 	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5619 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5620 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5621 		rc6vids &= 0xffff00;
5622 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5623 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5624 		if (ret)
5625 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5626 	}
5627 
5628 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5629 }
5630 
gen6_update_ring_freq(struct drm_i915_private * dev_priv)5631 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5632 {
5633 	int min_freq = 15;
5634 	unsigned int gpu_freq;
5635 	unsigned int max_ia_freq, min_ring_freq;
5636 	unsigned int max_gpu_freq, min_gpu_freq;
5637 	int scaling_factor = 180;
5638 	struct cpufreq_policy *policy;
5639 
5640 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5641 
5642 	policy = cpufreq_cpu_get(0);
5643 	if (policy) {
5644 		max_ia_freq = policy->cpuinfo.max_freq;
5645 		cpufreq_cpu_put(policy);
5646 	} else {
5647 		/*
5648 		 * Default to measured freq if none found, PCU will ensure we
5649 		 * don't go over
5650 		 */
5651 		max_ia_freq = tsc_khz;
5652 	}
5653 
5654 	/* Convert from kHz to MHz */
5655 	max_ia_freq /= 1000;
5656 
5657 	min_ring_freq = I915_READ(DCLK) & 0xf;
5658 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5659 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5660 
5661 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5662 		/* Convert GT frequency to 50 HZ units */
5663 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5664 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5665 	} else {
5666 		min_gpu_freq = dev_priv->rps.min_freq;
5667 		max_gpu_freq = dev_priv->rps.max_freq;
5668 	}
5669 
5670 	/*
5671 	 * For each potential GPU frequency, load a ring frequency we'd like
5672 	 * to use for memory access.  We do this by specifying the IA frequency
5673 	 * the PCU should use as a reference to determine the ring frequency.
5674 	 */
5675 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5676 		int diff = max_gpu_freq - gpu_freq;
5677 		unsigned int ia_freq = 0, ring_freq = 0;
5678 
5679 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5680 			/*
5681 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5682 			 * No floor required for ring frequency on SKL.
5683 			 */
5684 			ring_freq = gpu_freq;
5685 		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5686 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5687 			ring_freq = max(min_ring_freq, gpu_freq);
5688 		} else if (IS_HASWELL(dev_priv)) {
5689 			ring_freq = mult_frac(gpu_freq, 5, 4);
5690 			ring_freq = max(min_ring_freq, ring_freq);
5691 			/* leave ia_freq as the default, chosen by cpufreq */
5692 		} else {
5693 			/* On older processors, there is no separate ring
5694 			 * clock domain, so in order to boost the bandwidth
5695 			 * of the ring, we need to upclock the CPU (ia_freq).
5696 			 *
5697 			 * For GPU frequencies less than 750MHz,
5698 			 * just use the lowest ring freq.
5699 			 */
5700 			if (gpu_freq < min_freq)
5701 				ia_freq = 800;
5702 			else
5703 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5704 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5705 		}
5706 
5707 		sandybridge_pcode_write(dev_priv,
5708 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5709 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5710 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5711 					gpu_freq);
5712 	}
5713 }
5714 
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)5715 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5716 {
5717 	u32 val, rp0;
5718 
5719 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5720 
5721 	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5722 	case 8:
5723 		/* (2 * 4) config */
5724 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5725 		break;
5726 	case 12:
5727 		/* (2 * 6) config */
5728 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5729 		break;
5730 	case 16:
5731 		/* (2 * 8) config */
5732 	default:
5733 		/* Setting (2 * 8) Min RP0 for any other combination */
5734 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5735 		break;
5736 	}
5737 
5738 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5739 
5740 	return rp0;
5741 }
5742 
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)5743 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5744 {
5745 	u32 val, rpe;
5746 
5747 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5748 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5749 
5750 	return rpe;
5751 }
5752 
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)5753 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5754 {
5755 	u32 val, rp1;
5756 
5757 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5758 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5759 
5760 	return rp1;
5761 }
5762 
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)5763 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5764 {
5765 	u32 val, rp1;
5766 
5767 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5768 
5769 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5770 
5771 	return rp1;
5772 }
5773 
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)5774 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5775 {
5776 	u32 val, rp0;
5777 
5778 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5779 
5780 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5781 	/* Clamp to max */
5782 	rp0 = min_t(u32, rp0, 0xea);
5783 
5784 	return rp0;
5785 }
5786 
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)5787 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5788 {
5789 	u32 val, rpe;
5790 
5791 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5792 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5793 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5794 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5795 
5796 	return rpe;
5797 }
5798 
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)5799 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5800 {
5801 	u32 val;
5802 
5803 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5804 	/*
5805 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5806 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5807 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5808 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5809 	 * to make sure it matches what Punit accepts.
5810 	 */
5811 	return max_t(u32, val, 0xc0);
5812 }
5813 
5814 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)5815 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5816 {
5817 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5818 
5819 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5820 			     dev_priv->vlv_pctx->stolen->start);
5821 }
5822 
5823 
5824 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)5825 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5826 {
5827 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5828 
5829 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5830 }
5831 
cherryview_setup_pctx(struct drm_i915_private * dev_priv)5832 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5833 {
5834 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5835 	unsigned long pctx_paddr, paddr;
5836 	u32 pcbr;
5837 	int pctx_size = 32*1024;
5838 
5839 	pcbr = I915_READ(VLV_PCBR);
5840 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5841 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5842 		paddr = (dev_priv->mm.stolen_base +
5843 			 (ggtt->stolen_size - pctx_size));
5844 
5845 		pctx_paddr = (paddr & (~4095));
5846 		I915_WRITE(VLV_PCBR, pctx_paddr);
5847 	}
5848 
5849 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5850 }
5851 
valleyview_setup_pctx(struct drm_i915_private * dev_priv)5852 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5853 {
5854 	struct drm_i915_gem_object *pctx;
5855 	unsigned long pctx_paddr;
5856 	u32 pcbr;
5857 	int pctx_size = 24*1024;
5858 
5859 	pcbr = I915_READ(VLV_PCBR);
5860 	if (pcbr) {
5861 		/* BIOS set it up already, grab the pre-alloc'd space */
5862 		int pcbr_offset;
5863 
5864 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5865 		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5866 								      pcbr_offset,
5867 								      I915_GTT_OFFSET_NONE,
5868 								      pctx_size);
5869 		goto out;
5870 	}
5871 
5872 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5873 
5874 	/*
5875 	 * From the Gunit register HAS:
5876 	 * The Gfx driver is expected to program this register and ensure
5877 	 * proper allocation within Gfx stolen memory.  For example, this
5878 	 * register should be programmed such than the PCBR range does not
5879 	 * overlap with other ranges, such as the frame buffer, protected
5880 	 * memory, or any other relevant ranges.
5881 	 */
5882 	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5883 	if (!pctx) {
5884 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5885 		goto out;
5886 	}
5887 
5888 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5889 	I915_WRITE(VLV_PCBR, pctx_paddr);
5890 
5891 out:
5892 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5893 	dev_priv->vlv_pctx = pctx;
5894 }
5895 
valleyview_cleanup_pctx(struct drm_i915_private * dev_priv)5896 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5897 {
5898 	if (WARN_ON(!dev_priv->vlv_pctx))
5899 		return;
5900 
5901 	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5902 	dev_priv->vlv_pctx = NULL;
5903 }
5904 
vlv_init_gpll_ref_freq(struct drm_i915_private * dev_priv)5905 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5906 {
5907 	dev_priv->rps.gpll_ref_freq =
5908 		vlv_get_cck_clock(dev_priv, "GPLL ref",
5909 				  CCK_GPLL_CLOCK_CONTROL,
5910 				  dev_priv->czclk_freq);
5911 
5912 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5913 			 dev_priv->rps.gpll_ref_freq);
5914 }
5915 
valleyview_init_gt_powersave(struct drm_i915_private * dev_priv)5916 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5917 {
5918 	u32 val;
5919 
5920 	valleyview_setup_pctx(dev_priv);
5921 
5922 	vlv_init_gpll_ref_freq(dev_priv);
5923 
5924 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5925 	switch ((val >> 6) & 3) {
5926 	case 0:
5927 	case 1:
5928 		dev_priv->mem_freq = 800;
5929 		break;
5930 	case 2:
5931 		dev_priv->mem_freq = 1066;
5932 		break;
5933 	case 3:
5934 		dev_priv->mem_freq = 1333;
5935 		break;
5936 	}
5937 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5938 
5939 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5940 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5941 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5942 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5943 			 dev_priv->rps.max_freq);
5944 
5945 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5946 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5947 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5948 			 dev_priv->rps.efficient_freq);
5949 
5950 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5951 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5952 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5953 			 dev_priv->rps.rp1_freq);
5954 
5955 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5956 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5957 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5958 			 dev_priv->rps.min_freq);
5959 }
5960 
cherryview_init_gt_powersave(struct drm_i915_private * dev_priv)5961 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5962 {
5963 	u32 val;
5964 
5965 	cherryview_setup_pctx(dev_priv);
5966 
5967 	vlv_init_gpll_ref_freq(dev_priv);
5968 
5969 	mutex_lock(&dev_priv->sb_lock);
5970 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5971 	mutex_unlock(&dev_priv->sb_lock);
5972 
5973 	switch ((val >> 2) & 0x7) {
5974 	case 3:
5975 		dev_priv->mem_freq = 2000;
5976 		break;
5977 	default:
5978 		dev_priv->mem_freq = 1600;
5979 		break;
5980 	}
5981 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5982 
5983 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5984 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5985 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5986 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5987 			 dev_priv->rps.max_freq);
5988 
5989 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5990 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5991 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5992 			 dev_priv->rps.efficient_freq);
5993 
5994 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5995 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5996 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5997 			 dev_priv->rps.rp1_freq);
5998 
5999 	/* PUnit validated range is only [RPe, RP0] */
6000 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
6001 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6002 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6003 			 dev_priv->rps.min_freq);
6004 
6005 	WARN_ONCE((dev_priv->rps.max_freq |
6006 		   dev_priv->rps.efficient_freq |
6007 		   dev_priv->rps.rp1_freq |
6008 		   dev_priv->rps.min_freq) & 1,
6009 		  "Odd GPU freq values\n");
6010 }
6011 
valleyview_cleanup_gt_powersave(struct drm_i915_private * dev_priv)6012 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6013 {
6014 	valleyview_cleanup_pctx(dev_priv);
6015 }
6016 
cherryview_enable_rps(struct drm_i915_private * dev_priv)6017 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6018 {
6019 	struct intel_engine_cs *engine;
6020 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6021 
6022 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6023 
6024 	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6025 					     GT_FIFO_FREE_ENTRIES_CHV);
6026 	if (gtfifodbg) {
6027 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6028 				 gtfifodbg);
6029 		I915_WRITE(GTFIFODBG, gtfifodbg);
6030 	}
6031 
6032 	cherryview_check_pctx(dev_priv);
6033 
6034 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
6035 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6036 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6037 
6038 	/*  Disable RC states. */
6039 	I915_WRITE(GEN6_RC_CONTROL, 0);
6040 
6041 	/* 2a: Program RC6 thresholds.*/
6042 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6043 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6044 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6045 
6046 	for_each_engine(engine, dev_priv)
6047 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6048 	I915_WRITE(GEN6_RC_SLEEP, 0);
6049 
6050 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6051 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6052 
6053 	/* allows RC6 residency counter to work */
6054 	I915_WRITE(VLV_COUNTER_CONTROL,
6055 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6056 				      VLV_MEDIA_RC6_COUNT_EN |
6057 				      VLV_RENDER_RC6_COUNT_EN));
6058 
6059 	/* For now we assume BIOS is allocating and populating the PCBR  */
6060 	pcbr = I915_READ(VLV_PCBR);
6061 
6062 	/* 3: Enable RC6 */
6063 	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6064 	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6065 		rc6_mode = GEN7_RC_CTL_TO_MODE;
6066 
6067 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6068 
6069 	/* 4 Program defaults and thresholds for RPS*/
6070 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6071 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6072 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6073 	I915_WRITE(GEN6_RP_UP_EI, 66000);
6074 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6075 
6076 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6077 
6078 	/* 5: Enable RPS */
6079 	I915_WRITE(GEN6_RP_CONTROL,
6080 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6081 		   GEN6_RP_MEDIA_IS_GFX |
6082 		   GEN6_RP_ENABLE |
6083 		   GEN6_RP_UP_BUSY_AVG |
6084 		   GEN6_RP_DOWN_IDLE_AVG);
6085 
6086 	/* Setting Fixed Bias */
6087 	val = VLV_OVERRIDE_EN |
6088 		  VLV_SOC_TDP_EN |
6089 		  CHV_BIAS_CPU_50_SOC_50;
6090 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6091 
6092 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6093 
6094 	/* RPS code assumes GPLL is used */
6095 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6096 
6097 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6098 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6099 
6100 	reset_rps(dev_priv, valleyview_set_rps);
6101 
6102 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6103 }
6104 
valleyview_enable_rps(struct drm_i915_private * dev_priv)6105 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6106 {
6107 	struct intel_engine_cs *engine;
6108 	u32 gtfifodbg, val, rc6_mode = 0;
6109 
6110 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6111 
6112 	valleyview_check_pctx(dev_priv);
6113 
6114 	gtfifodbg = I915_READ(GTFIFODBG);
6115 	if (gtfifodbg) {
6116 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6117 				 gtfifodbg);
6118 		I915_WRITE(GTFIFODBG, gtfifodbg);
6119 	}
6120 
6121 	/* If VLV, Forcewake all wells, else re-direct to regular path */
6122 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6123 
6124 	/*  Disable RC states. */
6125 	I915_WRITE(GEN6_RC_CONTROL, 0);
6126 
6127 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6128 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6129 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6130 	I915_WRITE(GEN6_RP_UP_EI, 66000);
6131 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6132 
6133 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6134 
6135 	I915_WRITE(GEN6_RP_CONTROL,
6136 		   GEN6_RP_MEDIA_TURBO |
6137 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6138 		   GEN6_RP_MEDIA_IS_GFX |
6139 		   GEN6_RP_ENABLE |
6140 		   GEN6_RP_UP_BUSY_AVG |
6141 		   GEN6_RP_DOWN_IDLE_CONT);
6142 
6143 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6144 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6145 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6146 
6147 	for_each_engine(engine, dev_priv)
6148 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6149 
6150 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6151 
6152 	/* allows RC6 residency counter to work */
6153 	I915_WRITE(VLV_COUNTER_CONTROL,
6154 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6155 				      VLV_RENDER_RC0_COUNT_EN |
6156 				      VLV_MEDIA_RC6_COUNT_EN |
6157 				      VLV_RENDER_RC6_COUNT_EN));
6158 
6159 	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6160 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6161 
6162 	intel_print_rc6_info(dev_priv, rc6_mode);
6163 
6164 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6165 
6166 	/* Setting Fixed Bias */
6167 	val = VLV_OVERRIDE_EN |
6168 		  VLV_SOC_TDP_EN |
6169 		  VLV_BIAS_CPU_125_SOC_875;
6170 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6171 
6172 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6173 
6174 	/* RPS code assumes GPLL is used */
6175 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6176 
6177 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6178 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6179 
6180 	reset_rps(dev_priv, valleyview_set_rps);
6181 
6182 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6183 }
6184 
intel_pxfreq(u32 vidfreq)6185 static unsigned long intel_pxfreq(u32 vidfreq)
6186 {
6187 	unsigned long freq;
6188 	int div = (vidfreq & 0x3f0000) >> 16;
6189 	int post = (vidfreq & 0x3000) >> 12;
6190 	int pre = (vidfreq & 0x7);
6191 
6192 	if (!pre)
6193 		return 0;
6194 
6195 	freq = ((div * 133333) / ((1<<post) * pre));
6196 
6197 	return freq;
6198 }
6199 
6200 static const struct cparams {
6201 	u16 i;
6202 	u16 t;
6203 	u16 m;
6204 	u16 c;
6205 } cparams[] = {
6206 	{ 1, 1333, 301, 28664 },
6207 	{ 1, 1066, 294, 24460 },
6208 	{ 1, 800, 294, 25192 },
6209 	{ 0, 1333, 276, 27605 },
6210 	{ 0, 1066, 276, 27605 },
6211 	{ 0, 800, 231, 23784 },
6212 };
6213 
__i915_chipset_val(struct drm_i915_private * dev_priv)6214 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6215 {
6216 	u64 total_count, diff, ret;
6217 	u32 count1, count2, count3, m = 0, c = 0;
6218 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
6219 	int i;
6220 
6221 	assert_spin_locked(&mchdev_lock);
6222 
6223 	diff1 = now - dev_priv->ips.last_time1;
6224 
6225 	/* Prevent division-by-zero if we are asking too fast.
6226 	 * Also, we don't get interesting results if we are polling
6227 	 * faster than once in 10ms, so just return the saved value
6228 	 * in such cases.
6229 	 */
6230 	if (diff1 <= 10)
6231 		return dev_priv->ips.chipset_power;
6232 
6233 	count1 = I915_READ(DMIEC);
6234 	count2 = I915_READ(DDREC);
6235 	count3 = I915_READ(CSIEC);
6236 
6237 	total_count = count1 + count2 + count3;
6238 
6239 	/* FIXME: handle per-counter overflow */
6240 	if (total_count < dev_priv->ips.last_count1) {
6241 		diff = ~0UL - dev_priv->ips.last_count1;
6242 		diff += total_count;
6243 	} else {
6244 		diff = total_count - dev_priv->ips.last_count1;
6245 	}
6246 
6247 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6248 		if (cparams[i].i == dev_priv->ips.c_m &&
6249 		    cparams[i].t == dev_priv->ips.r_t) {
6250 			m = cparams[i].m;
6251 			c = cparams[i].c;
6252 			break;
6253 		}
6254 	}
6255 
6256 	diff = div_u64(diff, diff1);
6257 	ret = ((m * diff) + c);
6258 	ret = div_u64(ret, 10);
6259 
6260 	dev_priv->ips.last_count1 = total_count;
6261 	dev_priv->ips.last_time1 = now;
6262 
6263 	dev_priv->ips.chipset_power = ret;
6264 
6265 	return ret;
6266 }
6267 
i915_chipset_val(struct drm_i915_private * dev_priv)6268 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6269 {
6270 	unsigned long val;
6271 
6272 	if (INTEL_INFO(dev_priv)->gen != 5)
6273 		return 0;
6274 
6275 	spin_lock_irq(&mchdev_lock);
6276 
6277 	val = __i915_chipset_val(dev_priv);
6278 
6279 	spin_unlock_irq(&mchdev_lock);
6280 
6281 	return val;
6282 }
6283 
i915_mch_val(struct drm_i915_private * dev_priv)6284 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6285 {
6286 	unsigned long m, x, b;
6287 	u32 tsfs;
6288 
6289 	tsfs = I915_READ(TSFS);
6290 
6291 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6292 	x = I915_READ8(TR1);
6293 
6294 	b = tsfs & TSFS_INTR_MASK;
6295 
6296 	return ((m * x) / 127) - b;
6297 }
6298 
_pxvid_to_vd(u8 pxvid)6299 static int _pxvid_to_vd(u8 pxvid)
6300 {
6301 	if (pxvid == 0)
6302 		return 0;
6303 
6304 	if (pxvid >= 8 && pxvid < 31)
6305 		pxvid = 31;
6306 
6307 	return (pxvid + 2) * 125;
6308 }
6309 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)6310 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6311 {
6312 	const int vd = _pxvid_to_vd(pxvid);
6313 	const int vm = vd - 1125;
6314 
6315 	if (INTEL_INFO(dev_priv)->is_mobile)
6316 		return vm > 0 ? vm : 0;
6317 
6318 	return vd;
6319 }
6320 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)6321 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6322 {
6323 	u64 now, diff, diffms;
6324 	u32 count;
6325 
6326 	assert_spin_locked(&mchdev_lock);
6327 
6328 	now = ktime_get_raw_ns();
6329 	diffms = now - dev_priv->ips.last_time2;
6330 	do_div(diffms, NSEC_PER_MSEC);
6331 
6332 	/* Don't divide by 0 */
6333 	if (!diffms)
6334 		return;
6335 
6336 	count = I915_READ(GFXEC);
6337 
6338 	if (count < dev_priv->ips.last_count2) {
6339 		diff = ~0UL - dev_priv->ips.last_count2;
6340 		diff += count;
6341 	} else {
6342 		diff = count - dev_priv->ips.last_count2;
6343 	}
6344 
6345 	dev_priv->ips.last_count2 = count;
6346 	dev_priv->ips.last_time2 = now;
6347 
6348 	/* More magic constants... */
6349 	diff = diff * 1181;
6350 	diff = div_u64(diff, diffms * 10);
6351 	dev_priv->ips.gfx_power = diff;
6352 }
6353 
i915_update_gfx_val(struct drm_i915_private * dev_priv)6354 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6355 {
6356 	if (INTEL_INFO(dev_priv)->gen != 5)
6357 		return;
6358 
6359 	spin_lock_irq(&mchdev_lock);
6360 
6361 	__i915_update_gfx_val(dev_priv);
6362 
6363 	spin_unlock_irq(&mchdev_lock);
6364 }
6365 
__i915_gfx_val(struct drm_i915_private * dev_priv)6366 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6367 {
6368 	unsigned long t, corr, state1, corr2, state2;
6369 	u32 pxvid, ext_v;
6370 
6371 	assert_spin_locked(&mchdev_lock);
6372 
6373 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6374 	pxvid = (pxvid >> 24) & 0x7f;
6375 	ext_v = pvid_to_extvid(dev_priv, pxvid);
6376 
6377 	state1 = ext_v;
6378 
6379 	t = i915_mch_val(dev_priv);
6380 
6381 	/* Revel in the empirically derived constants */
6382 
6383 	/* Correction factor in 1/100000 units */
6384 	if (t > 80)
6385 		corr = ((t * 2349) + 135940);
6386 	else if (t >= 50)
6387 		corr = ((t * 964) + 29317);
6388 	else /* < 50 */
6389 		corr = ((t * 301) + 1004);
6390 
6391 	corr = corr * ((150142 * state1) / 10000 - 78642);
6392 	corr /= 100000;
6393 	corr2 = (corr * dev_priv->ips.corr);
6394 
6395 	state2 = (corr2 * state1) / 10000;
6396 	state2 /= 100; /* convert to mW */
6397 
6398 	__i915_update_gfx_val(dev_priv);
6399 
6400 	return dev_priv->ips.gfx_power + state2;
6401 }
6402 
i915_gfx_val(struct drm_i915_private * dev_priv)6403 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6404 {
6405 	unsigned long val;
6406 
6407 	if (INTEL_INFO(dev_priv)->gen != 5)
6408 		return 0;
6409 
6410 	spin_lock_irq(&mchdev_lock);
6411 
6412 	val = __i915_gfx_val(dev_priv);
6413 
6414 	spin_unlock_irq(&mchdev_lock);
6415 
6416 	return val;
6417 }
6418 
6419 /**
6420  * i915_read_mch_val - return value for IPS use
6421  *
6422  * Calculate and return a value for the IPS driver to use when deciding whether
6423  * we have thermal and power headroom to increase CPU or GPU power budget.
6424  */
i915_read_mch_val(void)6425 unsigned long i915_read_mch_val(void)
6426 {
6427 	struct drm_i915_private *dev_priv;
6428 	unsigned long chipset_val, graphics_val, ret = 0;
6429 
6430 	spin_lock_irq(&mchdev_lock);
6431 	if (!i915_mch_dev)
6432 		goto out_unlock;
6433 	dev_priv = i915_mch_dev;
6434 
6435 	chipset_val = __i915_chipset_val(dev_priv);
6436 	graphics_val = __i915_gfx_val(dev_priv);
6437 
6438 	ret = chipset_val + graphics_val;
6439 
6440 out_unlock:
6441 	spin_unlock_irq(&mchdev_lock);
6442 
6443 	return ret;
6444 }
6445 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6446 
6447 /**
6448  * i915_gpu_raise - raise GPU frequency limit
6449  *
6450  * Raise the limit; IPS indicates we have thermal headroom.
6451  */
i915_gpu_raise(void)6452 bool i915_gpu_raise(void)
6453 {
6454 	struct drm_i915_private *dev_priv;
6455 	bool ret = true;
6456 
6457 	spin_lock_irq(&mchdev_lock);
6458 	if (!i915_mch_dev) {
6459 		ret = false;
6460 		goto out_unlock;
6461 	}
6462 	dev_priv = i915_mch_dev;
6463 
6464 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6465 		dev_priv->ips.max_delay--;
6466 
6467 out_unlock:
6468 	spin_unlock_irq(&mchdev_lock);
6469 
6470 	return ret;
6471 }
6472 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6473 
6474 /**
6475  * i915_gpu_lower - lower GPU frequency limit
6476  *
6477  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6478  * frequency maximum.
6479  */
i915_gpu_lower(void)6480 bool i915_gpu_lower(void)
6481 {
6482 	struct drm_i915_private *dev_priv;
6483 	bool ret = true;
6484 
6485 	spin_lock_irq(&mchdev_lock);
6486 	if (!i915_mch_dev) {
6487 		ret = false;
6488 		goto out_unlock;
6489 	}
6490 	dev_priv = i915_mch_dev;
6491 
6492 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6493 		dev_priv->ips.max_delay++;
6494 
6495 out_unlock:
6496 	spin_unlock_irq(&mchdev_lock);
6497 
6498 	return ret;
6499 }
6500 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6501 
6502 /**
6503  * i915_gpu_busy - indicate GPU business to IPS
6504  *
6505  * Tell the IPS driver whether or not the GPU is busy.
6506  */
i915_gpu_busy(void)6507 bool i915_gpu_busy(void)
6508 {
6509 	bool ret = false;
6510 
6511 	spin_lock_irq(&mchdev_lock);
6512 	if (i915_mch_dev)
6513 		ret = i915_mch_dev->gt.awake;
6514 	spin_unlock_irq(&mchdev_lock);
6515 
6516 	return ret;
6517 }
6518 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6519 
6520 /**
6521  * i915_gpu_turbo_disable - disable graphics turbo
6522  *
6523  * Disable graphics turbo by resetting the max frequency and setting the
6524  * current frequency to the default.
6525  */
i915_gpu_turbo_disable(void)6526 bool i915_gpu_turbo_disable(void)
6527 {
6528 	struct drm_i915_private *dev_priv;
6529 	bool ret = true;
6530 
6531 	spin_lock_irq(&mchdev_lock);
6532 	if (!i915_mch_dev) {
6533 		ret = false;
6534 		goto out_unlock;
6535 	}
6536 	dev_priv = i915_mch_dev;
6537 
6538 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6539 
6540 	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6541 		ret = false;
6542 
6543 out_unlock:
6544 	spin_unlock_irq(&mchdev_lock);
6545 
6546 	return ret;
6547 }
6548 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6549 
6550 /**
6551  * Tells the intel_ips driver that the i915 driver is now loaded, if
6552  * IPS got loaded first.
6553  *
6554  * This awkward dance is so that neither module has to depend on the
6555  * other in order for IPS to do the appropriate communication of
6556  * GPU turbo limits to i915.
6557  */
6558 static void
ips_ping_for_i915_load(void)6559 ips_ping_for_i915_load(void)
6560 {
6561 	void (*link)(void);
6562 
6563 	link = symbol_get(ips_link_to_i915_driver);
6564 	if (link) {
6565 		link();
6566 		symbol_put(ips_link_to_i915_driver);
6567 	}
6568 }
6569 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)6570 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6571 {
6572 	/* We only register the i915 ips part with intel-ips once everything is
6573 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6574 	spin_lock_irq(&mchdev_lock);
6575 	i915_mch_dev = dev_priv;
6576 	spin_unlock_irq(&mchdev_lock);
6577 
6578 	ips_ping_for_i915_load();
6579 }
6580 
intel_gpu_ips_teardown(void)6581 void intel_gpu_ips_teardown(void)
6582 {
6583 	spin_lock_irq(&mchdev_lock);
6584 	i915_mch_dev = NULL;
6585 	spin_unlock_irq(&mchdev_lock);
6586 }
6587 
intel_init_emon(struct drm_i915_private * dev_priv)6588 static void intel_init_emon(struct drm_i915_private *dev_priv)
6589 {
6590 	u32 lcfuse;
6591 	u8 pxw[16];
6592 	int i;
6593 
6594 	/* Disable to program */
6595 	I915_WRITE(ECR, 0);
6596 	POSTING_READ(ECR);
6597 
6598 	/* Program energy weights for various events */
6599 	I915_WRITE(SDEW, 0x15040d00);
6600 	I915_WRITE(CSIEW0, 0x007f0000);
6601 	I915_WRITE(CSIEW1, 0x1e220004);
6602 	I915_WRITE(CSIEW2, 0x04000004);
6603 
6604 	for (i = 0; i < 5; i++)
6605 		I915_WRITE(PEW(i), 0);
6606 	for (i = 0; i < 3; i++)
6607 		I915_WRITE(DEW(i), 0);
6608 
6609 	/* Program P-state weights to account for frequency power adjustment */
6610 	for (i = 0; i < 16; i++) {
6611 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6612 		unsigned long freq = intel_pxfreq(pxvidfreq);
6613 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6614 			PXVFREQ_PX_SHIFT;
6615 		unsigned long val;
6616 
6617 		val = vid * vid;
6618 		val *= (freq / 1000);
6619 		val *= 255;
6620 		val /= (127*127*900);
6621 		if (val > 0xff)
6622 			DRM_ERROR("bad pxval: %ld\n", val);
6623 		pxw[i] = val;
6624 	}
6625 	/* Render standby states get 0 weight */
6626 	pxw[14] = 0;
6627 	pxw[15] = 0;
6628 
6629 	for (i = 0; i < 4; i++) {
6630 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6631 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6632 		I915_WRITE(PXW(i), val);
6633 	}
6634 
6635 	/* Adjust magic regs to magic values (more experimental results) */
6636 	I915_WRITE(OGW0, 0);
6637 	I915_WRITE(OGW1, 0);
6638 	I915_WRITE(EG0, 0x00007f00);
6639 	I915_WRITE(EG1, 0x0000000e);
6640 	I915_WRITE(EG2, 0x000e0000);
6641 	I915_WRITE(EG3, 0x68000300);
6642 	I915_WRITE(EG4, 0x42000000);
6643 	I915_WRITE(EG5, 0x00140031);
6644 	I915_WRITE(EG6, 0);
6645 	I915_WRITE(EG7, 0);
6646 
6647 	for (i = 0; i < 8; i++)
6648 		I915_WRITE(PXWL(i), 0);
6649 
6650 	/* Enable PMON + select events */
6651 	I915_WRITE(ECR, 0x80000019);
6652 
6653 	lcfuse = I915_READ(LCFUSE02);
6654 
6655 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6656 }
6657 
intel_init_gt_powersave(struct drm_i915_private * dev_priv)6658 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6659 {
6660 	/*
6661 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6662 	 * requirement.
6663 	 */
6664 	if (!i915.enable_rc6) {
6665 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6666 		intel_runtime_pm_get(dev_priv);
6667 	}
6668 
6669 	mutex_lock(&dev_priv->drm.struct_mutex);
6670 	mutex_lock(&dev_priv->rps.hw_lock);
6671 
6672 	/* Initialize RPS limits (for userspace) */
6673 	if (IS_CHERRYVIEW(dev_priv))
6674 		cherryview_init_gt_powersave(dev_priv);
6675 	else if (IS_VALLEYVIEW(dev_priv))
6676 		valleyview_init_gt_powersave(dev_priv);
6677 	else if (INTEL_GEN(dev_priv) >= 6)
6678 		gen6_init_rps_frequencies(dev_priv);
6679 
6680 	/* Derive initial user preferences/limits from the hardware limits */
6681 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6682 	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6683 
6684 	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6685 	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6686 
6687 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6688 		dev_priv->rps.min_freq_softlimit =
6689 			max_t(int,
6690 			      dev_priv->rps.efficient_freq,
6691 			      intel_freq_opcode(dev_priv, 450));
6692 
6693 	/* After setting max-softlimit, find the overclock max freq */
6694 	if (IS_GEN6(dev_priv) ||
6695 	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6696 		u32 params = 0;
6697 
6698 		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6699 		if (params & BIT(31)) { /* OC supported */
6700 			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6701 					 (dev_priv->rps.max_freq & 0xff) * 50,
6702 					 (params & 0xff) * 50);
6703 			dev_priv->rps.max_freq = params & 0xff;
6704 		}
6705 	}
6706 
6707 	/* Finally allow us to boost to max by default */
6708 	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6709 
6710 	mutex_unlock(&dev_priv->rps.hw_lock);
6711 	mutex_unlock(&dev_priv->drm.struct_mutex);
6712 
6713 	intel_autoenable_gt_powersave(dev_priv);
6714 }
6715 
intel_cleanup_gt_powersave(struct drm_i915_private * dev_priv)6716 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6717 {
6718 	if (IS_VALLEYVIEW(dev_priv))
6719 		valleyview_cleanup_gt_powersave(dev_priv);
6720 
6721 	if (!i915.enable_rc6)
6722 		intel_runtime_pm_put(dev_priv);
6723 }
6724 
6725 /**
6726  * intel_suspend_gt_powersave - suspend PM work and helper threads
6727  * @dev_priv: i915 device
6728  *
6729  * We don't want to disable RC6 or other features here, we just want
6730  * to make sure any work we've queued has finished and won't bother
6731  * us while we're suspended.
6732  */
intel_suspend_gt_powersave(struct drm_i915_private * dev_priv)6733 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6734 {
6735 	if (INTEL_GEN(dev_priv) < 6)
6736 		return;
6737 
6738 	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6739 		intel_runtime_pm_put(dev_priv);
6740 
6741 	/* gen6_rps_idle() will be called later to disable interrupts */
6742 }
6743 
intel_sanitize_gt_powersave(struct drm_i915_private * dev_priv)6744 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6745 {
6746 	dev_priv->rps.enabled = true; /* force disabling */
6747 	intel_disable_gt_powersave(dev_priv);
6748 
6749 	gen6_reset_rps_interrupts(dev_priv);
6750 }
6751 
intel_disable_gt_powersave(struct drm_i915_private * dev_priv)6752 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6753 {
6754 	if (!READ_ONCE(dev_priv->rps.enabled))
6755 		return;
6756 
6757 	mutex_lock(&dev_priv->rps.hw_lock);
6758 
6759 	if (INTEL_GEN(dev_priv) >= 9) {
6760 		gen9_disable_rc6(dev_priv);
6761 		gen9_disable_rps(dev_priv);
6762 	} else if (IS_CHERRYVIEW(dev_priv)) {
6763 		cherryview_disable_rps(dev_priv);
6764 	} else if (IS_VALLEYVIEW(dev_priv)) {
6765 		valleyview_disable_rps(dev_priv);
6766 	} else if (INTEL_GEN(dev_priv) >= 6) {
6767 		gen6_disable_rps(dev_priv);
6768 	}  else if (IS_IRONLAKE_M(dev_priv)) {
6769 		ironlake_disable_drps(dev_priv);
6770 	}
6771 
6772 	dev_priv->rps.enabled = false;
6773 	mutex_unlock(&dev_priv->rps.hw_lock);
6774 }
6775 
intel_enable_gt_powersave(struct drm_i915_private * dev_priv)6776 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6777 {
6778 	/* We shouldn't be disabling as we submit, so this should be less
6779 	 * racy than it appears!
6780 	 */
6781 	if (READ_ONCE(dev_priv->rps.enabled))
6782 		return;
6783 
6784 	/* Powersaving is controlled by the host when inside a VM */
6785 	if (intel_vgpu_active(dev_priv))
6786 		return;
6787 
6788 	mutex_lock(&dev_priv->rps.hw_lock);
6789 
6790 	if (IS_CHERRYVIEW(dev_priv)) {
6791 		cherryview_enable_rps(dev_priv);
6792 	} else if (IS_VALLEYVIEW(dev_priv)) {
6793 		valleyview_enable_rps(dev_priv);
6794 	} else if (INTEL_GEN(dev_priv) >= 9) {
6795 		gen9_enable_rc6(dev_priv);
6796 		gen9_enable_rps(dev_priv);
6797 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6798 			gen6_update_ring_freq(dev_priv);
6799 	} else if (IS_BROADWELL(dev_priv)) {
6800 		gen8_enable_rps(dev_priv);
6801 		gen6_update_ring_freq(dev_priv);
6802 	} else if (INTEL_GEN(dev_priv) >= 6) {
6803 		gen6_enable_rps(dev_priv);
6804 		gen6_update_ring_freq(dev_priv);
6805 	} else if (IS_IRONLAKE_M(dev_priv)) {
6806 		ironlake_enable_drps(dev_priv);
6807 		intel_init_emon(dev_priv);
6808 	}
6809 
6810 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6811 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6812 
6813 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6814 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6815 
6816 	dev_priv->rps.enabled = true;
6817 	mutex_unlock(&dev_priv->rps.hw_lock);
6818 }
6819 
__intel_autoenable_gt_powersave(struct work_struct * work)6820 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6821 {
6822 	struct drm_i915_private *dev_priv =
6823 		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6824 	struct intel_engine_cs *rcs;
6825 	struct drm_i915_gem_request *req;
6826 
6827 	if (READ_ONCE(dev_priv->rps.enabled))
6828 		goto out;
6829 
6830 	rcs = &dev_priv->engine[RCS];
6831 	if (rcs->last_context)
6832 		goto out;
6833 
6834 	if (!rcs->init_context)
6835 		goto out;
6836 
6837 	mutex_lock(&dev_priv->drm.struct_mutex);
6838 
6839 	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6840 	if (IS_ERR(req))
6841 		goto unlock;
6842 
6843 	if (!i915.enable_execlists && i915_switch_context(req) == 0)
6844 		rcs->init_context(req);
6845 
6846 	/* Mark the device busy, calling intel_enable_gt_powersave() */
6847 	i915_add_request_no_flush(req);
6848 
6849 unlock:
6850 	mutex_unlock(&dev_priv->drm.struct_mutex);
6851 out:
6852 	intel_runtime_pm_put(dev_priv);
6853 }
6854 
intel_autoenable_gt_powersave(struct drm_i915_private * dev_priv)6855 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6856 {
6857 	if (READ_ONCE(dev_priv->rps.enabled))
6858 		return;
6859 
6860 	if (IS_IRONLAKE_M(dev_priv)) {
6861 		ironlake_enable_drps(dev_priv);
6862 		intel_init_emon(dev_priv);
6863 	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6864 		/*
6865 		 * PCU communication is slow and this doesn't need to be
6866 		 * done at any specific time, so do this out of our fast path
6867 		 * to make resume and init faster.
6868 		 *
6869 		 * We depend on the HW RC6 power context save/restore
6870 		 * mechanism when entering D3 through runtime PM suspend. So
6871 		 * disable RPM until RPS/RC6 is properly setup. We can only
6872 		 * get here via the driver load/system resume/runtime resume
6873 		 * paths, so the _noresume version is enough (and in case of
6874 		 * runtime resume it's necessary).
6875 		 */
6876 		if (queue_delayed_work(dev_priv->wq,
6877 				       &dev_priv->rps.autoenable_work,
6878 				       round_jiffies_up_relative(HZ)))
6879 			intel_runtime_pm_get_noresume(dev_priv);
6880 	}
6881 }
6882 
ibx_init_clock_gating(struct drm_device * dev)6883 static void ibx_init_clock_gating(struct drm_device *dev)
6884 {
6885 	struct drm_i915_private *dev_priv = to_i915(dev);
6886 
6887 	/*
6888 	 * On Ibex Peak and Cougar Point, we need to disable clock
6889 	 * gating for the panel power sequencer or it will fail to
6890 	 * start up when no ports are active.
6891 	 */
6892 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6893 }
6894 
g4x_disable_trickle_feed(struct drm_device * dev)6895 static void g4x_disable_trickle_feed(struct drm_device *dev)
6896 {
6897 	struct drm_i915_private *dev_priv = to_i915(dev);
6898 	enum pipe pipe;
6899 
6900 	for_each_pipe(dev_priv, pipe) {
6901 		I915_WRITE(DSPCNTR(pipe),
6902 			   I915_READ(DSPCNTR(pipe)) |
6903 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6904 
6905 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6906 		POSTING_READ(DSPSURF(pipe));
6907 	}
6908 }
6909 
ilk_init_lp_watermarks(struct drm_device * dev)6910 static void ilk_init_lp_watermarks(struct drm_device *dev)
6911 {
6912 	struct drm_i915_private *dev_priv = to_i915(dev);
6913 
6914 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6915 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6916 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6917 
6918 	/*
6919 	 * Don't touch WM1S_LP_EN here.
6920 	 * Doing so could cause underruns.
6921 	 */
6922 }
6923 
ironlake_init_clock_gating(struct drm_device * dev)6924 static void ironlake_init_clock_gating(struct drm_device *dev)
6925 {
6926 	struct drm_i915_private *dev_priv = to_i915(dev);
6927 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6928 
6929 	/*
6930 	 * Required for FBC
6931 	 * WaFbcDisableDpfcClockGating:ilk
6932 	 */
6933 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6934 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6935 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6936 
6937 	I915_WRITE(PCH_3DCGDIS0,
6938 		   MARIUNIT_CLOCK_GATE_DISABLE |
6939 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6940 	I915_WRITE(PCH_3DCGDIS1,
6941 		   VFMUNIT_CLOCK_GATE_DISABLE);
6942 
6943 	/*
6944 	 * According to the spec the following bits should be set in
6945 	 * order to enable memory self-refresh
6946 	 * The bit 22/21 of 0x42004
6947 	 * The bit 5 of 0x42020
6948 	 * The bit 15 of 0x45000
6949 	 */
6950 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6951 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6952 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6953 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6954 	I915_WRITE(DISP_ARB_CTL,
6955 		   (I915_READ(DISP_ARB_CTL) |
6956 		    DISP_FBC_WM_DIS));
6957 
6958 	ilk_init_lp_watermarks(dev);
6959 
6960 	/*
6961 	 * Based on the document from hardware guys the following bits
6962 	 * should be set unconditionally in order to enable FBC.
6963 	 * The bit 22 of 0x42000
6964 	 * The bit 22 of 0x42004
6965 	 * The bit 7,8,9 of 0x42020.
6966 	 */
6967 	if (IS_IRONLAKE_M(dev)) {
6968 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6969 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6970 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6971 			   ILK_FBCQ_DIS);
6972 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6973 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6974 			   ILK_DPARB_GATE);
6975 	}
6976 
6977 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6978 
6979 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6980 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6981 		   ILK_ELPIN_409_SELECT);
6982 	I915_WRITE(_3D_CHICKEN2,
6983 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6984 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6985 
6986 	/* WaDisableRenderCachePipelinedFlush:ilk */
6987 	I915_WRITE(CACHE_MODE_0,
6988 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6989 
6990 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6991 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6992 
6993 	g4x_disable_trickle_feed(dev);
6994 
6995 	ibx_init_clock_gating(dev);
6996 }
6997 
cpt_init_clock_gating(struct drm_device * dev)6998 static void cpt_init_clock_gating(struct drm_device *dev)
6999 {
7000 	struct drm_i915_private *dev_priv = to_i915(dev);
7001 	int pipe;
7002 	uint32_t val;
7003 
7004 	/*
7005 	 * On Ibex Peak and Cougar Point, we need to disable clock
7006 	 * gating for the panel power sequencer or it will fail to
7007 	 * start up when no ports are active.
7008 	 */
7009 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7010 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7011 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7012 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7013 		   DPLS_EDP_PPS_FIX_DIS);
7014 	/* The below fixes the weird display corruption, a few pixels shifted
7015 	 * downward, on (only) LVDS of some HP laptops with IVY.
7016 	 */
7017 	for_each_pipe(dev_priv, pipe) {
7018 		val = I915_READ(TRANS_CHICKEN2(pipe));
7019 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7020 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7021 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7022 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7023 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7024 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7025 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7026 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
7027 	}
7028 	/* WADP0ClockGatingDisable */
7029 	for_each_pipe(dev_priv, pipe) {
7030 		I915_WRITE(TRANS_CHICKEN1(pipe),
7031 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7032 	}
7033 }
7034 
gen6_check_mch_setup(struct drm_device * dev)7035 static void gen6_check_mch_setup(struct drm_device *dev)
7036 {
7037 	struct drm_i915_private *dev_priv = to_i915(dev);
7038 	uint32_t tmp;
7039 
7040 	tmp = I915_READ(MCH_SSKPD);
7041 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7042 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7043 			      tmp);
7044 }
7045 
gen6_init_clock_gating(struct drm_device * dev)7046 static void gen6_init_clock_gating(struct drm_device *dev)
7047 {
7048 	struct drm_i915_private *dev_priv = to_i915(dev);
7049 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7050 
7051 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7052 
7053 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
7054 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
7055 		   ILK_ELPIN_409_SELECT);
7056 
7057 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7058 	I915_WRITE(_3D_CHICKEN,
7059 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7060 
7061 	/* WaDisable_RenderCache_OperationalFlush:snb */
7062 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7063 
7064 	/*
7065 	 * BSpec recoomends 8x4 when MSAA is used,
7066 	 * however in practice 16x4 seems fastest.
7067 	 *
7068 	 * Note that PS/WM thread counts depend on the WIZ hashing
7069 	 * disable bit, which we don't touch here, but it's good
7070 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7071 	 */
7072 	I915_WRITE(GEN6_GT_MODE,
7073 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7074 
7075 	ilk_init_lp_watermarks(dev);
7076 
7077 	I915_WRITE(CACHE_MODE_0,
7078 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7079 
7080 	I915_WRITE(GEN6_UCGCTL1,
7081 		   I915_READ(GEN6_UCGCTL1) |
7082 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7083 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7084 
7085 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7086 	 * gating disable must be set.  Failure to set it results in
7087 	 * flickering pixels due to Z write ordering failures after
7088 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
7089 	 * Sanctuary and Tropics, and apparently anything else with
7090 	 * alpha test or pixel discard.
7091 	 *
7092 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
7093 	 * but we didn't debug actual testcases to find it out.
7094 	 *
7095 	 * WaDisableRCCUnitClockGating:snb
7096 	 * WaDisableRCPBUnitClockGating:snb
7097 	 */
7098 	I915_WRITE(GEN6_UCGCTL2,
7099 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7100 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7101 
7102 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7103 	I915_WRITE(_3D_CHICKEN3,
7104 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7105 
7106 	/*
7107 	 * Bspec says:
7108 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7109 	 * 3DSTATE_SF number of SF output attributes is more than 16."
7110 	 */
7111 	I915_WRITE(_3D_CHICKEN3,
7112 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7113 
7114 	/*
7115 	 * According to the spec the following bits should be
7116 	 * set in order to enable memory self-refresh and fbc:
7117 	 * The bit21 and bit22 of 0x42000
7118 	 * The bit21 and bit22 of 0x42004
7119 	 * The bit5 and bit7 of 0x42020
7120 	 * The bit14 of 0x70180
7121 	 * The bit14 of 0x71180
7122 	 *
7123 	 * WaFbcAsynchFlipDisableFbcQueue:snb
7124 	 */
7125 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
7126 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
7127 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7128 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
7129 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
7130 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7131 	I915_WRITE(ILK_DSPCLK_GATE_D,
7132 		   I915_READ(ILK_DSPCLK_GATE_D) |
7133 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7134 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7135 
7136 	g4x_disable_trickle_feed(dev);
7137 
7138 	cpt_init_clock_gating(dev);
7139 
7140 	gen6_check_mch_setup(dev);
7141 }
7142 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)7143 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7144 {
7145 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7146 
7147 	/*
7148 	 * WaVSThreadDispatchOverride:ivb,vlv
7149 	 *
7150 	 * This actually overrides the dispatch
7151 	 * mode for all thread types.
7152 	 */
7153 	reg &= ~GEN7_FF_SCHED_MASK;
7154 	reg |= GEN7_FF_TS_SCHED_HW;
7155 	reg |= GEN7_FF_VS_SCHED_HW;
7156 	reg |= GEN7_FF_DS_SCHED_HW;
7157 
7158 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7159 }
7160 
lpt_init_clock_gating(struct drm_device * dev)7161 static void lpt_init_clock_gating(struct drm_device *dev)
7162 {
7163 	struct drm_i915_private *dev_priv = to_i915(dev);
7164 
7165 	/*
7166 	 * TODO: this bit should only be enabled when really needed, then
7167 	 * disabled when not needed anymore in order to save power.
7168 	 */
7169 	if (HAS_PCH_LPT_LP(dev))
7170 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
7171 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
7172 			   PCH_LP_PARTITION_LEVEL_DISABLE);
7173 
7174 	/* WADPOClockGatingDisable:hsw */
7175 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7176 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7177 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7178 }
7179 
lpt_suspend_hw(struct drm_device * dev)7180 static void lpt_suspend_hw(struct drm_device *dev)
7181 {
7182 	struct drm_i915_private *dev_priv = to_i915(dev);
7183 
7184 	if (HAS_PCH_LPT_LP(dev)) {
7185 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7186 
7187 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7188 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7189 	}
7190 }
7191 
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)7192 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7193 				   int general_prio_credits,
7194 				   int high_prio_credits)
7195 {
7196 	u32 misccpctl;
7197 
7198 	/* WaTempDisableDOPClkGating:bdw */
7199 	misccpctl = I915_READ(GEN7_MISCCPCTL);
7200 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7201 
7202 	I915_WRITE(GEN8_L3SQCREG1,
7203 		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7204 		   L3_HIGH_PRIO_CREDITS(high_prio_credits));
7205 
7206 	/*
7207 	 * Wait at least 100 clocks before re-enabling clock gating.
7208 	 * See the definition of L3SQCREG1 in BSpec.
7209 	 */
7210 	POSTING_READ(GEN8_L3SQCREG1);
7211 	udelay(1);
7212 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7213 }
7214 
kabylake_init_clock_gating(struct drm_device * dev)7215 static void kabylake_init_clock_gating(struct drm_device *dev)
7216 {
7217 	struct drm_i915_private *dev_priv = dev->dev_private;
7218 
7219 	gen9_init_clock_gating(dev);
7220 
7221 	/* WaDisableSDEUnitClockGating:kbl */
7222 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7223 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7224 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7225 
7226 	/* WaDisableGamClockGating:kbl */
7227 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7228 		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7229 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7230 
7231 	/* WaFbcNukeOnHostModify:kbl */
7232 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7233 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7234 }
7235 
skylake_init_clock_gating(struct drm_device * dev)7236 static void skylake_init_clock_gating(struct drm_device *dev)
7237 {
7238 	struct drm_i915_private *dev_priv = dev->dev_private;
7239 
7240 	gen9_init_clock_gating(dev);
7241 
7242 	/* WAC6entrylatency:skl */
7243 	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7244 		   FBC_LLC_FULLY_OPEN);
7245 
7246 	/* WaFbcNukeOnHostModify:skl */
7247 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7248 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7249 }
7250 
broadwell_init_clock_gating(struct drm_device * dev)7251 static void broadwell_init_clock_gating(struct drm_device *dev)
7252 {
7253 	struct drm_i915_private *dev_priv = to_i915(dev);
7254 	enum pipe pipe;
7255 
7256 	ilk_init_lp_watermarks(dev);
7257 
7258 	/* WaSwitchSolVfFArbitrationPriority:bdw */
7259 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7260 
7261 	/* WaPsrDPAMaskVBlankInSRD:bdw */
7262 	I915_WRITE(CHICKEN_PAR1_1,
7263 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7264 
7265 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7266 	for_each_pipe(dev_priv, pipe) {
7267 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7268 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7269 			   BDW_DPRS_MASK_VBLANK_SRD);
7270 	}
7271 
7272 	/* WaVSRefCountFullforceMissDisable:bdw */
7273 	/* WaDSRefCountFullforceMissDisable:bdw */
7274 	I915_WRITE(GEN7_FF_THREAD_MODE,
7275 		   I915_READ(GEN7_FF_THREAD_MODE) &
7276 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7277 
7278 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7279 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7280 
7281 	/* WaDisableSDEUnitClockGating:bdw */
7282 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7283 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7284 
7285 	/* WaProgramL3SqcReg1Default:bdw */
7286 	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7287 
7288 	/*
7289 	 * WaGttCachingOffByDefault:bdw
7290 	 * GTT cache may not work with big pages, so if those
7291 	 * are ever enabled GTT cache may need to be disabled.
7292 	 */
7293 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7294 
7295 	/* WaKVMNotificationOnConfigChange:bdw */
7296 	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7297 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7298 
7299 	lpt_init_clock_gating(dev);
7300 }
7301 
haswell_init_clock_gating(struct drm_device * dev)7302 static void haswell_init_clock_gating(struct drm_device *dev)
7303 {
7304 	struct drm_i915_private *dev_priv = to_i915(dev);
7305 
7306 	ilk_init_lp_watermarks(dev);
7307 
7308 	/* L3 caching of data atomics doesn't work -- disable it. */
7309 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7310 	I915_WRITE(HSW_ROW_CHICKEN3,
7311 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7312 
7313 	/* This is required by WaCatErrorRejectionIssue:hsw */
7314 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7315 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7316 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7317 
7318 	/* WaVSRefCountFullforceMissDisable:hsw */
7319 	I915_WRITE(GEN7_FF_THREAD_MODE,
7320 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7321 
7322 	/* WaDisable_RenderCache_OperationalFlush:hsw */
7323 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7324 
7325 	/* enable HiZ Raw Stall Optimization */
7326 	I915_WRITE(CACHE_MODE_0_GEN7,
7327 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7328 
7329 	/* WaDisable4x2SubspanOptimization:hsw */
7330 	I915_WRITE(CACHE_MODE_1,
7331 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7332 
7333 	/*
7334 	 * BSpec recommends 8x4 when MSAA is used,
7335 	 * however in practice 16x4 seems fastest.
7336 	 *
7337 	 * Note that PS/WM thread counts depend on the WIZ hashing
7338 	 * disable bit, which we don't touch here, but it's good
7339 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7340 	 */
7341 	I915_WRITE(GEN7_GT_MODE,
7342 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7343 
7344 	/* WaSampleCChickenBitEnable:hsw */
7345 	I915_WRITE(HALF_SLICE_CHICKEN3,
7346 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7347 
7348 	/* WaSwitchSolVfFArbitrationPriority:hsw */
7349 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7350 
7351 	/* WaRsPkgCStateDisplayPMReq:hsw */
7352 	I915_WRITE(CHICKEN_PAR1_1,
7353 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7354 
7355 	lpt_init_clock_gating(dev);
7356 }
7357 
ivybridge_init_clock_gating(struct drm_device * dev)7358 static void ivybridge_init_clock_gating(struct drm_device *dev)
7359 {
7360 	struct drm_i915_private *dev_priv = to_i915(dev);
7361 	uint32_t snpcr;
7362 
7363 	ilk_init_lp_watermarks(dev);
7364 
7365 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7366 
7367 	/* WaDisableEarlyCull:ivb */
7368 	I915_WRITE(_3D_CHICKEN3,
7369 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7370 
7371 	/* WaDisableBackToBackFlipFix:ivb */
7372 	I915_WRITE(IVB_CHICKEN3,
7373 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7374 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7375 
7376 	/* WaDisablePSDDualDispatchEnable:ivb */
7377 	if (IS_IVB_GT1(dev))
7378 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7379 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7380 
7381 	/* WaDisable_RenderCache_OperationalFlush:ivb */
7382 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7383 
7384 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7385 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7386 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7387 
7388 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7389 	I915_WRITE(GEN7_L3CNTLREG1,
7390 			GEN7_WA_FOR_GEN7_L3_CONTROL);
7391 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7392 		   GEN7_WA_L3_CHICKEN_MODE);
7393 	if (IS_IVB_GT1(dev))
7394 		I915_WRITE(GEN7_ROW_CHICKEN2,
7395 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7396 	else {
7397 		/* must write both registers */
7398 		I915_WRITE(GEN7_ROW_CHICKEN2,
7399 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7400 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7401 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7402 	}
7403 
7404 	/* WaForceL3Serialization:ivb */
7405 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7406 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7407 
7408 	/*
7409 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7410 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7411 	 */
7412 	I915_WRITE(GEN6_UCGCTL2,
7413 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7414 
7415 	/* This is required by WaCatErrorRejectionIssue:ivb */
7416 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7417 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7418 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7419 
7420 	g4x_disable_trickle_feed(dev);
7421 
7422 	gen7_setup_fixed_func_scheduler(dev_priv);
7423 
7424 	if (0) { /* causes HiZ corruption on ivb:gt1 */
7425 		/* enable HiZ Raw Stall Optimization */
7426 		I915_WRITE(CACHE_MODE_0_GEN7,
7427 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7428 	}
7429 
7430 	/* WaDisable4x2SubspanOptimization:ivb */
7431 	I915_WRITE(CACHE_MODE_1,
7432 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7433 
7434 	/*
7435 	 * BSpec recommends 8x4 when MSAA is used,
7436 	 * however in practice 16x4 seems fastest.
7437 	 *
7438 	 * Note that PS/WM thread counts depend on the WIZ hashing
7439 	 * disable bit, which we don't touch here, but it's good
7440 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7441 	 */
7442 	I915_WRITE(GEN7_GT_MODE,
7443 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7444 
7445 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7446 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
7447 	snpcr |= GEN6_MBC_SNPCR_MED;
7448 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7449 
7450 	if (!HAS_PCH_NOP(dev))
7451 		cpt_init_clock_gating(dev);
7452 
7453 	gen6_check_mch_setup(dev);
7454 }
7455 
valleyview_init_clock_gating(struct drm_device * dev)7456 static void valleyview_init_clock_gating(struct drm_device *dev)
7457 {
7458 	struct drm_i915_private *dev_priv = to_i915(dev);
7459 
7460 	/* WaDisableEarlyCull:vlv */
7461 	I915_WRITE(_3D_CHICKEN3,
7462 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7463 
7464 	/* WaDisableBackToBackFlipFix:vlv */
7465 	I915_WRITE(IVB_CHICKEN3,
7466 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7467 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7468 
7469 	/* WaPsdDispatchEnable:vlv */
7470 	/* WaDisablePSDDualDispatchEnable:vlv */
7471 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7472 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7473 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7474 
7475 	/* WaDisable_RenderCache_OperationalFlush:vlv */
7476 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7477 
7478 	/* WaForceL3Serialization:vlv */
7479 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7480 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7481 
7482 	/* WaDisableDopClockGating:vlv */
7483 	I915_WRITE(GEN7_ROW_CHICKEN2,
7484 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7485 
7486 	/* This is required by WaCatErrorRejectionIssue:vlv */
7487 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7488 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7489 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7490 
7491 	gen7_setup_fixed_func_scheduler(dev_priv);
7492 
7493 	/*
7494 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7495 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7496 	 */
7497 	I915_WRITE(GEN6_UCGCTL2,
7498 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7499 
7500 	/* WaDisableL3Bank2xClockGate:vlv
7501 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7502 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7503 	I915_WRITE(GEN7_UCGCTL4,
7504 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7505 
7506 	/*
7507 	 * BSpec says this must be set, even though
7508 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7509 	 */
7510 	I915_WRITE(CACHE_MODE_1,
7511 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7512 
7513 	/*
7514 	 * BSpec recommends 8x4 when MSAA is used,
7515 	 * however in practice 16x4 seems fastest.
7516 	 *
7517 	 * Note that PS/WM thread counts depend on the WIZ hashing
7518 	 * disable bit, which we don't touch here, but it's good
7519 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7520 	 */
7521 	I915_WRITE(GEN7_GT_MODE,
7522 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7523 
7524 	/*
7525 	 * WaIncreaseL3CreditsForVLVB0:vlv
7526 	 * This is the hardware default actually.
7527 	 */
7528 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7529 
7530 	/*
7531 	 * WaDisableVLVClockGating_VBIIssue:vlv
7532 	 * Disable clock gating on th GCFG unit to prevent a delay
7533 	 * in the reporting of vblank events.
7534 	 */
7535 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7536 }
7537 
cherryview_init_clock_gating(struct drm_device * dev)7538 static void cherryview_init_clock_gating(struct drm_device *dev)
7539 {
7540 	struct drm_i915_private *dev_priv = to_i915(dev);
7541 
7542 	/* WaVSRefCountFullforceMissDisable:chv */
7543 	/* WaDSRefCountFullforceMissDisable:chv */
7544 	I915_WRITE(GEN7_FF_THREAD_MODE,
7545 		   I915_READ(GEN7_FF_THREAD_MODE) &
7546 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7547 
7548 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7549 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7550 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7551 
7552 	/* WaDisableCSUnitClockGating:chv */
7553 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7554 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7555 
7556 	/* WaDisableSDEUnitClockGating:chv */
7557 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7558 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7559 
7560 	/*
7561 	 * WaProgramL3SqcReg1Default:chv
7562 	 * See gfxspecs/Related Documents/Performance Guide/
7563 	 * LSQC Setting Recommendations.
7564 	 */
7565 	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7566 
7567 	/*
7568 	 * GTT cache may not work with big pages, so if those
7569 	 * are ever enabled GTT cache may need to be disabled.
7570 	 */
7571 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7572 }
7573 
g4x_init_clock_gating(struct drm_device * dev)7574 static void g4x_init_clock_gating(struct drm_device *dev)
7575 {
7576 	struct drm_i915_private *dev_priv = to_i915(dev);
7577 	uint32_t dspclk_gate;
7578 
7579 	I915_WRITE(RENCLK_GATE_D1, 0);
7580 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7581 		   GS_UNIT_CLOCK_GATE_DISABLE |
7582 		   CL_UNIT_CLOCK_GATE_DISABLE);
7583 	I915_WRITE(RAMCLK_GATE_D, 0);
7584 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7585 		OVRUNIT_CLOCK_GATE_DISABLE |
7586 		OVCUNIT_CLOCK_GATE_DISABLE;
7587 	if (IS_GM45(dev))
7588 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7589 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7590 
7591 	/* WaDisableRenderCachePipelinedFlush */
7592 	I915_WRITE(CACHE_MODE_0,
7593 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7594 
7595 	/* WaDisable_RenderCache_OperationalFlush:g4x */
7596 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7597 
7598 	g4x_disable_trickle_feed(dev);
7599 }
7600 
crestline_init_clock_gating(struct drm_device * dev)7601 static void crestline_init_clock_gating(struct drm_device *dev)
7602 {
7603 	struct drm_i915_private *dev_priv = to_i915(dev);
7604 
7605 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7606 	I915_WRITE(RENCLK_GATE_D2, 0);
7607 	I915_WRITE(DSPCLK_GATE_D, 0);
7608 	I915_WRITE(RAMCLK_GATE_D, 0);
7609 	I915_WRITE16(DEUC, 0);
7610 	I915_WRITE(MI_ARB_STATE,
7611 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7612 
7613 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7614 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7615 }
7616 
broadwater_init_clock_gating(struct drm_device * dev)7617 static void broadwater_init_clock_gating(struct drm_device *dev)
7618 {
7619 	struct drm_i915_private *dev_priv = to_i915(dev);
7620 
7621 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7622 		   I965_RCC_CLOCK_GATE_DISABLE |
7623 		   I965_RCPB_CLOCK_GATE_DISABLE |
7624 		   I965_ISC_CLOCK_GATE_DISABLE |
7625 		   I965_FBC_CLOCK_GATE_DISABLE);
7626 	I915_WRITE(RENCLK_GATE_D2, 0);
7627 	I915_WRITE(MI_ARB_STATE,
7628 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7629 
7630 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7631 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7632 }
7633 
gen3_init_clock_gating(struct drm_device * dev)7634 static void gen3_init_clock_gating(struct drm_device *dev)
7635 {
7636 	struct drm_i915_private *dev_priv = to_i915(dev);
7637 	u32 dstate = I915_READ(D_STATE);
7638 
7639 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7640 		DSTATE_DOT_CLOCK_GATING;
7641 	I915_WRITE(D_STATE, dstate);
7642 
7643 	if (IS_PINEVIEW(dev))
7644 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7645 
7646 	/* IIR "flip pending" means done if this bit is set */
7647 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7648 
7649 	/* interrupts should cause a wake up from C3 */
7650 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7651 
7652 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7653 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7654 
7655 	I915_WRITE(MI_ARB_STATE,
7656 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7657 }
7658 
i85x_init_clock_gating(struct drm_device * dev)7659 static void i85x_init_clock_gating(struct drm_device *dev)
7660 {
7661 	struct drm_i915_private *dev_priv = to_i915(dev);
7662 
7663 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7664 
7665 	/* interrupts should cause a wake up from C3 */
7666 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7667 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7668 
7669 	I915_WRITE(MEM_MODE,
7670 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7671 }
7672 
i830_init_clock_gating(struct drm_device * dev)7673 static void i830_init_clock_gating(struct drm_device *dev)
7674 {
7675 	struct drm_i915_private *dev_priv = to_i915(dev);
7676 
7677 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7678 
7679 	I915_WRITE(MEM_MODE,
7680 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7681 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7682 }
7683 
intel_init_clock_gating(struct drm_device * dev)7684 void intel_init_clock_gating(struct drm_device *dev)
7685 {
7686 	struct drm_i915_private *dev_priv = to_i915(dev);
7687 
7688 	dev_priv->display.init_clock_gating(dev);
7689 }
7690 
intel_suspend_hw(struct drm_device * dev)7691 void intel_suspend_hw(struct drm_device *dev)
7692 {
7693 	if (HAS_PCH_LPT(dev))
7694 		lpt_suspend_hw(dev);
7695 }
7696 
nop_init_clock_gating(struct drm_device * dev)7697 static void nop_init_clock_gating(struct drm_device *dev)
7698 {
7699 	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7700 }
7701 
7702 /**
7703  * intel_init_clock_gating_hooks - setup the clock gating hooks
7704  * @dev_priv: device private
7705  *
7706  * Setup the hooks that configure which clocks of a given platform can be
7707  * gated and also apply various GT and display specific workarounds for these
7708  * platforms. Note that some GT specific workarounds are applied separately
7709  * when GPU contexts or batchbuffers start their execution.
7710  */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)7711 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7712 {
7713 	if (IS_SKYLAKE(dev_priv))
7714 		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7715 	else if (IS_KABYLAKE(dev_priv))
7716 		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7717 	else if (IS_BROXTON(dev_priv))
7718 		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7719 	else if (IS_BROADWELL(dev_priv))
7720 		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7721 	else if (IS_CHERRYVIEW(dev_priv))
7722 		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7723 	else if (IS_HASWELL(dev_priv))
7724 		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7725 	else if (IS_IVYBRIDGE(dev_priv))
7726 		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7727 	else if (IS_VALLEYVIEW(dev_priv))
7728 		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7729 	else if (IS_GEN6(dev_priv))
7730 		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7731 	else if (IS_GEN5(dev_priv))
7732 		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7733 	else if (IS_G4X(dev_priv))
7734 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7735 	else if (IS_CRESTLINE(dev_priv))
7736 		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7737 	else if (IS_BROADWATER(dev_priv))
7738 		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7739 	else if (IS_GEN3(dev_priv))
7740 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7741 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7742 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7743 	else if (IS_GEN2(dev_priv))
7744 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
7745 	else {
7746 		MISSING_CASE(INTEL_DEVID(dev_priv));
7747 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
7748 	}
7749 }
7750 
7751 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)7752 void intel_init_pm(struct drm_device *dev)
7753 {
7754 	struct drm_i915_private *dev_priv = to_i915(dev);
7755 
7756 	intel_fbc_init(dev_priv);
7757 
7758 	/* For cxsr */
7759 	if (IS_PINEVIEW(dev))
7760 		i915_pineview_get_mem_freq(dev);
7761 	else if (IS_GEN5(dev))
7762 		i915_ironlake_get_mem_freq(dev);
7763 
7764 	/* For FIFO watermark updates */
7765 	if (INTEL_INFO(dev)->gen >= 9) {
7766 		skl_setup_wm_latency(dev);
7767 		dev_priv->display.update_wm = skl_update_wm;
7768 		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7769 	} else if (HAS_PCH_SPLIT(dev)) {
7770 		ilk_setup_wm_latency(dev);
7771 
7772 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7773 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7774 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7775 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7776 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7777 			dev_priv->display.compute_intermediate_wm =
7778 				ilk_compute_intermediate_wm;
7779 			dev_priv->display.initial_watermarks =
7780 				ilk_initial_watermarks;
7781 			dev_priv->display.optimize_watermarks =
7782 				ilk_optimize_watermarks;
7783 		} else {
7784 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7785 				      "Disable CxSR\n");
7786 		}
7787 	} else if (IS_CHERRYVIEW(dev)) {
7788 		vlv_setup_wm_latency(dev);
7789 		dev_priv->display.update_wm = vlv_update_wm;
7790 	} else if (IS_VALLEYVIEW(dev)) {
7791 		vlv_setup_wm_latency(dev);
7792 		dev_priv->display.update_wm = vlv_update_wm;
7793 	} else if (IS_PINEVIEW(dev)) {
7794 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7795 					    dev_priv->is_ddr3,
7796 					    dev_priv->fsb_freq,
7797 					    dev_priv->mem_freq)) {
7798 			DRM_INFO("failed to find known CxSR latency "
7799 				 "(found ddr%s fsb freq %d, mem freq %d), "
7800 				 "disabling CxSR\n",
7801 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7802 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7803 			/* Disable CxSR and never update its watermark again */
7804 			intel_set_memory_cxsr(dev_priv, false);
7805 			dev_priv->display.update_wm = NULL;
7806 		} else
7807 			dev_priv->display.update_wm = pineview_update_wm;
7808 	} else if (IS_G4X(dev)) {
7809 		dev_priv->display.update_wm = g4x_update_wm;
7810 	} else if (IS_GEN4(dev)) {
7811 		dev_priv->display.update_wm = i965_update_wm;
7812 	} else if (IS_GEN3(dev)) {
7813 		dev_priv->display.update_wm = i9xx_update_wm;
7814 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7815 	} else if (IS_GEN2(dev)) {
7816 		if (INTEL_INFO(dev)->num_pipes == 1) {
7817 			dev_priv->display.update_wm = i845_update_wm;
7818 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7819 		} else {
7820 			dev_priv->display.update_wm = i9xx_update_wm;
7821 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7822 		}
7823 	} else {
7824 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7825 	}
7826 }
7827 
gen6_check_mailbox_status(struct drm_i915_private * dev_priv)7828 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7829 {
7830 	uint32_t flags =
7831 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7832 
7833 	switch (flags) {
7834 	case GEN6_PCODE_SUCCESS:
7835 		return 0;
7836 	case GEN6_PCODE_UNIMPLEMENTED_CMD:
7837 	case GEN6_PCODE_ILLEGAL_CMD:
7838 		return -ENXIO;
7839 	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7840 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7841 		return -EOVERFLOW;
7842 	case GEN6_PCODE_TIMEOUT:
7843 		return -ETIMEDOUT;
7844 	default:
7845 		MISSING_CASE(flags)
7846 		return 0;
7847 	}
7848 }
7849 
gen7_check_mailbox_status(struct drm_i915_private * dev_priv)7850 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7851 {
7852 	uint32_t flags =
7853 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7854 
7855 	switch (flags) {
7856 	case GEN6_PCODE_SUCCESS:
7857 		return 0;
7858 	case GEN6_PCODE_ILLEGAL_CMD:
7859 		return -ENXIO;
7860 	case GEN7_PCODE_TIMEOUT:
7861 		return -ETIMEDOUT;
7862 	case GEN7_PCODE_ILLEGAL_DATA:
7863 		return -EINVAL;
7864 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7865 		return -EOVERFLOW;
7866 	default:
7867 		MISSING_CASE(flags);
7868 		return 0;
7869 	}
7870 }
7871 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)7872 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7873 {
7874 	int status;
7875 
7876 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7877 
7878 	/* GEN6_PCODE_* are outside of the forcewake domain, we can
7879 	 * use te fw I915_READ variants to reduce the amount of work
7880 	 * required when reading/writing.
7881 	 */
7882 
7883 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7884 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7885 		return -EAGAIN;
7886 	}
7887 
7888 	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7889 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7890 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7891 
7892 	if (intel_wait_for_register_fw(dev_priv,
7893 				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7894 				       500)) {
7895 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7896 		return -ETIMEDOUT;
7897 	}
7898 
7899 	*val = I915_READ_FW(GEN6_PCODE_DATA);
7900 	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7901 
7902 	if (INTEL_GEN(dev_priv) > 6)
7903 		status = gen7_check_mailbox_status(dev_priv);
7904 	else
7905 		status = gen6_check_mailbox_status(dev_priv);
7906 
7907 	if (status) {
7908 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7909 				 status);
7910 		return status;
7911 	}
7912 
7913 	return 0;
7914 }
7915 
sandybridge_pcode_write_timeout(struct drm_i915_private * dev_priv,u32 mbox,u32 val,int timeout_us)7916 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
7917 				    u32 mbox, u32 val, int timeout_us)
7918 {
7919 	int status;
7920 
7921 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7922 
7923 	/* GEN6_PCODE_* are outside of the forcewake domain, we can
7924 	 * use te fw I915_READ variants to reduce the amount of work
7925 	 * required when reading/writing.
7926 	 */
7927 
7928 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7929 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7930 		return -EAGAIN;
7931 	}
7932 
7933 	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7934 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7935 
7936 	if (intel_wait_for_register_fw(dev_priv,
7937 				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7938 				       timeout_us)) {
7939 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7940 		return -ETIMEDOUT;
7941 	}
7942 
7943 	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7944 
7945 	if (INTEL_GEN(dev_priv) > 6)
7946 		status = gen7_check_mailbox_status(dev_priv);
7947 	else
7948 		status = gen6_check_mailbox_status(dev_priv);
7949 
7950 	if (status) {
7951 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7952 				 status);
7953 		return status;
7954 	}
7955 
7956 	return 0;
7957 }
7958 
skl_pcode_try_request(struct drm_i915_private * dev_priv,u32 mbox,u32 request,u32 reply_mask,u32 reply,u32 * status)7959 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
7960 				  u32 request, u32 reply_mask, u32 reply,
7961 				  u32 *status)
7962 {
7963 	u32 val = request;
7964 
7965 	*status = sandybridge_pcode_read(dev_priv, mbox, &val);
7966 
7967 	return *status || ((val & reply_mask) == reply);
7968 }
7969 
7970 /**
7971  * skl_pcode_request - send PCODE request until acknowledgment
7972  * @dev_priv: device private
7973  * @mbox: PCODE mailbox ID the request is targeted for
7974  * @request: request ID
7975  * @reply_mask: mask used to check for request acknowledgment
7976  * @reply: value used to check for request acknowledgment
7977  * @timeout_base_ms: timeout for polling with preemption enabled
7978  *
7979  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7980  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7981  * The request is acknowledged once the PCODE reply dword equals @reply after
7982  * applying @reply_mask. Polling is first attempted with preemption enabled
7983  * for @timeout_base_ms and if this times out for another 50 ms with
7984  * preemption disabled.
7985  *
7986  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7987  * other error as reported by PCODE.
7988  */
skl_pcode_request(struct drm_i915_private * dev_priv,u32 mbox,u32 request,u32 reply_mask,u32 reply,int timeout_base_ms)7989 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
7990 		      u32 reply_mask, u32 reply, int timeout_base_ms)
7991 {
7992 	u32 status;
7993 	int ret;
7994 
7995 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7996 
7997 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7998 				   &status)
7999 
8000 	/*
8001 	 * Prime the PCODE by doing a request first. Normally it guarantees
8002 	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
8003 	 * _wait_for() doesn't guarantee when its passed condition is evaluated
8004 	 * first, so send the first request explicitly.
8005 	 */
8006 	if (COND) {
8007 		ret = 0;
8008 		goto out;
8009 	}
8010 	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
8011 	if (!ret)
8012 		goto out;
8013 
8014 	/*
8015 	 * The above can time out if the number of requests was low (2 in the
8016 	 * worst case) _and_ PCODE was busy for some reason even after a
8017 	 * (queued) request and @timeout_base_ms delay. As a workaround retry
8018 	 * the poll with preemption disabled to maximize the number of
8019 	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8020 	 * account for interrupts that could reduce the number of these
8021 	 * requests, and for any quirks of the PCODE firmware that delays
8022 	 * the request completion.
8023 	 */
8024 	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
8025 	WARN_ON_ONCE(timeout_base_ms > 3);
8026 	preempt_disable();
8027 	ret = wait_for_atomic(COND, 50);
8028 	preempt_enable();
8029 
8030 out:
8031 	return ret ? ret : status;
8032 #undef COND
8033 }
8034 
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)8035 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
8036 {
8037 	/*
8038 	 * N = val - 0xb7
8039 	 * Slow = Fast = GPLL ref * N
8040 	 */
8041 	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8042 }
8043 
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)8044 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8045 {
8046 	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8047 }
8048 
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)8049 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8050 {
8051 	/*
8052 	 * N = val / 2
8053 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8054 	 */
8055 	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8056 }
8057 
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)8058 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8059 {
8060 	/* CHV needs even values */
8061 	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8062 }
8063 
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)8064 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8065 {
8066 	if (IS_GEN9(dev_priv))
8067 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8068 					 GEN9_FREQ_SCALER);
8069 	else if (IS_CHERRYVIEW(dev_priv))
8070 		return chv_gpu_freq(dev_priv, val);
8071 	else if (IS_VALLEYVIEW(dev_priv))
8072 		return byt_gpu_freq(dev_priv, val);
8073 	else
8074 		return val * GT_FREQUENCY_MULTIPLIER;
8075 }
8076 
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)8077 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8078 {
8079 	if (IS_GEN9(dev_priv))
8080 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8081 					 GT_FREQUENCY_MULTIPLIER);
8082 	else if (IS_CHERRYVIEW(dev_priv))
8083 		return chv_freq_opcode(dev_priv, val);
8084 	else if (IS_VALLEYVIEW(dev_priv))
8085 		return byt_freq_opcode(dev_priv, val);
8086 	else
8087 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8088 }
8089 
8090 struct request_boost {
8091 	struct work_struct work;
8092 	struct drm_i915_gem_request *req;
8093 };
8094 
__intel_rps_boost_work(struct work_struct * work)8095 static void __intel_rps_boost_work(struct work_struct *work)
8096 {
8097 	struct request_boost *boost = container_of(work, struct request_boost, work);
8098 	struct drm_i915_gem_request *req = boost->req;
8099 
8100 	if (!i915_gem_request_completed(req))
8101 		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8102 
8103 	i915_gem_request_put(req);
8104 	kfree(boost);
8105 }
8106 
intel_queue_rps_boost_for_request(struct drm_i915_gem_request * req)8107 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8108 {
8109 	struct request_boost *boost;
8110 
8111 	if (req == NULL || INTEL_GEN(req->i915) < 6)
8112 		return;
8113 
8114 	if (i915_gem_request_completed(req))
8115 		return;
8116 
8117 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8118 	if (boost == NULL)
8119 		return;
8120 
8121 	boost->req = i915_gem_request_get(req);
8122 
8123 	INIT_WORK(&boost->work, __intel_rps_boost_work);
8124 	queue_work(req->i915->wq, &boost->work);
8125 }
8126 
intel_pm_setup(struct drm_device * dev)8127 void intel_pm_setup(struct drm_device *dev)
8128 {
8129 	struct drm_i915_private *dev_priv = to_i915(dev);
8130 
8131 	mutex_init(&dev_priv->rps.hw_lock);
8132 	spin_lock_init(&dev_priv->rps.client_lock);
8133 
8134 	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8135 			  __intel_autoenable_gt_powersave);
8136 	INIT_LIST_HEAD(&dev_priv->rps.clients);
8137 
8138 	dev_priv->pm.suspended = false;
8139 	atomic_set(&dev_priv->pm.wakeref_count, 0);
8140 	atomic_set(&dev_priv->pm.atomic_seq, 0);
8141 }
8142