• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
cbuf_add(struct cbuf * cb,int n)75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
cbuf_data(struct cbuf * cb)80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
cbuf_init(struct cbuf * cb,int size)85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
cbuf_eat(struct cbuf * cb,int n)91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
cbuf_empty(struct cbuf * cb)98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	struct hlist_node list;
124 	struct connection *othercon;
125 	struct work_struct rwork; /* Receive workqueue */
126 	struct work_struct swork; /* Send workqueue */
127 	void (*orig_error_report)(struct sock *);
128 	void (*orig_data_ready)(struct sock *);
129 	void (*orig_state_change)(struct sock *);
130 	void (*orig_write_space)(struct sock *);
131 };
132 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
133 
134 /* An entry waiting to be sent */
135 struct writequeue_entry {
136 	struct list_head list;
137 	struct page *page;
138 	int offset;
139 	int len;
140 	int end;
141 	int users;
142 	struct connection *con;
143 };
144 
145 struct dlm_node_addr {
146 	struct list_head list;
147 	int nodeid;
148 	int addr_count;
149 	int curr_addr_index;
150 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
151 };
152 
153 static LIST_HEAD(dlm_node_addrs);
154 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
155 
156 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
157 static int dlm_local_count;
158 static int dlm_allow_conn;
159 
160 /* Work queues */
161 static struct workqueue_struct *recv_workqueue;
162 static struct workqueue_struct *send_workqueue;
163 
164 static struct hlist_head connection_hash[CONN_HASH_SIZE];
165 static DEFINE_MUTEX(connections_lock);
166 static struct kmem_cache *con_cache;
167 
168 static void process_recv_sockets(struct work_struct *work);
169 static void process_send_sockets(struct work_struct *work);
170 
171 
172 /* This is deliberately very simple because most clusters have simple
173    sequential nodeids, so we should be able to go straight to a connection
174    struct in the array */
nodeid_hash(int nodeid)175 static inline int nodeid_hash(int nodeid)
176 {
177 	return nodeid & (CONN_HASH_SIZE-1);
178 }
179 
__find_con(int nodeid)180 static struct connection *__find_con(int nodeid)
181 {
182 	int r;
183 	struct connection *con;
184 
185 	r = nodeid_hash(nodeid);
186 
187 	hlist_for_each_entry(con, &connection_hash[r], list) {
188 		if (con->nodeid == nodeid)
189 			return con;
190 	}
191 	return NULL;
192 }
193 
194 /*
195  * If 'allocation' is zero then we don't attempt to create a new
196  * connection structure for this node.
197  */
__nodeid2con(int nodeid,gfp_t alloc)198 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
199 {
200 	struct connection *con = NULL;
201 	int r;
202 
203 	con = __find_con(nodeid);
204 	if (con || !alloc)
205 		return con;
206 
207 	con = kmem_cache_zalloc(con_cache, alloc);
208 	if (!con)
209 		return NULL;
210 
211 	r = nodeid_hash(nodeid);
212 	hlist_add_head(&con->list, &connection_hash[r]);
213 
214 	con->nodeid = nodeid;
215 	mutex_init(&con->sock_mutex);
216 	INIT_LIST_HEAD(&con->writequeue);
217 	spin_lock_init(&con->writequeue_lock);
218 	INIT_WORK(&con->swork, process_send_sockets);
219 	INIT_WORK(&con->rwork, process_recv_sockets);
220 
221 	/* Setup action pointers for child sockets */
222 	if (con->nodeid) {
223 		struct connection *zerocon = __find_con(0);
224 
225 		con->connect_action = zerocon->connect_action;
226 		if (!con->rx_action)
227 			con->rx_action = zerocon->rx_action;
228 	}
229 
230 	return con;
231 }
232 
233 /* Loop round all connections */
foreach_conn(void (* conn_func)(struct connection * c))234 static void foreach_conn(void (*conn_func)(struct connection *c))
235 {
236 	int i;
237 	struct hlist_node *n;
238 	struct connection *con;
239 
240 	for (i = 0; i < CONN_HASH_SIZE; i++) {
241 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
242 			conn_func(con);
243 	}
244 }
245 
nodeid2con(int nodeid,gfp_t allocation)246 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
247 {
248 	struct connection *con;
249 
250 	mutex_lock(&connections_lock);
251 	con = __nodeid2con(nodeid, allocation);
252 	mutex_unlock(&connections_lock);
253 
254 	return con;
255 }
256 
find_node_addr(int nodeid)257 static struct dlm_node_addr *find_node_addr(int nodeid)
258 {
259 	struct dlm_node_addr *na;
260 
261 	list_for_each_entry(na, &dlm_node_addrs, list) {
262 		if (na->nodeid == nodeid)
263 			return na;
264 	}
265 	return NULL;
266 }
267 
addr_compare(struct sockaddr_storage * x,struct sockaddr_storage * y)268 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
269 {
270 	switch (x->ss_family) {
271 	case AF_INET: {
272 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
273 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
274 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
275 			return 0;
276 		if (sinx->sin_port != siny->sin_port)
277 			return 0;
278 		break;
279 	}
280 	case AF_INET6: {
281 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
282 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
283 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
284 			return 0;
285 		if (sinx->sin6_port != siny->sin6_port)
286 			return 0;
287 		break;
288 	}
289 	default:
290 		return 0;
291 	}
292 	return 1;
293 }
294 
nodeid_to_addr(int nodeid,struct sockaddr_storage * sas_out,struct sockaddr * sa_out,bool try_new_addr)295 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
296 			  struct sockaddr *sa_out, bool try_new_addr)
297 {
298 	struct sockaddr_storage sas;
299 	struct dlm_node_addr *na;
300 
301 	if (!dlm_local_count)
302 		return -1;
303 
304 	spin_lock(&dlm_node_addrs_spin);
305 	na = find_node_addr(nodeid);
306 	if (na && na->addr_count) {
307 		memcpy(&sas, na->addr[na->curr_addr_index],
308 		       sizeof(struct sockaddr_storage));
309 
310 		if (try_new_addr) {
311 			na->curr_addr_index++;
312 			if (na->curr_addr_index == na->addr_count)
313 				na->curr_addr_index = 0;
314 		}
315 	}
316 	spin_unlock(&dlm_node_addrs_spin);
317 
318 	if (!na)
319 		return -EEXIST;
320 
321 	if (!na->addr_count)
322 		return -ENOENT;
323 
324 	if (sas_out)
325 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
326 
327 	if (!sa_out)
328 		return 0;
329 
330 	if (dlm_local_addr[0]->ss_family == AF_INET) {
331 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
332 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
333 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
334 	} else {
335 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
336 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
337 		ret6->sin6_addr = in6->sin6_addr;
338 	}
339 
340 	return 0;
341 }
342 
addr_to_nodeid(struct sockaddr_storage * addr,int * nodeid)343 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
344 {
345 	struct dlm_node_addr *na;
346 	int rv = -EEXIST;
347 	int addr_i;
348 
349 	spin_lock(&dlm_node_addrs_spin);
350 	list_for_each_entry(na, &dlm_node_addrs, list) {
351 		if (!na->addr_count)
352 			continue;
353 
354 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
355 			if (addr_compare(na->addr[addr_i], addr)) {
356 				*nodeid = na->nodeid;
357 				rv = 0;
358 				goto unlock;
359 			}
360 		}
361 	}
362 unlock:
363 	spin_unlock(&dlm_node_addrs_spin);
364 	return rv;
365 }
366 
dlm_lowcomms_addr(int nodeid,struct sockaddr_storage * addr,int len)367 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
368 {
369 	struct sockaddr_storage *new_addr;
370 	struct dlm_node_addr *new_node, *na;
371 
372 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
373 	if (!new_node)
374 		return -ENOMEM;
375 
376 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
377 	if (!new_addr) {
378 		kfree(new_node);
379 		return -ENOMEM;
380 	}
381 
382 	memcpy(new_addr, addr, len);
383 
384 	spin_lock(&dlm_node_addrs_spin);
385 	na = find_node_addr(nodeid);
386 	if (!na) {
387 		new_node->nodeid = nodeid;
388 		new_node->addr[0] = new_addr;
389 		new_node->addr_count = 1;
390 		list_add(&new_node->list, &dlm_node_addrs);
391 		spin_unlock(&dlm_node_addrs_spin);
392 		return 0;
393 	}
394 
395 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
396 		spin_unlock(&dlm_node_addrs_spin);
397 		kfree(new_addr);
398 		kfree(new_node);
399 		return -ENOSPC;
400 	}
401 
402 	na->addr[na->addr_count++] = new_addr;
403 	spin_unlock(&dlm_node_addrs_spin);
404 	kfree(new_node);
405 	return 0;
406 }
407 
408 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk)409 static void lowcomms_data_ready(struct sock *sk)
410 {
411 	struct connection *con = sock2con(sk);
412 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
413 		queue_work(recv_workqueue, &con->rwork);
414 }
415 
lowcomms_write_space(struct sock * sk)416 static void lowcomms_write_space(struct sock *sk)
417 {
418 	struct connection *con = sock2con(sk);
419 
420 	if (!con)
421 		return;
422 
423 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
424 
425 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
426 		con->sock->sk->sk_write_pending--;
427 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
428 	}
429 
430 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
431 		queue_work(send_workqueue, &con->swork);
432 }
433 
lowcomms_connect_sock(struct connection * con)434 static inline void lowcomms_connect_sock(struct connection *con)
435 {
436 	if (test_bit(CF_CLOSE, &con->flags))
437 		return;
438 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
439 		queue_work(send_workqueue, &con->swork);
440 }
441 
lowcomms_state_change(struct sock * sk)442 static void lowcomms_state_change(struct sock *sk)
443 {
444 	/* SCTP layer is not calling sk_data_ready when the connection
445 	 * is done, so we catch the signal through here. Also, it
446 	 * doesn't switch socket state when entering shutdown, so we
447 	 * skip the write in that case.
448 	 */
449 	if (sk->sk_shutdown) {
450 		if (sk->sk_shutdown == RCV_SHUTDOWN)
451 			lowcomms_data_ready(sk);
452 	} else if (sk->sk_state == TCP_ESTABLISHED) {
453 		lowcomms_write_space(sk);
454 	}
455 }
456 
dlm_lowcomms_connect_node(int nodeid)457 int dlm_lowcomms_connect_node(int nodeid)
458 {
459 	struct connection *con;
460 
461 	if (nodeid == dlm_our_nodeid())
462 		return 0;
463 
464 	con = nodeid2con(nodeid, GFP_NOFS);
465 	if (!con)
466 		return -ENOMEM;
467 	lowcomms_connect_sock(con);
468 	return 0;
469 }
470 
lowcomms_error_report(struct sock * sk)471 static void lowcomms_error_report(struct sock *sk)
472 {
473 	struct connection *con;
474 	struct sockaddr_storage saddr;
475 	int buflen;
476 	void (*orig_report)(struct sock *) = NULL;
477 
478 	read_lock_bh(&sk->sk_callback_lock);
479 	con = sock2con(sk);
480 	if (con == NULL)
481 		goto out;
482 
483 	orig_report = con->orig_error_report;
484 	if (con->sock == NULL ||
485 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
486 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
487 				   "sending to node %d, port %d, "
488 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
489 				   con->nodeid, dlm_config.ci_tcp_port,
490 				   sk->sk_err, sk->sk_err_soft);
491 	} else if (saddr.ss_family == AF_INET) {
492 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
493 
494 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
495 				   "sending to node %d at %pI4, port %d, "
496 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
497 				   con->nodeid, &sin4->sin_addr.s_addr,
498 				   dlm_config.ci_tcp_port, sk->sk_err,
499 				   sk->sk_err_soft);
500 	} else {
501 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
502 
503 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
504 				   "sending to node %d at %u.%u.%u.%u, "
505 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
506 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
507 				   sin6->sin6_addr.s6_addr32[1],
508 				   sin6->sin6_addr.s6_addr32[2],
509 				   sin6->sin6_addr.s6_addr32[3],
510 				   dlm_config.ci_tcp_port, sk->sk_err,
511 				   sk->sk_err_soft);
512 	}
513 out:
514 	read_unlock_bh(&sk->sk_callback_lock);
515 	if (orig_report)
516 		orig_report(sk);
517 }
518 
519 /* Note: sk_callback_lock must be locked before calling this function. */
save_callbacks(struct connection * con,struct sock * sk)520 static void save_callbacks(struct connection *con, struct sock *sk)
521 {
522 	lock_sock(sk);
523 	con->orig_data_ready = sk->sk_data_ready;
524 	con->orig_state_change = sk->sk_state_change;
525 	con->orig_write_space = sk->sk_write_space;
526 	con->orig_error_report = sk->sk_error_report;
527 	release_sock(sk);
528 }
529 
restore_callbacks(struct connection * con,struct sock * sk)530 static void restore_callbacks(struct connection *con, struct sock *sk)
531 {
532 	write_lock_bh(&sk->sk_callback_lock);
533 	lock_sock(sk);
534 	sk->sk_user_data = NULL;
535 	sk->sk_data_ready = con->orig_data_ready;
536 	sk->sk_state_change = con->orig_state_change;
537 	sk->sk_write_space = con->orig_write_space;
538 	sk->sk_error_report = con->orig_error_report;
539 	release_sock(sk);
540 	write_unlock_bh(&sk->sk_callback_lock);
541 }
542 
543 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)544 static void add_sock(struct socket *sock, struct connection *con)
545 {
546 	struct sock *sk = sock->sk;
547 
548 	write_lock_bh(&sk->sk_callback_lock);
549 	con->sock = sock;
550 
551 	sk->sk_user_data = con;
552 	if (!test_bit(CF_IS_OTHERCON, &con->flags))
553 		save_callbacks(con, sk);
554 	/* Install a data_ready callback */
555 	sk->sk_data_ready = lowcomms_data_ready;
556 	sk->sk_write_space = lowcomms_write_space;
557 	sk->sk_state_change = lowcomms_state_change;
558 	sk->sk_allocation = GFP_NOFS;
559 	sk->sk_error_report = lowcomms_error_report;
560 	write_unlock_bh(&sk->sk_callback_lock);
561 }
562 
563 /* Add the port number to an IPv6 or 4 sockaddr and return the address
564    length */
make_sockaddr(struct sockaddr_storage * saddr,uint16_t port,int * addr_len)565 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
566 			  int *addr_len)
567 {
568 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
569 	if (saddr->ss_family == AF_INET) {
570 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
571 		in4_addr->sin_port = cpu_to_be16(port);
572 		*addr_len = sizeof(struct sockaddr_in);
573 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
574 	} else {
575 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
576 		in6_addr->sin6_port = cpu_to_be16(port);
577 		*addr_len = sizeof(struct sockaddr_in6);
578 	}
579 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
580 }
581 
582 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other,bool tx,bool rx)583 static void close_connection(struct connection *con, bool and_other,
584 			     bool tx, bool rx)
585 {
586 	clear_bit(CF_CONNECT_PENDING, &con->flags);
587 	clear_bit(CF_WRITE_PENDING, &con->flags);
588 	if (tx && cancel_work_sync(&con->swork))
589 		log_print("canceled swork for node %d", con->nodeid);
590 	if (rx && cancel_work_sync(&con->rwork))
591 		log_print("canceled rwork for node %d", con->nodeid);
592 
593 	mutex_lock(&con->sock_mutex);
594 	if (con->sock) {
595 		if (!test_bit(CF_IS_OTHERCON, &con->flags))
596 			restore_callbacks(con, con->sock->sk);
597 		sock_release(con->sock);
598 		con->sock = NULL;
599 	}
600 	if (con->othercon && and_other) {
601 		/* Will only re-enter once. */
602 		close_connection(con->othercon, false, true, true);
603 	}
604 	if (con->rx_page) {
605 		__free_page(con->rx_page);
606 		con->rx_page = NULL;
607 	}
608 
609 	con->retries = 0;
610 	mutex_unlock(&con->sock_mutex);
611 }
612 
613 /* Data received from remote end */
receive_from_sock(struct connection * con)614 static int receive_from_sock(struct connection *con)
615 {
616 	int ret = 0;
617 	struct msghdr msg = {};
618 	struct kvec iov[2];
619 	unsigned len;
620 	int r;
621 	int call_again_soon = 0;
622 	int nvec;
623 
624 	mutex_lock(&con->sock_mutex);
625 
626 	if (con->sock == NULL) {
627 		ret = -EAGAIN;
628 		goto out_close;
629 	}
630 	if (con->nodeid == 0) {
631 		ret = -EINVAL;
632 		goto out_close;
633 	}
634 
635 	if (con->rx_page == NULL) {
636 		/*
637 		 * This doesn't need to be atomic, but I think it should
638 		 * improve performance if it is.
639 		 */
640 		con->rx_page = alloc_page(GFP_ATOMIC);
641 		if (con->rx_page == NULL)
642 			goto out_resched;
643 		cbuf_init(&con->cb, PAGE_SIZE);
644 	}
645 
646 	/*
647 	 * iov[0] is the bit of the circular buffer between the current end
648 	 * point (cb.base + cb.len) and the end of the buffer.
649 	 */
650 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
651 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
652 	iov[1].iov_len = 0;
653 	nvec = 1;
654 
655 	/*
656 	 * iov[1] is the bit of the circular buffer between the start of the
657 	 * buffer and the start of the currently used section (cb.base)
658 	 */
659 	if (cbuf_data(&con->cb) >= con->cb.base) {
660 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
661 		iov[1].iov_len = con->cb.base;
662 		iov[1].iov_base = page_address(con->rx_page);
663 		nvec = 2;
664 	}
665 	len = iov[0].iov_len + iov[1].iov_len;
666 
667 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
668 			       MSG_DONTWAIT | MSG_NOSIGNAL);
669 	if (ret <= 0)
670 		goto out_close;
671 	else if (ret == len)
672 		call_again_soon = 1;
673 
674 	cbuf_add(&con->cb, ret);
675 	ret = dlm_process_incoming_buffer(con->nodeid,
676 					  page_address(con->rx_page),
677 					  con->cb.base, con->cb.len,
678 					  PAGE_SIZE);
679 	if (ret == -EBADMSG) {
680 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
681 			  page_address(con->rx_page), con->cb.base,
682 			  con->cb.len, r);
683 	}
684 	if (ret < 0)
685 		goto out_close;
686 	cbuf_eat(&con->cb, ret);
687 
688 	if (cbuf_empty(&con->cb) && !call_again_soon) {
689 		__free_page(con->rx_page);
690 		con->rx_page = NULL;
691 	}
692 
693 	if (call_again_soon)
694 		goto out_resched;
695 	mutex_unlock(&con->sock_mutex);
696 	return 0;
697 
698 out_resched:
699 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
700 		queue_work(recv_workqueue, &con->rwork);
701 	mutex_unlock(&con->sock_mutex);
702 	return -EAGAIN;
703 
704 out_close:
705 	mutex_unlock(&con->sock_mutex);
706 	if (ret != -EAGAIN) {
707 		close_connection(con, false, true, false);
708 		/* Reconnect when there is something to send */
709 	}
710 	/* Don't return success if we really got EOF */
711 	if (ret == 0)
712 		ret = -EAGAIN;
713 
714 	return ret;
715 }
716 
717 /* Listening socket is busy, accept a connection */
tcp_accept_from_sock(struct connection * con)718 static int tcp_accept_from_sock(struct connection *con)
719 {
720 	int result;
721 	struct sockaddr_storage peeraddr;
722 	struct socket *newsock;
723 	int len;
724 	int nodeid;
725 	struct connection *newcon;
726 	struct connection *addcon;
727 
728 	mutex_lock(&connections_lock);
729 	if (!dlm_allow_conn) {
730 		mutex_unlock(&connections_lock);
731 		return -1;
732 	}
733 	mutex_unlock(&connections_lock);
734 
735 	memset(&peeraddr, 0, sizeof(peeraddr));
736 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
737 				  SOCK_STREAM, IPPROTO_TCP, &newsock);
738 	if (result < 0)
739 		return -ENOMEM;
740 
741 	mutex_lock_nested(&con->sock_mutex, 0);
742 
743 	result = -ENOTCONN;
744 	if (con->sock == NULL)
745 		goto accept_err;
746 
747 	newsock->type = con->sock->type;
748 	newsock->ops = con->sock->ops;
749 
750 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
751 	if (result < 0)
752 		goto accept_err;
753 
754 	/* Get the connected socket's peer */
755 	memset(&peeraddr, 0, sizeof(peeraddr));
756 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
757 				  &len, 2)) {
758 		result = -ECONNABORTED;
759 		goto accept_err;
760 	}
761 
762 	/* Get the new node's NODEID */
763 	make_sockaddr(&peeraddr, 0, &len);
764 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
765 		unsigned char *b=(unsigned char *)&peeraddr;
766 		log_print("connect from non cluster node");
767 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
768 				     b, sizeof(struct sockaddr_storage));
769 		sock_release(newsock);
770 		mutex_unlock(&con->sock_mutex);
771 		return -1;
772 	}
773 
774 	log_print("got connection from %d", nodeid);
775 
776 	/*  Check to see if we already have a connection to this node. This
777 	 *  could happen if the two nodes initiate a connection at roughly
778 	 *  the same time and the connections cross on the wire.
779 	 *  In this case we store the incoming one in "othercon"
780 	 */
781 	newcon = nodeid2con(nodeid, GFP_NOFS);
782 	if (!newcon) {
783 		result = -ENOMEM;
784 		goto accept_err;
785 	}
786 	mutex_lock_nested(&newcon->sock_mutex, 1);
787 	if (newcon->sock) {
788 		struct connection *othercon = newcon->othercon;
789 
790 		if (!othercon) {
791 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
792 			if (!othercon) {
793 				log_print("failed to allocate incoming socket");
794 				mutex_unlock(&newcon->sock_mutex);
795 				result = -ENOMEM;
796 				goto accept_err;
797 			}
798 			othercon->nodeid = nodeid;
799 			othercon->rx_action = receive_from_sock;
800 			mutex_init(&othercon->sock_mutex);
801 			INIT_WORK(&othercon->swork, process_send_sockets);
802 			INIT_WORK(&othercon->rwork, process_recv_sockets);
803 			set_bit(CF_IS_OTHERCON, &othercon->flags);
804 		}
805 		if (!othercon->sock) {
806 			newcon->othercon = othercon;
807 			othercon->sock = newsock;
808 			newsock->sk->sk_user_data = othercon;
809 			add_sock(newsock, othercon);
810 			addcon = othercon;
811 		}
812 		else {
813 			printk("Extra connection from node %d attempted\n", nodeid);
814 			result = -EAGAIN;
815 			mutex_unlock(&newcon->sock_mutex);
816 			goto accept_err;
817 		}
818 	}
819 	else {
820 		newsock->sk->sk_user_data = newcon;
821 		newcon->rx_action = receive_from_sock;
822 		add_sock(newsock, newcon);
823 		addcon = newcon;
824 	}
825 
826 	mutex_unlock(&newcon->sock_mutex);
827 
828 	/*
829 	 * Add it to the active queue in case we got data
830 	 * between processing the accept adding the socket
831 	 * to the read_sockets list
832 	 */
833 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
834 		queue_work(recv_workqueue, &addcon->rwork);
835 	mutex_unlock(&con->sock_mutex);
836 
837 	return 0;
838 
839 accept_err:
840 	mutex_unlock(&con->sock_mutex);
841 	sock_release(newsock);
842 
843 	if (result != -EAGAIN)
844 		log_print("error accepting connection from node: %d", result);
845 	return result;
846 }
847 
sctp_accept_from_sock(struct connection * con)848 static int sctp_accept_from_sock(struct connection *con)
849 {
850 	/* Check that the new node is in the lockspace */
851 	struct sctp_prim prim;
852 	int nodeid;
853 	int prim_len, ret;
854 	int addr_len;
855 	struct connection *newcon;
856 	struct connection *addcon;
857 	struct socket *newsock;
858 
859 	mutex_lock(&connections_lock);
860 	if (!dlm_allow_conn) {
861 		mutex_unlock(&connections_lock);
862 		return -1;
863 	}
864 	mutex_unlock(&connections_lock);
865 
866 	mutex_lock_nested(&con->sock_mutex, 0);
867 
868 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
869 	if (ret < 0)
870 		goto accept_err;
871 
872 	memset(&prim, 0, sizeof(struct sctp_prim));
873 	prim_len = sizeof(struct sctp_prim);
874 
875 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
876 				(char *)&prim, &prim_len);
877 	if (ret < 0) {
878 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
879 		goto accept_err;
880 	}
881 
882 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
883 	if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
884 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
885 
886 		log_print("reject connect from unknown addr");
887 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
888 				     b, sizeof(struct sockaddr_storage));
889 		goto accept_err;
890 	}
891 
892 	newcon = nodeid2con(nodeid, GFP_NOFS);
893 	if (!newcon) {
894 		ret = -ENOMEM;
895 		goto accept_err;
896 	}
897 
898 	mutex_lock_nested(&newcon->sock_mutex, 1);
899 
900 	if (newcon->sock) {
901 		struct connection *othercon = newcon->othercon;
902 
903 		if (!othercon) {
904 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
905 			if (!othercon) {
906 				log_print("failed to allocate incoming socket");
907 				mutex_unlock(&newcon->sock_mutex);
908 				ret = -ENOMEM;
909 				goto accept_err;
910 			}
911 			othercon->nodeid = nodeid;
912 			othercon->rx_action = receive_from_sock;
913 			mutex_init(&othercon->sock_mutex);
914 			INIT_WORK(&othercon->swork, process_send_sockets);
915 			INIT_WORK(&othercon->rwork, process_recv_sockets);
916 			set_bit(CF_IS_OTHERCON, &othercon->flags);
917 		}
918 		if (!othercon->sock) {
919 			newcon->othercon = othercon;
920 			othercon->sock = newsock;
921 			newsock->sk->sk_user_data = othercon;
922 			add_sock(newsock, othercon);
923 			addcon = othercon;
924 		} else {
925 			printk("Extra connection from node %d attempted\n", nodeid);
926 			ret = -EAGAIN;
927 			mutex_unlock(&newcon->sock_mutex);
928 			goto accept_err;
929 		}
930 	} else {
931 		newsock->sk->sk_user_data = newcon;
932 		newcon->rx_action = receive_from_sock;
933 		add_sock(newsock, newcon);
934 		addcon = newcon;
935 	}
936 
937 	log_print("connected to %d", nodeid);
938 
939 	mutex_unlock(&newcon->sock_mutex);
940 
941 	/*
942 	 * Add it to the active queue in case we got data
943 	 * between processing the accept adding the socket
944 	 * to the read_sockets list
945 	 */
946 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
947 		queue_work(recv_workqueue, &addcon->rwork);
948 	mutex_unlock(&con->sock_mutex);
949 
950 	return 0;
951 
952 accept_err:
953 	mutex_unlock(&con->sock_mutex);
954 	if (newsock)
955 		sock_release(newsock);
956 	if (ret != -EAGAIN)
957 		log_print("error accepting connection from node: %d", ret);
958 
959 	return ret;
960 }
961 
free_entry(struct writequeue_entry * e)962 static void free_entry(struct writequeue_entry *e)
963 {
964 	__free_page(e->page);
965 	kfree(e);
966 }
967 
968 /*
969  * writequeue_entry_complete - try to delete and free write queue entry
970  * @e: write queue entry to try to delete
971  * @completed: bytes completed
972  *
973  * writequeue_lock must be held.
974  */
writequeue_entry_complete(struct writequeue_entry * e,int completed)975 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
976 {
977 	e->offset += completed;
978 	e->len -= completed;
979 
980 	if (e->len == 0 && e->users == 0) {
981 		list_del(&e->list);
982 		free_entry(e);
983 	}
984 }
985 
986 /*
987  * sctp_bind_addrs - bind a SCTP socket to all our addresses
988  */
sctp_bind_addrs(struct connection * con,uint16_t port)989 static int sctp_bind_addrs(struct connection *con, uint16_t port)
990 {
991 	struct sockaddr_storage localaddr;
992 	int i, addr_len, result = 0;
993 
994 	for (i = 0; i < dlm_local_count; i++) {
995 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
996 		make_sockaddr(&localaddr, port, &addr_len);
997 
998 		if (!i)
999 			result = kernel_bind(con->sock,
1000 					     (struct sockaddr *)&localaddr,
1001 					     addr_len);
1002 		else
1003 			result = kernel_setsockopt(con->sock, SOL_SCTP,
1004 						   SCTP_SOCKOPT_BINDX_ADD,
1005 						   (char *)&localaddr, addr_len);
1006 
1007 		if (result < 0) {
1008 			log_print("Can't bind to %d addr number %d, %d.\n",
1009 				  port, i + 1, result);
1010 			break;
1011 		}
1012 	}
1013 	return result;
1014 }
1015 
1016 /* Initiate an SCTP association.
1017    This is a special case of send_to_sock() in that we don't yet have a
1018    peeled-off socket for this association, so we use the listening socket
1019    and add the primary IP address of the remote node.
1020  */
sctp_connect_to_sock(struct connection * con)1021 static void sctp_connect_to_sock(struct connection *con)
1022 {
1023 	struct sockaddr_storage daddr;
1024 	int one = 1;
1025 	int result;
1026 	int addr_len;
1027 	struct socket *sock;
1028 
1029 	if (con->nodeid == 0) {
1030 		log_print("attempt to connect sock 0 foiled");
1031 		return;
1032 	}
1033 
1034 	mutex_lock(&con->sock_mutex);
1035 
1036 	/* Some odd races can cause double-connects, ignore them */
1037 	if (con->retries++ > MAX_CONNECT_RETRIES)
1038 		goto out;
1039 
1040 	if (con->sock) {
1041 		log_print("node %d already connected.", con->nodeid);
1042 		goto out;
1043 	}
1044 
1045 	memset(&daddr, 0, sizeof(daddr));
1046 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1047 	if (result < 0) {
1048 		log_print("no address for nodeid %d", con->nodeid);
1049 		goto out;
1050 	}
1051 
1052 	/* Create a socket to communicate with */
1053 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1054 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1055 	if (result < 0)
1056 		goto socket_err;
1057 
1058 	sock->sk->sk_user_data = con;
1059 	con->rx_action = receive_from_sock;
1060 	con->connect_action = sctp_connect_to_sock;
1061 	add_sock(sock, con);
1062 
1063 	/* Bind to all addresses. */
1064 	if (sctp_bind_addrs(con, 0))
1065 		goto bind_err;
1066 
1067 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1068 
1069 	log_print("connecting to %d", con->nodeid);
1070 
1071 	/* Turn off Nagle's algorithm */
1072 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1073 			  sizeof(one));
1074 
1075 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1076 				   O_NONBLOCK);
1077 	if (result == -EINPROGRESS)
1078 		result = 0;
1079 	if (result == 0)
1080 		goto out;
1081 
1082 
1083 bind_err:
1084 	con->sock = NULL;
1085 	sock_release(sock);
1086 
1087 socket_err:
1088 	/*
1089 	 * Some errors are fatal and this list might need adjusting. For other
1090 	 * errors we try again until the max number of retries is reached.
1091 	 */
1092 	if (result != -EHOSTUNREACH &&
1093 	    result != -ENETUNREACH &&
1094 	    result != -ENETDOWN &&
1095 	    result != -EINVAL &&
1096 	    result != -EPROTONOSUPPORT) {
1097 		log_print("connect %d try %d error %d", con->nodeid,
1098 			  con->retries, result);
1099 		mutex_unlock(&con->sock_mutex);
1100 		msleep(1000);
1101 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1102 		lowcomms_connect_sock(con);
1103 		return;
1104 	}
1105 
1106 out:
1107 	mutex_unlock(&con->sock_mutex);
1108 	set_bit(CF_WRITE_PENDING, &con->flags);
1109 }
1110 
1111 /* Connect a new socket to its peer */
tcp_connect_to_sock(struct connection * con)1112 static void tcp_connect_to_sock(struct connection *con)
1113 {
1114 	struct sockaddr_storage saddr, src_addr;
1115 	int addr_len;
1116 	struct socket *sock = NULL;
1117 	int one = 1;
1118 	int result;
1119 
1120 	if (con->nodeid == 0) {
1121 		log_print("attempt to connect sock 0 foiled");
1122 		return;
1123 	}
1124 
1125 	mutex_lock(&con->sock_mutex);
1126 	if (con->retries++ > MAX_CONNECT_RETRIES)
1127 		goto out;
1128 
1129 	/* Some odd races can cause double-connects, ignore them */
1130 	if (con->sock)
1131 		goto out;
1132 
1133 	/* Create a socket to communicate with */
1134 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1135 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1136 	if (result < 0)
1137 		goto out_err;
1138 
1139 	memset(&saddr, 0, sizeof(saddr));
1140 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1141 	if (result < 0) {
1142 		log_print("no address for nodeid %d", con->nodeid);
1143 		goto out_err;
1144 	}
1145 
1146 	sock->sk->sk_user_data = con;
1147 	con->rx_action = receive_from_sock;
1148 	con->connect_action = tcp_connect_to_sock;
1149 	add_sock(sock, con);
1150 
1151 	/* Bind to our cluster-known address connecting to avoid
1152 	   routing problems */
1153 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1154 	make_sockaddr(&src_addr, 0, &addr_len);
1155 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1156 				 addr_len);
1157 	if (result < 0) {
1158 		log_print("could not bind for connect: %d", result);
1159 		/* This *may* not indicate a critical error */
1160 	}
1161 
1162 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1163 
1164 	log_print("connecting to %d", con->nodeid);
1165 
1166 	/* Turn off Nagle's algorithm */
1167 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1168 			  sizeof(one));
1169 
1170 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1171 				   O_NONBLOCK);
1172 	if (result == -EINPROGRESS)
1173 		result = 0;
1174 	if (result == 0)
1175 		goto out;
1176 
1177 out_err:
1178 	if (con->sock) {
1179 		sock_release(con->sock);
1180 		con->sock = NULL;
1181 	} else if (sock) {
1182 		sock_release(sock);
1183 	}
1184 	/*
1185 	 * Some errors are fatal and this list might need adjusting. For other
1186 	 * errors we try again until the max number of retries is reached.
1187 	 */
1188 	if (result != -EHOSTUNREACH &&
1189 	    result != -ENETUNREACH &&
1190 	    result != -ENETDOWN &&
1191 	    result != -EINVAL &&
1192 	    result != -EPROTONOSUPPORT) {
1193 		log_print("connect %d try %d error %d", con->nodeid,
1194 			  con->retries, result);
1195 		mutex_unlock(&con->sock_mutex);
1196 		msleep(1000);
1197 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1198 		lowcomms_connect_sock(con);
1199 		return;
1200 	}
1201 out:
1202 	mutex_unlock(&con->sock_mutex);
1203 	set_bit(CF_WRITE_PENDING, &con->flags);
1204 	return;
1205 }
1206 
tcp_create_listen_sock(struct connection * con,struct sockaddr_storage * saddr)1207 static struct socket *tcp_create_listen_sock(struct connection *con,
1208 					     struct sockaddr_storage *saddr)
1209 {
1210 	struct socket *sock = NULL;
1211 	int result = 0;
1212 	int one = 1;
1213 	int addr_len;
1214 
1215 	if (dlm_local_addr[0]->ss_family == AF_INET)
1216 		addr_len = sizeof(struct sockaddr_in);
1217 	else
1218 		addr_len = sizeof(struct sockaddr_in6);
1219 
1220 	/* Create a socket to communicate with */
1221 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1222 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1223 	if (result < 0) {
1224 		log_print("Can't create listening comms socket");
1225 		goto create_out;
1226 	}
1227 
1228 	/* Turn off Nagle's algorithm */
1229 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1230 			  sizeof(one));
1231 
1232 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1233 				   (char *)&one, sizeof(one));
1234 
1235 	if (result < 0) {
1236 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1237 	}
1238 	sock->sk->sk_user_data = con;
1239 
1240 	con->rx_action = tcp_accept_from_sock;
1241 	con->connect_action = tcp_connect_to_sock;
1242 
1243 	/* Bind to our port */
1244 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1245 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1246 	if (result < 0) {
1247 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1248 		sock_release(sock);
1249 		sock = NULL;
1250 		con->sock = NULL;
1251 		goto create_out;
1252 	}
1253 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1254 				 (char *)&one, sizeof(one));
1255 	if (result < 0) {
1256 		log_print("Set keepalive failed: %d", result);
1257 	}
1258 
1259 	result = sock->ops->listen(sock, 5);
1260 	if (result < 0) {
1261 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1262 		sock_release(sock);
1263 		sock = NULL;
1264 		goto create_out;
1265 	}
1266 
1267 create_out:
1268 	return sock;
1269 }
1270 
1271 /* Get local addresses */
init_local(void)1272 static void init_local(void)
1273 {
1274 	struct sockaddr_storage sas, *addr;
1275 	int i;
1276 
1277 	dlm_local_count = 0;
1278 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1279 		if (dlm_our_addr(&sas, i))
1280 			break;
1281 
1282 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1283 		if (!addr)
1284 			break;
1285 		dlm_local_addr[dlm_local_count++] = addr;
1286 	}
1287 }
1288 
1289 /* Initialise SCTP socket and bind to all interfaces */
sctp_listen_for_all(void)1290 static int sctp_listen_for_all(void)
1291 {
1292 	struct socket *sock = NULL;
1293 	int result = -EINVAL;
1294 	struct connection *con = nodeid2con(0, GFP_NOFS);
1295 	int bufsize = NEEDED_RMEM;
1296 	int one = 1;
1297 
1298 	if (!con)
1299 		return -ENOMEM;
1300 
1301 	log_print("Using SCTP for communications");
1302 
1303 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1304 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1305 	if (result < 0) {
1306 		log_print("Can't create comms socket, check SCTP is loaded");
1307 		goto out;
1308 	}
1309 
1310 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1311 				 (char *)&bufsize, sizeof(bufsize));
1312 	if (result)
1313 		log_print("Error increasing buffer space on socket %d", result);
1314 
1315 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1316 				   sizeof(one));
1317 	if (result < 0)
1318 		log_print("Could not set SCTP NODELAY error %d\n", result);
1319 
1320 	write_lock_bh(&sock->sk->sk_callback_lock);
1321 	/* Init con struct */
1322 	sock->sk->sk_user_data = con;
1323 	con->sock = sock;
1324 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1325 	con->rx_action = sctp_accept_from_sock;
1326 	con->connect_action = sctp_connect_to_sock;
1327 
1328 	write_unlock_bh(&sock->sk->sk_callback_lock);
1329 
1330 	/* Bind to all addresses. */
1331 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1332 		goto create_delsock;
1333 
1334 	result = sock->ops->listen(sock, 5);
1335 	if (result < 0) {
1336 		log_print("Can't set socket listening");
1337 		goto create_delsock;
1338 	}
1339 
1340 	return 0;
1341 
1342 create_delsock:
1343 	sock_release(sock);
1344 	con->sock = NULL;
1345 out:
1346 	return result;
1347 }
1348 
tcp_listen_for_all(void)1349 static int tcp_listen_for_all(void)
1350 {
1351 	struct socket *sock = NULL;
1352 	struct connection *con = nodeid2con(0, GFP_NOFS);
1353 	int result = -EINVAL;
1354 
1355 	if (!con)
1356 		return -ENOMEM;
1357 
1358 	/* We don't support multi-homed hosts */
1359 	if (dlm_local_addr[1] != NULL) {
1360 		log_print("TCP protocol can't handle multi-homed hosts, "
1361 			  "try SCTP");
1362 		return -EINVAL;
1363 	}
1364 
1365 	log_print("Using TCP for communications");
1366 
1367 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1368 	if (sock) {
1369 		add_sock(sock, con);
1370 		result = 0;
1371 	}
1372 	else {
1373 		result = -EADDRINUSE;
1374 	}
1375 
1376 	return result;
1377 }
1378 
1379 
1380 
new_writequeue_entry(struct connection * con,gfp_t allocation)1381 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1382 						     gfp_t allocation)
1383 {
1384 	struct writequeue_entry *entry;
1385 
1386 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1387 	if (!entry)
1388 		return NULL;
1389 
1390 	entry->page = alloc_page(allocation);
1391 	if (!entry->page) {
1392 		kfree(entry);
1393 		return NULL;
1394 	}
1395 
1396 	entry->offset = 0;
1397 	entry->len = 0;
1398 	entry->end = 0;
1399 	entry->users = 0;
1400 	entry->con = con;
1401 
1402 	return entry;
1403 }
1404 
dlm_lowcomms_get_buffer(int nodeid,int len,gfp_t allocation,char ** ppc)1405 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1406 {
1407 	struct connection *con;
1408 	struct writequeue_entry *e;
1409 	int offset = 0;
1410 
1411 	con = nodeid2con(nodeid, allocation);
1412 	if (!con)
1413 		return NULL;
1414 
1415 	spin_lock(&con->writequeue_lock);
1416 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1417 	if ((&e->list == &con->writequeue) ||
1418 	    (PAGE_SIZE - e->end < len)) {
1419 		e = NULL;
1420 	} else {
1421 		offset = e->end;
1422 		e->end += len;
1423 		e->users++;
1424 	}
1425 	spin_unlock(&con->writequeue_lock);
1426 
1427 	if (e) {
1428 	got_one:
1429 		*ppc = page_address(e->page) + offset;
1430 		return e;
1431 	}
1432 
1433 	e = new_writequeue_entry(con, allocation);
1434 	if (e) {
1435 		spin_lock(&con->writequeue_lock);
1436 		offset = e->end;
1437 		e->end += len;
1438 		e->users++;
1439 		list_add_tail(&e->list, &con->writequeue);
1440 		spin_unlock(&con->writequeue_lock);
1441 		goto got_one;
1442 	}
1443 	return NULL;
1444 }
1445 
dlm_lowcomms_commit_buffer(void * mh)1446 void dlm_lowcomms_commit_buffer(void *mh)
1447 {
1448 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1449 	struct connection *con = e->con;
1450 	int users;
1451 
1452 	spin_lock(&con->writequeue_lock);
1453 	users = --e->users;
1454 	if (users)
1455 		goto out;
1456 	e->len = e->end - e->offset;
1457 	spin_unlock(&con->writequeue_lock);
1458 
1459 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1460 		queue_work(send_workqueue, &con->swork);
1461 	}
1462 	return;
1463 
1464 out:
1465 	spin_unlock(&con->writequeue_lock);
1466 	return;
1467 }
1468 
1469 /* Send a message */
send_to_sock(struct connection * con)1470 static void send_to_sock(struct connection *con)
1471 {
1472 	int ret = 0;
1473 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1474 	struct writequeue_entry *e;
1475 	int len, offset;
1476 	int count = 0;
1477 
1478 	mutex_lock(&con->sock_mutex);
1479 	if (con->sock == NULL)
1480 		goto out_connect;
1481 
1482 	spin_lock(&con->writequeue_lock);
1483 	for (;;) {
1484 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1485 			       list);
1486 		if ((struct list_head *) e == &con->writequeue)
1487 			break;
1488 
1489 		len = e->len;
1490 		offset = e->offset;
1491 		BUG_ON(len == 0 && e->users == 0);
1492 		spin_unlock(&con->writequeue_lock);
1493 
1494 		ret = 0;
1495 		if (len) {
1496 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1497 					      msg_flags);
1498 			if (ret == -EAGAIN || ret == 0) {
1499 				if (ret == -EAGAIN &&
1500 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1501 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1502 					/* Notify TCP that we're limited by the
1503 					 * application window size.
1504 					 */
1505 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1506 					con->sock->sk->sk_write_pending++;
1507 				}
1508 				cond_resched();
1509 				goto out;
1510 			} else if (ret < 0)
1511 				goto send_error;
1512 		}
1513 
1514 		/* Don't starve people filling buffers */
1515 		if (++count >= MAX_SEND_MSG_COUNT) {
1516 			cond_resched();
1517 			count = 0;
1518 		}
1519 
1520 		spin_lock(&con->writequeue_lock);
1521 		writequeue_entry_complete(e, ret);
1522 	}
1523 	spin_unlock(&con->writequeue_lock);
1524 out:
1525 	mutex_unlock(&con->sock_mutex);
1526 	return;
1527 
1528 send_error:
1529 	mutex_unlock(&con->sock_mutex);
1530 	close_connection(con, false, false, true);
1531 	lowcomms_connect_sock(con);
1532 	return;
1533 
1534 out_connect:
1535 	mutex_unlock(&con->sock_mutex);
1536 	lowcomms_connect_sock(con);
1537 }
1538 
clean_one_writequeue(struct connection * con)1539 static void clean_one_writequeue(struct connection *con)
1540 {
1541 	struct writequeue_entry *e, *safe;
1542 
1543 	spin_lock(&con->writequeue_lock);
1544 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1545 		list_del(&e->list);
1546 		free_entry(e);
1547 	}
1548 	spin_unlock(&con->writequeue_lock);
1549 }
1550 
1551 /* Called from recovery when it knows that a node has
1552    left the cluster */
dlm_lowcomms_close(int nodeid)1553 int dlm_lowcomms_close(int nodeid)
1554 {
1555 	struct connection *con;
1556 	struct dlm_node_addr *na;
1557 
1558 	log_print("closing connection to node %d", nodeid);
1559 	con = nodeid2con(nodeid, 0);
1560 	if (con) {
1561 		set_bit(CF_CLOSE, &con->flags);
1562 		close_connection(con, true, true, true);
1563 		clean_one_writequeue(con);
1564 	}
1565 
1566 	spin_lock(&dlm_node_addrs_spin);
1567 	na = find_node_addr(nodeid);
1568 	if (na) {
1569 		list_del(&na->list);
1570 		while (na->addr_count--)
1571 			kfree(na->addr[na->addr_count]);
1572 		kfree(na);
1573 	}
1574 	spin_unlock(&dlm_node_addrs_spin);
1575 
1576 	return 0;
1577 }
1578 
1579 /* Receive workqueue function */
process_recv_sockets(struct work_struct * work)1580 static void process_recv_sockets(struct work_struct *work)
1581 {
1582 	struct connection *con = container_of(work, struct connection, rwork);
1583 	int err;
1584 
1585 	clear_bit(CF_READ_PENDING, &con->flags);
1586 	do {
1587 		err = con->rx_action(con);
1588 	} while (!err);
1589 }
1590 
1591 /* Send workqueue function */
process_send_sockets(struct work_struct * work)1592 static void process_send_sockets(struct work_struct *work)
1593 {
1594 	struct connection *con = container_of(work, struct connection, swork);
1595 
1596 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags))
1597 		con->connect_action(con);
1598 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1599 		send_to_sock(con);
1600 }
1601 
1602 
1603 /* Discard all entries on the write queues */
clean_writequeues(void)1604 static void clean_writequeues(void)
1605 {
1606 	foreach_conn(clean_one_writequeue);
1607 }
1608 
work_stop(void)1609 static void work_stop(void)
1610 {
1611 	destroy_workqueue(recv_workqueue);
1612 	destroy_workqueue(send_workqueue);
1613 }
1614 
work_start(void)1615 static int work_start(void)
1616 {
1617 	recv_workqueue = alloc_workqueue("dlm_recv",
1618 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1619 	if (!recv_workqueue) {
1620 		log_print("can't start dlm_recv");
1621 		return -ENOMEM;
1622 	}
1623 
1624 	send_workqueue = alloc_workqueue("dlm_send",
1625 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1626 	if (!send_workqueue) {
1627 		log_print("can't start dlm_send");
1628 		destroy_workqueue(recv_workqueue);
1629 		return -ENOMEM;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
stop_conn(struct connection * con)1635 static void stop_conn(struct connection *con)
1636 {
1637 	con->flags |= 0x0F;
1638 	if (con->sock && con->sock->sk)
1639 		con->sock->sk->sk_user_data = NULL;
1640 }
1641 
free_conn(struct connection * con)1642 static void free_conn(struct connection *con)
1643 {
1644 	close_connection(con, true, true, true);
1645 	if (con->othercon)
1646 		kmem_cache_free(con_cache, con->othercon);
1647 	hlist_del(&con->list);
1648 	kmem_cache_free(con_cache, con);
1649 }
1650 
dlm_lowcomms_stop(void)1651 void dlm_lowcomms_stop(void)
1652 {
1653 	/* Set all the flags to prevent any
1654 	   socket activity.
1655 	*/
1656 	mutex_lock(&connections_lock);
1657 	dlm_allow_conn = 0;
1658 	foreach_conn(stop_conn);
1659 	clean_writequeues();
1660 	foreach_conn(free_conn);
1661 	mutex_unlock(&connections_lock);
1662 
1663 	work_stop();
1664 
1665 	kmem_cache_destroy(con_cache);
1666 }
1667 
dlm_lowcomms_start(void)1668 int dlm_lowcomms_start(void)
1669 {
1670 	int error = -EINVAL;
1671 	struct connection *con;
1672 	int i;
1673 
1674 	for (i = 0; i < CONN_HASH_SIZE; i++)
1675 		INIT_HLIST_HEAD(&connection_hash[i]);
1676 
1677 	init_local();
1678 	if (!dlm_local_count) {
1679 		error = -ENOTCONN;
1680 		log_print("no local IP address has been set");
1681 		goto fail;
1682 	}
1683 
1684 	error = -ENOMEM;
1685 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1686 				      __alignof__(struct connection), 0,
1687 				      NULL);
1688 	if (!con_cache)
1689 		goto fail;
1690 
1691 	error = work_start();
1692 	if (error)
1693 		goto fail_destroy;
1694 
1695 	dlm_allow_conn = 1;
1696 
1697 	/* Start listening */
1698 	if (dlm_config.ci_protocol == 0)
1699 		error = tcp_listen_for_all();
1700 	else
1701 		error = sctp_listen_for_all();
1702 	if (error)
1703 		goto fail_unlisten;
1704 
1705 	return 0;
1706 
1707 fail_unlisten:
1708 	dlm_allow_conn = 0;
1709 	con = nodeid2con(0,0);
1710 	if (con) {
1711 		close_connection(con, false, true, true);
1712 		kmem_cache_free(con_cache, con);
1713 	}
1714 fail_destroy:
1715 	kmem_cache_destroy(con_cache);
1716 fail:
1717 	return error;
1718 }
1719 
dlm_lowcomms_exit(void)1720 void dlm_lowcomms_exit(void)
1721 {
1722 	struct dlm_node_addr *na, *safe;
1723 
1724 	spin_lock(&dlm_node_addrs_spin);
1725 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1726 		list_del(&na->list);
1727 		while (na->addr_count--)
1728 			kfree(na->addr[na->addr_count]);
1729 		kfree(na);
1730 	}
1731 	spin_unlock(&dlm_node_addrs_spin);
1732 }
1733