• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41 
42 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
43 
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
46 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49 
50 struct dp_link_dpll {
51 	int clock;
52 	struct dpll dpll;
53 };
54 
55 static const struct dp_link_dpll gen4_dpll[] = {
56 	{ 162000,
57 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 	{ 270000,
59 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61 
62 static const struct dp_link_dpll pch_dpll[] = {
63 	{ 162000,
64 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 	{ 270000,
66 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68 
69 static const struct dp_link_dpll vlv_dpll[] = {
70 	{ 162000,
71 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 	{ 270000,
73 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75 
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81 	/*
82 	 * CHV requires to program fractional division for m2.
83 	 * m2 is stored in fixed point format using formula below
84 	 * (m2_int << 22) | m2_fraction
85 	 */
86 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
87 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
89 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 	{ 540000,	/* m2_int = 27, m2_fraction = 0 */
91 		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93 
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 				  324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 				  324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99 
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
is_edp(struct intel_dp * intel_dp)107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110 
111 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113 
intel_dp_to_dev(struct intel_dp * intel_dp)114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117 
118 	return intel_dig_port->base.base.dev;
119 }
120 
intel_attached_dp(struct drm_connector * connector)121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125 
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 				      enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133 
134 static int
intel_dp_max_link_bw(struct intel_dp * intel_dp)135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138 
139 	switch (max_link_bw) {
140 	case DP_LINK_BW_1_62:
141 	case DP_LINK_BW_2_7:
142 	case DP_LINK_BW_5_4:
143 		break;
144 	default:
145 		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 		     max_link_bw);
147 		max_link_bw = DP_LINK_BW_1_62;
148 		break;
149 	}
150 	return max_link_bw;
151 }
152 
intel_dp_max_lane_count(struct intel_dp * intel_dp)153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 	u8 source_max, sink_max;
157 
158 	source_max = intel_dig_port->max_lanes;
159 	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160 
161 	return min(source_max, sink_max);
162 }
163 
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180 
181 static int
intel_dp_link_required(int pixel_clock,int bpp)182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 	return (pixel_clock * bpp + 9) / 10;
185 }
186 
187 static int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 	return (max_link_clock * max_lanes * 8) / 10;
191 }
192 
193 static int
intel_dp_downstream_max_dotclock(struct intel_dp * intel_dp)194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 	struct intel_encoder *encoder = &intel_dig_port->base;
198 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 	int max_dotclk = dev_priv->max_dotclk_freq;
200 	int ds_max_dotclk;
201 
202 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203 
204 	if (type != DP_DS_PORT_TYPE_VGA)
205 		return max_dotclk;
206 
207 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 						    intel_dp->downstream_ports);
209 
210 	if (ds_max_dotclk != 0)
211 		max_dotclk = min(max_dotclk, ds_max_dotclk);
212 
213 	return max_dotclk;
214 }
215 
216 static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)217 intel_dp_mode_valid(struct drm_connector *connector,
218 		    struct drm_display_mode *mode)
219 {
220 	struct intel_dp *intel_dp = intel_attached_dp(connector);
221 	struct intel_connector *intel_connector = to_intel_connector(connector);
222 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 	int target_clock = mode->clock;
224 	int max_rate, mode_rate, max_lanes, max_link_clock;
225 	int max_dotclk;
226 
227 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228 
229 	if (is_edp(intel_dp) && fixed_mode) {
230 		if (mode->hdisplay > fixed_mode->hdisplay)
231 			return MODE_PANEL;
232 
233 		if (mode->vdisplay > fixed_mode->vdisplay)
234 			return MODE_PANEL;
235 
236 		target_clock = fixed_mode->clock;
237 	}
238 
239 	max_link_clock = intel_dp_max_link_rate(intel_dp);
240 	max_lanes = intel_dp_max_lane_count(intel_dp);
241 
242 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243 	mode_rate = intel_dp_link_required(target_clock, 18);
244 
245 	if (mode_rate > max_rate || target_clock > max_dotclk)
246 		return MODE_CLOCK_HIGH;
247 
248 	if (mode->clock < 10000)
249 		return MODE_CLOCK_LOW;
250 
251 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252 		return MODE_H_ILLEGAL;
253 
254 	return MODE_OK;
255 }
256 
intel_dp_pack_aux(const uint8_t * src,int src_bytes)257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259 	int	i;
260 	uint32_t v = 0;
261 
262 	if (src_bytes > 4)
263 		src_bytes = 4;
264 	for (i = 0; i < src_bytes; i++)
265 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 	return v;
267 }
268 
intel_dp_unpack_aux(uint32_t src,uint8_t * dst,int dst_bytes)269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 	int i;
272 	if (dst_bytes > 4)
273 		dst_bytes = 4;
274 	for (i = 0; i < dst_bytes; i++)
275 		dst[i] = src >> ((3-i) * 8);
276 }
277 
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280 				    struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283 					      struct intel_dp *intel_dp,
284 					      bool force_disable_vdd);
285 static void
286 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
287 
pps_lock(struct intel_dp * intel_dp)288 static void pps_lock(struct intel_dp *intel_dp)
289 {
290 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
291 	struct intel_encoder *encoder = &intel_dig_port->base;
292 	struct drm_device *dev = encoder->base.dev;
293 	struct drm_i915_private *dev_priv = to_i915(dev);
294 	enum intel_display_power_domain power_domain;
295 
296 	/*
297 	 * See vlv_power_sequencer_reset() why we need
298 	 * a power domain reference here.
299 	 */
300 	power_domain = intel_display_port_aux_power_domain(encoder);
301 	intel_display_power_get(dev_priv, power_domain);
302 
303 	mutex_lock(&dev_priv->pps_mutex);
304 }
305 
pps_unlock(struct intel_dp * intel_dp)306 static void pps_unlock(struct intel_dp *intel_dp)
307 {
308 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
309 	struct intel_encoder *encoder = &intel_dig_port->base;
310 	struct drm_device *dev = encoder->base.dev;
311 	struct drm_i915_private *dev_priv = to_i915(dev);
312 	enum intel_display_power_domain power_domain;
313 
314 	mutex_unlock(&dev_priv->pps_mutex);
315 
316 	power_domain = intel_display_port_aux_power_domain(encoder);
317 	intel_display_power_put(dev_priv, power_domain);
318 }
319 
320 static void
vlv_power_sequencer_kick(struct intel_dp * intel_dp)321 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
322 {
323 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324 	struct drm_device *dev = intel_dig_port->base.base.dev;
325 	struct drm_i915_private *dev_priv = to_i915(dev);
326 	enum pipe pipe = intel_dp->pps_pipe;
327 	bool pll_enabled, release_cl_override = false;
328 	enum dpio_phy phy = DPIO_PHY(pipe);
329 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
330 	uint32_t DP;
331 
332 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
333 		 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
334 		 pipe_name(pipe), port_name(intel_dig_port->port)))
335 		return;
336 
337 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
338 		      pipe_name(pipe), port_name(intel_dig_port->port));
339 
340 	/* Preserve the BIOS-computed detected bit. This is
341 	 * supposed to be read-only.
342 	 */
343 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
344 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
345 	DP |= DP_PORT_WIDTH(1);
346 	DP |= DP_LINK_TRAIN_PAT_1;
347 
348 	if (IS_CHERRYVIEW(dev))
349 		DP |= DP_PIPE_SELECT_CHV(pipe);
350 	else if (pipe == PIPE_B)
351 		DP |= DP_PIPEB_SELECT;
352 
353 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
354 
355 	/*
356 	 * The DPLL for the pipe must be enabled for this to work.
357 	 * So enable temporarily it if it's not already enabled.
358 	 */
359 	if (!pll_enabled) {
360 		release_cl_override = IS_CHERRYVIEW(dev) &&
361 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
362 
363 		if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
364 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
365 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
366 				  pipe_name(pipe));
367 			return;
368 		}
369 	}
370 
371 	/*
372 	 * Similar magic as in intel_dp_enable_port().
373 	 * We _must_ do this port enable + disable trick
374 	 * to make this power seqeuencer lock onto the port.
375 	 * Otherwise even VDD force bit won't work.
376 	 */
377 	I915_WRITE(intel_dp->output_reg, DP);
378 	POSTING_READ(intel_dp->output_reg);
379 
380 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
381 	POSTING_READ(intel_dp->output_reg);
382 
383 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
384 	POSTING_READ(intel_dp->output_reg);
385 
386 	if (!pll_enabled) {
387 		vlv_force_pll_off(dev, pipe);
388 
389 		if (release_cl_override)
390 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
391 	}
392 }
393 
394 static enum pipe
vlv_power_sequencer_pipe(struct intel_dp * intel_dp)395 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
396 {
397 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
398 	struct drm_device *dev = intel_dig_port->base.base.dev;
399 	struct drm_i915_private *dev_priv = to_i915(dev);
400 	struct intel_encoder *encoder;
401 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
402 	enum pipe pipe;
403 
404 	lockdep_assert_held(&dev_priv->pps_mutex);
405 
406 	/* We should never land here with regular DP ports */
407 	WARN_ON(!is_edp(intel_dp));
408 
409 	if (intel_dp->pps_pipe != INVALID_PIPE)
410 		return intel_dp->pps_pipe;
411 
412 	/*
413 	 * We don't have power sequencer currently.
414 	 * Pick one that's not used by other ports.
415 	 */
416 	for_each_intel_encoder(dev, encoder) {
417 		struct intel_dp *tmp;
418 
419 		if (encoder->type != INTEL_OUTPUT_EDP)
420 			continue;
421 
422 		tmp = enc_to_intel_dp(&encoder->base);
423 
424 		if (tmp->pps_pipe != INVALID_PIPE)
425 			pipes &= ~(1 << tmp->pps_pipe);
426 	}
427 
428 	/*
429 	 * Didn't find one. This should not happen since there
430 	 * are two power sequencers and up to two eDP ports.
431 	 */
432 	if (WARN_ON(pipes == 0))
433 		pipe = PIPE_A;
434 	else
435 		pipe = ffs(pipes) - 1;
436 
437 	vlv_steal_power_sequencer(dev, pipe);
438 	intel_dp->pps_pipe = pipe;
439 
440 	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
441 		      pipe_name(intel_dp->pps_pipe),
442 		      port_name(intel_dig_port->port));
443 
444 	/* init power sequencer on this pipe and port */
445 	intel_dp_init_panel_power_sequencer(dev, intel_dp);
446 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
447 
448 	/*
449 	 * Even vdd force doesn't work until we've made
450 	 * the power sequencer lock in on the port.
451 	 */
452 	vlv_power_sequencer_kick(intel_dp);
453 
454 	return intel_dp->pps_pipe;
455 }
456 
457 static int
bxt_power_sequencer_idx(struct intel_dp * intel_dp)458 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
459 {
460 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
461 	struct drm_device *dev = intel_dig_port->base.base.dev;
462 	struct drm_i915_private *dev_priv = to_i915(dev);
463 
464 	lockdep_assert_held(&dev_priv->pps_mutex);
465 
466 	/* We should never land here with regular DP ports */
467 	WARN_ON(!is_edp(intel_dp));
468 
469 	/*
470 	 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
471 	 * mapping needs to be retrieved from VBT, for now just hard-code to
472 	 * use instance #0 always.
473 	 */
474 	if (!intel_dp->pps_reset)
475 		return 0;
476 
477 	intel_dp->pps_reset = false;
478 
479 	/*
480 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
481 	 * has been setup during connector init.
482 	 */
483 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
484 
485 	return 0;
486 }
487 
488 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
489 			       enum pipe pipe);
490 
vlv_pipe_has_pp_on(struct drm_i915_private * dev_priv,enum pipe pipe)491 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
492 			       enum pipe pipe)
493 {
494 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
495 }
496 
vlv_pipe_has_vdd_on(struct drm_i915_private * dev_priv,enum pipe pipe)497 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
498 				enum pipe pipe)
499 {
500 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
501 }
502 
vlv_pipe_any(struct drm_i915_private * dev_priv,enum pipe pipe)503 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
504 			 enum pipe pipe)
505 {
506 	return true;
507 }
508 
509 static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private * dev_priv,enum port port,vlv_pipe_check pipe_check)510 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
511 		     enum port port,
512 		     vlv_pipe_check pipe_check)
513 {
514 	enum pipe pipe;
515 
516 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
517 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
518 			PANEL_PORT_SELECT_MASK;
519 
520 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
521 			continue;
522 
523 		if (!pipe_check(dev_priv, pipe))
524 			continue;
525 
526 		return pipe;
527 	}
528 
529 	return INVALID_PIPE;
530 }
531 
532 static void
vlv_initial_power_sequencer_setup(struct intel_dp * intel_dp)533 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
534 {
535 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
536 	struct drm_device *dev = intel_dig_port->base.base.dev;
537 	struct drm_i915_private *dev_priv = to_i915(dev);
538 	enum port port = intel_dig_port->port;
539 
540 	lockdep_assert_held(&dev_priv->pps_mutex);
541 
542 	/* try to find a pipe with this port selected */
543 	/* first pick one where the panel is on */
544 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
545 						  vlv_pipe_has_pp_on);
546 	/* didn't find one? pick one where vdd is on */
547 	if (intel_dp->pps_pipe == INVALID_PIPE)
548 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
549 							  vlv_pipe_has_vdd_on);
550 	/* didn't find one? pick one with just the correct port */
551 	if (intel_dp->pps_pipe == INVALID_PIPE)
552 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
553 							  vlv_pipe_any);
554 
555 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
556 	if (intel_dp->pps_pipe == INVALID_PIPE) {
557 		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
558 			      port_name(port));
559 		return;
560 	}
561 
562 	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
563 		      port_name(port), pipe_name(intel_dp->pps_pipe));
564 
565 	intel_dp_init_panel_power_sequencer(dev, intel_dp);
566 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
567 }
568 
intel_power_sequencer_reset(struct drm_i915_private * dev_priv)569 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
570 {
571 	struct drm_device *dev = &dev_priv->drm;
572 	struct intel_encoder *encoder;
573 
574 	if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
575 		    !IS_BROXTON(dev)))
576 		return;
577 
578 	/*
579 	 * We can't grab pps_mutex here due to deadlock with power_domain
580 	 * mutex when power_domain functions are called while holding pps_mutex.
581 	 * That also means that in order to use pps_pipe the code needs to
582 	 * hold both a power domain reference and pps_mutex, and the power domain
583 	 * reference get/put must be done while _not_ holding pps_mutex.
584 	 * pps_{lock,unlock}() do these steps in the correct order, so one
585 	 * should use them always.
586 	 */
587 
588 	for_each_intel_encoder(dev, encoder) {
589 		struct intel_dp *intel_dp;
590 
591 		if (encoder->type != INTEL_OUTPUT_EDP)
592 			continue;
593 
594 		intel_dp = enc_to_intel_dp(&encoder->base);
595 		if (IS_BROXTON(dev))
596 			intel_dp->pps_reset = true;
597 		else
598 			intel_dp->pps_pipe = INVALID_PIPE;
599 	}
600 }
601 
602 struct pps_registers {
603 	i915_reg_t pp_ctrl;
604 	i915_reg_t pp_stat;
605 	i915_reg_t pp_on;
606 	i915_reg_t pp_off;
607 	i915_reg_t pp_div;
608 };
609 
intel_pps_get_registers(struct drm_i915_private * dev_priv,struct intel_dp * intel_dp,struct pps_registers * regs)610 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
611 				    struct intel_dp *intel_dp,
612 				    struct pps_registers *regs)
613 {
614 	int pps_idx = 0;
615 
616 	memset(regs, 0, sizeof(*regs));
617 
618 	if (IS_BROXTON(dev_priv))
619 		pps_idx = bxt_power_sequencer_idx(intel_dp);
620 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
621 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
622 
623 	regs->pp_ctrl = PP_CONTROL(pps_idx);
624 	regs->pp_stat = PP_STATUS(pps_idx);
625 	regs->pp_on = PP_ON_DELAYS(pps_idx);
626 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
627 	if (!IS_BROXTON(dev_priv))
628 		regs->pp_div = PP_DIVISOR(pps_idx);
629 }
630 
631 static i915_reg_t
_pp_ctrl_reg(struct intel_dp * intel_dp)632 _pp_ctrl_reg(struct intel_dp *intel_dp)
633 {
634 	struct pps_registers regs;
635 
636 	intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
637 				&regs);
638 
639 	return regs.pp_ctrl;
640 }
641 
642 static i915_reg_t
_pp_stat_reg(struct intel_dp * intel_dp)643 _pp_stat_reg(struct intel_dp *intel_dp)
644 {
645 	struct pps_registers regs;
646 
647 	intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
648 				&regs);
649 
650 	return regs.pp_stat;
651 }
652 
653 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
654    This function only applicable when panel PM state is not to be tracked */
edp_notify_handler(struct notifier_block * this,unsigned long code,void * unused)655 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
656 			      void *unused)
657 {
658 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
659 						 edp_notifier);
660 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
661 	struct drm_i915_private *dev_priv = to_i915(dev);
662 
663 	if (!is_edp(intel_dp) || code != SYS_RESTART)
664 		return 0;
665 
666 	pps_lock(intel_dp);
667 
668 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
669 		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
670 		i915_reg_t pp_ctrl_reg, pp_div_reg;
671 		u32 pp_div;
672 
673 		pp_ctrl_reg = PP_CONTROL(pipe);
674 		pp_div_reg  = PP_DIVISOR(pipe);
675 		pp_div = I915_READ(pp_div_reg);
676 		pp_div &= PP_REFERENCE_DIVIDER_MASK;
677 
678 		/* 0x1F write to PP_DIV_REG sets max cycle delay */
679 		I915_WRITE(pp_div_reg, pp_div | 0x1F);
680 		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
681 		msleep(intel_dp->panel_power_cycle_delay);
682 	}
683 
684 	pps_unlock(intel_dp);
685 
686 	return 0;
687 }
688 
edp_have_panel_power(struct intel_dp * intel_dp)689 static bool edp_have_panel_power(struct intel_dp *intel_dp)
690 {
691 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
692 	struct drm_i915_private *dev_priv = to_i915(dev);
693 
694 	lockdep_assert_held(&dev_priv->pps_mutex);
695 
696 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
697 	    intel_dp->pps_pipe == INVALID_PIPE)
698 		return false;
699 
700 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
701 }
702 
edp_have_panel_vdd(struct intel_dp * intel_dp)703 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
704 {
705 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
706 	struct drm_i915_private *dev_priv = to_i915(dev);
707 
708 	lockdep_assert_held(&dev_priv->pps_mutex);
709 
710 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
711 	    intel_dp->pps_pipe == INVALID_PIPE)
712 		return false;
713 
714 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
715 }
716 
717 static void
intel_dp_check_edp(struct intel_dp * intel_dp)718 intel_dp_check_edp(struct intel_dp *intel_dp)
719 {
720 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
721 	struct drm_i915_private *dev_priv = to_i915(dev);
722 
723 	if (!is_edp(intel_dp))
724 		return;
725 
726 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
727 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
728 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
729 			      I915_READ(_pp_stat_reg(intel_dp)),
730 			      I915_READ(_pp_ctrl_reg(intel_dp)));
731 	}
732 }
733 
734 static uint32_t
intel_dp_aux_wait_done(struct intel_dp * intel_dp,bool has_aux_irq)735 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
736 {
737 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
738 	struct drm_device *dev = intel_dig_port->base.base.dev;
739 	struct drm_i915_private *dev_priv = to_i915(dev);
740 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
741 	uint32_t status;
742 	bool done;
743 
744 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
745 	if (has_aux_irq)
746 		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
747 					  msecs_to_jiffies_timeout(10));
748 	else
749 		done = wait_for(C, 10) == 0;
750 	if (!done)
751 		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
752 			  has_aux_irq);
753 #undef C
754 
755 	return status;
756 }
757 
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)758 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
759 {
760 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
761 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
762 
763 	if (index)
764 		return 0;
765 
766 	/*
767 	 * The clock divider is based off the hrawclk, and would like to run at
768 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
769 	 */
770 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772 
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)773 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777 
778 	if (index)
779 		return 0;
780 
781 	/*
782 	 * The clock divider is based off the cdclk or PCH rawclk, and would
783 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
784 	 * divide by 2000 and use that
785 	 */
786 	if (intel_dig_port->port == PORT_A)
787 		return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
788 	else
789 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
790 }
791 
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)792 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
793 {
794 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
795 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
796 
797 	if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
798 		/* Workaround for non-ULT HSW */
799 		switch (index) {
800 		case 0: return 63;
801 		case 1: return 72;
802 		default: return 0;
803 		}
804 	}
805 
806 	return ilk_get_aux_clock_divider(intel_dp, index);
807 }
808 
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)809 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
810 {
811 	/*
812 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
813 	 * derive the clock from CDCLK automatically). We still implement the
814 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
815 	 */
816 	return index ? 0 : 1;
817 }
818 
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,bool has_aux_irq,int send_bytes,uint32_t aux_clock_divider)819 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
820 				     bool has_aux_irq,
821 				     int send_bytes,
822 				     uint32_t aux_clock_divider)
823 {
824 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
825 	struct drm_device *dev = intel_dig_port->base.base.dev;
826 	uint32_t precharge, timeout;
827 
828 	if (IS_GEN6(dev))
829 		precharge = 3;
830 	else
831 		precharge = 5;
832 
833 	if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
834 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
835 	else
836 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
837 
838 	return DP_AUX_CH_CTL_SEND_BUSY |
839 	       DP_AUX_CH_CTL_DONE |
840 	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
842 	       timeout |
843 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
844 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
845 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 }
848 
skl_get_aux_send_ctl(struct intel_dp * intel_dp,bool has_aux_irq,int send_bytes,uint32_t unused)849 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
850 				      bool has_aux_irq,
851 				      int send_bytes,
852 				      uint32_t unused)
853 {
854 	return DP_AUX_CH_CTL_SEND_BUSY |
855 	       DP_AUX_CH_CTL_DONE |
856 	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
857 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
858 	       DP_AUX_CH_CTL_TIME_OUT_1600us |
859 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
860 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861 	       DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862 	       DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
863 }
864 
865 static int
intel_dp_aux_ch(struct intel_dp * intel_dp,const uint8_t * send,int send_bytes,uint8_t * recv,int recv_size)866 intel_dp_aux_ch(struct intel_dp *intel_dp,
867 		const uint8_t *send, int send_bytes,
868 		uint8_t *recv, int recv_size)
869 {
870 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
871 	struct drm_device *dev = intel_dig_port->base.base.dev;
872 	struct drm_i915_private *dev_priv = to_i915(dev);
873 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874 	uint32_t aux_clock_divider;
875 	int i, ret, recv_bytes;
876 	uint32_t status;
877 	int try, clock = 0;
878 	bool has_aux_irq = HAS_AUX_IRQ(dev);
879 	bool vdd;
880 
881 	pps_lock(intel_dp);
882 
883 	/*
884 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
885 	 * In such cases we want to leave VDD enabled and it's up to upper layers
886 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
887 	 * ourselves.
888 	 */
889 	vdd = edp_panel_vdd_on(intel_dp);
890 
891 	/* dp aux is extremely sensitive to irq latency, hence request the
892 	 * lowest possible wakeup latency and so prevent the cpu from going into
893 	 * deep sleep states.
894 	 */
895 	pm_qos_update_request(&dev_priv->pm_qos, 0);
896 
897 	intel_dp_check_edp(intel_dp);
898 
899 	/* Try to wait for any previous AUX channel activity */
900 	for (try = 0; try < 3; try++) {
901 		status = I915_READ_NOTRACE(ch_ctl);
902 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
903 			break;
904 		msleep(1);
905 	}
906 
907 	if (try == 3) {
908 		static u32 last_status = -1;
909 		const u32 status = I915_READ(ch_ctl);
910 
911 		if (status != last_status) {
912 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
913 			     status);
914 			last_status = status;
915 		}
916 
917 		ret = -EBUSY;
918 		goto out;
919 	}
920 
921 	/* Only 5 data registers! */
922 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
923 		ret = -E2BIG;
924 		goto out;
925 	}
926 
927 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
929 							  has_aux_irq,
930 							  send_bytes,
931 							  aux_clock_divider);
932 
933 		/* Must try at least 3 times according to DP spec */
934 		for (try = 0; try < 5; try++) {
935 			/* Load the send data into the aux channel data registers */
936 			for (i = 0; i < send_bytes; i += 4)
937 				I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938 					   intel_dp_pack_aux(send + i,
939 							     send_bytes - i));
940 
941 			/* Send the command and wait for it to complete */
942 			I915_WRITE(ch_ctl, send_ctl);
943 
944 			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
945 
946 			/* Clear done status and any errors */
947 			I915_WRITE(ch_ctl,
948 				   status |
949 				   DP_AUX_CH_CTL_DONE |
950 				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
951 				   DP_AUX_CH_CTL_RECEIVE_ERROR);
952 
953 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954 				continue;
955 
956 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
957 			 *   400us delay required for errors and timeouts
958 			 *   Timeout errors from the HW already meet this
959 			 *   requirement so skip to next iteration
960 			 */
961 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962 				usleep_range(400, 500);
963 				continue;
964 			}
965 			if (status & DP_AUX_CH_CTL_DONE)
966 				goto done;
967 		}
968 	}
969 
970 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972 		ret = -EBUSY;
973 		goto out;
974 	}
975 
976 done:
977 	/* Check for timeout or receive error.
978 	 * Timeouts occur when the sink is not connected
979 	 */
980 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982 		ret = -EIO;
983 		goto out;
984 	}
985 
986 	/* Timeouts occur when the device isn't connected, so they're
987 	 * "normal" -- don't fill the kernel log with these */
988 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990 		ret = -ETIMEDOUT;
991 		goto out;
992 	}
993 
994 	/* Unload any bytes sent back from the other side */
995 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
996 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997 
998 	/*
999 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1000 	 * We have no idea of what happened so we return -EBUSY so
1001 	 * drm layer takes care for the necessary retries.
1002 	 */
1003 	if (recv_bytes == 0 || recv_bytes > 20) {
1004 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1005 			      recv_bytes);
1006 		/*
1007 		 * FIXME: This patch was created on top of a series that
1008 		 * organize the retries at drm level. There EBUSY should
1009 		 * also take care for 1ms wait before retrying.
1010 		 * That aux retries re-org is still needed and after that is
1011 		 * merged we remove this sleep from here.
1012 		 */
1013 		usleep_range(1000, 1500);
1014 		ret = -EBUSY;
1015 		goto out;
1016 	}
1017 
1018 	if (recv_bytes > recv_size)
1019 		recv_bytes = recv_size;
1020 
1021 	for (i = 0; i < recv_bytes; i += 4)
1022 		intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023 				    recv + i, recv_bytes - i);
1024 
1025 	ret = recv_bytes;
1026 out:
1027 	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1028 
1029 	if (vdd)
1030 		edp_panel_vdd_off(intel_dp, false);
1031 
1032 	pps_unlock(intel_dp);
1033 
1034 	return ret;
1035 }
1036 
1037 #define BARE_ADDRESS_SIZE	3
1038 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1039 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1040 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041 {
1042 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1043 	uint8_t txbuf[20], rxbuf[20];
1044 	size_t txsize, rxsize;
1045 	int ret;
1046 
1047 	txbuf[0] = (msg->request << 4) |
1048 		((msg->address >> 16) & 0xf);
1049 	txbuf[1] = (msg->address >> 8) & 0xff;
1050 	txbuf[2] = msg->address & 0xff;
1051 	txbuf[3] = msg->size - 1;
1052 
1053 	switch (msg->request & ~DP_AUX_I2C_MOT) {
1054 	case DP_AUX_NATIVE_WRITE:
1055 	case DP_AUX_I2C_WRITE:
1056 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058 		rxsize = 2; /* 0 or 1 data bytes */
1059 
1060 		if (WARN_ON(txsize > 20))
1061 			return -E2BIG;
1062 
1063 		WARN_ON(!msg->buffer != !msg->size);
1064 
1065 		if (msg->buffer)
1066 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067 
1068 		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1069 		if (ret > 0) {
1070 			msg->reply = rxbuf[0] >> 4;
1071 
1072 			if (ret > 1) {
1073 				/* Number of bytes written in a short write. */
1074 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
1075 			} else {
1076 				/* Return payload size. */
1077 				ret = msg->size;
1078 			}
1079 		}
1080 		break;
1081 
1082 	case DP_AUX_NATIVE_READ:
1083 	case DP_AUX_I2C_READ:
1084 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085 		rxsize = msg->size + 1;
1086 
1087 		if (WARN_ON(rxsize > 20))
1088 			return -E2BIG;
1089 
1090 		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1091 		if (ret > 0) {
1092 			msg->reply = rxbuf[0] >> 4;
1093 			/*
1094 			 * Assume happy day, and copy the data. The caller is
1095 			 * expected to check msg->reply before touching it.
1096 			 *
1097 			 * Return payload size.
1098 			 */
1099 			ret--;
1100 			memcpy(msg->buffer, rxbuf + 1, ret);
1101 		}
1102 		break;
1103 
1104 	default:
1105 		ret = -EINVAL;
1106 		break;
1107 	}
1108 
1109 	return ret;
1110 }
1111 
intel_aux_port(struct drm_i915_private * dev_priv,enum port port)1112 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1113 				enum port port)
1114 {
1115 	const struct ddi_vbt_port_info *info =
1116 		&dev_priv->vbt.ddi_port_info[port];
1117 	enum port aux_port;
1118 
1119 	if (!info->alternate_aux_channel) {
1120 		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1121 			      port_name(port), port_name(port));
1122 		return port;
1123 	}
1124 
1125 	switch (info->alternate_aux_channel) {
1126 	case DP_AUX_A:
1127 		aux_port = PORT_A;
1128 		break;
1129 	case DP_AUX_B:
1130 		aux_port = PORT_B;
1131 		break;
1132 	case DP_AUX_C:
1133 		aux_port = PORT_C;
1134 		break;
1135 	case DP_AUX_D:
1136 		aux_port = PORT_D;
1137 		break;
1138 	default:
1139 		MISSING_CASE(info->alternate_aux_channel);
1140 		aux_port = PORT_A;
1141 		break;
1142 	}
1143 
1144 	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1145 		      port_name(aux_port), port_name(port));
1146 
1147 	return aux_port;
1148 }
1149 
g4x_aux_ctl_reg(struct drm_i915_private * dev_priv,enum port port)1150 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1151 				       enum port port)
1152 {
1153 	switch (port) {
1154 	case PORT_B:
1155 	case PORT_C:
1156 	case PORT_D:
1157 		return DP_AUX_CH_CTL(port);
1158 	default:
1159 		MISSING_CASE(port);
1160 		return DP_AUX_CH_CTL(PORT_B);
1161 	}
1162 }
1163 
g4x_aux_data_reg(struct drm_i915_private * dev_priv,enum port port,int index)1164 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1165 					enum port port, int index)
1166 {
1167 	switch (port) {
1168 	case PORT_B:
1169 	case PORT_C:
1170 	case PORT_D:
1171 		return DP_AUX_CH_DATA(port, index);
1172 	default:
1173 		MISSING_CASE(port);
1174 		return DP_AUX_CH_DATA(PORT_B, index);
1175 	}
1176 }
1177 
ilk_aux_ctl_reg(struct drm_i915_private * dev_priv,enum port port)1178 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1179 				       enum port port)
1180 {
1181 	switch (port) {
1182 	case PORT_A:
1183 		return DP_AUX_CH_CTL(port);
1184 	case PORT_B:
1185 	case PORT_C:
1186 	case PORT_D:
1187 		return PCH_DP_AUX_CH_CTL(port);
1188 	default:
1189 		MISSING_CASE(port);
1190 		return DP_AUX_CH_CTL(PORT_A);
1191 	}
1192 }
1193 
ilk_aux_data_reg(struct drm_i915_private * dev_priv,enum port port,int index)1194 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1195 					enum port port, int index)
1196 {
1197 	switch (port) {
1198 	case PORT_A:
1199 		return DP_AUX_CH_DATA(port, index);
1200 	case PORT_B:
1201 	case PORT_C:
1202 	case PORT_D:
1203 		return PCH_DP_AUX_CH_DATA(port, index);
1204 	default:
1205 		MISSING_CASE(port);
1206 		return DP_AUX_CH_DATA(PORT_A, index);
1207 	}
1208 }
1209 
skl_aux_ctl_reg(struct drm_i915_private * dev_priv,enum port port)1210 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1211 				       enum port port)
1212 {
1213 	switch (port) {
1214 	case PORT_A:
1215 	case PORT_B:
1216 	case PORT_C:
1217 	case PORT_D:
1218 		return DP_AUX_CH_CTL(port);
1219 	default:
1220 		MISSING_CASE(port);
1221 		return DP_AUX_CH_CTL(PORT_A);
1222 	}
1223 }
1224 
skl_aux_data_reg(struct drm_i915_private * dev_priv,enum port port,int index)1225 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1226 					enum port port, int index)
1227 {
1228 	switch (port) {
1229 	case PORT_A:
1230 	case PORT_B:
1231 	case PORT_C:
1232 	case PORT_D:
1233 		return DP_AUX_CH_DATA(port, index);
1234 	default:
1235 		MISSING_CASE(port);
1236 		return DP_AUX_CH_DATA(PORT_A, index);
1237 	}
1238 }
1239 
intel_aux_ctl_reg(struct drm_i915_private * dev_priv,enum port port)1240 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1241 					 enum port port)
1242 {
1243 	if (INTEL_INFO(dev_priv)->gen >= 9)
1244 		return skl_aux_ctl_reg(dev_priv, port);
1245 	else if (HAS_PCH_SPLIT(dev_priv))
1246 		return ilk_aux_ctl_reg(dev_priv, port);
1247 	else
1248 		return g4x_aux_ctl_reg(dev_priv, port);
1249 }
1250 
intel_aux_data_reg(struct drm_i915_private * dev_priv,enum port port,int index)1251 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1252 					  enum port port, int index)
1253 {
1254 	if (INTEL_INFO(dev_priv)->gen >= 9)
1255 		return skl_aux_data_reg(dev_priv, port, index);
1256 	else if (HAS_PCH_SPLIT(dev_priv))
1257 		return ilk_aux_data_reg(dev_priv, port, index);
1258 	else
1259 		return g4x_aux_data_reg(dev_priv, port, index);
1260 }
1261 
intel_aux_reg_init(struct intel_dp * intel_dp)1262 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1263 {
1264 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1265 	enum port port = intel_aux_port(dev_priv,
1266 					dp_to_dig_port(intel_dp)->port);
1267 	int i;
1268 
1269 	intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1270 	for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1271 		intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1272 }
1273 
1274 static void
intel_dp_aux_fini(struct intel_dp * intel_dp)1275 intel_dp_aux_fini(struct intel_dp *intel_dp)
1276 {
1277 	kfree(intel_dp->aux.name);
1278 }
1279 
1280 static void
intel_dp_aux_init(struct intel_dp * intel_dp)1281 intel_dp_aux_init(struct intel_dp *intel_dp)
1282 {
1283 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284 	enum port port = intel_dig_port->port;
1285 
1286 	intel_aux_reg_init(intel_dp);
1287 	drm_dp_aux_init(&intel_dp->aux);
1288 
1289 	/* Failure to allocate our preferred name is not critical */
1290 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1291 	intel_dp->aux.transfer = intel_dp_aux_transfer;
1292 }
1293 
1294 static int
intel_dp_sink_rates(struct intel_dp * intel_dp,const int ** sink_rates)1295 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1296 {
1297 	if (intel_dp->num_sink_rates) {
1298 		*sink_rates = intel_dp->sink_rates;
1299 		return intel_dp->num_sink_rates;
1300 	}
1301 
1302 	*sink_rates = default_rates;
1303 
1304 	return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1305 }
1306 
intel_dp_source_supports_hbr2(struct intel_dp * intel_dp)1307 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1308 {
1309 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1310 	struct drm_device *dev = dig_port->base.base.dev;
1311 
1312 	/* WaDisableHBR2:skl */
1313 	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1314 		return false;
1315 
1316 	if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1317 	    (INTEL_INFO(dev)->gen >= 9))
1318 		return true;
1319 	else
1320 		return false;
1321 }
1322 
1323 static int
intel_dp_source_rates(struct intel_dp * intel_dp,const int ** source_rates)1324 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1325 {
1326 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1327 	struct drm_device *dev = dig_port->base.base.dev;
1328 	int size;
1329 
1330 	if (IS_BROXTON(dev)) {
1331 		*source_rates = bxt_rates;
1332 		size = ARRAY_SIZE(bxt_rates);
1333 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1334 		*source_rates = skl_rates;
1335 		size = ARRAY_SIZE(skl_rates);
1336 	} else {
1337 		*source_rates = default_rates;
1338 		size = ARRAY_SIZE(default_rates);
1339 	}
1340 
1341 	/* This depends on the fact that 5.4 is last value in the array */
1342 	if (!intel_dp_source_supports_hbr2(intel_dp))
1343 		size--;
1344 
1345 	return size;
1346 }
1347 
1348 static void
intel_dp_set_clock(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1349 intel_dp_set_clock(struct intel_encoder *encoder,
1350 		   struct intel_crtc_state *pipe_config)
1351 {
1352 	struct drm_device *dev = encoder->base.dev;
1353 	const struct dp_link_dpll *divisor = NULL;
1354 	int i, count = 0;
1355 
1356 	if (IS_G4X(dev)) {
1357 		divisor = gen4_dpll;
1358 		count = ARRAY_SIZE(gen4_dpll);
1359 	} else if (HAS_PCH_SPLIT(dev)) {
1360 		divisor = pch_dpll;
1361 		count = ARRAY_SIZE(pch_dpll);
1362 	} else if (IS_CHERRYVIEW(dev)) {
1363 		divisor = chv_dpll;
1364 		count = ARRAY_SIZE(chv_dpll);
1365 	} else if (IS_VALLEYVIEW(dev)) {
1366 		divisor = vlv_dpll;
1367 		count = ARRAY_SIZE(vlv_dpll);
1368 	}
1369 
1370 	if (divisor && count) {
1371 		for (i = 0; i < count; i++) {
1372 			if (pipe_config->port_clock == divisor[i].clock) {
1373 				pipe_config->dpll = divisor[i].dpll;
1374 				pipe_config->clock_set = true;
1375 				break;
1376 			}
1377 		}
1378 	}
1379 }
1380 
intersect_rates(const int * source_rates,int source_len,const int * sink_rates,int sink_len,int * common_rates)1381 static int intersect_rates(const int *source_rates, int source_len,
1382 			   const int *sink_rates, int sink_len,
1383 			   int *common_rates)
1384 {
1385 	int i = 0, j = 0, k = 0;
1386 
1387 	while (i < source_len && j < sink_len) {
1388 		if (source_rates[i] == sink_rates[j]) {
1389 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1390 				return k;
1391 			common_rates[k] = source_rates[i];
1392 			++k;
1393 			++i;
1394 			++j;
1395 		} else if (source_rates[i] < sink_rates[j]) {
1396 			++i;
1397 		} else {
1398 			++j;
1399 		}
1400 	}
1401 	return k;
1402 }
1403 
intel_dp_common_rates(struct intel_dp * intel_dp,int * common_rates)1404 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1405 				 int *common_rates)
1406 {
1407 	const int *source_rates, *sink_rates;
1408 	int source_len, sink_len;
1409 
1410 	sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1411 	source_len = intel_dp_source_rates(intel_dp, &source_rates);
1412 
1413 	return intersect_rates(source_rates, source_len,
1414 			       sink_rates, sink_len,
1415 			       common_rates);
1416 }
1417 
snprintf_int_array(char * str,size_t len,const int * array,int nelem)1418 static void snprintf_int_array(char *str, size_t len,
1419 			       const int *array, int nelem)
1420 {
1421 	int i;
1422 
1423 	str[0] = '\0';
1424 
1425 	for (i = 0; i < nelem; i++) {
1426 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1427 		if (r >= len)
1428 			return;
1429 		str += r;
1430 		len -= r;
1431 	}
1432 }
1433 
intel_dp_print_rates(struct intel_dp * intel_dp)1434 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1435 {
1436 	const int *source_rates, *sink_rates;
1437 	int source_len, sink_len, common_len;
1438 	int common_rates[DP_MAX_SUPPORTED_RATES];
1439 	char str[128]; /* FIXME: too big for stack? */
1440 
1441 	if ((drm_debug & DRM_UT_KMS) == 0)
1442 		return;
1443 
1444 	source_len = intel_dp_source_rates(intel_dp, &source_rates);
1445 	snprintf_int_array(str, sizeof(str), source_rates, source_len);
1446 	DRM_DEBUG_KMS("source rates: %s\n", str);
1447 
1448 	sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1449 	snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1450 	DRM_DEBUG_KMS("sink rates: %s\n", str);
1451 
1452 	common_len = intel_dp_common_rates(intel_dp, common_rates);
1453 	snprintf_int_array(str, sizeof(str), common_rates, common_len);
1454 	DRM_DEBUG_KMS("common rates: %s\n", str);
1455 }
1456 
intel_dp_print_hw_revision(struct intel_dp * intel_dp)1457 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1458 {
1459 	uint8_t rev;
1460 	int len;
1461 
1462 	if ((drm_debug & DRM_UT_KMS) == 0)
1463 		return;
1464 
1465 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1466 	      DP_DWN_STRM_PORT_PRESENT))
1467 		return;
1468 
1469 	len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1470 	if (len < 0)
1471 		return;
1472 
1473 	DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1474 }
1475 
intel_dp_print_sw_revision(struct intel_dp * intel_dp)1476 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1477 {
1478 	uint8_t rev[2];
1479 	int len;
1480 
1481 	if ((drm_debug & DRM_UT_KMS) == 0)
1482 		return;
1483 
1484 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1485 	      DP_DWN_STRM_PORT_PRESENT))
1486 		return;
1487 
1488 	len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1489 	if (len < 0)
1490 		return;
1491 
1492 	DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1493 }
1494 
rate_to_index(int find,const int * rates)1495 static int rate_to_index(int find, const int *rates)
1496 {
1497 	int i = 0;
1498 
1499 	for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1500 		if (find == rates[i])
1501 			break;
1502 
1503 	return i;
1504 }
1505 
1506 int
intel_dp_max_link_rate(struct intel_dp * intel_dp)1507 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1508 {
1509 	int rates[DP_MAX_SUPPORTED_RATES] = {};
1510 	int len;
1511 
1512 	len = intel_dp_common_rates(intel_dp, rates);
1513 	if (WARN_ON(len <= 0))
1514 		return 162000;
1515 
1516 	return rates[len - 1];
1517 }
1518 
intel_dp_rate_select(struct intel_dp * intel_dp,int rate)1519 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1520 {
1521 	return rate_to_index(rate, intel_dp->sink_rates);
1522 }
1523 
intel_dp_compute_rate(struct intel_dp * intel_dp,int port_clock,uint8_t * link_bw,uint8_t * rate_select)1524 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1525 			   uint8_t *link_bw, uint8_t *rate_select)
1526 {
1527 	if (intel_dp->num_sink_rates) {
1528 		*link_bw = 0;
1529 		*rate_select =
1530 			intel_dp_rate_select(intel_dp, port_clock);
1531 	} else {
1532 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1533 		*rate_select = 0;
1534 	}
1535 }
1536 
intel_dp_compute_bpp(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config)1537 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1538 				struct intel_crtc_state *pipe_config)
1539 {
1540 	int bpp, bpc;
1541 
1542 	bpp = pipe_config->pipe_bpp;
1543 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1544 
1545 	if (bpc > 0)
1546 		bpp = min(bpp, 3*bpc);
1547 
1548 	return bpp;
1549 }
1550 
1551 bool
intel_dp_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)1552 intel_dp_compute_config(struct intel_encoder *encoder,
1553 			struct intel_crtc_state *pipe_config,
1554 			struct drm_connector_state *conn_state)
1555 {
1556 	struct drm_device *dev = encoder->base.dev;
1557 	struct drm_i915_private *dev_priv = to_i915(dev);
1558 	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1559 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1560 	enum port port = dp_to_dig_port(intel_dp)->port;
1561 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1562 	struct intel_connector *intel_connector = intel_dp->attached_connector;
1563 	int lane_count, clock;
1564 	int min_lane_count = 1;
1565 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
1566 	/* Conveniently, the link BW constants become indices with a shift...*/
1567 	int min_clock = 0;
1568 	int max_clock;
1569 	int bpp, mode_rate;
1570 	int link_avail, link_clock;
1571 	int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1572 	int common_len;
1573 	uint8_t link_bw, rate_select;
1574 
1575 	common_len = intel_dp_common_rates(intel_dp, common_rates);
1576 
1577 	/* No common link rates between source and sink */
1578 	WARN_ON(common_len <= 0);
1579 
1580 	max_clock = common_len - 1;
1581 
1582 	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1583 		pipe_config->has_pch_encoder = true;
1584 
1585 	pipe_config->has_drrs = false;
1586 	pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1587 
1588 	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1589 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1590 				       adjusted_mode);
1591 
1592 		if (INTEL_INFO(dev)->gen >= 9) {
1593 			int ret;
1594 			ret = skl_update_scaler_crtc(pipe_config);
1595 			if (ret)
1596 				return ret;
1597 		}
1598 
1599 		if (HAS_GMCH_DISPLAY(dev))
1600 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
1601 						 intel_connector->panel.fitting_mode);
1602 		else
1603 			intel_pch_panel_fitting(intel_crtc, pipe_config,
1604 						intel_connector->panel.fitting_mode);
1605 	}
1606 
1607 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1608 		return false;
1609 
1610 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
1611 		      "max bw %d pixel clock %iKHz\n",
1612 		      max_lane_count, common_rates[max_clock],
1613 		      adjusted_mode->crtc_clock);
1614 
1615 	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
1616 	 * bpc in between. */
1617 	bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1618 	if (is_edp(intel_dp)) {
1619 
1620 		/* Get bpp from vbt only for panels that dont have bpp in edid */
1621 		if (intel_connector->base.display_info.bpc == 0 &&
1622 			(dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1623 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1624 				      dev_priv->vbt.edp.bpp);
1625 			bpp = dev_priv->vbt.edp.bpp;
1626 		}
1627 
1628 		/*
1629 		 * Use the maximum clock and number of lanes the eDP panel
1630 		 * advertizes being capable of. The panels are generally
1631 		 * designed to support only a single clock and lane
1632 		 * configuration, and typically these values correspond to the
1633 		 * native resolution of the panel.
1634 		 */
1635 		min_lane_count = max_lane_count;
1636 		min_clock = max_clock;
1637 	}
1638 
1639 	for (; bpp >= 6*3; bpp -= 2*3) {
1640 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1641 						   bpp);
1642 
1643 		for (clock = min_clock; clock <= max_clock; clock++) {
1644 			for (lane_count = min_lane_count;
1645 				lane_count <= max_lane_count;
1646 				lane_count <<= 1) {
1647 
1648 				link_clock = common_rates[clock];
1649 				link_avail = intel_dp_max_data_rate(link_clock,
1650 								    lane_count);
1651 
1652 				if (mode_rate <= link_avail) {
1653 					goto found;
1654 				}
1655 			}
1656 		}
1657 	}
1658 
1659 	return false;
1660 
1661 found:
1662 	if (intel_dp->color_range_auto) {
1663 		/*
1664 		 * See:
1665 		 * CEA-861-E - 5.1 Default Encoding Parameters
1666 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1667 		 */
1668 		pipe_config->limited_color_range =
1669 			bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1670 	} else {
1671 		pipe_config->limited_color_range =
1672 			intel_dp->limited_color_range;
1673 	}
1674 
1675 	pipe_config->lane_count = lane_count;
1676 
1677 	pipe_config->pipe_bpp = bpp;
1678 	pipe_config->port_clock = common_rates[clock];
1679 
1680 	intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1681 			      &link_bw, &rate_select);
1682 
1683 	DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1684 		      link_bw, rate_select, pipe_config->lane_count,
1685 		      pipe_config->port_clock, bpp);
1686 	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1687 		      mode_rate, link_avail);
1688 
1689 	intel_link_compute_m_n(bpp, lane_count,
1690 			       adjusted_mode->crtc_clock,
1691 			       pipe_config->port_clock,
1692 			       &pipe_config->dp_m_n);
1693 
1694 	if (intel_connector->panel.downclock_mode != NULL &&
1695 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1696 			pipe_config->has_drrs = true;
1697 			intel_link_compute_m_n(bpp, lane_count,
1698 				intel_connector->panel.downclock_mode->clock,
1699 				pipe_config->port_clock,
1700 				&pipe_config->dp_m2_n2);
1701 	}
1702 
1703 	/*
1704 	 * DPLL0 VCO may need to be adjusted to get the correct
1705 	 * clock for eDP. This will affect cdclk as well.
1706 	 */
1707 	if (is_edp(intel_dp) &&
1708 	    (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1709 		int vco;
1710 
1711 		switch (pipe_config->port_clock / 2) {
1712 		case 108000:
1713 		case 216000:
1714 			vco = 8640000;
1715 			break;
1716 		default:
1717 			vco = 8100000;
1718 			break;
1719 		}
1720 
1721 		to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1722 	}
1723 
1724 	if (!HAS_DDI(dev))
1725 		intel_dp_set_clock(encoder, pipe_config);
1726 
1727 	return true;
1728 }
1729 
intel_dp_set_link_params(struct intel_dp * intel_dp,int link_rate,uint8_t lane_count,bool link_mst)1730 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1731 			      int link_rate, uint8_t lane_count,
1732 			      bool link_mst)
1733 {
1734 	intel_dp->link_rate = link_rate;
1735 	intel_dp->lane_count = lane_count;
1736 	intel_dp->link_mst = link_mst;
1737 }
1738 
intel_dp_prepare(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1739 static void intel_dp_prepare(struct intel_encoder *encoder,
1740 			     struct intel_crtc_state *pipe_config)
1741 {
1742 	struct drm_device *dev = encoder->base.dev;
1743 	struct drm_i915_private *dev_priv = to_i915(dev);
1744 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1745 	enum port port = dp_to_dig_port(intel_dp)->port;
1746 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1747 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1748 
1749 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1750 				 pipe_config->lane_count,
1751 				 intel_crtc_has_type(pipe_config,
1752 						     INTEL_OUTPUT_DP_MST));
1753 
1754 	/*
1755 	 * There are four kinds of DP registers:
1756 	 *
1757 	 * 	IBX PCH
1758 	 * 	SNB CPU
1759 	 *	IVB CPU
1760 	 * 	CPT PCH
1761 	 *
1762 	 * IBX PCH and CPU are the same for almost everything,
1763 	 * except that the CPU DP PLL is configured in this
1764 	 * register
1765 	 *
1766 	 * CPT PCH is quite different, having many bits moved
1767 	 * to the TRANS_DP_CTL register instead. That
1768 	 * configuration happens (oddly) in ironlake_pch_enable
1769 	 */
1770 
1771 	/* Preserve the BIOS-computed detected bit. This is
1772 	 * supposed to be read-only.
1773 	 */
1774 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1775 
1776 	/* Handle DP bits in common between all three register formats */
1777 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1778 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1779 
1780 	/* Split out the IBX/CPU vs CPT settings */
1781 
1782 	if (IS_GEN7(dev) && port == PORT_A) {
1783 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1784 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1785 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1786 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1787 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1788 
1789 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1790 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1791 
1792 		intel_dp->DP |= crtc->pipe << 29;
1793 	} else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1794 		u32 trans_dp;
1795 
1796 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1797 
1798 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1799 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1800 			trans_dp |= TRANS_DP_ENH_FRAMING;
1801 		else
1802 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
1803 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1804 	} else {
1805 		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1806 		    !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1807 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
1808 
1809 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1810 			intel_dp->DP |= DP_SYNC_HS_HIGH;
1811 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1812 			intel_dp->DP |= DP_SYNC_VS_HIGH;
1813 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1814 
1815 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1816 			intel_dp->DP |= DP_ENHANCED_FRAMING;
1817 
1818 		if (IS_CHERRYVIEW(dev))
1819 			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1820 		else if (crtc->pipe == PIPE_B)
1821 			intel_dp->DP |= DP_PIPEB_SELECT;
1822 	}
1823 }
1824 
1825 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1826 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1827 
1828 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1829 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1830 
1831 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1832 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1833 
1834 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1835 				   struct intel_dp *intel_dp);
1836 
wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)1837 static void wait_panel_status(struct intel_dp *intel_dp,
1838 				       u32 mask,
1839 				       u32 value)
1840 {
1841 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1842 	struct drm_i915_private *dev_priv = to_i915(dev);
1843 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
1844 
1845 	lockdep_assert_held(&dev_priv->pps_mutex);
1846 
1847 	intel_pps_verify_state(dev_priv, intel_dp);
1848 
1849 	pp_stat_reg = _pp_stat_reg(intel_dp);
1850 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1851 
1852 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1853 			mask, value,
1854 			I915_READ(pp_stat_reg),
1855 			I915_READ(pp_ctrl_reg));
1856 
1857 	if (intel_wait_for_register(dev_priv,
1858 				    pp_stat_reg, mask, value,
1859 				    5000))
1860 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1861 				I915_READ(pp_stat_reg),
1862 				I915_READ(pp_ctrl_reg));
1863 
1864 	DRM_DEBUG_KMS("Wait complete\n");
1865 }
1866 
wait_panel_on(struct intel_dp * intel_dp)1867 static void wait_panel_on(struct intel_dp *intel_dp)
1868 {
1869 	DRM_DEBUG_KMS("Wait for panel power on\n");
1870 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1871 }
1872 
wait_panel_off(struct intel_dp * intel_dp)1873 static void wait_panel_off(struct intel_dp *intel_dp)
1874 {
1875 	DRM_DEBUG_KMS("Wait for panel power off time\n");
1876 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1877 }
1878 
wait_panel_power_cycle(struct intel_dp * intel_dp)1879 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1880 {
1881 	ktime_t panel_power_on_time;
1882 	s64 panel_power_off_duration;
1883 
1884 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1885 
1886 	/* take the difference of currrent time and panel power off time
1887 	 * and then make panel wait for t11_t12 if needed. */
1888 	panel_power_on_time = ktime_get_boottime();
1889 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1890 
1891 	/* When we disable the VDD override bit last we have to do the manual
1892 	 * wait. */
1893 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1894 		wait_remaining_ms_from_jiffies(jiffies,
1895 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1896 
1897 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1898 }
1899 
wait_backlight_on(struct intel_dp * intel_dp)1900 static void wait_backlight_on(struct intel_dp *intel_dp)
1901 {
1902 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1903 				       intel_dp->backlight_on_delay);
1904 }
1905 
edp_wait_backlight_off(struct intel_dp * intel_dp)1906 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1907 {
1908 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1909 				       intel_dp->backlight_off_delay);
1910 }
1911 
1912 /* Read the current pp_control value, unlocking the register if it
1913  * is locked
1914  */
1915 
ironlake_get_pp_control(struct intel_dp * intel_dp)1916 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1917 {
1918 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1919 	struct drm_i915_private *dev_priv = to_i915(dev);
1920 	u32 control;
1921 
1922 	lockdep_assert_held(&dev_priv->pps_mutex);
1923 
1924 	control = I915_READ(_pp_ctrl_reg(intel_dp));
1925 	if (WARN_ON(!HAS_DDI(dev_priv) &&
1926 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1927 		control &= ~PANEL_UNLOCK_MASK;
1928 		control |= PANEL_UNLOCK_REGS;
1929 	}
1930 	return control;
1931 }
1932 
1933 /*
1934  * Must be paired with edp_panel_vdd_off().
1935  * Must hold pps_mutex around the whole on/off sequence.
1936  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1937  */
edp_panel_vdd_on(struct intel_dp * intel_dp)1938 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1939 {
1940 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1941 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1942 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1943 	struct drm_i915_private *dev_priv = to_i915(dev);
1944 	enum intel_display_power_domain power_domain;
1945 	u32 pp;
1946 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
1947 	bool need_to_disable = !intel_dp->want_panel_vdd;
1948 
1949 	lockdep_assert_held(&dev_priv->pps_mutex);
1950 
1951 	if (!is_edp(intel_dp))
1952 		return false;
1953 
1954 	cancel_delayed_work(&intel_dp->panel_vdd_work);
1955 	intel_dp->want_panel_vdd = true;
1956 
1957 	if (edp_have_panel_vdd(intel_dp))
1958 		return need_to_disable;
1959 
1960 	power_domain = intel_display_port_aux_power_domain(intel_encoder);
1961 	intel_display_power_get(dev_priv, power_domain);
1962 
1963 	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1964 		      port_name(intel_dig_port->port));
1965 
1966 	if (!edp_have_panel_power(intel_dp))
1967 		wait_panel_power_cycle(intel_dp);
1968 
1969 	pp = ironlake_get_pp_control(intel_dp);
1970 	pp |= EDP_FORCE_VDD;
1971 
1972 	pp_stat_reg = _pp_stat_reg(intel_dp);
1973 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1974 
1975 	I915_WRITE(pp_ctrl_reg, pp);
1976 	POSTING_READ(pp_ctrl_reg);
1977 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1978 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1979 	/*
1980 	 * If the panel wasn't on, delay before accessing aux channel
1981 	 */
1982 	if (!edp_have_panel_power(intel_dp)) {
1983 		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1984 			      port_name(intel_dig_port->port));
1985 		msleep(intel_dp->panel_power_up_delay);
1986 	}
1987 
1988 	return need_to_disable;
1989 }
1990 
1991 /*
1992  * Must be paired with intel_edp_panel_vdd_off() or
1993  * intel_edp_panel_off().
1994  * Nested calls to these functions are not allowed since
1995  * we drop the lock. Caller must use some higher level
1996  * locking to prevent nested calls from other threads.
1997  */
intel_edp_panel_vdd_on(struct intel_dp * intel_dp)1998 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1999 {
2000 	bool vdd;
2001 
2002 	if (!is_edp(intel_dp))
2003 		return;
2004 
2005 	pps_lock(intel_dp);
2006 	vdd = edp_panel_vdd_on(intel_dp);
2007 	pps_unlock(intel_dp);
2008 
2009 	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2010 	     port_name(dp_to_dig_port(intel_dp)->port));
2011 }
2012 
edp_panel_vdd_off_sync(struct intel_dp * intel_dp)2013 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2014 {
2015 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2016 	struct drm_i915_private *dev_priv = to_i915(dev);
2017 	struct intel_digital_port *intel_dig_port =
2018 		dp_to_dig_port(intel_dp);
2019 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2020 	enum intel_display_power_domain power_domain;
2021 	u32 pp;
2022 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2023 
2024 	lockdep_assert_held(&dev_priv->pps_mutex);
2025 
2026 	WARN_ON(intel_dp->want_panel_vdd);
2027 
2028 	if (!edp_have_panel_vdd(intel_dp))
2029 		return;
2030 
2031 	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2032 		      port_name(intel_dig_port->port));
2033 
2034 	pp = ironlake_get_pp_control(intel_dp);
2035 	pp &= ~EDP_FORCE_VDD;
2036 
2037 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2038 	pp_stat_reg = _pp_stat_reg(intel_dp);
2039 
2040 	I915_WRITE(pp_ctrl_reg, pp);
2041 	POSTING_READ(pp_ctrl_reg);
2042 
2043 	/* Make sure sequencer is idle before allowing subsequent activity */
2044 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2045 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2046 
2047 	if ((pp & PANEL_POWER_ON) == 0)
2048 		intel_dp->panel_power_off_time = ktime_get_boottime();
2049 
2050 	power_domain = intel_display_port_aux_power_domain(intel_encoder);
2051 	intel_display_power_put(dev_priv, power_domain);
2052 }
2053 
edp_panel_vdd_work(struct work_struct * __work)2054 static void edp_panel_vdd_work(struct work_struct *__work)
2055 {
2056 	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2057 						 struct intel_dp, panel_vdd_work);
2058 
2059 	pps_lock(intel_dp);
2060 	if (!intel_dp->want_panel_vdd)
2061 		edp_panel_vdd_off_sync(intel_dp);
2062 	pps_unlock(intel_dp);
2063 }
2064 
edp_panel_vdd_schedule_off(struct intel_dp * intel_dp)2065 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2066 {
2067 	unsigned long delay;
2068 
2069 	/*
2070 	 * Queue the timer to fire a long time from now (relative to the power
2071 	 * down delay) to keep the panel power up across a sequence of
2072 	 * operations.
2073 	 */
2074 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2075 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2076 }
2077 
2078 /*
2079  * Must be paired with edp_panel_vdd_on().
2080  * Must hold pps_mutex around the whole on/off sequence.
2081  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2082  */
edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)2083 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2084 {
2085 	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2086 
2087 	lockdep_assert_held(&dev_priv->pps_mutex);
2088 
2089 	if (!is_edp(intel_dp))
2090 		return;
2091 
2092 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2093 	     port_name(dp_to_dig_port(intel_dp)->port));
2094 
2095 	intel_dp->want_panel_vdd = false;
2096 
2097 	if (sync)
2098 		edp_panel_vdd_off_sync(intel_dp);
2099 	else
2100 		edp_panel_vdd_schedule_off(intel_dp);
2101 }
2102 
edp_panel_on(struct intel_dp * intel_dp)2103 static void edp_panel_on(struct intel_dp *intel_dp)
2104 {
2105 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2106 	struct drm_i915_private *dev_priv = to_i915(dev);
2107 	u32 pp;
2108 	i915_reg_t pp_ctrl_reg;
2109 
2110 	lockdep_assert_held(&dev_priv->pps_mutex);
2111 
2112 	if (!is_edp(intel_dp))
2113 		return;
2114 
2115 	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2116 		      port_name(dp_to_dig_port(intel_dp)->port));
2117 
2118 	if (WARN(edp_have_panel_power(intel_dp),
2119 		 "eDP port %c panel power already on\n",
2120 		 port_name(dp_to_dig_port(intel_dp)->port)))
2121 		return;
2122 
2123 	wait_panel_power_cycle(intel_dp);
2124 
2125 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2126 	pp = ironlake_get_pp_control(intel_dp);
2127 	if (IS_GEN5(dev)) {
2128 		/* ILK workaround: disable reset around power sequence */
2129 		pp &= ~PANEL_POWER_RESET;
2130 		I915_WRITE(pp_ctrl_reg, pp);
2131 		POSTING_READ(pp_ctrl_reg);
2132 	}
2133 
2134 	pp |= PANEL_POWER_ON;
2135 	if (!IS_GEN5(dev))
2136 		pp |= PANEL_POWER_RESET;
2137 
2138 	I915_WRITE(pp_ctrl_reg, pp);
2139 	POSTING_READ(pp_ctrl_reg);
2140 
2141 	wait_panel_on(intel_dp);
2142 	intel_dp->last_power_on = jiffies;
2143 
2144 	if (IS_GEN5(dev)) {
2145 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2146 		I915_WRITE(pp_ctrl_reg, pp);
2147 		POSTING_READ(pp_ctrl_reg);
2148 	}
2149 }
2150 
intel_edp_panel_on(struct intel_dp * intel_dp)2151 void intel_edp_panel_on(struct intel_dp *intel_dp)
2152 {
2153 	if (!is_edp(intel_dp))
2154 		return;
2155 
2156 	pps_lock(intel_dp);
2157 	edp_panel_on(intel_dp);
2158 	pps_unlock(intel_dp);
2159 }
2160 
2161 
edp_panel_off(struct intel_dp * intel_dp)2162 static void edp_panel_off(struct intel_dp *intel_dp)
2163 {
2164 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2165 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2166 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2167 	struct drm_i915_private *dev_priv = to_i915(dev);
2168 	enum intel_display_power_domain power_domain;
2169 	u32 pp;
2170 	i915_reg_t pp_ctrl_reg;
2171 
2172 	lockdep_assert_held(&dev_priv->pps_mutex);
2173 
2174 	if (!is_edp(intel_dp))
2175 		return;
2176 
2177 	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2178 		      port_name(dp_to_dig_port(intel_dp)->port));
2179 
2180 	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2181 	     port_name(dp_to_dig_port(intel_dp)->port));
2182 
2183 	pp = ironlake_get_pp_control(intel_dp);
2184 	/* We need to switch off panel power _and_ force vdd, for otherwise some
2185 	 * panels get very unhappy and cease to work. */
2186 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2187 		EDP_BLC_ENABLE);
2188 
2189 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2190 
2191 	intel_dp->want_panel_vdd = false;
2192 
2193 	I915_WRITE(pp_ctrl_reg, pp);
2194 	POSTING_READ(pp_ctrl_reg);
2195 
2196 	wait_panel_off(intel_dp);
2197 	intel_dp->panel_power_off_time = ktime_get_boottime();
2198 
2199 	/* We got a reference when we enabled the VDD. */
2200 	power_domain = intel_display_port_aux_power_domain(intel_encoder);
2201 	intel_display_power_put(dev_priv, power_domain);
2202 }
2203 
intel_edp_panel_off(struct intel_dp * intel_dp)2204 void intel_edp_panel_off(struct intel_dp *intel_dp)
2205 {
2206 	if (!is_edp(intel_dp))
2207 		return;
2208 
2209 	pps_lock(intel_dp);
2210 	edp_panel_off(intel_dp);
2211 	pps_unlock(intel_dp);
2212 }
2213 
2214 /* Enable backlight in the panel power control. */
_intel_edp_backlight_on(struct intel_dp * intel_dp)2215 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2216 {
2217 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2218 	struct drm_device *dev = intel_dig_port->base.base.dev;
2219 	struct drm_i915_private *dev_priv = to_i915(dev);
2220 	u32 pp;
2221 	i915_reg_t pp_ctrl_reg;
2222 
2223 	/*
2224 	 * If we enable the backlight right away following a panel power
2225 	 * on, we may see slight flicker as the panel syncs with the eDP
2226 	 * link.  So delay a bit to make sure the image is solid before
2227 	 * allowing it to appear.
2228 	 */
2229 	wait_backlight_on(intel_dp);
2230 
2231 	pps_lock(intel_dp);
2232 
2233 	pp = ironlake_get_pp_control(intel_dp);
2234 	pp |= EDP_BLC_ENABLE;
2235 
2236 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2237 
2238 	I915_WRITE(pp_ctrl_reg, pp);
2239 	POSTING_READ(pp_ctrl_reg);
2240 
2241 	pps_unlock(intel_dp);
2242 }
2243 
2244 /* Enable backlight PWM and backlight PP control. */
intel_edp_backlight_on(struct intel_dp * intel_dp)2245 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2246 {
2247 	if (!is_edp(intel_dp))
2248 		return;
2249 
2250 	DRM_DEBUG_KMS("\n");
2251 
2252 	intel_panel_enable_backlight(intel_dp->attached_connector);
2253 	_intel_edp_backlight_on(intel_dp);
2254 }
2255 
2256 /* Disable backlight in the panel power control. */
_intel_edp_backlight_off(struct intel_dp * intel_dp)2257 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2258 {
2259 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2260 	struct drm_i915_private *dev_priv = to_i915(dev);
2261 	u32 pp;
2262 	i915_reg_t pp_ctrl_reg;
2263 
2264 	if (!is_edp(intel_dp))
2265 		return;
2266 
2267 	pps_lock(intel_dp);
2268 
2269 	pp = ironlake_get_pp_control(intel_dp);
2270 	pp &= ~EDP_BLC_ENABLE;
2271 
2272 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2273 
2274 	I915_WRITE(pp_ctrl_reg, pp);
2275 	POSTING_READ(pp_ctrl_reg);
2276 
2277 	pps_unlock(intel_dp);
2278 
2279 	intel_dp->last_backlight_off = jiffies;
2280 	edp_wait_backlight_off(intel_dp);
2281 }
2282 
2283 /* Disable backlight PP control and backlight PWM. */
intel_edp_backlight_off(struct intel_dp * intel_dp)2284 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2285 {
2286 	if (!is_edp(intel_dp))
2287 		return;
2288 
2289 	DRM_DEBUG_KMS("\n");
2290 
2291 	_intel_edp_backlight_off(intel_dp);
2292 	intel_panel_disable_backlight(intel_dp->attached_connector);
2293 }
2294 
2295 /*
2296  * Hook for controlling the panel power control backlight through the bl_power
2297  * sysfs attribute. Take care to handle multiple calls.
2298  */
intel_edp_backlight_power(struct intel_connector * connector,bool enable)2299 static void intel_edp_backlight_power(struct intel_connector *connector,
2300 				      bool enable)
2301 {
2302 	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2303 	bool is_enabled;
2304 
2305 	pps_lock(intel_dp);
2306 	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2307 	pps_unlock(intel_dp);
2308 
2309 	if (is_enabled == enable)
2310 		return;
2311 
2312 	DRM_DEBUG_KMS("panel power control backlight %s\n",
2313 		      enable ? "enable" : "disable");
2314 
2315 	if (enable)
2316 		_intel_edp_backlight_on(intel_dp);
2317 	else
2318 		_intel_edp_backlight_off(intel_dp);
2319 }
2320 
assert_dp_port(struct intel_dp * intel_dp,bool state)2321 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2322 {
2323 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2324 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2325 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2326 
2327 	I915_STATE_WARN(cur_state != state,
2328 			"DP port %c state assertion failure (expected %s, current %s)\n",
2329 			port_name(dig_port->port),
2330 			onoff(state), onoff(cur_state));
2331 }
2332 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2333 
assert_edp_pll(struct drm_i915_private * dev_priv,bool state)2334 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2335 {
2336 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2337 
2338 	I915_STATE_WARN(cur_state != state,
2339 			"eDP PLL state assertion failure (expected %s, current %s)\n",
2340 			onoff(state), onoff(cur_state));
2341 }
2342 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2343 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2344 
ironlake_edp_pll_on(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config)2345 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2346 				struct intel_crtc_state *pipe_config)
2347 {
2348 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2349 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2350 
2351 	assert_pipe_disabled(dev_priv, crtc->pipe);
2352 	assert_dp_port_disabled(intel_dp);
2353 	assert_edp_pll_disabled(dev_priv);
2354 
2355 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2356 		      pipe_config->port_clock);
2357 
2358 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2359 
2360 	if (pipe_config->port_clock == 162000)
2361 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2362 	else
2363 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2364 
2365 	I915_WRITE(DP_A, intel_dp->DP);
2366 	POSTING_READ(DP_A);
2367 	udelay(500);
2368 
2369 	/*
2370 	 * [DevILK] Work around required when enabling DP PLL
2371 	 * while a pipe is enabled going to FDI:
2372 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2373 	 * 2. Program DP PLL enable
2374 	 */
2375 	if (IS_GEN5(dev_priv))
2376 		intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2377 
2378 	intel_dp->DP |= DP_PLL_ENABLE;
2379 
2380 	I915_WRITE(DP_A, intel_dp->DP);
2381 	POSTING_READ(DP_A);
2382 	udelay(200);
2383 }
2384 
ironlake_edp_pll_off(struct intel_dp * intel_dp)2385 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2386 {
2387 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2388 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2389 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2390 
2391 	assert_pipe_disabled(dev_priv, crtc->pipe);
2392 	assert_dp_port_disabled(intel_dp);
2393 	assert_edp_pll_enabled(dev_priv);
2394 
2395 	DRM_DEBUG_KMS("disabling eDP PLL\n");
2396 
2397 	intel_dp->DP &= ~DP_PLL_ENABLE;
2398 
2399 	I915_WRITE(DP_A, intel_dp->DP);
2400 	POSTING_READ(DP_A);
2401 	udelay(200);
2402 }
2403 
2404 /* If the sink supports it, try to set the power state appropriately */
intel_dp_sink_dpms(struct intel_dp * intel_dp,int mode)2405 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2406 {
2407 	int ret, i;
2408 
2409 	/* Should have a valid DPCD by this point */
2410 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2411 		return;
2412 
2413 	if (mode != DRM_MODE_DPMS_ON) {
2414 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2415 					 DP_SET_POWER_D3);
2416 	} else {
2417 		/*
2418 		 * When turning on, we need to retry for 1ms to give the sink
2419 		 * time to wake up.
2420 		 */
2421 		for (i = 0; i < 3; i++) {
2422 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2423 						 DP_SET_POWER_D0);
2424 			if (ret == 1)
2425 				break;
2426 			msleep(1);
2427 		}
2428 	}
2429 
2430 	if (ret != 1)
2431 		DRM_DEBUG_KMS("failed to %s sink power state\n",
2432 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2433 }
2434 
intel_dp_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)2435 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2436 				  enum pipe *pipe)
2437 {
2438 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2439 	enum port port = dp_to_dig_port(intel_dp)->port;
2440 	struct drm_device *dev = encoder->base.dev;
2441 	struct drm_i915_private *dev_priv = to_i915(dev);
2442 	enum intel_display_power_domain power_domain;
2443 	u32 tmp;
2444 	bool ret;
2445 
2446 	power_domain = intel_display_port_power_domain(encoder);
2447 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2448 		return false;
2449 
2450 	ret = false;
2451 
2452 	tmp = I915_READ(intel_dp->output_reg);
2453 
2454 	if (!(tmp & DP_PORT_EN))
2455 		goto out;
2456 
2457 	if (IS_GEN7(dev) && port == PORT_A) {
2458 		*pipe = PORT_TO_PIPE_CPT(tmp);
2459 	} else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2460 		enum pipe p;
2461 
2462 		for_each_pipe(dev_priv, p) {
2463 			u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2464 			if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2465 				*pipe = p;
2466 				ret = true;
2467 
2468 				goto out;
2469 			}
2470 		}
2471 
2472 		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2473 			      i915_mmio_reg_offset(intel_dp->output_reg));
2474 	} else if (IS_CHERRYVIEW(dev)) {
2475 		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
2476 	} else {
2477 		*pipe = PORT_TO_PIPE(tmp);
2478 	}
2479 
2480 	ret = true;
2481 
2482 out:
2483 	intel_display_power_put(dev_priv, power_domain);
2484 
2485 	return ret;
2486 }
2487 
intel_dp_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)2488 static void intel_dp_get_config(struct intel_encoder *encoder,
2489 				struct intel_crtc_state *pipe_config)
2490 {
2491 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2492 	u32 tmp, flags = 0;
2493 	struct drm_device *dev = encoder->base.dev;
2494 	struct drm_i915_private *dev_priv = to_i915(dev);
2495 	enum port port = dp_to_dig_port(intel_dp)->port;
2496 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2497 
2498 	tmp = I915_READ(intel_dp->output_reg);
2499 
2500 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2501 
2502 	if (HAS_PCH_CPT(dev) && port != PORT_A) {
2503 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2504 
2505 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2506 			flags |= DRM_MODE_FLAG_PHSYNC;
2507 		else
2508 			flags |= DRM_MODE_FLAG_NHSYNC;
2509 
2510 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2511 			flags |= DRM_MODE_FLAG_PVSYNC;
2512 		else
2513 			flags |= DRM_MODE_FLAG_NVSYNC;
2514 	} else {
2515 		if (tmp & DP_SYNC_HS_HIGH)
2516 			flags |= DRM_MODE_FLAG_PHSYNC;
2517 		else
2518 			flags |= DRM_MODE_FLAG_NHSYNC;
2519 
2520 		if (tmp & DP_SYNC_VS_HIGH)
2521 			flags |= DRM_MODE_FLAG_PVSYNC;
2522 		else
2523 			flags |= DRM_MODE_FLAG_NVSYNC;
2524 	}
2525 
2526 	pipe_config->base.adjusted_mode.flags |= flags;
2527 
2528 	if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2529 	    !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2530 		pipe_config->limited_color_range = true;
2531 
2532 	pipe_config->lane_count =
2533 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2534 
2535 	intel_dp_get_m_n(crtc, pipe_config);
2536 
2537 	if (port == PORT_A) {
2538 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2539 			pipe_config->port_clock = 162000;
2540 		else
2541 			pipe_config->port_clock = 270000;
2542 	}
2543 
2544 	pipe_config->base.adjusted_mode.crtc_clock =
2545 		intel_dotclock_calculate(pipe_config->port_clock,
2546 					 &pipe_config->dp_m_n);
2547 
2548 	if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2549 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2550 		/*
2551 		 * This is a big fat ugly hack.
2552 		 *
2553 		 * Some machines in UEFI boot mode provide us a VBT that has 18
2554 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2555 		 * unknown we fail to light up. Yet the same BIOS boots up with
2556 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2557 		 * max, not what it tells us to use.
2558 		 *
2559 		 * Note: This will still be broken if the eDP panel is not lit
2560 		 * up by the BIOS, and thus we can't get the mode at module
2561 		 * load.
2562 		 */
2563 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2564 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2565 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2566 	}
2567 }
2568 
intel_disable_dp(struct intel_encoder * encoder,struct intel_crtc_state * old_crtc_state,struct drm_connector_state * old_conn_state)2569 static void intel_disable_dp(struct intel_encoder *encoder,
2570 			     struct intel_crtc_state *old_crtc_state,
2571 			     struct drm_connector_state *old_conn_state)
2572 {
2573 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2574 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2575 
2576 	if (old_crtc_state->has_audio)
2577 		intel_audio_codec_disable(encoder);
2578 
2579 	if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2580 		intel_psr_disable(intel_dp);
2581 
2582 	/* Make sure the panel is off before trying to change the mode. But also
2583 	 * ensure that we have vdd while we switch off the panel. */
2584 	intel_edp_panel_vdd_on(intel_dp);
2585 	intel_edp_backlight_off(intel_dp);
2586 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2587 	intel_edp_panel_off(intel_dp);
2588 
2589 	/* disable the port before the pipe on g4x */
2590 	if (INTEL_GEN(dev_priv) < 5)
2591 		intel_dp_link_down(intel_dp);
2592 }
2593 
ilk_post_disable_dp(struct intel_encoder * encoder,struct intel_crtc_state * old_crtc_state,struct drm_connector_state * old_conn_state)2594 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2595 				struct intel_crtc_state *old_crtc_state,
2596 				struct drm_connector_state *old_conn_state)
2597 {
2598 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2599 	enum port port = dp_to_dig_port(intel_dp)->port;
2600 
2601 	intel_dp_link_down(intel_dp);
2602 
2603 	/* Only ilk+ has port A */
2604 	if (port == PORT_A)
2605 		ironlake_edp_pll_off(intel_dp);
2606 }
2607 
vlv_post_disable_dp(struct intel_encoder * encoder,struct intel_crtc_state * old_crtc_state,struct drm_connector_state * old_conn_state)2608 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2609 				struct intel_crtc_state *old_crtc_state,
2610 				struct drm_connector_state *old_conn_state)
2611 {
2612 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2613 
2614 	intel_dp_link_down(intel_dp);
2615 }
2616 
chv_post_disable_dp(struct intel_encoder * encoder,struct intel_crtc_state * old_crtc_state,struct drm_connector_state * old_conn_state)2617 static void chv_post_disable_dp(struct intel_encoder *encoder,
2618 				struct intel_crtc_state *old_crtc_state,
2619 				struct drm_connector_state *old_conn_state)
2620 {
2621 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2622 	struct drm_device *dev = encoder->base.dev;
2623 	struct drm_i915_private *dev_priv = to_i915(dev);
2624 
2625 	intel_dp_link_down(intel_dp);
2626 
2627 	mutex_lock(&dev_priv->sb_lock);
2628 
2629 	/* Assert data lane reset */
2630 	chv_data_lane_soft_reset(encoder, true);
2631 
2632 	mutex_unlock(&dev_priv->sb_lock);
2633 }
2634 
2635 static void
_intel_dp_set_link_train(struct intel_dp * intel_dp,uint32_t * DP,uint8_t dp_train_pat)2636 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2637 			 uint32_t *DP,
2638 			 uint8_t dp_train_pat)
2639 {
2640 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2641 	struct drm_device *dev = intel_dig_port->base.base.dev;
2642 	struct drm_i915_private *dev_priv = to_i915(dev);
2643 	enum port port = intel_dig_port->port;
2644 
2645 	if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2646 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2647 			      dp_train_pat & DP_TRAINING_PATTERN_MASK);
2648 
2649 	if (HAS_DDI(dev)) {
2650 		uint32_t temp = I915_READ(DP_TP_CTL(port));
2651 
2652 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2653 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2654 		else
2655 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2656 
2657 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2658 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2659 		case DP_TRAINING_PATTERN_DISABLE:
2660 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2661 
2662 			break;
2663 		case DP_TRAINING_PATTERN_1:
2664 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2665 			break;
2666 		case DP_TRAINING_PATTERN_2:
2667 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2668 			break;
2669 		case DP_TRAINING_PATTERN_3:
2670 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2671 			break;
2672 		}
2673 		I915_WRITE(DP_TP_CTL(port), temp);
2674 
2675 	} else if ((IS_GEN7(dev) && port == PORT_A) ||
2676 		   (HAS_PCH_CPT(dev) && port != PORT_A)) {
2677 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2678 
2679 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2680 		case DP_TRAINING_PATTERN_DISABLE:
2681 			*DP |= DP_LINK_TRAIN_OFF_CPT;
2682 			break;
2683 		case DP_TRAINING_PATTERN_1:
2684 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2685 			break;
2686 		case DP_TRAINING_PATTERN_2:
2687 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2688 			break;
2689 		case DP_TRAINING_PATTERN_3:
2690 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2691 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2692 			break;
2693 		}
2694 
2695 	} else {
2696 		if (IS_CHERRYVIEW(dev))
2697 			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
2698 		else
2699 			*DP &= ~DP_LINK_TRAIN_MASK;
2700 
2701 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2702 		case DP_TRAINING_PATTERN_DISABLE:
2703 			*DP |= DP_LINK_TRAIN_OFF;
2704 			break;
2705 		case DP_TRAINING_PATTERN_1:
2706 			*DP |= DP_LINK_TRAIN_PAT_1;
2707 			break;
2708 		case DP_TRAINING_PATTERN_2:
2709 			*DP |= DP_LINK_TRAIN_PAT_2;
2710 			break;
2711 		case DP_TRAINING_PATTERN_3:
2712 			if (IS_CHERRYVIEW(dev)) {
2713 				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
2714 			} else {
2715 				DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2716 				*DP |= DP_LINK_TRAIN_PAT_2;
2717 			}
2718 			break;
2719 		}
2720 	}
2721 }
2722 
intel_dp_enable_port(struct intel_dp * intel_dp,struct intel_crtc_state * old_crtc_state)2723 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2724 				 struct intel_crtc_state *old_crtc_state)
2725 {
2726 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2727 	struct drm_i915_private *dev_priv = to_i915(dev);
2728 
2729 	/* enable with pattern 1 (as per spec) */
2730 
2731 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2732 
2733 	/*
2734 	 * Magic for VLV/CHV. We _must_ first set up the register
2735 	 * without actually enabling the port, and then do another
2736 	 * write to enable the port. Otherwise link training will
2737 	 * fail when the power sequencer is freshly used for this port.
2738 	 */
2739 	intel_dp->DP |= DP_PORT_EN;
2740 	if (old_crtc_state->has_audio)
2741 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2742 
2743 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2744 	POSTING_READ(intel_dp->output_reg);
2745 }
2746 
intel_enable_dp(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)2747 static void intel_enable_dp(struct intel_encoder *encoder,
2748 			    struct intel_crtc_state *pipe_config)
2749 {
2750 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2751 	struct drm_device *dev = encoder->base.dev;
2752 	struct drm_i915_private *dev_priv = to_i915(dev);
2753 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2754 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2755 	enum pipe pipe = crtc->pipe;
2756 
2757 	if (WARN_ON(dp_reg & DP_PORT_EN))
2758 		return;
2759 
2760 	pps_lock(intel_dp);
2761 
2762 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2763 		vlv_init_panel_power_sequencer(intel_dp);
2764 
2765 	intel_dp_enable_port(intel_dp, pipe_config);
2766 
2767 	edp_panel_vdd_on(intel_dp);
2768 	edp_panel_on(intel_dp);
2769 	edp_panel_vdd_off(intel_dp, true);
2770 
2771 	pps_unlock(intel_dp);
2772 
2773 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2774 		unsigned int lane_mask = 0x0;
2775 
2776 		if (IS_CHERRYVIEW(dev))
2777 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2778 
2779 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2780 				    lane_mask);
2781 	}
2782 
2783 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2784 	intel_dp_start_link_train(intel_dp);
2785 	intel_dp_stop_link_train(intel_dp);
2786 
2787 	if (pipe_config->has_audio) {
2788 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2789 				 pipe_name(pipe));
2790 		intel_audio_codec_enable(encoder);
2791 	}
2792 }
2793 
g4x_enable_dp(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2794 static void g4x_enable_dp(struct intel_encoder *encoder,
2795 			  struct intel_crtc_state *pipe_config,
2796 			  struct drm_connector_state *conn_state)
2797 {
2798 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2799 
2800 	intel_enable_dp(encoder, pipe_config);
2801 	intel_edp_backlight_on(intel_dp);
2802 }
2803 
vlv_enable_dp(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2804 static void vlv_enable_dp(struct intel_encoder *encoder,
2805 			  struct intel_crtc_state *pipe_config,
2806 			  struct drm_connector_state *conn_state)
2807 {
2808 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2809 
2810 	intel_edp_backlight_on(intel_dp);
2811 	intel_psr_enable(intel_dp);
2812 }
2813 
g4x_pre_enable_dp(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2814 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2815 			      struct intel_crtc_state *pipe_config,
2816 			      struct drm_connector_state *conn_state)
2817 {
2818 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2819 	enum port port = dp_to_dig_port(intel_dp)->port;
2820 
2821 	intel_dp_prepare(encoder, pipe_config);
2822 
2823 	/* Only ilk+ has port A */
2824 	if (port == PORT_A)
2825 		ironlake_edp_pll_on(intel_dp, pipe_config);
2826 }
2827 
vlv_detach_power_sequencer(struct intel_dp * intel_dp)2828 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2829 {
2830 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2831 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2832 	enum pipe pipe = intel_dp->pps_pipe;
2833 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2834 
2835 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2836 		return;
2837 
2838 	edp_panel_vdd_off_sync(intel_dp);
2839 
2840 	/*
2841 	 * VLV seems to get confused when multiple power seqeuencers
2842 	 * have the same port selected (even if only one has power/vdd
2843 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
2844 	 * CHV on the other hand doesn't seem to mind having the same port
2845 	 * selected in multiple power seqeuencers, but let's clear the
2846 	 * port select always when logically disconnecting a power sequencer
2847 	 * from a port.
2848 	 */
2849 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2850 		      pipe_name(pipe), port_name(intel_dig_port->port));
2851 	I915_WRITE(pp_on_reg, 0);
2852 	POSTING_READ(pp_on_reg);
2853 
2854 	intel_dp->pps_pipe = INVALID_PIPE;
2855 }
2856 
vlv_steal_power_sequencer(struct drm_device * dev,enum pipe pipe)2857 static void vlv_steal_power_sequencer(struct drm_device *dev,
2858 				      enum pipe pipe)
2859 {
2860 	struct drm_i915_private *dev_priv = to_i915(dev);
2861 	struct intel_encoder *encoder;
2862 
2863 	lockdep_assert_held(&dev_priv->pps_mutex);
2864 
2865 	for_each_intel_encoder(dev, encoder) {
2866 		struct intel_dp *intel_dp;
2867 		enum port port;
2868 
2869 		if (encoder->type != INTEL_OUTPUT_EDP)
2870 			continue;
2871 
2872 		intel_dp = enc_to_intel_dp(&encoder->base);
2873 		port = dp_to_dig_port(intel_dp)->port;
2874 
2875 		if (intel_dp->pps_pipe != pipe)
2876 			continue;
2877 
2878 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2879 			      pipe_name(pipe), port_name(port));
2880 
2881 		WARN(encoder->base.crtc,
2882 		     "stealing pipe %c power sequencer from active eDP port %c\n",
2883 		     pipe_name(pipe), port_name(port));
2884 
2885 		/* make sure vdd is off before we steal it */
2886 		vlv_detach_power_sequencer(intel_dp);
2887 	}
2888 }
2889 
vlv_init_panel_power_sequencer(struct intel_dp * intel_dp)2890 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2891 {
2892 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2893 	struct intel_encoder *encoder = &intel_dig_port->base;
2894 	struct drm_device *dev = encoder->base.dev;
2895 	struct drm_i915_private *dev_priv = to_i915(dev);
2896 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2897 
2898 	lockdep_assert_held(&dev_priv->pps_mutex);
2899 
2900 	if (!is_edp(intel_dp))
2901 		return;
2902 
2903 	if (intel_dp->pps_pipe == crtc->pipe)
2904 		return;
2905 
2906 	/*
2907 	 * If another power sequencer was being used on this
2908 	 * port previously make sure to turn off vdd there while
2909 	 * we still have control of it.
2910 	 */
2911 	if (intel_dp->pps_pipe != INVALID_PIPE)
2912 		vlv_detach_power_sequencer(intel_dp);
2913 
2914 	/*
2915 	 * We may be stealing the power
2916 	 * sequencer from another port.
2917 	 */
2918 	vlv_steal_power_sequencer(dev, crtc->pipe);
2919 
2920 	/* now it's all ours */
2921 	intel_dp->pps_pipe = crtc->pipe;
2922 
2923 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2924 		      pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2925 
2926 	/* init power sequencer on this pipe and port */
2927 	intel_dp_init_panel_power_sequencer(dev, intel_dp);
2928 	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
2929 }
2930 
vlv_pre_enable_dp(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2931 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2932 			      struct intel_crtc_state *pipe_config,
2933 			      struct drm_connector_state *conn_state)
2934 {
2935 	vlv_phy_pre_encoder_enable(encoder);
2936 
2937 	intel_enable_dp(encoder, pipe_config);
2938 }
2939 
vlv_dp_pre_pll_enable(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2940 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2941 				  struct intel_crtc_state *pipe_config,
2942 				  struct drm_connector_state *conn_state)
2943 {
2944 	intel_dp_prepare(encoder, pipe_config);
2945 
2946 	vlv_phy_pre_pll_enable(encoder);
2947 }
2948 
chv_pre_enable_dp(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2949 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2950 			      struct intel_crtc_state *pipe_config,
2951 			      struct drm_connector_state *conn_state)
2952 {
2953 	chv_phy_pre_encoder_enable(encoder);
2954 
2955 	intel_enable_dp(encoder, pipe_config);
2956 
2957 	/* Second common lane will stay alive on its own now */
2958 	chv_phy_release_cl2_override(encoder);
2959 }
2960 
chv_dp_pre_pll_enable(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2961 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2962 				  struct intel_crtc_state *pipe_config,
2963 				  struct drm_connector_state *conn_state)
2964 {
2965 	intel_dp_prepare(encoder, pipe_config);
2966 
2967 	chv_phy_pre_pll_enable(encoder);
2968 }
2969 
chv_dp_post_pll_disable(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2970 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2971 				    struct intel_crtc_state *pipe_config,
2972 				    struct drm_connector_state *conn_state)
2973 {
2974 	chv_phy_post_pll_disable(encoder);
2975 }
2976 
2977 /*
2978  * Fetch AUX CH registers 0x202 - 0x207 which contain
2979  * link status information
2980  */
2981 bool
intel_dp_get_link_status(struct intel_dp * intel_dp,uint8_t link_status[DP_LINK_STATUS_SIZE])2982 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2983 {
2984 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2985 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2986 }
2987 
2988 /* These are source-specific values. */
2989 uint8_t
intel_dp_voltage_max(struct intel_dp * intel_dp)2990 intel_dp_voltage_max(struct intel_dp *intel_dp)
2991 {
2992 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2993 	struct drm_i915_private *dev_priv = to_i915(dev);
2994 	enum port port = dp_to_dig_port(intel_dp)->port;
2995 
2996 	if (IS_BROXTON(dev))
2997 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2998 	else if (INTEL_INFO(dev)->gen >= 9) {
2999 		if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3000 			return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3001 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3002 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3003 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3004 	else if (IS_GEN7(dev) && port == PORT_A)
3005 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3006 	else if (HAS_PCH_CPT(dev) && port != PORT_A)
3007 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3008 	else
3009 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3010 }
3011 
3012 uint8_t
intel_dp_pre_emphasis_max(struct intel_dp * intel_dp,uint8_t voltage_swing)3013 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3014 {
3015 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3016 	enum port port = dp_to_dig_port(intel_dp)->port;
3017 
3018 	if (INTEL_INFO(dev)->gen >= 9) {
3019 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3020 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3021 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3022 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3023 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3024 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3025 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3026 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3027 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3028 		default:
3029 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3030 		}
3031 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3032 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3033 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3034 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3035 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3036 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3037 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3038 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3039 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3040 		default:
3041 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3042 		}
3043 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3044 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3045 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3046 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
3047 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3048 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3049 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3050 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3051 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3052 		default:
3053 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3054 		}
3055 	} else if (IS_GEN7(dev) && port == PORT_A) {
3056 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3057 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3058 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3059 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3060 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3061 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3062 		default:
3063 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3064 		}
3065 	} else {
3066 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3067 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3068 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3069 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3070 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
3071 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3072 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3073 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3074 		default:
3075 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3076 		}
3077 	}
3078 }
3079 
vlv_signal_levels(struct intel_dp * intel_dp)3080 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3081 {
3082 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3083 	unsigned long demph_reg_value, preemph_reg_value,
3084 		uniqtranscale_reg_value;
3085 	uint8_t train_set = intel_dp->train_set[0];
3086 
3087 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3088 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3089 		preemph_reg_value = 0x0004000;
3090 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092 			demph_reg_value = 0x2B405555;
3093 			uniqtranscale_reg_value = 0x552AB83A;
3094 			break;
3095 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3096 			demph_reg_value = 0x2B404040;
3097 			uniqtranscale_reg_value = 0x5548B83A;
3098 			break;
3099 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3100 			demph_reg_value = 0x2B245555;
3101 			uniqtranscale_reg_value = 0x5560B83A;
3102 			break;
3103 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3104 			demph_reg_value = 0x2B405555;
3105 			uniqtranscale_reg_value = 0x5598DA3A;
3106 			break;
3107 		default:
3108 			return 0;
3109 		}
3110 		break;
3111 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3112 		preemph_reg_value = 0x0002000;
3113 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3114 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3115 			demph_reg_value = 0x2B404040;
3116 			uniqtranscale_reg_value = 0x5552B83A;
3117 			break;
3118 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3119 			demph_reg_value = 0x2B404848;
3120 			uniqtranscale_reg_value = 0x5580B83A;
3121 			break;
3122 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3123 			demph_reg_value = 0x2B404040;
3124 			uniqtranscale_reg_value = 0x55ADDA3A;
3125 			break;
3126 		default:
3127 			return 0;
3128 		}
3129 		break;
3130 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3131 		preemph_reg_value = 0x0000000;
3132 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3133 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3134 			demph_reg_value = 0x2B305555;
3135 			uniqtranscale_reg_value = 0x5570B83A;
3136 			break;
3137 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3138 			demph_reg_value = 0x2B2B4040;
3139 			uniqtranscale_reg_value = 0x55ADDA3A;
3140 			break;
3141 		default:
3142 			return 0;
3143 		}
3144 		break;
3145 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3146 		preemph_reg_value = 0x0006000;
3147 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3148 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3149 			demph_reg_value = 0x1B405555;
3150 			uniqtranscale_reg_value = 0x55ADDA3A;
3151 			break;
3152 		default:
3153 			return 0;
3154 		}
3155 		break;
3156 	default:
3157 		return 0;
3158 	}
3159 
3160 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3161 				 uniqtranscale_reg_value, 0);
3162 
3163 	return 0;
3164 }
3165 
chv_signal_levels(struct intel_dp * intel_dp)3166 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3167 {
3168 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3169 	u32 deemph_reg_value, margin_reg_value;
3170 	bool uniq_trans_scale = false;
3171 	uint8_t train_set = intel_dp->train_set[0];
3172 
3173 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3174 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3175 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3176 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3177 			deemph_reg_value = 128;
3178 			margin_reg_value = 52;
3179 			break;
3180 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3181 			deemph_reg_value = 128;
3182 			margin_reg_value = 77;
3183 			break;
3184 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3185 			deemph_reg_value = 128;
3186 			margin_reg_value = 102;
3187 			break;
3188 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3189 			deemph_reg_value = 128;
3190 			margin_reg_value = 154;
3191 			uniq_trans_scale = true;
3192 			break;
3193 		default:
3194 			return 0;
3195 		}
3196 		break;
3197 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3198 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3199 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3200 			deemph_reg_value = 85;
3201 			margin_reg_value = 78;
3202 			break;
3203 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3204 			deemph_reg_value = 85;
3205 			margin_reg_value = 116;
3206 			break;
3207 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3208 			deemph_reg_value = 85;
3209 			margin_reg_value = 154;
3210 			break;
3211 		default:
3212 			return 0;
3213 		}
3214 		break;
3215 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3216 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3217 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3218 			deemph_reg_value = 64;
3219 			margin_reg_value = 104;
3220 			break;
3221 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3222 			deemph_reg_value = 64;
3223 			margin_reg_value = 154;
3224 			break;
3225 		default:
3226 			return 0;
3227 		}
3228 		break;
3229 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3230 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3231 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3232 			deemph_reg_value = 43;
3233 			margin_reg_value = 154;
3234 			break;
3235 		default:
3236 			return 0;
3237 		}
3238 		break;
3239 	default:
3240 		return 0;
3241 	}
3242 
3243 	chv_set_phy_signal_level(encoder, deemph_reg_value,
3244 				 margin_reg_value, uniq_trans_scale);
3245 
3246 	return 0;
3247 }
3248 
3249 static uint32_t
gen4_signal_levels(uint8_t train_set)3250 gen4_signal_levels(uint8_t train_set)
3251 {
3252 	uint32_t	signal_levels = 0;
3253 
3254 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3255 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3256 	default:
3257 		signal_levels |= DP_VOLTAGE_0_4;
3258 		break;
3259 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3260 		signal_levels |= DP_VOLTAGE_0_6;
3261 		break;
3262 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3263 		signal_levels |= DP_VOLTAGE_0_8;
3264 		break;
3265 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3266 		signal_levels |= DP_VOLTAGE_1_2;
3267 		break;
3268 	}
3269 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3270 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3271 	default:
3272 		signal_levels |= DP_PRE_EMPHASIS_0;
3273 		break;
3274 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3275 		signal_levels |= DP_PRE_EMPHASIS_3_5;
3276 		break;
3277 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3278 		signal_levels |= DP_PRE_EMPHASIS_6;
3279 		break;
3280 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3281 		signal_levels |= DP_PRE_EMPHASIS_9_5;
3282 		break;
3283 	}
3284 	return signal_levels;
3285 }
3286 
3287 /* Gen6's DP voltage swing and pre-emphasis control */
3288 static uint32_t
gen6_edp_signal_levels(uint8_t train_set)3289 gen6_edp_signal_levels(uint8_t train_set)
3290 {
3291 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3292 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3293 	switch (signal_levels) {
3294 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3295 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3296 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3297 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3298 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3299 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3300 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3301 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3302 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3303 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3304 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3305 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3306 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3307 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3308 	default:
3309 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3310 			      "0x%x\n", signal_levels);
3311 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3312 	}
3313 }
3314 
3315 /* Gen7's DP voltage swing and pre-emphasis control */
3316 static uint32_t
gen7_edp_signal_levels(uint8_t train_set)3317 gen7_edp_signal_levels(uint8_t train_set)
3318 {
3319 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3320 					 DP_TRAIN_PRE_EMPHASIS_MASK);
3321 	switch (signal_levels) {
3322 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3323 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3324 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3325 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3326 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3327 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
3328 
3329 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3330 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3331 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3332 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3333 
3334 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3335 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3336 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3337 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3338 
3339 	default:
3340 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3341 			      "0x%x\n", signal_levels);
3342 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
3343 	}
3344 }
3345 
3346 void
intel_dp_set_signal_levels(struct intel_dp * intel_dp)3347 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3348 {
3349 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3350 	enum port port = intel_dig_port->port;
3351 	struct drm_device *dev = intel_dig_port->base.base.dev;
3352 	struct drm_i915_private *dev_priv = to_i915(dev);
3353 	uint32_t signal_levels, mask = 0;
3354 	uint8_t train_set = intel_dp->train_set[0];
3355 
3356 	if (HAS_DDI(dev)) {
3357 		signal_levels = ddi_signal_levels(intel_dp);
3358 
3359 		if (IS_BROXTON(dev))
3360 			signal_levels = 0;
3361 		else
3362 			mask = DDI_BUF_EMP_MASK;
3363 	} else if (IS_CHERRYVIEW(dev)) {
3364 		signal_levels = chv_signal_levels(intel_dp);
3365 	} else if (IS_VALLEYVIEW(dev)) {
3366 		signal_levels = vlv_signal_levels(intel_dp);
3367 	} else if (IS_GEN7(dev) && port == PORT_A) {
3368 		signal_levels = gen7_edp_signal_levels(train_set);
3369 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3370 	} else if (IS_GEN6(dev) && port == PORT_A) {
3371 		signal_levels = gen6_edp_signal_levels(train_set);
3372 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3373 	} else {
3374 		signal_levels = gen4_signal_levels(train_set);
3375 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3376 	}
3377 
3378 	if (mask)
3379 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3380 
3381 	DRM_DEBUG_KMS("Using vswing level %d\n",
3382 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3383 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3384 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3385 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3386 
3387 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3388 
3389 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3390 	POSTING_READ(intel_dp->output_reg);
3391 }
3392 
3393 void
intel_dp_program_link_training_pattern(struct intel_dp * intel_dp,uint8_t dp_train_pat)3394 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3395 				       uint8_t dp_train_pat)
3396 {
3397 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3398 	struct drm_i915_private *dev_priv =
3399 		to_i915(intel_dig_port->base.base.dev);
3400 
3401 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3402 
3403 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3404 	POSTING_READ(intel_dp->output_reg);
3405 }
3406 
intel_dp_set_idle_link_train(struct intel_dp * intel_dp)3407 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3408 {
3409 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3410 	struct drm_device *dev = intel_dig_port->base.base.dev;
3411 	struct drm_i915_private *dev_priv = to_i915(dev);
3412 	enum port port = intel_dig_port->port;
3413 	uint32_t val;
3414 
3415 	if (!HAS_DDI(dev))
3416 		return;
3417 
3418 	val = I915_READ(DP_TP_CTL(port));
3419 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3420 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3421 	I915_WRITE(DP_TP_CTL(port), val);
3422 
3423 	/*
3424 	 * On PORT_A we can have only eDP in SST mode. There the only reason
3425 	 * we need to set idle transmission mode is to work around a HW issue
3426 	 * where we enable the pipe while not in idle link-training mode.
3427 	 * In this case there is requirement to wait for a minimum number of
3428 	 * idle patterns to be sent.
3429 	 */
3430 	if (port == PORT_A)
3431 		return;
3432 
3433 	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3434 				    DP_TP_STATUS_IDLE_DONE,
3435 				    DP_TP_STATUS_IDLE_DONE,
3436 				    1))
3437 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3438 }
3439 
3440 static void
intel_dp_link_down(struct intel_dp * intel_dp)3441 intel_dp_link_down(struct intel_dp *intel_dp)
3442 {
3443 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3444 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3445 	enum port port = intel_dig_port->port;
3446 	struct drm_device *dev = intel_dig_port->base.base.dev;
3447 	struct drm_i915_private *dev_priv = to_i915(dev);
3448 	uint32_t DP = intel_dp->DP;
3449 
3450 	if (WARN_ON(HAS_DDI(dev)))
3451 		return;
3452 
3453 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3454 		return;
3455 
3456 	DRM_DEBUG_KMS("\n");
3457 
3458 	if ((IS_GEN7(dev) && port == PORT_A) ||
3459 	    (HAS_PCH_CPT(dev) && port != PORT_A)) {
3460 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3461 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3462 	} else {
3463 		if (IS_CHERRYVIEW(dev))
3464 			DP &= ~DP_LINK_TRAIN_MASK_CHV;
3465 		else
3466 			DP &= ~DP_LINK_TRAIN_MASK;
3467 		DP |= DP_LINK_TRAIN_PAT_IDLE;
3468 	}
3469 	I915_WRITE(intel_dp->output_reg, DP);
3470 	POSTING_READ(intel_dp->output_reg);
3471 
3472 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3473 	I915_WRITE(intel_dp->output_reg, DP);
3474 	POSTING_READ(intel_dp->output_reg);
3475 
3476 	/*
3477 	 * HW workaround for IBX, we need to move the port
3478 	 * to transcoder A after disabling it to allow the
3479 	 * matching HDMI port to be enabled on transcoder A.
3480 	 */
3481 	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3482 		/*
3483 		 * We get CPU/PCH FIFO underruns on the other pipe when
3484 		 * doing the workaround. Sweep them under the rug.
3485 		 */
3486 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3487 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3488 
3489 		/* always enable with pattern 1 (as per spec) */
3490 		DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3491 		DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3492 		I915_WRITE(intel_dp->output_reg, DP);
3493 		POSTING_READ(intel_dp->output_reg);
3494 
3495 		DP &= ~DP_PORT_EN;
3496 		I915_WRITE(intel_dp->output_reg, DP);
3497 		POSTING_READ(intel_dp->output_reg);
3498 
3499 		intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3500 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3501 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3502 	}
3503 
3504 	msleep(intel_dp->panel_power_down_delay);
3505 
3506 	intel_dp->DP = DP;
3507 }
3508 
3509 static bool
intel_dp_read_dpcd(struct intel_dp * intel_dp)3510 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3511 {
3512 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3513 			     sizeof(intel_dp->dpcd)) < 0)
3514 		return false; /* aux transfer failed */
3515 
3516 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3517 
3518 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
3519 }
3520 
3521 static bool
intel_edp_init_dpcd(struct intel_dp * intel_dp)3522 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3523 {
3524 	struct drm_i915_private *dev_priv =
3525 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3526 
3527 	/* this function is meant to be called only once */
3528 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3529 
3530 	if (!intel_dp_read_dpcd(intel_dp))
3531 		return false;
3532 
3533 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3534 		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3535 			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3536 
3537 	/* Check if the panel supports PSR */
3538 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3539 			 intel_dp->psr_dpcd,
3540 			 sizeof(intel_dp->psr_dpcd));
3541 	if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3542 		dev_priv->psr.sink_support = true;
3543 		DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3544 	}
3545 
3546 	if (INTEL_GEN(dev_priv) >= 9 &&
3547 	    (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3548 		uint8_t frame_sync_cap;
3549 
3550 		dev_priv->psr.sink_support = true;
3551 		drm_dp_dpcd_read(&intel_dp->aux,
3552 				 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3553 				 &frame_sync_cap, 1);
3554 		dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3555 		/* PSR2 needs frame sync as well */
3556 		dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3557 		DRM_DEBUG_KMS("PSR2 %s on sink",
3558 			      dev_priv->psr.psr2_support ? "supported" : "not supported");
3559 	}
3560 
3561 	/*
3562 	 * Read the eDP display control registers.
3563 	 *
3564 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3565 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3566 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
3567 	 * method). The display control registers should read zero if they're
3568 	 * not supported anyway.
3569 	 */
3570 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3571 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3572 			     sizeof(intel_dp->edp_dpcd))
3573 		DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3574 			      intel_dp->edp_dpcd);
3575 
3576 	/* Intermediate frequency support */
3577 	if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3578 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3579 		int i;
3580 
3581 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3582 				sink_rates, sizeof(sink_rates));
3583 
3584 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3585 			int val = le16_to_cpu(sink_rates[i]);
3586 
3587 			if (val == 0)
3588 				break;
3589 
3590 			/* Value read is in kHz while drm clock is saved in deca-kHz */
3591 			intel_dp->sink_rates[i] = (val * 200) / 10;
3592 		}
3593 		intel_dp->num_sink_rates = i;
3594 	}
3595 
3596 	return true;
3597 }
3598 
3599 
3600 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)3601 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3602 {
3603 	if (!intel_dp_read_dpcd(intel_dp))
3604 		return false;
3605 
3606 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3607 			     &intel_dp->sink_count, 1) < 0)
3608 		return false;
3609 
3610 	/*
3611 	 * Sink count can change between short pulse hpd hence
3612 	 * a member variable in intel_dp will track any changes
3613 	 * between short pulse interrupts.
3614 	 */
3615 	intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3616 
3617 	/*
3618 	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3619 	 * a dongle is present but no display. Unless we require to know
3620 	 * if a dongle is present or not, we don't need to update
3621 	 * downstream port information. So, an early return here saves
3622 	 * time from performing other operations which are not required.
3623 	 */
3624 	if (!is_edp(intel_dp) && !intel_dp->sink_count)
3625 		return false;
3626 
3627 	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3628 	      DP_DWN_STRM_PORT_PRESENT))
3629 		return true; /* native DP sink */
3630 
3631 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3632 		return true; /* no per-port downstream info */
3633 
3634 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3635 			     intel_dp->downstream_ports,
3636 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
3637 		return false; /* downstream port status fetch failed */
3638 
3639 	return true;
3640 }
3641 
3642 static void
intel_dp_probe_oui(struct intel_dp * intel_dp)3643 intel_dp_probe_oui(struct intel_dp *intel_dp)
3644 {
3645 	u8 buf[3];
3646 
3647 	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3648 		return;
3649 
3650 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3651 		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3652 			      buf[0], buf[1], buf[2]);
3653 
3654 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3655 		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3656 			      buf[0], buf[1], buf[2]);
3657 }
3658 
3659 static bool
intel_dp_can_mst(struct intel_dp * intel_dp)3660 intel_dp_can_mst(struct intel_dp *intel_dp)
3661 {
3662 	u8 buf[1];
3663 
3664 	if (!i915.enable_dp_mst)
3665 		return false;
3666 
3667 	if (!intel_dp->can_mst)
3668 		return false;
3669 
3670 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3671 		return false;
3672 
3673 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3674 		return false;
3675 
3676 	return buf[0] & DP_MST_CAP;
3677 }
3678 
3679 static void
intel_dp_configure_mst(struct intel_dp * intel_dp)3680 intel_dp_configure_mst(struct intel_dp *intel_dp)
3681 {
3682 	if (!i915.enable_dp_mst)
3683 		return;
3684 
3685 	if (!intel_dp->can_mst)
3686 		return;
3687 
3688 	intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3689 
3690 	if (intel_dp->is_mst)
3691 		DRM_DEBUG_KMS("Sink is MST capable\n");
3692 	else
3693 		DRM_DEBUG_KMS("Sink is not MST capable\n");
3694 
3695 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3696 					intel_dp->is_mst);
3697 }
3698 
intel_dp_sink_crc_stop(struct intel_dp * intel_dp)3699 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3700 {
3701 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3702 	struct drm_device *dev = dig_port->base.base.dev;
3703 	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3704 	u8 buf;
3705 	int ret = 0;
3706 	int count = 0;
3707 	int attempts = 10;
3708 
3709 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3710 		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3711 		ret = -EIO;
3712 		goto out;
3713 	}
3714 
3715 	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3716 			       buf & ~DP_TEST_SINK_START) < 0) {
3717 		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3718 		ret = -EIO;
3719 		goto out;
3720 	}
3721 
3722 	do {
3723 		intel_wait_for_vblank(dev, intel_crtc->pipe);
3724 
3725 		if (drm_dp_dpcd_readb(&intel_dp->aux,
3726 				      DP_TEST_SINK_MISC, &buf) < 0) {
3727 			ret = -EIO;
3728 			goto out;
3729 		}
3730 		count = buf & DP_TEST_COUNT_MASK;
3731 	} while (--attempts && count);
3732 
3733 	if (attempts == 0) {
3734 		DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3735 		ret = -ETIMEDOUT;
3736 	}
3737 
3738  out:
3739 	hsw_enable_ips(intel_crtc);
3740 	return ret;
3741 }
3742 
intel_dp_sink_crc_start(struct intel_dp * intel_dp)3743 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3744 {
3745 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3746 	struct drm_device *dev = dig_port->base.base.dev;
3747 	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3748 	u8 buf;
3749 	int ret;
3750 
3751 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3752 		return -EIO;
3753 
3754 	if (!(buf & DP_TEST_CRC_SUPPORTED))
3755 		return -ENOTTY;
3756 
3757 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3758 		return -EIO;
3759 
3760 	if (buf & DP_TEST_SINK_START) {
3761 		ret = intel_dp_sink_crc_stop(intel_dp);
3762 		if (ret)
3763 			return ret;
3764 	}
3765 
3766 	hsw_disable_ips(intel_crtc);
3767 
3768 	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3769 			       buf | DP_TEST_SINK_START) < 0) {
3770 		hsw_enable_ips(intel_crtc);
3771 		return -EIO;
3772 	}
3773 
3774 	intel_wait_for_vblank(dev, intel_crtc->pipe);
3775 	return 0;
3776 }
3777 
intel_dp_sink_crc(struct intel_dp * intel_dp,u8 * crc)3778 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3779 {
3780 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3781 	struct drm_device *dev = dig_port->base.base.dev;
3782 	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3783 	u8 buf;
3784 	int count, ret;
3785 	int attempts = 6;
3786 
3787 	ret = intel_dp_sink_crc_start(intel_dp);
3788 	if (ret)
3789 		return ret;
3790 
3791 	do {
3792 		intel_wait_for_vblank(dev, intel_crtc->pipe);
3793 
3794 		if (drm_dp_dpcd_readb(&intel_dp->aux,
3795 				      DP_TEST_SINK_MISC, &buf) < 0) {
3796 			ret = -EIO;
3797 			goto stop;
3798 		}
3799 		count = buf & DP_TEST_COUNT_MASK;
3800 
3801 	} while (--attempts && count == 0);
3802 
3803 	if (attempts == 0) {
3804 		DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3805 		ret = -ETIMEDOUT;
3806 		goto stop;
3807 	}
3808 
3809 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3810 		ret = -EIO;
3811 		goto stop;
3812 	}
3813 
3814 stop:
3815 	intel_dp_sink_crc_stop(intel_dp);
3816 	return ret;
3817 }
3818 
3819 static bool
intel_dp_get_sink_irq(struct intel_dp * intel_dp,u8 * sink_irq_vector)3820 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3821 {
3822 	return drm_dp_dpcd_read(&intel_dp->aux,
3823 				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3824 				       sink_irq_vector, 1) == 1;
3825 }
3826 
3827 static bool
intel_dp_get_sink_irq_esi(struct intel_dp * intel_dp,u8 * sink_irq_vector)3828 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3829 {
3830 	int ret;
3831 
3832 	ret = drm_dp_dpcd_read(&intel_dp->aux,
3833 					     DP_SINK_COUNT_ESI,
3834 					     sink_irq_vector, 14);
3835 	if (ret != 14)
3836 		return false;
3837 
3838 	return true;
3839 }
3840 
intel_dp_autotest_link_training(struct intel_dp * intel_dp)3841 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3842 {
3843 	uint8_t test_result = DP_TEST_ACK;
3844 	return test_result;
3845 }
3846 
intel_dp_autotest_video_pattern(struct intel_dp * intel_dp)3847 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3848 {
3849 	uint8_t test_result = DP_TEST_NAK;
3850 	return test_result;
3851 }
3852 
intel_dp_autotest_edid(struct intel_dp * intel_dp)3853 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3854 {
3855 	uint8_t test_result = DP_TEST_NAK;
3856 	struct intel_connector *intel_connector = intel_dp->attached_connector;
3857 	struct drm_connector *connector = &intel_connector->base;
3858 
3859 	if (intel_connector->detect_edid == NULL ||
3860 	    connector->edid_corrupt ||
3861 	    intel_dp->aux.i2c_defer_count > 6) {
3862 		/* Check EDID read for NACKs, DEFERs and corruption
3863 		 * (DP CTS 1.2 Core r1.1)
3864 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
3865 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
3866 		 *    4.2.2.6 : EDID corruption detected
3867 		 * Use failsafe mode for all cases
3868 		 */
3869 		if (intel_dp->aux.i2c_nack_count > 0 ||
3870 			intel_dp->aux.i2c_defer_count > 0)
3871 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3872 				      intel_dp->aux.i2c_nack_count,
3873 				      intel_dp->aux.i2c_defer_count);
3874 		intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3875 	} else {
3876 		struct edid *block = intel_connector->detect_edid;
3877 
3878 		/* We have to write the checksum
3879 		 * of the last block read
3880 		 */
3881 		block += intel_connector->detect_edid->extensions;
3882 
3883 		if (!drm_dp_dpcd_write(&intel_dp->aux,
3884 					DP_TEST_EDID_CHECKSUM,
3885 					&block->checksum,
3886 					1))
3887 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3888 
3889 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3890 		intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3891 	}
3892 
3893 	/* Set test active flag here so userspace doesn't interrupt things */
3894 	intel_dp->compliance_test_active = 1;
3895 
3896 	return test_result;
3897 }
3898 
intel_dp_autotest_phy_pattern(struct intel_dp * intel_dp)3899 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3900 {
3901 	uint8_t test_result = DP_TEST_NAK;
3902 	return test_result;
3903 }
3904 
intel_dp_handle_test_request(struct intel_dp * intel_dp)3905 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3906 {
3907 	uint8_t response = DP_TEST_NAK;
3908 	uint8_t rxdata = 0;
3909 	int status = 0;
3910 
3911 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3912 	if (status <= 0) {
3913 		DRM_DEBUG_KMS("Could not read test request from sink\n");
3914 		goto update_status;
3915 	}
3916 
3917 	switch (rxdata) {
3918 	case DP_TEST_LINK_TRAINING:
3919 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3920 		intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3921 		response = intel_dp_autotest_link_training(intel_dp);
3922 		break;
3923 	case DP_TEST_LINK_VIDEO_PATTERN:
3924 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3925 		intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3926 		response = intel_dp_autotest_video_pattern(intel_dp);
3927 		break;
3928 	case DP_TEST_LINK_EDID_READ:
3929 		DRM_DEBUG_KMS("EDID test requested\n");
3930 		intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3931 		response = intel_dp_autotest_edid(intel_dp);
3932 		break;
3933 	case DP_TEST_LINK_PHY_TEST_PATTERN:
3934 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3935 		intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3936 		response = intel_dp_autotest_phy_pattern(intel_dp);
3937 		break;
3938 	default:
3939 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3940 		break;
3941 	}
3942 
3943 update_status:
3944 	status = drm_dp_dpcd_write(&intel_dp->aux,
3945 				   DP_TEST_RESPONSE,
3946 				   &response, 1);
3947 	if (status <= 0)
3948 		DRM_DEBUG_KMS("Could not write test response to sink\n");
3949 }
3950 
3951 static int
intel_dp_check_mst_status(struct intel_dp * intel_dp)3952 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3953 {
3954 	bool bret;
3955 
3956 	if (intel_dp->is_mst) {
3957 		u8 esi[16] = { 0 };
3958 		int ret = 0;
3959 		int retry;
3960 		bool handled;
3961 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3962 go_again:
3963 		if (bret == true) {
3964 
3965 			/* check link status - esi[10] = 0x200c */
3966 			if (intel_dp->active_mst_links &&
3967 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3968 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3969 				intel_dp_start_link_train(intel_dp);
3970 				intel_dp_stop_link_train(intel_dp);
3971 			}
3972 
3973 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
3974 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3975 
3976 			if (handled) {
3977 				for (retry = 0; retry < 3; retry++) {
3978 					int wret;
3979 					wret = drm_dp_dpcd_write(&intel_dp->aux,
3980 								 DP_SINK_COUNT_ESI+1,
3981 								 &esi[1], 3);
3982 					if (wret == 3) {
3983 						break;
3984 					}
3985 				}
3986 
3987 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3988 				if (bret == true) {
3989 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3990 					goto go_again;
3991 				}
3992 			} else
3993 				ret = 0;
3994 
3995 			return ret;
3996 		} else {
3997 			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3998 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3999 			intel_dp->is_mst = false;
4000 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4001 			/* send a hotplug event */
4002 			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4003 		}
4004 	}
4005 	return -EINVAL;
4006 }
4007 
4008 static void
intel_dp_check_link_status(struct intel_dp * intel_dp)4009 intel_dp_check_link_status(struct intel_dp *intel_dp)
4010 {
4011 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4012 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4013 	u8 link_status[DP_LINK_STATUS_SIZE];
4014 
4015 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4016 
4017 	if (!intel_dp_get_link_status(intel_dp, link_status)) {
4018 		DRM_ERROR("Failed to get link status\n");
4019 		return;
4020 	}
4021 
4022 	if (!intel_encoder->base.crtc)
4023 		return;
4024 
4025 	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4026 		return;
4027 
4028 	/* FIXME: we need to synchronize this sort of stuff with hardware
4029 	 * readout. Currently fast link training doesn't work on boot-up. */
4030 	if (!intel_dp->lane_count)
4031 		return;
4032 
4033 	/* if link training is requested we should perform it always */
4034 	if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4035 	    (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4036 		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4037 			      intel_encoder->base.name);
4038 		intel_dp_start_link_train(intel_dp);
4039 		intel_dp_stop_link_train(intel_dp);
4040 	}
4041 }
4042 
4043 /*
4044  * According to DP spec
4045  * 5.1.2:
4046  *  1. Read DPCD
4047  *  2. Configure link according to Receiver Capabilities
4048  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4049  *  4. Check link status on receipt of hot-plug interrupt
4050  *
4051  * intel_dp_short_pulse -  handles short pulse interrupts
4052  * when full detection is not required.
4053  * Returns %true if short pulse is handled and full detection
4054  * is NOT required and %false otherwise.
4055  */
4056 static bool
intel_dp_short_pulse(struct intel_dp * intel_dp)4057 intel_dp_short_pulse(struct intel_dp *intel_dp)
4058 {
4059 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4060 	u8 sink_irq_vector = 0;
4061 	u8 old_sink_count = intel_dp->sink_count;
4062 	bool ret;
4063 
4064 	/*
4065 	 * Clearing compliance test variables to allow capturing
4066 	 * of values for next automated test request.
4067 	 */
4068 	intel_dp->compliance_test_active = 0;
4069 	intel_dp->compliance_test_type = 0;
4070 	intel_dp->compliance_test_data = 0;
4071 
4072 	/*
4073 	 * Now read the DPCD to see if it's actually running
4074 	 * If the current value of sink count doesn't match with
4075 	 * the value that was stored earlier or dpcd read failed
4076 	 * we need to do full detection
4077 	 */
4078 	ret = intel_dp_get_dpcd(intel_dp);
4079 
4080 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
4081 		/* No need to proceed if we are going to do full detect */
4082 		return false;
4083 	}
4084 
4085 	/* Try to read the source of the interrupt */
4086 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4087 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4088 	    sink_irq_vector != 0) {
4089 		/* Clear interrupt source */
4090 		drm_dp_dpcd_writeb(&intel_dp->aux,
4091 				   DP_DEVICE_SERVICE_IRQ_VECTOR,
4092 				   sink_irq_vector);
4093 
4094 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4095 			DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4096 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4097 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4098 	}
4099 
4100 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4101 	intel_dp_check_link_status(intel_dp);
4102 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
4103 
4104 	return true;
4105 }
4106 
4107 /* XXX this is probably wrong for multiple downstream ports */
4108 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)4109 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4110 {
4111 	uint8_t *dpcd = intel_dp->dpcd;
4112 	uint8_t type;
4113 
4114 	if (!intel_dp_get_dpcd(intel_dp))
4115 		return connector_status_disconnected;
4116 
4117 	if (is_edp(intel_dp))
4118 		return connector_status_connected;
4119 
4120 	/* if there's no downstream port, we're done */
4121 	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4122 		return connector_status_connected;
4123 
4124 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4125 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4126 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4127 
4128 		return intel_dp->sink_count ?
4129 		connector_status_connected : connector_status_disconnected;
4130 	}
4131 
4132 	if (intel_dp_can_mst(intel_dp))
4133 		return connector_status_connected;
4134 
4135 	/* If no HPD, poke DDC gently */
4136 	if (drm_probe_ddc(&intel_dp->aux.ddc))
4137 		return connector_status_connected;
4138 
4139 	/* Well we tried, say unknown for unreliable port types */
4140 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4141 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4142 		if (type == DP_DS_PORT_TYPE_VGA ||
4143 		    type == DP_DS_PORT_TYPE_NON_EDID)
4144 			return connector_status_unknown;
4145 	} else {
4146 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4147 			DP_DWN_STRM_PORT_TYPE_MASK;
4148 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4149 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
4150 			return connector_status_unknown;
4151 	}
4152 
4153 	/* Anything else is out of spec, warn and ignore */
4154 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4155 	return connector_status_disconnected;
4156 }
4157 
4158 static enum drm_connector_status
edp_detect(struct intel_dp * intel_dp)4159 edp_detect(struct intel_dp *intel_dp)
4160 {
4161 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4162 	enum drm_connector_status status;
4163 
4164 	status = intel_panel_detect(dev);
4165 	if (status == connector_status_unknown)
4166 		status = connector_status_connected;
4167 
4168 	return status;
4169 }
4170 
ibx_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * port)4171 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4172 				       struct intel_digital_port *port)
4173 {
4174 	u32 bit;
4175 
4176 	switch (port->port) {
4177 	case PORT_A:
4178 		return true;
4179 	case PORT_B:
4180 		bit = SDE_PORTB_HOTPLUG;
4181 		break;
4182 	case PORT_C:
4183 		bit = SDE_PORTC_HOTPLUG;
4184 		break;
4185 	case PORT_D:
4186 		bit = SDE_PORTD_HOTPLUG;
4187 		break;
4188 	default:
4189 		MISSING_CASE(port->port);
4190 		return false;
4191 	}
4192 
4193 	return I915_READ(SDEISR) & bit;
4194 }
4195 
cpt_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * port)4196 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4197 				       struct intel_digital_port *port)
4198 {
4199 	u32 bit;
4200 
4201 	switch (port->port) {
4202 	case PORT_A:
4203 		return true;
4204 	case PORT_B:
4205 		bit = SDE_PORTB_HOTPLUG_CPT;
4206 		break;
4207 	case PORT_C:
4208 		bit = SDE_PORTC_HOTPLUG_CPT;
4209 		break;
4210 	case PORT_D:
4211 		bit = SDE_PORTD_HOTPLUG_CPT;
4212 		break;
4213 	case PORT_E:
4214 		bit = SDE_PORTE_HOTPLUG_SPT;
4215 		break;
4216 	default:
4217 		MISSING_CASE(port->port);
4218 		return false;
4219 	}
4220 
4221 	return I915_READ(SDEISR) & bit;
4222 }
4223 
g4x_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * port)4224 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4225 				       struct intel_digital_port *port)
4226 {
4227 	u32 bit;
4228 
4229 	switch (port->port) {
4230 	case PORT_B:
4231 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4232 		break;
4233 	case PORT_C:
4234 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4235 		break;
4236 	case PORT_D:
4237 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4238 		break;
4239 	default:
4240 		MISSING_CASE(port->port);
4241 		return false;
4242 	}
4243 
4244 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4245 }
4246 
gm45_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * port)4247 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4248 					struct intel_digital_port *port)
4249 {
4250 	u32 bit;
4251 
4252 	switch (port->port) {
4253 	case PORT_B:
4254 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4255 		break;
4256 	case PORT_C:
4257 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4258 		break;
4259 	case PORT_D:
4260 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4261 		break;
4262 	default:
4263 		MISSING_CASE(port->port);
4264 		return false;
4265 	}
4266 
4267 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4268 }
4269 
bxt_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * intel_dig_port)4270 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4271 				       struct intel_digital_port *intel_dig_port)
4272 {
4273 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4274 	enum port port;
4275 	u32 bit;
4276 
4277 	intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4278 	switch (port) {
4279 	case PORT_A:
4280 		bit = BXT_DE_PORT_HP_DDIA;
4281 		break;
4282 	case PORT_B:
4283 		bit = BXT_DE_PORT_HP_DDIB;
4284 		break;
4285 	case PORT_C:
4286 		bit = BXT_DE_PORT_HP_DDIC;
4287 		break;
4288 	default:
4289 		MISSING_CASE(port);
4290 		return false;
4291 	}
4292 
4293 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
4294 }
4295 
4296 /*
4297  * intel_digital_port_connected - is the specified port connected?
4298  * @dev_priv: i915 private structure
4299  * @port: the port to test
4300  *
4301  * Return %true if @port is connected, %false otherwise.
4302  */
intel_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * port)4303 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4304 					 struct intel_digital_port *port)
4305 {
4306 	if (HAS_PCH_IBX(dev_priv))
4307 		return ibx_digital_port_connected(dev_priv, port);
4308 	else if (HAS_PCH_SPLIT(dev_priv))
4309 		return cpt_digital_port_connected(dev_priv, port);
4310 	else if (IS_BROXTON(dev_priv))
4311 		return bxt_digital_port_connected(dev_priv, port);
4312 	else if (IS_GM45(dev_priv))
4313 		return gm45_digital_port_connected(dev_priv, port);
4314 	else
4315 		return g4x_digital_port_connected(dev_priv, port);
4316 }
4317 
4318 static struct edid *
intel_dp_get_edid(struct intel_dp * intel_dp)4319 intel_dp_get_edid(struct intel_dp *intel_dp)
4320 {
4321 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4322 
4323 	/* use cached edid if we have one */
4324 	if (intel_connector->edid) {
4325 		/* invalid edid */
4326 		if (IS_ERR(intel_connector->edid))
4327 			return NULL;
4328 
4329 		return drm_edid_duplicate(intel_connector->edid);
4330 	} else
4331 		return drm_get_edid(&intel_connector->base,
4332 				    &intel_dp->aux.ddc);
4333 }
4334 
4335 static void
intel_dp_set_edid(struct intel_dp * intel_dp)4336 intel_dp_set_edid(struct intel_dp *intel_dp)
4337 {
4338 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4339 	struct edid *edid;
4340 
4341 	intel_dp_unset_edid(intel_dp);
4342 	edid = intel_dp_get_edid(intel_dp);
4343 	intel_connector->detect_edid = edid;
4344 
4345 	if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4346 		intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4347 	else
4348 		intel_dp->has_audio = drm_detect_monitor_audio(edid);
4349 }
4350 
4351 static void
intel_dp_unset_edid(struct intel_dp * intel_dp)4352 intel_dp_unset_edid(struct intel_dp *intel_dp)
4353 {
4354 	struct intel_connector *intel_connector = intel_dp->attached_connector;
4355 
4356 	kfree(intel_connector->detect_edid);
4357 	intel_connector->detect_edid = NULL;
4358 
4359 	intel_dp->has_audio = false;
4360 }
4361 
4362 static enum drm_connector_status
intel_dp_long_pulse(struct intel_connector * intel_connector)4363 intel_dp_long_pulse(struct intel_connector *intel_connector)
4364 {
4365 	struct drm_connector *connector = &intel_connector->base;
4366 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4367 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4368 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4369 	struct drm_device *dev = connector->dev;
4370 	enum drm_connector_status status;
4371 	enum intel_display_power_domain power_domain;
4372 	u8 sink_irq_vector = 0;
4373 
4374 	power_domain = intel_display_port_aux_power_domain(intel_encoder);
4375 	intel_display_power_get(to_i915(dev), power_domain);
4376 
4377 	/* Can't disconnect eDP, but you can close the lid... */
4378 	if (is_edp(intel_dp))
4379 		status = edp_detect(intel_dp);
4380 	else if (intel_digital_port_connected(to_i915(dev),
4381 					      dp_to_dig_port(intel_dp)))
4382 		status = intel_dp_detect_dpcd(intel_dp);
4383 	else
4384 		status = connector_status_disconnected;
4385 
4386 	if (status == connector_status_disconnected) {
4387 		intel_dp->compliance_test_active = 0;
4388 		intel_dp->compliance_test_type = 0;
4389 		intel_dp->compliance_test_data = 0;
4390 
4391 		if (intel_dp->is_mst) {
4392 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4393 				      intel_dp->is_mst,
4394 				      intel_dp->mst_mgr.mst_state);
4395 			intel_dp->is_mst = false;
4396 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4397 							intel_dp->is_mst);
4398 		}
4399 
4400 		goto out;
4401 	}
4402 
4403 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4404 		intel_encoder->type = INTEL_OUTPUT_DP;
4405 
4406 	DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4407 		      yesno(intel_dp_source_supports_hbr2(intel_dp)),
4408 		      yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4409 
4410 	intel_dp_print_rates(intel_dp);
4411 
4412 	intel_dp_probe_oui(intel_dp);
4413 
4414 	intel_dp_print_hw_revision(intel_dp);
4415 	intel_dp_print_sw_revision(intel_dp);
4416 
4417 	intel_dp_configure_mst(intel_dp);
4418 
4419 	if (intel_dp->is_mst) {
4420 		/*
4421 		 * If we are in MST mode then this connector
4422 		 * won't appear connected or have anything
4423 		 * with EDID on it
4424 		 */
4425 		status = connector_status_disconnected;
4426 		goto out;
4427 	} else if (connector->status == connector_status_connected) {
4428 		/*
4429 		 * If display was connected already and is still connected
4430 		 * check links status, there has been known issues of
4431 		 * link loss triggerring long pulse!!!!
4432 		 */
4433 		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4434 		intel_dp_check_link_status(intel_dp);
4435 		drm_modeset_unlock(&dev->mode_config.connection_mutex);
4436 		goto out;
4437 	}
4438 
4439 	/*
4440 	 * Clearing NACK and defer counts to get their exact values
4441 	 * while reading EDID which are required by Compliance tests
4442 	 * 4.2.2.4 and 4.2.2.5
4443 	 */
4444 	intel_dp->aux.i2c_nack_count = 0;
4445 	intel_dp->aux.i2c_defer_count = 0;
4446 
4447 	intel_dp_set_edid(intel_dp);
4448 	if (is_edp(intel_dp) || intel_connector->detect_edid)
4449 		status = connector_status_connected;
4450 	intel_dp->detect_done = true;
4451 
4452 	/* Try to read the source of the interrupt */
4453 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4454 	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4455 	    sink_irq_vector != 0) {
4456 		/* Clear interrupt source */
4457 		drm_dp_dpcd_writeb(&intel_dp->aux,
4458 				   DP_DEVICE_SERVICE_IRQ_VECTOR,
4459 				   sink_irq_vector);
4460 
4461 		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4462 			intel_dp_handle_test_request(intel_dp);
4463 		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4464 			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4465 	}
4466 
4467 out:
4468 	if (status != connector_status_connected && !intel_dp->is_mst)
4469 		intel_dp_unset_edid(intel_dp);
4470 
4471 	intel_display_power_put(to_i915(dev), power_domain);
4472 	return status;
4473 }
4474 
4475 static enum drm_connector_status
intel_dp_detect(struct drm_connector * connector,bool force)4476 intel_dp_detect(struct drm_connector *connector, bool force)
4477 {
4478 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4479 	enum drm_connector_status status = connector->status;
4480 
4481 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4482 		      connector->base.id, connector->name);
4483 
4484 	/* If full detect is not performed yet, do a full detect */
4485 	if (!intel_dp->detect_done)
4486 		status = intel_dp_long_pulse(intel_dp->attached_connector);
4487 
4488 	intel_dp->detect_done = false;
4489 
4490 	return status;
4491 }
4492 
4493 static void
intel_dp_force(struct drm_connector * connector)4494 intel_dp_force(struct drm_connector *connector)
4495 {
4496 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4497 	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4498 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4499 	enum intel_display_power_domain power_domain;
4500 
4501 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4502 		      connector->base.id, connector->name);
4503 	intel_dp_unset_edid(intel_dp);
4504 
4505 	if (connector->status != connector_status_connected)
4506 		return;
4507 
4508 	power_domain = intel_display_port_aux_power_domain(intel_encoder);
4509 	intel_display_power_get(dev_priv, power_domain);
4510 
4511 	intel_dp_set_edid(intel_dp);
4512 
4513 	intel_display_power_put(dev_priv, power_domain);
4514 
4515 	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4516 		intel_encoder->type = INTEL_OUTPUT_DP;
4517 }
4518 
intel_dp_get_modes(struct drm_connector * connector)4519 static int intel_dp_get_modes(struct drm_connector *connector)
4520 {
4521 	struct intel_connector *intel_connector = to_intel_connector(connector);
4522 	struct edid *edid;
4523 
4524 	edid = intel_connector->detect_edid;
4525 	if (edid) {
4526 		int ret = intel_connector_update_modes(connector, edid);
4527 		if (ret)
4528 			return ret;
4529 	}
4530 
4531 	/* if eDP has no EDID, fall back to fixed mode */
4532 	if (is_edp(intel_attached_dp(connector)) &&
4533 	    intel_connector->panel.fixed_mode) {
4534 		struct drm_display_mode *mode;
4535 
4536 		mode = drm_mode_duplicate(connector->dev,
4537 					  intel_connector->panel.fixed_mode);
4538 		if (mode) {
4539 			drm_mode_probed_add(connector, mode);
4540 			return 1;
4541 		}
4542 	}
4543 
4544 	return 0;
4545 }
4546 
4547 static bool
intel_dp_detect_audio(struct drm_connector * connector)4548 intel_dp_detect_audio(struct drm_connector *connector)
4549 {
4550 	bool has_audio = false;
4551 	struct edid *edid;
4552 
4553 	edid = to_intel_connector(connector)->detect_edid;
4554 	if (edid)
4555 		has_audio = drm_detect_monitor_audio(edid);
4556 
4557 	return has_audio;
4558 }
4559 
4560 static int
intel_dp_set_property(struct drm_connector * connector,struct drm_property * property,uint64_t val)4561 intel_dp_set_property(struct drm_connector *connector,
4562 		      struct drm_property *property,
4563 		      uint64_t val)
4564 {
4565 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
4566 	struct intel_connector *intel_connector = to_intel_connector(connector);
4567 	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4568 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4569 	int ret;
4570 
4571 	ret = drm_object_property_set_value(&connector->base, property, val);
4572 	if (ret)
4573 		return ret;
4574 
4575 	if (property == dev_priv->force_audio_property) {
4576 		int i = val;
4577 		bool has_audio;
4578 
4579 		if (i == intel_dp->force_audio)
4580 			return 0;
4581 
4582 		intel_dp->force_audio = i;
4583 
4584 		if (i == HDMI_AUDIO_AUTO)
4585 			has_audio = intel_dp_detect_audio(connector);
4586 		else
4587 			has_audio = (i == HDMI_AUDIO_ON);
4588 
4589 		if (has_audio == intel_dp->has_audio)
4590 			return 0;
4591 
4592 		intel_dp->has_audio = has_audio;
4593 		goto done;
4594 	}
4595 
4596 	if (property == dev_priv->broadcast_rgb_property) {
4597 		bool old_auto = intel_dp->color_range_auto;
4598 		bool old_range = intel_dp->limited_color_range;
4599 
4600 		switch (val) {
4601 		case INTEL_BROADCAST_RGB_AUTO:
4602 			intel_dp->color_range_auto = true;
4603 			break;
4604 		case INTEL_BROADCAST_RGB_FULL:
4605 			intel_dp->color_range_auto = false;
4606 			intel_dp->limited_color_range = false;
4607 			break;
4608 		case INTEL_BROADCAST_RGB_LIMITED:
4609 			intel_dp->color_range_auto = false;
4610 			intel_dp->limited_color_range = true;
4611 			break;
4612 		default:
4613 			return -EINVAL;
4614 		}
4615 
4616 		if (old_auto == intel_dp->color_range_auto &&
4617 		    old_range == intel_dp->limited_color_range)
4618 			return 0;
4619 
4620 		goto done;
4621 	}
4622 
4623 	if (is_edp(intel_dp) &&
4624 	    property == connector->dev->mode_config.scaling_mode_property) {
4625 		if (val == DRM_MODE_SCALE_NONE) {
4626 			DRM_DEBUG_KMS("no scaling not supported\n");
4627 			return -EINVAL;
4628 		}
4629 		if (HAS_GMCH_DISPLAY(dev_priv) &&
4630 		    val == DRM_MODE_SCALE_CENTER) {
4631 			DRM_DEBUG_KMS("centering not supported\n");
4632 			return -EINVAL;
4633 		}
4634 
4635 		if (intel_connector->panel.fitting_mode == val) {
4636 			/* the eDP scaling property is not changed */
4637 			return 0;
4638 		}
4639 		intel_connector->panel.fitting_mode = val;
4640 
4641 		goto done;
4642 	}
4643 
4644 	return -EINVAL;
4645 
4646 done:
4647 	if (intel_encoder->base.crtc)
4648 		intel_crtc_restore_mode(intel_encoder->base.crtc);
4649 
4650 	return 0;
4651 }
4652 
4653 static int
intel_dp_connector_register(struct drm_connector * connector)4654 intel_dp_connector_register(struct drm_connector *connector)
4655 {
4656 	struct intel_dp *intel_dp = intel_attached_dp(connector);
4657 	int ret;
4658 
4659 	ret = intel_connector_register(connector);
4660 	if (ret)
4661 		return ret;
4662 
4663 	i915_debugfs_connector_add(connector);
4664 
4665 	DRM_DEBUG_KMS("registering %s bus for %s\n",
4666 		      intel_dp->aux.name, connector->kdev->kobj.name);
4667 
4668 	intel_dp->aux.dev = connector->kdev;
4669 	return drm_dp_aux_register(&intel_dp->aux);
4670 }
4671 
4672 static void
intel_dp_connector_unregister(struct drm_connector * connector)4673 intel_dp_connector_unregister(struct drm_connector *connector)
4674 {
4675 	drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4676 	intel_connector_unregister(connector);
4677 }
4678 
4679 static void
intel_dp_connector_destroy(struct drm_connector * connector)4680 intel_dp_connector_destroy(struct drm_connector *connector)
4681 {
4682 	struct intel_connector *intel_connector = to_intel_connector(connector);
4683 
4684 	kfree(intel_connector->detect_edid);
4685 
4686 	if (!IS_ERR_OR_NULL(intel_connector->edid))
4687 		kfree(intel_connector->edid);
4688 
4689 	/* Can't call is_edp() since the encoder may have been destroyed
4690 	 * already. */
4691 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4692 		intel_panel_fini(&intel_connector->panel);
4693 
4694 	drm_connector_cleanup(connector);
4695 	kfree(connector);
4696 }
4697 
intel_dp_encoder_destroy(struct drm_encoder * encoder)4698 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4699 {
4700 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4701 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4702 
4703 	intel_dp_mst_encoder_cleanup(intel_dig_port);
4704 	if (is_edp(intel_dp)) {
4705 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4706 		/*
4707 		 * vdd might still be enabled do to the delayed vdd off.
4708 		 * Make sure vdd is actually turned off here.
4709 		 */
4710 		pps_lock(intel_dp);
4711 		edp_panel_vdd_off_sync(intel_dp);
4712 		pps_unlock(intel_dp);
4713 
4714 		if (intel_dp->edp_notifier.notifier_call) {
4715 			unregister_reboot_notifier(&intel_dp->edp_notifier);
4716 			intel_dp->edp_notifier.notifier_call = NULL;
4717 		}
4718 	}
4719 
4720 	intel_dp_aux_fini(intel_dp);
4721 
4722 	drm_encoder_cleanup(encoder);
4723 	kfree(intel_dig_port);
4724 }
4725 
intel_dp_encoder_suspend(struct intel_encoder * intel_encoder)4726 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4727 {
4728 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4729 
4730 	if (!is_edp(intel_dp))
4731 		return;
4732 
4733 	/*
4734 	 * vdd might still be enabled do to the delayed vdd off.
4735 	 * Make sure vdd is actually turned off here.
4736 	 */
4737 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4738 	pps_lock(intel_dp);
4739 	edp_panel_vdd_off_sync(intel_dp);
4740 	pps_unlock(intel_dp);
4741 }
4742 
intel_edp_panel_vdd_sanitize(struct intel_dp * intel_dp)4743 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4744 {
4745 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4746 	struct drm_device *dev = intel_dig_port->base.base.dev;
4747 	struct drm_i915_private *dev_priv = to_i915(dev);
4748 	enum intel_display_power_domain power_domain;
4749 
4750 	lockdep_assert_held(&dev_priv->pps_mutex);
4751 
4752 	if (!edp_have_panel_vdd(intel_dp))
4753 		return;
4754 
4755 	/*
4756 	 * The VDD bit needs a power domain reference, so if the bit is
4757 	 * already enabled when we boot or resume, grab this reference and
4758 	 * schedule a vdd off, so we don't hold on to the reference
4759 	 * indefinitely.
4760 	 */
4761 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4762 	power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4763 	intel_display_power_get(dev_priv, power_domain);
4764 
4765 	edp_panel_vdd_schedule_off(intel_dp);
4766 }
4767 
intel_dp_encoder_reset(struct drm_encoder * encoder)4768 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4769 {
4770 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4771 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4772 
4773 	if (!HAS_DDI(dev_priv))
4774 		intel_dp->DP = I915_READ(intel_dp->output_reg);
4775 
4776 	if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4777 		return;
4778 
4779 	pps_lock(intel_dp);
4780 
4781 	/* Reinit the power sequencer, in case BIOS did something with it. */
4782 	intel_dp_pps_init(encoder->dev, intel_dp);
4783 	intel_edp_panel_vdd_sanitize(intel_dp);
4784 
4785 	pps_unlock(intel_dp);
4786 }
4787 
4788 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4789 	.dpms = drm_atomic_helper_connector_dpms,
4790 	.detect = intel_dp_detect,
4791 	.force = intel_dp_force,
4792 	.fill_modes = drm_helper_probe_single_connector_modes,
4793 	.set_property = intel_dp_set_property,
4794 	.atomic_get_property = intel_connector_atomic_get_property,
4795 	.late_register = intel_dp_connector_register,
4796 	.early_unregister = intel_dp_connector_unregister,
4797 	.destroy = intel_dp_connector_destroy,
4798 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4799 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4800 };
4801 
4802 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4803 	.get_modes = intel_dp_get_modes,
4804 	.mode_valid = intel_dp_mode_valid,
4805 };
4806 
4807 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4808 	.reset = intel_dp_encoder_reset,
4809 	.destroy = intel_dp_encoder_destroy,
4810 };
4811 
4812 enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port * intel_dig_port,bool long_hpd)4813 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4814 {
4815 	struct intel_dp *intel_dp = &intel_dig_port->dp;
4816 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4817 	struct drm_device *dev = intel_dig_port->base.base.dev;
4818 	struct drm_i915_private *dev_priv = to_i915(dev);
4819 	enum intel_display_power_domain power_domain;
4820 	enum irqreturn ret = IRQ_NONE;
4821 
4822 	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4823 	    intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4824 		intel_dig_port->base.type = INTEL_OUTPUT_DP;
4825 
4826 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4827 		/*
4828 		 * vdd off can generate a long pulse on eDP which
4829 		 * would require vdd on to handle it, and thus we
4830 		 * would end up in an endless cycle of
4831 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4832 		 */
4833 		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4834 			      port_name(intel_dig_port->port));
4835 		return IRQ_HANDLED;
4836 	}
4837 
4838 	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4839 		      port_name(intel_dig_port->port),
4840 		      long_hpd ? "long" : "short");
4841 
4842 	if (long_hpd) {
4843 		intel_dp->detect_done = false;
4844 		return IRQ_NONE;
4845 	}
4846 
4847 	power_domain = intel_display_port_aux_power_domain(intel_encoder);
4848 	intel_display_power_get(dev_priv, power_domain);
4849 
4850 	if (intel_dp->is_mst) {
4851 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4852 			/*
4853 			 * If we were in MST mode, and device is not
4854 			 * there, get out of MST mode
4855 			 */
4856 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4857 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4858 			intel_dp->is_mst = false;
4859 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4860 							intel_dp->is_mst);
4861 			intel_dp->detect_done = false;
4862 			goto put_power;
4863 		}
4864 	}
4865 
4866 	if (!intel_dp->is_mst) {
4867 		if (!intel_dp_short_pulse(intel_dp)) {
4868 			intel_dp->detect_done = false;
4869 			goto put_power;
4870 		}
4871 	}
4872 
4873 	ret = IRQ_HANDLED;
4874 
4875 put_power:
4876 	intel_display_power_put(dev_priv, power_domain);
4877 
4878 	return ret;
4879 }
4880 
4881 /* check the VBT to see whether the eDP is on another port */
intel_dp_is_edp(struct drm_device * dev,enum port port)4882 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4883 {
4884 	struct drm_i915_private *dev_priv = to_i915(dev);
4885 
4886 	/*
4887 	 * eDP not supported on g4x. so bail out early just
4888 	 * for a bit extra safety in case the VBT is bonkers.
4889 	 */
4890 	if (INTEL_INFO(dev)->gen < 5)
4891 		return false;
4892 
4893 	if (port == PORT_A)
4894 		return true;
4895 
4896 	return intel_bios_is_port_edp(dev_priv, port);
4897 }
4898 
4899 void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)4900 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4901 {
4902 	struct intel_connector *intel_connector = to_intel_connector(connector);
4903 
4904 	intel_attach_force_audio_property(connector);
4905 	intel_attach_broadcast_rgb_property(connector);
4906 	intel_dp->color_range_auto = true;
4907 
4908 	if (is_edp(intel_dp)) {
4909 		drm_mode_create_scaling_mode_property(connector->dev);
4910 		drm_object_attach_property(
4911 			&connector->base,
4912 			connector->dev->mode_config.scaling_mode_property,
4913 			DRM_MODE_SCALE_ASPECT);
4914 		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4915 	}
4916 }
4917 
intel_dp_init_panel_power_timestamps(struct intel_dp * intel_dp)4918 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4919 {
4920 	intel_dp->panel_power_off_time = ktime_get_boottime();
4921 	intel_dp->last_power_on = jiffies;
4922 	intel_dp->last_backlight_off = jiffies;
4923 }
4924 
4925 static void
intel_pps_readout_hw_state(struct drm_i915_private * dev_priv,struct intel_dp * intel_dp,struct edp_power_seq * seq)4926 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4927 			   struct intel_dp *intel_dp, struct edp_power_seq *seq)
4928 {
4929 	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4930 	struct pps_registers regs;
4931 
4932 	intel_pps_get_registers(dev_priv, intel_dp, &regs);
4933 
4934 	/* Workaround: Need to write PP_CONTROL with the unlock key as
4935 	 * the very first thing. */
4936 	pp_ctl = ironlake_get_pp_control(intel_dp);
4937 
4938 	pp_on = I915_READ(regs.pp_on);
4939 	pp_off = I915_READ(regs.pp_off);
4940 	if (!IS_BROXTON(dev_priv)) {
4941 		I915_WRITE(regs.pp_ctrl, pp_ctl);
4942 		pp_div = I915_READ(regs.pp_div);
4943 	}
4944 
4945 	/* Pull timing values out of registers */
4946 	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4947 		     PANEL_POWER_UP_DELAY_SHIFT;
4948 
4949 	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4950 		  PANEL_LIGHT_ON_DELAY_SHIFT;
4951 
4952 	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4953 		  PANEL_LIGHT_OFF_DELAY_SHIFT;
4954 
4955 	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4956 		   PANEL_POWER_DOWN_DELAY_SHIFT;
4957 
4958 	if (IS_BROXTON(dev_priv)) {
4959 		u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4960 			BXT_POWER_CYCLE_DELAY_SHIFT;
4961 		if (tmp > 0)
4962 			seq->t11_t12 = (tmp - 1) * 1000;
4963 		else
4964 			seq->t11_t12 = 0;
4965 	} else {
4966 		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4967 		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4968 	}
4969 }
4970 
4971 static void
intel_pps_dump_state(const char * state_name,const struct edp_power_seq * seq)4972 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4973 {
4974 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4975 		      state_name,
4976 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4977 }
4978 
4979 static void
intel_pps_verify_state(struct drm_i915_private * dev_priv,struct intel_dp * intel_dp)4980 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4981 		       struct intel_dp *intel_dp)
4982 {
4983 	struct edp_power_seq hw;
4984 	struct edp_power_seq *sw = &intel_dp->pps_delays;
4985 
4986 	intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4987 
4988 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4989 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4990 		DRM_ERROR("PPS state mismatch\n");
4991 		intel_pps_dump_state("sw", sw);
4992 		intel_pps_dump_state("hw", &hw);
4993 	}
4994 }
4995 
4996 static void
intel_dp_init_panel_power_sequencer(struct drm_device * dev,struct intel_dp * intel_dp)4997 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4998 				    struct intel_dp *intel_dp)
4999 {
5000 	struct drm_i915_private *dev_priv = to_i915(dev);
5001 	struct edp_power_seq cur, vbt, spec,
5002 		*final = &intel_dp->pps_delays;
5003 
5004 	lockdep_assert_held(&dev_priv->pps_mutex);
5005 
5006 	/* already initialized? */
5007 	if (final->t11_t12 != 0)
5008 		return;
5009 
5010 	intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5011 
5012 	intel_pps_dump_state("cur", &cur);
5013 
5014 	vbt = dev_priv->vbt.edp.pps;
5015 
5016 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5017 	 * our hw here, which are all in 100usec. */
5018 	spec.t1_t3 = 210 * 10;
5019 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5020 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5021 	spec.t10 = 500 * 10;
5022 	/* This one is special and actually in units of 100ms, but zero
5023 	 * based in the hw (so we need to add 100 ms). But the sw vbt
5024 	 * table multiplies it with 1000 to make it in units of 100usec,
5025 	 * too. */
5026 	spec.t11_t12 = (510 + 100) * 10;
5027 
5028 	intel_pps_dump_state("vbt", &vbt);
5029 
5030 	/* Use the max of the register settings and vbt. If both are
5031 	 * unset, fall back to the spec limits. */
5032 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5033 				       spec.field : \
5034 				       max(cur.field, vbt.field))
5035 	assign_final(t1_t3);
5036 	assign_final(t8);
5037 	assign_final(t9);
5038 	assign_final(t10);
5039 	assign_final(t11_t12);
5040 #undef assign_final
5041 
5042 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5043 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
5044 	intel_dp->backlight_on_delay = get_delay(t8);
5045 	intel_dp->backlight_off_delay = get_delay(t9);
5046 	intel_dp->panel_power_down_delay = get_delay(t10);
5047 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5048 #undef get_delay
5049 
5050 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5051 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5052 		      intel_dp->panel_power_cycle_delay);
5053 
5054 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5055 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5056 
5057 	/*
5058 	 * We override the HW backlight delays to 1 because we do manual waits
5059 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
5060 	 * don't do this, we'll end up waiting for the backlight off delay
5061 	 * twice: once when we do the manual sleep, and once when we disable
5062 	 * the panel and wait for the PP_STATUS bit to become zero.
5063 	 */
5064 	final->t8 = 1;
5065 	final->t9 = 1;
5066 
5067 	/*
5068 	 * HW has only a 100msec granularity for t11_t12 so round it up
5069 	 * accordingly.
5070 	 */
5071 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5072 }
5073 
5074 static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device * dev,struct intel_dp * intel_dp,bool force_disable_vdd)5075 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5076 					      struct intel_dp *intel_dp,
5077 					      bool force_disable_vdd)
5078 {
5079 	struct drm_i915_private *dev_priv = to_i915(dev);
5080 	u32 pp_on, pp_off, pp_div, port_sel = 0;
5081 	int div = dev_priv->rawclk_freq / 1000;
5082 	struct pps_registers regs;
5083 	enum port port = dp_to_dig_port(intel_dp)->port;
5084 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5085 
5086 	lockdep_assert_held(&dev_priv->pps_mutex);
5087 
5088 	intel_pps_get_registers(dev_priv, intel_dp, &regs);
5089 
5090 	/*
5091 	 * On some VLV machines the BIOS can leave the VDD
5092 	 * enabled even on power seqeuencers which aren't
5093 	 * hooked up to any port. This would mess up the
5094 	 * power domain tracking the first time we pick
5095 	 * one of these power sequencers for use since
5096 	 * edp_panel_vdd_on() would notice that the VDD was
5097 	 * already on and therefore wouldn't grab the power
5098 	 * domain reference. Disable VDD first to avoid this.
5099 	 * This also avoids spuriously turning the VDD on as
5100 	 * soon as the new power seqeuencer gets initialized.
5101 	 */
5102 	if (force_disable_vdd) {
5103 		u32 pp = ironlake_get_pp_control(intel_dp);
5104 
5105 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5106 
5107 		if (pp & EDP_FORCE_VDD)
5108 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
5109 
5110 		pp &= ~EDP_FORCE_VDD;
5111 
5112 		I915_WRITE(regs.pp_ctrl, pp);
5113 	}
5114 
5115 	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5116 		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5117 	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5118 		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5119 	/* Compute the divisor for the pp clock, simply match the Bspec
5120 	 * formula. */
5121 	if (IS_BROXTON(dev)) {
5122 		pp_div = I915_READ(regs.pp_ctrl);
5123 		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5124 		pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5125 				<< BXT_POWER_CYCLE_DELAY_SHIFT);
5126 	} else {
5127 		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5128 		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5129 				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
5130 	}
5131 
5132 	/* Haswell doesn't have any port selection bits for the panel
5133 	 * power sequencer any more. */
5134 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5135 		port_sel = PANEL_PORT_SELECT_VLV(port);
5136 	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5137 		if (port == PORT_A)
5138 			port_sel = PANEL_PORT_SELECT_DPA;
5139 		else
5140 			port_sel = PANEL_PORT_SELECT_DPD;
5141 	}
5142 
5143 	pp_on |= port_sel;
5144 
5145 	I915_WRITE(regs.pp_on, pp_on);
5146 	I915_WRITE(regs.pp_off, pp_off);
5147 	if (IS_BROXTON(dev))
5148 		I915_WRITE(regs.pp_ctrl, pp_div);
5149 	else
5150 		I915_WRITE(regs.pp_div, pp_div);
5151 
5152 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5153 		      I915_READ(regs.pp_on),
5154 		      I915_READ(regs.pp_off),
5155 		      IS_BROXTON(dev) ?
5156 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5157 		      I915_READ(regs.pp_div));
5158 }
5159 
intel_dp_pps_init(struct drm_device * dev,struct intel_dp * intel_dp)5160 static void intel_dp_pps_init(struct drm_device *dev,
5161 			      struct intel_dp *intel_dp)
5162 {
5163 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5164 		vlv_initial_power_sequencer_setup(intel_dp);
5165 	} else {
5166 		intel_dp_init_panel_power_sequencer(dev, intel_dp);
5167 		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5168 	}
5169 }
5170 
5171 /**
5172  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5173  * @dev_priv: i915 device
5174  * @crtc_state: a pointer to the active intel_crtc_state
5175  * @refresh_rate: RR to be programmed
5176  *
5177  * This function gets called when refresh rate (RR) has to be changed from
5178  * one frequency to another. Switches can be between high and low RR
5179  * supported by the panel or to any other RR based on media playback (in
5180  * this case, RR value needs to be passed from user space).
5181  *
5182  * The caller of this function needs to take a lock on dev_priv->drrs.
5183  */
intel_dp_set_drrs_state(struct drm_i915_private * dev_priv,struct intel_crtc_state * crtc_state,int refresh_rate)5184 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5185 				    struct intel_crtc_state *crtc_state,
5186 				    int refresh_rate)
5187 {
5188 	struct intel_encoder *encoder;
5189 	struct intel_digital_port *dig_port = NULL;
5190 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
5191 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5192 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5193 
5194 	if (refresh_rate <= 0) {
5195 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5196 		return;
5197 	}
5198 
5199 	if (intel_dp == NULL) {
5200 		DRM_DEBUG_KMS("DRRS not supported.\n");
5201 		return;
5202 	}
5203 
5204 	/*
5205 	 * FIXME: This needs proper synchronization with psr state for some
5206 	 * platforms that cannot have PSR and DRRS enabled at the same time.
5207 	 */
5208 
5209 	dig_port = dp_to_dig_port(intel_dp);
5210 	encoder = &dig_port->base;
5211 	intel_crtc = to_intel_crtc(encoder->base.crtc);
5212 
5213 	if (!intel_crtc) {
5214 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5215 		return;
5216 	}
5217 
5218 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5219 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5220 		return;
5221 	}
5222 
5223 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5224 			refresh_rate)
5225 		index = DRRS_LOW_RR;
5226 
5227 	if (index == dev_priv->drrs.refresh_rate_type) {
5228 		DRM_DEBUG_KMS(
5229 			"DRRS requested for previously set RR...ignoring\n");
5230 		return;
5231 	}
5232 
5233 	if (!crtc_state->base.active) {
5234 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5235 		return;
5236 	}
5237 
5238 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5239 		switch (index) {
5240 		case DRRS_HIGH_RR:
5241 			intel_dp_set_m_n(intel_crtc, M1_N1);
5242 			break;
5243 		case DRRS_LOW_RR:
5244 			intel_dp_set_m_n(intel_crtc, M2_N2);
5245 			break;
5246 		case DRRS_MAX_RR:
5247 		default:
5248 			DRM_ERROR("Unsupported refreshrate type\n");
5249 		}
5250 	} else if (INTEL_GEN(dev_priv) > 6) {
5251 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5252 		u32 val;
5253 
5254 		val = I915_READ(reg);
5255 		if (index > DRRS_HIGH_RR) {
5256 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5257 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5258 			else
5259 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
5260 		} else {
5261 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5262 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5263 			else
5264 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5265 		}
5266 		I915_WRITE(reg, val);
5267 	}
5268 
5269 	dev_priv->drrs.refresh_rate_type = index;
5270 
5271 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5272 }
5273 
5274 /**
5275  * intel_edp_drrs_enable - init drrs struct if supported
5276  * @intel_dp: DP struct
5277  * @crtc_state: A pointer to the active crtc state.
5278  *
5279  * Initializes frontbuffer_bits and drrs.dp
5280  */
intel_edp_drrs_enable(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)5281 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5282 			   struct intel_crtc_state *crtc_state)
5283 {
5284 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5285 	struct drm_i915_private *dev_priv = to_i915(dev);
5286 
5287 	if (!crtc_state->has_drrs) {
5288 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5289 		return;
5290 	}
5291 
5292 	mutex_lock(&dev_priv->drrs.mutex);
5293 	if (WARN_ON(dev_priv->drrs.dp)) {
5294 		DRM_ERROR("DRRS already enabled\n");
5295 		goto unlock;
5296 	}
5297 
5298 	dev_priv->drrs.busy_frontbuffer_bits = 0;
5299 
5300 	dev_priv->drrs.dp = intel_dp;
5301 
5302 unlock:
5303 	mutex_unlock(&dev_priv->drrs.mutex);
5304 }
5305 
5306 /**
5307  * intel_edp_drrs_disable - Disable DRRS
5308  * @intel_dp: DP struct
5309  * @old_crtc_state: Pointer to old crtc_state.
5310  *
5311  */
intel_edp_drrs_disable(struct intel_dp * intel_dp,struct intel_crtc_state * old_crtc_state)5312 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5313 			    struct intel_crtc_state *old_crtc_state)
5314 {
5315 	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5316 	struct drm_i915_private *dev_priv = to_i915(dev);
5317 
5318 	if (!old_crtc_state->has_drrs)
5319 		return;
5320 
5321 	mutex_lock(&dev_priv->drrs.mutex);
5322 	if (!dev_priv->drrs.dp) {
5323 		mutex_unlock(&dev_priv->drrs.mutex);
5324 		return;
5325 	}
5326 
5327 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5328 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5329 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5330 
5331 	dev_priv->drrs.dp = NULL;
5332 	mutex_unlock(&dev_priv->drrs.mutex);
5333 
5334 	cancel_delayed_work_sync(&dev_priv->drrs.work);
5335 }
5336 
intel_edp_drrs_downclock_work(struct work_struct * work)5337 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5338 {
5339 	struct drm_i915_private *dev_priv =
5340 		container_of(work, typeof(*dev_priv), drrs.work.work);
5341 	struct intel_dp *intel_dp;
5342 
5343 	mutex_lock(&dev_priv->drrs.mutex);
5344 
5345 	intel_dp = dev_priv->drrs.dp;
5346 
5347 	if (!intel_dp)
5348 		goto unlock;
5349 
5350 	/*
5351 	 * The delayed work can race with an invalidate hence we need to
5352 	 * recheck.
5353 	 */
5354 
5355 	if (dev_priv->drrs.busy_frontbuffer_bits)
5356 		goto unlock;
5357 
5358 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5359 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5360 
5361 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5362 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5363 	}
5364 
5365 unlock:
5366 	mutex_unlock(&dev_priv->drrs.mutex);
5367 }
5368 
5369 /**
5370  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5371  * @dev_priv: i915 device
5372  * @frontbuffer_bits: frontbuffer plane tracking bits
5373  *
5374  * This function gets called everytime rendering on the given planes start.
5375  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5376  *
5377  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5378  */
intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)5379 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5380 			       unsigned int frontbuffer_bits)
5381 {
5382 	struct drm_crtc *crtc;
5383 	enum pipe pipe;
5384 
5385 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5386 		return;
5387 
5388 	cancel_delayed_work(&dev_priv->drrs.work);
5389 
5390 	mutex_lock(&dev_priv->drrs.mutex);
5391 	if (!dev_priv->drrs.dp) {
5392 		mutex_unlock(&dev_priv->drrs.mutex);
5393 		return;
5394 	}
5395 
5396 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5397 	pipe = to_intel_crtc(crtc)->pipe;
5398 
5399 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5400 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5401 
5402 	/* invalidate means busy screen hence upclock */
5403 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5404 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5405 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5406 
5407 	mutex_unlock(&dev_priv->drrs.mutex);
5408 }
5409 
5410 /**
5411  * intel_edp_drrs_flush - Restart Idleness DRRS
5412  * @dev_priv: i915 device
5413  * @frontbuffer_bits: frontbuffer plane tracking bits
5414  *
5415  * This function gets called every time rendering on the given planes has
5416  * completed or flip on a crtc is completed. So DRRS should be upclocked
5417  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5418  * if no other planes are dirty.
5419  *
5420  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5421  */
intel_edp_drrs_flush(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)5422 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5423 			  unsigned int frontbuffer_bits)
5424 {
5425 	struct drm_crtc *crtc;
5426 	enum pipe pipe;
5427 
5428 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5429 		return;
5430 
5431 	cancel_delayed_work(&dev_priv->drrs.work);
5432 
5433 	mutex_lock(&dev_priv->drrs.mutex);
5434 	if (!dev_priv->drrs.dp) {
5435 		mutex_unlock(&dev_priv->drrs.mutex);
5436 		return;
5437 	}
5438 
5439 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5440 	pipe = to_intel_crtc(crtc)->pipe;
5441 
5442 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5443 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5444 
5445 	/* flush means busy screen hence upclock */
5446 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5447 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5448 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5449 
5450 	/*
5451 	 * flush also means no more activity hence schedule downclock, if all
5452 	 * other fbs are quiescent too
5453 	 */
5454 	if (!dev_priv->drrs.busy_frontbuffer_bits)
5455 		schedule_delayed_work(&dev_priv->drrs.work,
5456 				msecs_to_jiffies(1000));
5457 	mutex_unlock(&dev_priv->drrs.mutex);
5458 }
5459 
5460 /**
5461  * DOC: Display Refresh Rate Switching (DRRS)
5462  *
5463  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5464  * which enables swtching between low and high refresh rates,
5465  * dynamically, based on the usage scenario. This feature is applicable
5466  * for internal panels.
5467  *
5468  * Indication that the panel supports DRRS is given by the panel EDID, which
5469  * would list multiple refresh rates for one resolution.
5470  *
5471  * DRRS is of 2 types - static and seamless.
5472  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5473  * (may appear as a blink on screen) and is used in dock-undock scenario.
5474  * Seamless DRRS involves changing RR without any visual effect to the user
5475  * and can be used during normal system usage. This is done by programming
5476  * certain registers.
5477  *
5478  * Support for static/seamless DRRS may be indicated in the VBT based on
5479  * inputs from the panel spec.
5480  *
5481  * DRRS saves power by switching to low RR based on usage scenarios.
5482  *
5483  * The implementation is based on frontbuffer tracking implementation.  When
5484  * there is a disturbance on the screen triggered by user activity or a periodic
5485  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5486  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5487  * made.
5488  *
5489  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5490  * and intel_edp_drrs_flush() are called.
5491  *
5492  * DRRS can be further extended to support other internal panels and also
5493  * the scenario of video playback wherein RR is set based on the rate
5494  * requested by userspace.
5495  */
5496 
5497 /**
5498  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5499  * @intel_connector: eDP connector
5500  * @fixed_mode: preferred mode of panel
5501  *
5502  * This function is  called only once at driver load to initialize basic
5503  * DRRS stuff.
5504  *
5505  * Returns:
5506  * Downclock mode if panel supports it, else return NULL.
5507  * DRRS support is determined by the presence of downclock mode (apart
5508  * from VBT setting).
5509  */
5510 static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector * intel_connector,struct drm_display_mode * fixed_mode)5511 intel_dp_drrs_init(struct intel_connector *intel_connector,
5512 		struct drm_display_mode *fixed_mode)
5513 {
5514 	struct drm_connector *connector = &intel_connector->base;
5515 	struct drm_device *dev = connector->dev;
5516 	struct drm_i915_private *dev_priv = to_i915(dev);
5517 	struct drm_display_mode *downclock_mode = NULL;
5518 
5519 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5520 	mutex_init(&dev_priv->drrs.mutex);
5521 
5522 	if (INTEL_INFO(dev)->gen <= 6) {
5523 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5524 		return NULL;
5525 	}
5526 
5527 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5528 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5529 		return NULL;
5530 	}
5531 
5532 	downclock_mode = intel_find_panel_downclock
5533 					(dev, fixed_mode, connector);
5534 
5535 	if (!downclock_mode) {
5536 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5537 		return NULL;
5538 	}
5539 
5540 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5541 
5542 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5543 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5544 	return downclock_mode;
5545 }
5546 
intel_edp_init_connector(struct intel_dp * intel_dp,struct intel_connector * intel_connector)5547 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5548 				     struct intel_connector *intel_connector)
5549 {
5550 	struct drm_connector *connector = &intel_connector->base;
5551 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5552 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
5553 	struct drm_device *dev = intel_encoder->base.dev;
5554 	struct drm_i915_private *dev_priv = to_i915(dev);
5555 	struct drm_display_mode *fixed_mode = NULL;
5556 	struct drm_display_mode *downclock_mode = NULL;
5557 	bool has_dpcd;
5558 	struct drm_display_mode *scan;
5559 	struct edid *edid;
5560 	enum pipe pipe = INVALID_PIPE;
5561 
5562 	if (!is_edp(intel_dp))
5563 		return true;
5564 
5565 	/*
5566 	 * On IBX/CPT we may get here with LVDS already registered. Since the
5567 	 * driver uses the only internal power sequencer available for both
5568 	 * eDP and LVDS bail out early in this case to prevent interfering
5569 	 * with an already powered-on LVDS power sequencer.
5570 	 */
5571 	if (intel_get_lvds_encoder(dev)) {
5572 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5573 		DRM_INFO("LVDS was detected, not registering eDP\n");
5574 
5575 		return false;
5576 	}
5577 
5578 	pps_lock(intel_dp);
5579 
5580 	intel_dp_init_panel_power_timestamps(intel_dp);
5581 	intel_dp_pps_init(dev, intel_dp);
5582 	intel_edp_panel_vdd_sanitize(intel_dp);
5583 
5584 	pps_unlock(intel_dp);
5585 
5586 	/* Cache DPCD and EDID for edp. */
5587 	has_dpcd = intel_edp_init_dpcd(intel_dp);
5588 
5589 	if (!has_dpcd) {
5590 		/* if this fails, presume the device is a ghost */
5591 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
5592 		goto out_vdd_off;
5593 	}
5594 
5595 	mutex_lock(&dev->mode_config.mutex);
5596 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5597 	if (edid) {
5598 		if (drm_add_edid_modes(connector, edid)) {
5599 			drm_mode_connector_update_edid_property(connector,
5600 								edid);
5601 			drm_edid_to_eld(connector, edid);
5602 		} else {
5603 			kfree(edid);
5604 			edid = ERR_PTR(-EINVAL);
5605 		}
5606 	} else {
5607 		edid = ERR_PTR(-ENOENT);
5608 	}
5609 	intel_connector->edid = edid;
5610 
5611 	/* prefer fixed mode from EDID if available */
5612 	list_for_each_entry(scan, &connector->probed_modes, head) {
5613 		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5614 			fixed_mode = drm_mode_duplicate(dev, scan);
5615 			downclock_mode = intel_dp_drrs_init(
5616 						intel_connector, fixed_mode);
5617 			break;
5618 		}
5619 	}
5620 
5621 	/* fallback to VBT if available for eDP */
5622 	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5623 		fixed_mode = drm_mode_duplicate(dev,
5624 					dev_priv->vbt.lfp_lvds_vbt_mode);
5625 		if (fixed_mode) {
5626 			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5627 			connector->display_info.width_mm = fixed_mode->width_mm;
5628 			connector->display_info.height_mm = fixed_mode->height_mm;
5629 		}
5630 	}
5631 	mutex_unlock(&dev->mode_config.mutex);
5632 
5633 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5634 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5635 		register_reboot_notifier(&intel_dp->edp_notifier);
5636 
5637 		/*
5638 		 * Figure out the current pipe for the initial backlight setup.
5639 		 * If the current pipe isn't valid, try the PPS pipe, and if that
5640 		 * fails just assume pipe A.
5641 		 */
5642 		if (IS_CHERRYVIEW(dev))
5643 			pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5644 		else
5645 			pipe = PORT_TO_PIPE(intel_dp->DP);
5646 
5647 		if (pipe != PIPE_A && pipe != PIPE_B)
5648 			pipe = intel_dp->pps_pipe;
5649 
5650 		if (pipe != PIPE_A && pipe != PIPE_B)
5651 			pipe = PIPE_A;
5652 
5653 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5654 			      pipe_name(pipe));
5655 	}
5656 
5657 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5658 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
5659 	intel_panel_setup_backlight(connector, pipe);
5660 
5661 	return true;
5662 
5663 out_vdd_off:
5664 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5665 	/*
5666 	 * vdd might still be enabled do to the delayed vdd off.
5667 	 * Make sure vdd is actually turned off here.
5668 	 */
5669 	pps_lock(intel_dp);
5670 	edp_panel_vdd_off_sync(intel_dp);
5671 	pps_unlock(intel_dp);
5672 
5673 	return false;
5674 }
5675 
5676 bool
intel_dp_init_connector(struct intel_digital_port * intel_dig_port,struct intel_connector * intel_connector)5677 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5678 			struct intel_connector *intel_connector)
5679 {
5680 	struct drm_connector *connector = &intel_connector->base;
5681 	struct intel_dp *intel_dp = &intel_dig_port->dp;
5682 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
5683 	struct drm_device *dev = intel_encoder->base.dev;
5684 	struct drm_i915_private *dev_priv = to_i915(dev);
5685 	enum port port = intel_dig_port->port;
5686 	int type;
5687 
5688 	if (WARN(intel_dig_port->max_lanes < 1,
5689 		 "Not enough lanes (%d) for DP on port %c\n",
5690 		 intel_dig_port->max_lanes, port_name(port)))
5691 		return false;
5692 
5693 	intel_dp->pps_pipe = INVALID_PIPE;
5694 
5695 	/* intel_dp vfuncs */
5696 	if (INTEL_INFO(dev)->gen >= 9)
5697 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5698 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5699 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5700 	else if (HAS_PCH_SPLIT(dev))
5701 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5702 	else
5703 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5704 
5705 	if (INTEL_INFO(dev)->gen >= 9)
5706 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5707 	else
5708 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5709 
5710 	if (HAS_DDI(dev))
5711 		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5712 
5713 	/* Preserve the current hw state. */
5714 	intel_dp->DP = I915_READ(intel_dp->output_reg);
5715 	intel_dp->attached_connector = intel_connector;
5716 
5717 	if (intel_dp_is_edp(dev, port))
5718 		type = DRM_MODE_CONNECTOR_eDP;
5719 	else
5720 		type = DRM_MODE_CONNECTOR_DisplayPort;
5721 
5722 	/*
5723 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5724 	 * for DP the encoder type can be set by the caller to
5725 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5726 	 */
5727 	if (type == DRM_MODE_CONNECTOR_eDP)
5728 		intel_encoder->type = INTEL_OUTPUT_EDP;
5729 
5730 	/* eDP only on port B and/or C on vlv/chv */
5731 	if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5732 		    is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5733 		return false;
5734 
5735 	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5736 			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5737 			port_name(port));
5738 
5739 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5740 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5741 
5742 	connector->interlace_allowed = true;
5743 	connector->doublescan_allowed = 0;
5744 
5745 	intel_dp_aux_init(intel_dp);
5746 
5747 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5748 			  edp_panel_vdd_work);
5749 
5750 	intel_connector_attach_encoder(intel_connector, intel_encoder);
5751 
5752 	if (HAS_DDI(dev))
5753 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5754 	else
5755 		intel_connector->get_hw_state = intel_connector_get_hw_state;
5756 
5757 	/* Set up the hotplug pin. */
5758 	switch (port) {
5759 	case PORT_A:
5760 		intel_encoder->hpd_pin = HPD_PORT_A;
5761 		break;
5762 	case PORT_B:
5763 		intel_encoder->hpd_pin = HPD_PORT_B;
5764 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5765 			intel_encoder->hpd_pin = HPD_PORT_A;
5766 		break;
5767 	case PORT_C:
5768 		intel_encoder->hpd_pin = HPD_PORT_C;
5769 		break;
5770 	case PORT_D:
5771 		intel_encoder->hpd_pin = HPD_PORT_D;
5772 		break;
5773 	case PORT_E:
5774 		intel_encoder->hpd_pin = HPD_PORT_E;
5775 		break;
5776 	default:
5777 		BUG();
5778 	}
5779 
5780 	/* init MST on ports that can support it */
5781 	if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5782 	    (port == PORT_B || port == PORT_C || port == PORT_D))
5783 		intel_dp_mst_encoder_init(intel_dig_port,
5784 					  intel_connector->base.base.id);
5785 
5786 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5787 		intel_dp_aux_fini(intel_dp);
5788 		intel_dp_mst_encoder_cleanup(intel_dig_port);
5789 		goto fail;
5790 	}
5791 
5792 	intel_dp_add_properties(intel_dp, connector);
5793 
5794 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5795 	 * 0xd.  Failure to do so will result in spurious interrupts being
5796 	 * generated on the port when a cable is not attached.
5797 	 */
5798 	if (IS_G4X(dev) && !IS_GM45(dev)) {
5799 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5800 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5801 	}
5802 
5803 	return true;
5804 
5805 fail:
5806 	drm_connector_cleanup(connector);
5807 
5808 	return false;
5809 }
5810 
intel_dp_init(struct drm_device * dev,i915_reg_t output_reg,enum port port)5811 bool intel_dp_init(struct drm_device *dev,
5812 		   i915_reg_t output_reg,
5813 		   enum port port)
5814 {
5815 	struct drm_i915_private *dev_priv = to_i915(dev);
5816 	struct intel_digital_port *intel_dig_port;
5817 	struct intel_encoder *intel_encoder;
5818 	struct drm_encoder *encoder;
5819 	struct intel_connector *intel_connector;
5820 
5821 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5822 	if (!intel_dig_port)
5823 		return false;
5824 
5825 	intel_connector = intel_connector_alloc();
5826 	if (!intel_connector)
5827 		goto err_connector_alloc;
5828 
5829 	intel_encoder = &intel_dig_port->base;
5830 	encoder = &intel_encoder->base;
5831 
5832 	if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5833 			     DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5834 		goto err_encoder_init;
5835 
5836 	intel_encoder->compute_config = intel_dp_compute_config;
5837 	intel_encoder->disable = intel_disable_dp;
5838 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
5839 	intel_encoder->get_config = intel_dp_get_config;
5840 	intel_encoder->suspend = intel_dp_encoder_suspend;
5841 	if (IS_CHERRYVIEW(dev)) {
5842 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5843 		intel_encoder->pre_enable = chv_pre_enable_dp;
5844 		intel_encoder->enable = vlv_enable_dp;
5845 		intel_encoder->post_disable = chv_post_disable_dp;
5846 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5847 	} else if (IS_VALLEYVIEW(dev)) {
5848 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5849 		intel_encoder->pre_enable = vlv_pre_enable_dp;
5850 		intel_encoder->enable = vlv_enable_dp;
5851 		intel_encoder->post_disable = vlv_post_disable_dp;
5852 	} else {
5853 		intel_encoder->pre_enable = g4x_pre_enable_dp;
5854 		intel_encoder->enable = g4x_enable_dp;
5855 		if (INTEL_INFO(dev)->gen >= 5)
5856 			intel_encoder->post_disable = ilk_post_disable_dp;
5857 	}
5858 
5859 	intel_dig_port->port = port;
5860 	intel_dig_port->dp.output_reg = output_reg;
5861 	intel_dig_port->max_lanes = 4;
5862 
5863 	intel_encoder->type = INTEL_OUTPUT_DP;
5864 	if (IS_CHERRYVIEW(dev)) {
5865 		if (port == PORT_D)
5866 			intel_encoder->crtc_mask = 1 << 2;
5867 		else
5868 			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5869 	} else {
5870 		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5871 	}
5872 	intel_encoder->cloneable = 0;
5873 
5874 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5875 	dev_priv->hotplug.irq_port[port] = intel_dig_port;
5876 
5877 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5878 		goto err_init_connector;
5879 
5880 	return true;
5881 
5882 err_init_connector:
5883 	drm_encoder_cleanup(encoder);
5884 err_encoder_init:
5885 	kfree(intel_connector);
5886 err_connector_alloc:
5887 	kfree(intel_dig_port);
5888 	return false;
5889 }
5890 
intel_dp_mst_suspend(struct drm_device * dev)5891 void intel_dp_mst_suspend(struct drm_device *dev)
5892 {
5893 	struct drm_i915_private *dev_priv = to_i915(dev);
5894 	int i;
5895 
5896 	/* disable MST */
5897 	for (i = 0; i < I915_MAX_PORTS; i++) {
5898 		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5899 
5900 		if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5901 			continue;
5902 
5903 		if (intel_dig_port->dp.is_mst)
5904 			drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5905 	}
5906 }
5907 
intel_dp_mst_resume(struct drm_device * dev)5908 void intel_dp_mst_resume(struct drm_device *dev)
5909 {
5910 	struct drm_i915_private *dev_priv = to_i915(dev);
5911 	int i;
5912 
5913 	for (i = 0; i < I915_MAX_PORTS; i++) {
5914 		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5915 		int ret;
5916 
5917 		if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5918 			continue;
5919 
5920 		ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5921 		if (ret)
5922 			intel_dp_check_mst_status(&intel_dig_port->dp);
5923 	}
5924 }
5925