• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <stdio.h>
17 #include <stdbool.h>
18 #include <errno.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 
22 #include "../perf.h"
23 #include "session.h"
24 #include "machine.h"
25 #include "sort.h"
26 #include "tool.h"
27 #include "event.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "map.h"
31 #include "color.h"
32 #include "util.h"
33 #include "thread.h"
34 #include "thread-stack.h"
35 #include "symbol.h"
36 #include "callchain.h"
37 #include "dso.h"
38 #include "debug.h"
39 #include "auxtrace.h"
40 #include "tsc.h"
41 #include "intel-pt.h"
42 #include "config.h"
43 
44 #include "intel-pt-decoder/intel-pt-log.h"
45 #include "intel-pt-decoder/intel-pt-decoder.h"
46 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
47 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
48 
49 #define MAX_TIMESTAMP (~0ULL)
50 
51 struct intel_pt {
52 	struct auxtrace auxtrace;
53 	struct auxtrace_queues queues;
54 	struct auxtrace_heap heap;
55 	u32 auxtrace_type;
56 	struct perf_session *session;
57 	struct machine *machine;
58 	struct perf_evsel *switch_evsel;
59 	struct thread *unknown_thread;
60 	bool timeless_decoding;
61 	bool sampling_mode;
62 	bool snapshot_mode;
63 	bool per_cpu_mmaps;
64 	bool have_tsc;
65 	bool data_queued;
66 	bool est_tsc;
67 	bool sync_switch;
68 	bool mispred_all;
69 	int have_sched_switch;
70 	u32 pmu_type;
71 	u64 kernel_start;
72 	u64 switch_ip;
73 	u64 ptss_ip;
74 
75 	struct perf_tsc_conversion tc;
76 	bool cap_user_time_zero;
77 
78 	struct itrace_synth_opts synth_opts;
79 
80 	bool sample_instructions;
81 	u64 instructions_sample_type;
82 	u64 instructions_sample_period;
83 	u64 instructions_id;
84 
85 	bool sample_branches;
86 	u32 branches_filter;
87 	u64 branches_sample_type;
88 	u64 branches_id;
89 
90 	bool sample_transactions;
91 	u64 transactions_sample_type;
92 	u64 transactions_id;
93 
94 	bool synth_needs_swap;
95 
96 	u64 tsc_bit;
97 	u64 mtc_bit;
98 	u64 mtc_freq_bits;
99 	u32 tsc_ctc_ratio_n;
100 	u32 tsc_ctc_ratio_d;
101 	u64 cyc_bit;
102 	u64 noretcomp_bit;
103 	unsigned max_non_turbo_ratio;
104 
105 	unsigned long num_events;
106 
107 	char *filter;
108 	struct addr_filters filts;
109 };
110 
111 enum switch_state {
112 	INTEL_PT_SS_NOT_TRACING,
113 	INTEL_PT_SS_UNKNOWN,
114 	INTEL_PT_SS_TRACING,
115 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
116 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
117 };
118 
119 struct intel_pt_queue {
120 	struct intel_pt *pt;
121 	unsigned int queue_nr;
122 	struct auxtrace_buffer *buffer;
123 	void *decoder;
124 	const struct intel_pt_state *state;
125 	struct ip_callchain *chain;
126 	struct branch_stack *last_branch;
127 	struct branch_stack *last_branch_rb;
128 	size_t last_branch_pos;
129 	union perf_event *event_buf;
130 	bool on_heap;
131 	bool stop;
132 	bool step_through_buffers;
133 	bool use_buffer_pid_tid;
134 	bool sync_switch;
135 	pid_t pid, tid;
136 	int cpu;
137 	int switch_state;
138 	pid_t next_tid;
139 	struct thread *thread;
140 	bool exclude_kernel;
141 	bool have_sample;
142 	u64 time;
143 	u64 timestamp;
144 	u32 flags;
145 	u16 insn_len;
146 	u64 last_insn_cnt;
147 };
148 
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)149 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
150 			  unsigned char *buf, size_t len)
151 {
152 	struct intel_pt_pkt packet;
153 	size_t pos = 0;
154 	int ret, pkt_len, i;
155 	char desc[INTEL_PT_PKT_DESC_MAX];
156 	const char *color = PERF_COLOR_BLUE;
157 
158 	color_fprintf(stdout, color,
159 		      ". ... Intel Processor Trace data: size %zu bytes\n",
160 		      len);
161 
162 	while (len) {
163 		ret = intel_pt_get_packet(buf, len, &packet);
164 		if (ret > 0)
165 			pkt_len = ret;
166 		else
167 			pkt_len = 1;
168 		printf(".");
169 		color_fprintf(stdout, color, "  %08x: ", pos);
170 		for (i = 0; i < pkt_len; i++)
171 			color_fprintf(stdout, color, " %02x", buf[i]);
172 		for (; i < 16; i++)
173 			color_fprintf(stdout, color, "   ");
174 		if (ret > 0) {
175 			ret = intel_pt_pkt_desc(&packet, desc,
176 						INTEL_PT_PKT_DESC_MAX);
177 			if (ret > 0)
178 				color_fprintf(stdout, color, " %s\n", desc);
179 		} else {
180 			color_fprintf(stdout, color, " Bad packet!\n");
181 		}
182 		pos += pkt_len;
183 		buf += pkt_len;
184 		len -= pkt_len;
185 	}
186 }
187 
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)188 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
189 				size_t len)
190 {
191 	printf(".\n");
192 	intel_pt_dump(pt, buf, len);
193 }
194 
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)195 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
196 				   struct auxtrace_buffer *b)
197 {
198 	bool consecutive = false;
199 	void *start;
200 
201 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
202 				      pt->have_tsc, &consecutive);
203 	if (!start)
204 		return -EINVAL;
205 	b->use_size = b->data + b->size - start;
206 	b->use_data = start;
207 	if (b->use_size && consecutive)
208 		b->consecutive = true;
209 	return 0;
210 }
211 
intel_pt_use_buffer_pid_tid(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)212 static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
213 					struct auxtrace_queue *queue,
214 					struct auxtrace_buffer *buffer)
215 {
216 	if (queue->cpu == -1 && buffer->cpu != -1)
217 		ptq->cpu = buffer->cpu;
218 
219 	ptq->pid = buffer->pid;
220 	ptq->tid = buffer->tid;
221 
222 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
223 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
224 
225 	thread__zput(ptq->thread);
226 
227 	if (ptq->tid != -1) {
228 		if (ptq->pid != -1)
229 			ptq->thread = machine__findnew_thread(ptq->pt->machine,
230 							      ptq->pid,
231 							      ptq->tid);
232 		else
233 			ptq->thread = machine__find_thread(ptq->pt->machine, -1,
234 							   ptq->tid);
235 	}
236 }
237 
238 /* This function assumes data is processed sequentially only */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)239 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
240 {
241 	struct intel_pt_queue *ptq = data;
242 	struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
243 	struct auxtrace_queue *queue;
244 
245 	if (ptq->stop) {
246 		b->len = 0;
247 		return 0;
248 	}
249 
250 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
251 next:
252 	buffer = auxtrace_buffer__next(queue, buffer);
253 	if (!buffer) {
254 		if (old_buffer)
255 			auxtrace_buffer__drop_data(old_buffer);
256 		b->len = 0;
257 		return 0;
258 	}
259 
260 	ptq->buffer = buffer;
261 
262 	if (!buffer->data) {
263 		int fd = perf_data_file__fd(ptq->pt->session->file);
264 
265 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
266 		if (!buffer->data)
267 			return -ENOMEM;
268 	}
269 
270 	if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
271 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
272 		return -ENOMEM;
273 
274 	if (buffer->use_data) {
275 		b->len = buffer->use_size;
276 		b->buf = buffer->use_data;
277 	} else {
278 		b->len = buffer->size;
279 		b->buf = buffer->data;
280 	}
281 	b->ref_timestamp = buffer->reference;
282 
283 	/*
284 	 * If in snapshot mode and the buffer has no usable data, get next
285 	 * buffer and again check overlap against old_buffer.
286 	 */
287 	if (ptq->pt->snapshot_mode && !b->len)
288 		goto next;
289 
290 	if (old_buffer)
291 		auxtrace_buffer__drop_data(old_buffer);
292 
293 	if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
294 						      !buffer->consecutive)) {
295 		b->consecutive = false;
296 		b->trace_nr = buffer->buffer_nr + 1;
297 	} else {
298 		b->consecutive = true;
299 	}
300 
301 	if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
302 					ptq->tid != buffer->tid))
303 		intel_pt_use_buffer_pid_tid(ptq, queue, buffer);
304 
305 	if (ptq->step_through_buffers)
306 		ptq->stop = true;
307 
308 	if (!b->len)
309 		return intel_pt_get_trace(b, data);
310 
311 	return 0;
312 }
313 
314 struct intel_pt_cache_entry {
315 	struct auxtrace_cache_entry	entry;
316 	u64				insn_cnt;
317 	u64				byte_cnt;
318 	enum intel_pt_insn_op		op;
319 	enum intel_pt_insn_branch	branch;
320 	int				length;
321 	int32_t				rel;
322 };
323 
intel_pt_config_div(const char * var,const char * value,void * data)324 static int intel_pt_config_div(const char *var, const char *value, void *data)
325 {
326 	int *d = data;
327 	long val;
328 
329 	if (!strcmp(var, "intel-pt.cache-divisor")) {
330 		val = strtol(value, NULL, 0);
331 		if (val > 0 && val <= INT_MAX)
332 			*d = val;
333 	}
334 
335 	return 0;
336 }
337 
intel_pt_cache_divisor(void)338 static int intel_pt_cache_divisor(void)
339 {
340 	static int d;
341 
342 	if (d)
343 		return d;
344 
345 	perf_config(intel_pt_config_div, &d);
346 
347 	if (!d)
348 		d = 64;
349 
350 	return d;
351 }
352 
intel_pt_cache_size(struct dso * dso,struct machine * machine)353 static unsigned int intel_pt_cache_size(struct dso *dso,
354 					struct machine *machine)
355 {
356 	off_t size;
357 
358 	size = dso__data_size(dso, machine);
359 	size /= intel_pt_cache_divisor();
360 	if (size < 1000)
361 		return 10;
362 	if (size > (1 << 21))
363 		return 21;
364 	return 32 - __builtin_clz(size);
365 }
366 
intel_pt_cache(struct dso * dso,struct machine * machine)367 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
368 					     struct machine *machine)
369 {
370 	struct auxtrace_cache *c;
371 	unsigned int bits;
372 
373 	if (dso->auxtrace_cache)
374 		return dso->auxtrace_cache;
375 
376 	bits = intel_pt_cache_size(dso, machine);
377 
378 	/* Ignoring cache creation failure */
379 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
380 
381 	dso->auxtrace_cache = c;
382 
383 	return c;
384 }
385 
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)386 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
387 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
388 			      struct intel_pt_insn *intel_pt_insn)
389 {
390 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
391 	struct intel_pt_cache_entry *e;
392 	int err;
393 
394 	if (!c)
395 		return -ENOMEM;
396 
397 	e = auxtrace_cache__alloc_entry(c);
398 	if (!e)
399 		return -ENOMEM;
400 
401 	e->insn_cnt = insn_cnt;
402 	e->byte_cnt = byte_cnt;
403 	e->op = intel_pt_insn->op;
404 	e->branch = intel_pt_insn->branch;
405 	e->length = intel_pt_insn->length;
406 	e->rel = intel_pt_insn->rel;
407 
408 	err = auxtrace_cache__add(c, offset, &e->entry);
409 	if (err)
410 		auxtrace_cache__free_entry(c, e);
411 
412 	return err;
413 }
414 
415 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)416 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
417 {
418 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
419 
420 	if (!c)
421 		return NULL;
422 
423 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
424 }
425 
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)426 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
427 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
428 				   uint64_t to_ip, uint64_t max_insn_cnt,
429 				   void *data)
430 {
431 	struct intel_pt_queue *ptq = data;
432 	struct machine *machine = ptq->pt->machine;
433 	struct thread *thread;
434 	struct addr_location al;
435 	unsigned char buf[1024];
436 	size_t bufsz;
437 	ssize_t len;
438 	int x86_64;
439 	u8 cpumode;
440 	u64 offset, start_offset, start_ip;
441 	u64 insn_cnt = 0;
442 	bool one_map = true;
443 
444 	if (to_ip && *ip == to_ip)
445 		goto out_no_cache;
446 
447 	bufsz = intel_pt_insn_max_size();
448 
449 	if (*ip >= ptq->pt->kernel_start)
450 		cpumode = PERF_RECORD_MISC_KERNEL;
451 	else
452 		cpumode = PERF_RECORD_MISC_USER;
453 
454 	thread = ptq->thread;
455 	if (!thread) {
456 		if (cpumode != PERF_RECORD_MISC_KERNEL)
457 			return -EINVAL;
458 		thread = ptq->pt->unknown_thread;
459 	}
460 
461 	while (1) {
462 		thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
463 		if (!al.map || !al.map->dso)
464 			return -EINVAL;
465 
466 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
467 		    dso__data_status_seen(al.map->dso,
468 					  DSO_DATA_STATUS_SEEN_ITRACE))
469 			return -ENOENT;
470 
471 		offset = al.map->map_ip(al.map, *ip);
472 
473 		if (!to_ip && one_map) {
474 			struct intel_pt_cache_entry *e;
475 
476 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
477 			if (e &&
478 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
479 				*insn_cnt_ptr = e->insn_cnt;
480 				*ip += e->byte_cnt;
481 				intel_pt_insn->op = e->op;
482 				intel_pt_insn->branch = e->branch;
483 				intel_pt_insn->length = e->length;
484 				intel_pt_insn->rel = e->rel;
485 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
486 				return 0;
487 			}
488 		}
489 
490 		start_offset = offset;
491 		start_ip = *ip;
492 
493 		/* Load maps to ensure dso->is_64_bit has been updated */
494 		map__load(al.map);
495 
496 		x86_64 = al.map->dso->is_64_bit;
497 
498 		while (1) {
499 			len = dso__data_read_offset(al.map->dso, machine,
500 						    offset, buf, bufsz);
501 			if (len <= 0)
502 				return -EINVAL;
503 
504 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
505 				return -EINVAL;
506 
507 			intel_pt_log_insn(intel_pt_insn, *ip);
508 
509 			insn_cnt += 1;
510 
511 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
512 				goto out;
513 
514 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
515 				goto out_no_cache;
516 
517 			*ip += intel_pt_insn->length;
518 
519 			if (to_ip && *ip == to_ip)
520 				goto out_no_cache;
521 
522 			if (*ip >= al.map->end)
523 				break;
524 
525 			offset += intel_pt_insn->length;
526 		}
527 		one_map = false;
528 	}
529 out:
530 	*insn_cnt_ptr = insn_cnt;
531 
532 	if (!one_map)
533 		goto out_no_cache;
534 
535 	/*
536 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
537 	 * entries.
538 	 */
539 	if (to_ip) {
540 		struct intel_pt_cache_entry *e;
541 
542 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
543 		if (e)
544 			return 0;
545 	}
546 
547 	/* Ignore cache errors */
548 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
549 			   *ip - start_ip, intel_pt_insn);
550 
551 	return 0;
552 
553 out_no_cache:
554 	*insn_cnt_ptr = insn_cnt;
555 	return 0;
556 }
557 
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)558 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
559 				  uint64_t offset, const char *filename)
560 {
561 	struct addr_filter *filt;
562 	bool have_filter   = false;
563 	bool hit_tracestop = false;
564 	bool hit_filter    = false;
565 
566 	list_for_each_entry(filt, &pt->filts.head, list) {
567 		if (filt->start)
568 			have_filter = true;
569 
570 		if ((filename && !filt->filename) ||
571 		    (!filename && filt->filename) ||
572 		    (filename && strcmp(filename, filt->filename)))
573 			continue;
574 
575 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
576 			continue;
577 
578 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
579 			     ip, offset, filename ? filename : "[kernel]",
580 			     filt->start ? "filter" : "stop",
581 			     filt->addr, filt->size);
582 
583 		if (filt->start)
584 			hit_filter = true;
585 		else
586 			hit_tracestop = true;
587 	}
588 
589 	if (!hit_tracestop && !hit_filter)
590 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
591 			     ip, offset, filename ? filename : "[kernel]");
592 
593 	return hit_tracestop || (have_filter && !hit_filter);
594 }
595 
__intel_pt_pgd_ip(uint64_t ip,void * data)596 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
597 {
598 	struct intel_pt_queue *ptq = data;
599 	struct thread *thread;
600 	struct addr_location al;
601 	u8 cpumode;
602 	u64 offset;
603 
604 	if (ip >= ptq->pt->kernel_start)
605 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
606 
607 	cpumode = PERF_RECORD_MISC_USER;
608 
609 	thread = ptq->thread;
610 	if (!thread)
611 		return -EINVAL;
612 
613 	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, ip, &al);
614 	if (!al.map || !al.map->dso)
615 		return -EINVAL;
616 
617 	offset = al.map->map_ip(al.map, ip);
618 
619 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
620 				     al.map->dso->long_name);
621 }
622 
intel_pt_pgd_ip(uint64_t ip,void * data)623 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
624 {
625 	return __intel_pt_pgd_ip(ip, data) > 0;
626 }
627 
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)628 static bool intel_pt_get_config(struct intel_pt *pt,
629 				struct perf_event_attr *attr, u64 *config)
630 {
631 	if (attr->type == pt->pmu_type) {
632 		if (config)
633 			*config = attr->config;
634 		return true;
635 	}
636 
637 	return false;
638 }
639 
intel_pt_exclude_kernel(struct intel_pt * pt)640 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
641 {
642 	struct perf_evsel *evsel;
643 
644 	evlist__for_each_entry(pt->session->evlist, evsel) {
645 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
646 		    !evsel->attr.exclude_kernel)
647 			return false;
648 	}
649 	return true;
650 }
651 
intel_pt_return_compression(struct intel_pt * pt)652 static bool intel_pt_return_compression(struct intel_pt *pt)
653 {
654 	struct perf_evsel *evsel;
655 	u64 config;
656 
657 	if (!pt->noretcomp_bit)
658 		return true;
659 
660 	evlist__for_each_entry(pt->session->evlist, evsel) {
661 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
662 		    (config & pt->noretcomp_bit))
663 			return false;
664 	}
665 	return true;
666 }
667 
intel_pt_mtc_period(struct intel_pt * pt)668 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
669 {
670 	struct perf_evsel *evsel;
671 	unsigned int shift;
672 	u64 config;
673 
674 	if (!pt->mtc_freq_bits)
675 		return 0;
676 
677 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
678 		config >>= 1;
679 
680 	evlist__for_each_entry(pt->session->evlist, evsel) {
681 		if (intel_pt_get_config(pt, &evsel->attr, &config))
682 			return (config & pt->mtc_freq_bits) >> shift;
683 	}
684 	return 0;
685 }
686 
intel_pt_timeless_decoding(struct intel_pt * pt)687 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
688 {
689 	struct perf_evsel *evsel;
690 	bool timeless_decoding = true;
691 	u64 config;
692 
693 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
694 		return true;
695 
696 	evlist__for_each_entry(pt->session->evlist, evsel) {
697 		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
698 			return true;
699 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
700 			if (config & pt->tsc_bit)
701 				timeless_decoding = false;
702 			else
703 				return true;
704 		}
705 	}
706 	return timeless_decoding;
707 }
708 
intel_pt_tracing_kernel(struct intel_pt * pt)709 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
710 {
711 	struct perf_evsel *evsel;
712 
713 	evlist__for_each_entry(pt->session->evlist, evsel) {
714 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
715 		    !evsel->attr.exclude_kernel)
716 			return true;
717 	}
718 	return false;
719 }
720 
intel_pt_have_tsc(struct intel_pt * pt)721 static bool intel_pt_have_tsc(struct intel_pt *pt)
722 {
723 	struct perf_evsel *evsel;
724 	bool have_tsc = false;
725 	u64 config;
726 
727 	if (!pt->tsc_bit)
728 		return false;
729 
730 	evlist__for_each_entry(pt->session->evlist, evsel) {
731 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
732 			if (config & pt->tsc_bit)
733 				have_tsc = true;
734 			else
735 				return false;
736 		}
737 	}
738 	return have_tsc;
739 }
740 
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)741 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
742 {
743 	u64 quot, rem;
744 
745 	quot = ns / pt->tc.time_mult;
746 	rem  = ns % pt->tc.time_mult;
747 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
748 		pt->tc.time_mult;
749 }
750 
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)751 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
752 						   unsigned int queue_nr)
753 {
754 	struct intel_pt_params params = { .get_trace = 0, };
755 	struct intel_pt_queue *ptq;
756 
757 	ptq = zalloc(sizeof(struct intel_pt_queue));
758 	if (!ptq)
759 		return NULL;
760 
761 	if (pt->synth_opts.callchain) {
762 		size_t sz = sizeof(struct ip_callchain);
763 
764 		sz += pt->synth_opts.callchain_sz * sizeof(u64);
765 		ptq->chain = zalloc(sz);
766 		if (!ptq->chain)
767 			goto out_free;
768 	}
769 
770 	if (pt->synth_opts.last_branch) {
771 		size_t sz = sizeof(struct branch_stack);
772 
773 		sz += pt->synth_opts.last_branch_sz *
774 		      sizeof(struct branch_entry);
775 		ptq->last_branch = zalloc(sz);
776 		if (!ptq->last_branch)
777 			goto out_free;
778 		ptq->last_branch_rb = zalloc(sz);
779 		if (!ptq->last_branch_rb)
780 			goto out_free;
781 	}
782 
783 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
784 	if (!ptq->event_buf)
785 		goto out_free;
786 
787 	ptq->pt = pt;
788 	ptq->queue_nr = queue_nr;
789 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
790 	ptq->pid = -1;
791 	ptq->tid = -1;
792 	ptq->cpu = -1;
793 	ptq->next_tid = -1;
794 
795 	params.get_trace = intel_pt_get_trace;
796 	params.walk_insn = intel_pt_walk_next_insn;
797 	params.data = ptq;
798 	params.return_compression = intel_pt_return_compression(pt);
799 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
800 	params.mtc_period = intel_pt_mtc_period(pt);
801 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
802 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
803 
804 	if (pt->filts.cnt > 0)
805 		params.pgd_ip = intel_pt_pgd_ip;
806 
807 	if (pt->synth_opts.instructions) {
808 		if (pt->synth_opts.period) {
809 			switch (pt->synth_opts.period_type) {
810 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
811 				params.period_type =
812 						INTEL_PT_PERIOD_INSTRUCTIONS;
813 				params.period = pt->synth_opts.period;
814 				break;
815 			case PERF_ITRACE_PERIOD_TICKS:
816 				params.period_type = INTEL_PT_PERIOD_TICKS;
817 				params.period = pt->synth_opts.period;
818 				break;
819 			case PERF_ITRACE_PERIOD_NANOSECS:
820 				params.period_type = INTEL_PT_PERIOD_TICKS;
821 				params.period = intel_pt_ns_to_ticks(pt,
822 							pt->synth_opts.period);
823 				break;
824 			default:
825 				break;
826 			}
827 		}
828 
829 		if (!params.period) {
830 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
831 			params.period = 1;
832 		}
833 	}
834 
835 	ptq->decoder = intel_pt_decoder_new(&params);
836 	if (!ptq->decoder)
837 		goto out_free;
838 
839 	return ptq;
840 
841 out_free:
842 	zfree(&ptq->event_buf);
843 	zfree(&ptq->last_branch);
844 	zfree(&ptq->last_branch_rb);
845 	zfree(&ptq->chain);
846 	free(ptq);
847 	return NULL;
848 }
849 
intel_pt_free_queue(void * priv)850 static void intel_pt_free_queue(void *priv)
851 {
852 	struct intel_pt_queue *ptq = priv;
853 
854 	if (!ptq)
855 		return;
856 	thread__zput(ptq->thread);
857 	intel_pt_decoder_free(ptq->decoder);
858 	zfree(&ptq->event_buf);
859 	zfree(&ptq->last_branch);
860 	zfree(&ptq->last_branch_rb);
861 	zfree(&ptq->chain);
862 	free(ptq);
863 }
864 
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)865 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
866 				     struct auxtrace_queue *queue)
867 {
868 	struct intel_pt_queue *ptq = queue->priv;
869 
870 	if (queue->tid == -1 || pt->have_sched_switch) {
871 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
872 		thread__zput(ptq->thread);
873 	}
874 
875 	if (!ptq->thread && ptq->tid != -1)
876 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
877 
878 	if (ptq->thread) {
879 		ptq->pid = ptq->thread->pid_;
880 		if (queue->cpu == -1)
881 			ptq->cpu = ptq->thread->cpu;
882 	}
883 }
884 
intel_pt_sample_flags(struct intel_pt_queue * ptq)885 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
886 {
887 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
888 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
889 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
890 		if (ptq->state->to_ip)
891 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
892 				     PERF_IP_FLAG_ASYNC |
893 				     PERF_IP_FLAG_INTERRUPT;
894 		else
895 			ptq->flags = PERF_IP_FLAG_BRANCH |
896 				     PERF_IP_FLAG_TRACE_END;
897 		ptq->insn_len = 0;
898 	} else {
899 		if (ptq->state->from_ip)
900 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
901 		else
902 			ptq->flags = PERF_IP_FLAG_BRANCH |
903 				     PERF_IP_FLAG_TRACE_BEGIN;
904 		if (ptq->state->flags & INTEL_PT_IN_TX)
905 			ptq->flags |= PERF_IP_FLAG_IN_TX;
906 		ptq->insn_len = ptq->state->insn_len;
907 	}
908 }
909 
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)910 static int intel_pt_setup_queue(struct intel_pt *pt,
911 				struct auxtrace_queue *queue,
912 				unsigned int queue_nr)
913 {
914 	struct intel_pt_queue *ptq = queue->priv;
915 
916 	if (list_empty(&queue->head))
917 		return 0;
918 
919 	if (!ptq) {
920 		ptq = intel_pt_alloc_queue(pt, queue_nr);
921 		if (!ptq)
922 			return -ENOMEM;
923 		queue->priv = ptq;
924 
925 		if (queue->cpu != -1)
926 			ptq->cpu = queue->cpu;
927 		ptq->tid = queue->tid;
928 
929 		if (pt->sampling_mode) {
930 			if (pt->timeless_decoding)
931 				ptq->step_through_buffers = true;
932 			if (pt->timeless_decoding || !pt->have_sched_switch)
933 				ptq->use_buffer_pid_tid = true;
934 		}
935 
936 		ptq->sync_switch = pt->sync_switch;
937 	}
938 
939 	if (!ptq->on_heap &&
940 	    (!ptq->sync_switch ||
941 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
942 		const struct intel_pt_state *state;
943 		int ret;
944 
945 		if (pt->timeless_decoding)
946 			return 0;
947 
948 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
949 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
950 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
951 		while (1) {
952 			state = intel_pt_decode(ptq->decoder);
953 			if (state->err) {
954 				if (state->err == INTEL_PT_ERR_NODATA) {
955 					intel_pt_log("queue %u has no timestamp\n",
956 						     queue_nr);
957 					return 0;
958 				}
959 				continue;
960 			}
961 			if (state->timestamp)
962 				break;
963 		}
964 
965 		ptq->timestamp = state->timestamp;
966 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
967 			     queue_nr, ptq->timestamp);
968 		ptq->state = state;
969 		ptq->have_sample = true;
970 		intel_pt_sample_flags(ptq);
971 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
972 		if (ret)
973 			return ret;
974 		ptq->on_heap = true;
975 	}
976 
977 	return 0;
978 }
979 
intel_pt_setup_queues(struct intel_pt * pt)980 static int intel_pt_setup_queues(struct intel_pt *pt)
981 {
982 	unsigned int i;
983 	int ret;
984 
985 	for (i = 0; i < pt->queues.nr_queues; i++) {
986 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
987 		if (ret)
988 			return ret;
989 	}
990 	return 0;
991 }
992 
intel_pt_copy_last_branch_rb(struct intel_pt_queue * ptq)993 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
994 {
995 	struct branch_stack *bs_src = ptq->last_branch_rb;
996 	struct branch_stack *bs_dst = ptq->last_branch;
997 	size_t nr = 0;
998 
999 	bs_dst->nr = bs_src->nr;
1000 
1001 	if (!bs_src->nr)
1002 		return;
1003 
1004 	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1005 	memcpy(&bs_dst->entries[0],
1006 	       &bs_src->entries[ptq->last_branch_pos],
1007 	       sizeof(struct branch_entry) * nr);
1008 
1009 	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1010 		memcpy(&bs_dst->entries[nr],
1011 		       &bs_src->entries[0],
1012 		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1013 	}
1014 }
1015 
intel_pt_reset_last_branch_rb(struct intel_pt_queue * ptq)1016 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1017 {
1018 	ptq->last_branch_pos = 0;
1019 	ptq->last_branch_rb->nr = 0;
1020 }
1021 
intel_pt_update_last_branch_rb(struct intel_pt_queue * ptq)1022 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1023 {
1024 	const struct intel_pt_state *state = ptq->state;
1025 	struct branch_stack *bs = ptq->last_branch_rb;
1026 	struct branch_entry *be;
1027 
1028 	if (!ptq->last_branch_pos)
1029 		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1030 
1031 	ptq->last_branch_pos -= 1;
1032 
1033 	be              = &bs->entries[ptq->last_branch_pos];
1034 	be->from        = state->from_ip;
1035 	be->to          = state->to_ip;
1036 	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1037 	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1038 	/* No support for mispredict */
1039 	be->flags.mispred = ptq->pt->mispred_all;
1040 
1041 	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1042 		bs->nr += 1;
1043 }
1044 
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type,bool swapped)1045 static int intel_pt_inject_event(union perf_event *event,
1046 				 struct perf_sample *sample, u64 type,
1047 				 bool swapped)
1048 {
1049 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1050 	return perf_event__synthesize_sample(event, type, 0, sample, swapped);
1051 }
1052 
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1053 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1054 {
1055 	int ret;
1056 	struct intel_pt *pt = ptq->pt;
1057 	union perf_event *event = ptq->event_buf;
1058 	struct perf_sample sample = { .ip = 0, };
1059 	struct dummy_branch_stack {
1060 		u64			nr;
1061 		struct branch_entry	entries;
1062 	} dummy_bs;
1063 
1064 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1065 		return 0;
1066 
1067 	if (pt->synth_opts.initial_skip &&
1068 	    pt->num_events++ < pt->synth_opts.initial_skip)
1069 		return 0;
1070 
1071 	event->sample.header.type = PERF_RECORD_SAMPLE;
1072 	event->sample.header.misc = PERF_RECORD_MISC_USER;
1073 	event->sample.header.size = sizeof(struct perf_event_header);
1074 
1075 	if (!pt->timeless_decoding)
1076 		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1077 
1078 	sample.cpumode = PERF_RECORD_MISC_USER;
1079 	sample.ip = ptq->state->from_ip;
1080 	sample.pid = ptq->pid;
1081 	sample.tid = ptq->tid;
1082 	sample.addr = ptq->state->to_ip;
1083 	sample.id = ptq->pt->branches_id;
1084 	sample.stream_id = ptq->pt->branches_id;
1085 	sample.period = 1;
1086 	sample.cpu = ptq->cpu;
1087 	sample.flags = ptq->flags;
1088 	sample.insn_len = ptq->insn_len;
1089 
1090 	/*
1091 	 * perf report cannot handle events without a branch stack when using
1092 	 * SORT_MODE__BRANCH so make a dummy one.
1093 	 */
1094 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1095 		dummy_bs = (struct dummy_branch_stack){
1096 			.nr = 1,
1097 			.entries = {
1098 				.from = sample.ip,
1099 				.to = sample.addr,
1100 			},
1101 		};
1102 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1103 	}
1104 
1105 	if (pt->synth_opts.inject) {
1106 		ret = intel_pt_inject_event(event, &sample,
1107 					    pt->branches_sample_type,
1108 					    pt->synth_needs_swap);
1109 		if (ret)
1110 			return ret;
1111 	}
1112 
1113 	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1114 	if (ret)
1115 		pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
1116 		       ret);
1117 
1118 	return ret;
1119 }
1120 
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1121 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1122 {
1123 	int ret;
1124 	struct intel_pt *pt = ptq->pt;
1125 	union perf_event *event = ptq->event_buf;
1126 	struct perf_sample sample = { .ip = 0, };
1127 
1128 	if (pt->synth_opts.initial_skip &&
1129 	    pt->num_events++ < pt->synth_opts.initial_skip)
1130 		return 0;
1131 
1132 	event->sample.header.type = PERF_RECORD_SAMPLE;
1133 	event->sample.header.misc = PERF_RECORD_MISC_USER;
1134 	event->sample.header.size = sizeof(struct perf_event_header);
1135 
1136 	if (!pt->timeless_decoding)
1137 		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1138 
1139 	sample.cpumode = PERF_RECORD_MISC_USER;
1140 	sample.ip = ptq->state->from_ip;
1141 	sample.pid = ptq->pid;
1142 	sample.tid = ptq->tid;
1143 	sample.addr = ptq->state->to_ip;
1144 	sample.id = ptq->pt->instructions_id;
1145 	sample.stream_id = ptq->pt->instructions_id;
1146 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1147 	sample.cpu = ptq->cpu;
1148 	sample.flags = ptq->flags;
1149 	sample.insn_len = ptq->insn_len;
1150 
1151 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1152 
1153 	if (pt->synth_opts.callchain) {
1154 		thread_stack__sample(ptq->thread, ptq->chain,
1155 				     pt->synth_opts.callchain_sz, sample.ip);
1156 		sample.callchain = ptq->chain;
1157 	}
1158 
1159 	if (pt->synth_opts.last_branch) {
1160 		intel_pt_copy_last_branch_rb(ptq);
1161 		sample.branch_stack = ptq->last_branch;
1162 	}
1163 
1164 	if (pt->synth_opts.inject) {
1165 		ret = intel_pt_inject_event(event, &sample,
1166 					    pt->instructions_sample_type,
1167 					    pt->synth_needs_swap);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1173 	if (ret)
1174 		pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
1175 		       ret);
1176 
1177 	if (pt->synth_opts.last_branch)
1178 		intel_pt_reset_last_branch_rb(ptq);
1179 
1180 	return ret;
1181 }
1182 
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1183 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1184 {
1185 	int ret;
1186 	struct intel_pt *pt = ptq->pt;
1187 	union perf_event *event = ptq->event_buf;
1188 	struct perf_sample sample = { .ip = 0, };
1189 
1190 	if (pt->synth_opts.initial_skip &&
1191 	    pt->num_events++ < pt->synth_opts.initial_skip)
1192 		return 0;
1193 
1194 	event->sample.header.type = PERF_RECORD_SAMPLE;
1195 	event->sample.header.misc = PERF_RECORD_MISC_USER;
1196 	event->sample.header.size = sizeof(struct perf_event_header);
1197 
1198 	if (!pt->timeless_decoding)
1199 		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1200 
1201 	sample.cpumode = PERF_RECORD_MISC_USER;
1202 	sample.ip = ptq->state->from_ip;
1203 	sample.pid = ptq->pid;
1204 	sample.tid = ptq->tid;
1205 	sample.addr = ptq->state->to_ip;
1206 	sample.id = ptq->pt->transactions_id;
1207 	sample.stream_id = ptq->pt->transactions_id;
1208 	sample.period = 1;
1209 	sample.cpu = ptq->cpu;
1210 	sample.flags = ptq->flags;
1211 	sample.insn_len = ptq->insn_len;
1212 
1213 	if (pt->synth_opts.callchain) {
1214 		thread_stack__sample(ptq->thread, ptq->chain,
1215 				     pt->synth_opts.callchain_sz, sample.ip);
1216 		sample.callchain = ptq->chain;
1217 	}
1218 
1219 	if (pt->synth_opts.last_branch) {
1220 		intel_pt_copy_last_branch_rb(ptq);
1221 		sample.branch_stack = ptq->last_branch;
1222 	}
1223 
1224 	if (pt->synth_opts.inject) {
1225 		ret = intel_pt_inject_event(event, &sample,
1226 					    pt->transactions_sample_type,
1227 					    pt->synth_needs_swap);
1228 		if (ret)
1229 			return ret;
1230 	}
1231 
1232 	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1233 	if (ret)
1234 		pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
1235 		       ret);
1236 
1237 	if (pt->synth_opts.last_branch)
1238 		intel_pt_reset_last_branch_rb(ptq);
1239 
1240 	return ret;
1241 }
1242 
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip)1243 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1244 				pid_t pid, pid_t tid, u64 ip)
1245 {
1246 	union perf_event event;
1247 	char msg[MAX_AUXTRACE_ERROR_MSG];
1248 	int err;
1249 
1250 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1251 
1252 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1253 			     code, cpu, pid, tid, ip, msg);
1254 
1255 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1256 	if (err)
1257 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1258 		       err);
1259 
1260 	return err;
1261 }
1262 
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)1263 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1264 {
1265 	struct auxtrace_queue *queue;
1266 	pid_t tid = ptq->next_tid;
1267 	int err;
1268 
1269 	if (tid == -1)
1270 		return 0;
1271 
1272 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1273 
1274 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1275 
1276 	queue = &pt->queues.queue_array[ptq->queue_nr];
1277 	intel_pt_set_pid_tid_cpu(pt, queue);
1278 
1279 	ptq->next_tid = -1;
1280 
1281 	return err;
1282 }
1283 
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)1284 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1285 {
1286 	struct intel_pt *pt = ptq->pt;
1287 
1288 	return ip == pt->switch_ip &&
1289 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1290 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1291 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1292 }
1293 
intel_pt_sample(struct intel_pt_queue * ptq)1294 static int intel_pt_sample(struct intel_pt_queue *ptq)
1295 {
1296 	const struct intel_pt_state *state = ptq->state;
1297 	struct intel_pt *pt = ptq->pt;
1298 	int err;
1299 
1300 	if (!ptq->have_sample)
1301 		return 0;
1302 
1303 	ptq->have_sample = false;
1304 
1305 	if (pt->sample_instructions &&
1306 	    (state->type & INTEL_PT_INSTRUCTION) &&
1307 	    (!pt->synth_opts.initial_skip ||
1308 	     pt->num_events++ >= pt->synth_opts.initial_skip)) {
1309 		err = intel_pt_synth_instruction_sample(ptq);
1310 		if (err)
1311 			return err;
1312 	}
1313 
1314 	if (pt->sample_transactions &&
1315 	    (state->type & INTEL_PT_TRANSACTION) &&
1316 	    (!pt->synth_opts.initial_skip ||
1317 	     pt->num_events++ >= pt->synth_opts.initial_skip)) {
1318 		err = intel_pt_synth_transaction_sample(ptq);
1319 		if (err)
1320 			return err;
1321 	}
1322 
1323 	if (!(state->type & INTEL_PT_BRANCH))
1324 		return 0;
1325 
1326 	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1327 		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1328 				    state->to_ip, ptq->insn_len,
1329 				    state->trace_nr);
1330 	else
1331 		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1332 
1333 	if (pt->sample_branches) {
1334 		err = intel_pt_synth_branch_sample(ptq);
1335 		if (err)
1336 			return err;
1337 	}
1338 
1339 	if (pt->synth_opts.last_branch)
1340 		intel_pt_update_last_branch_rb(ptq);
1341 
1342 	if (!ptq->sync_switch)
1343 		return 0;
1344 
1345 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1346 		switch (ptq->switch_state) {
1347 		case INTEL_PT_SS_UNKNOWN:
1348 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1349 			err = intel_pt_next_tid(pt, ptq);
1350 			if (err)
1351 				return err;
1352 			ptq->switch_state = INTEL_PT_SS_TRACING;
1353 			break;
1354 		default:
1355 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1356 			return 1;
1357 		}
1358 	} else if (!state->to_ip) {
1359 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1360 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1361 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1362 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1363 		   state->to_ip == pt->ptss_ip &&
1364 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
1365 		ptq->switch_state = INTEL_PT_SS_TRACING;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)1371 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1372 {
1373 	struct machine *machine = pt->machine;
1374 	struct map *map;
1375 	struct symbol *sym, *start;
1376 	u64 ip, switch_ip = 0;
1377 	const char *ptss;
1378 
1379 	if (ptss_ip)
1380 		*ptss_ip = 0;
1381 
1382 	map = machine__kernel_map(machine);
1383 	if (!map)
1384 		return 0;
1385 
1386 	if (map__load(map))
1387 		return 0;
1388 
1389 	start = dso__first_symbol(map->dso, MAP__FUNCTION);
1390 
1391 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1392 		if (sym->binding == STB_GLOBAL &&
1393 		    !strcmp(sym->name, "__switch_to")) {
1394 			ip = map->unmap_ip(map, sym->start);
1395 			if (ip >= map->start && ip < map->end) {
1396 				switch_ip = ip;
1397 				break;
1398 			}
1399 		}
1400 	}
1401 
1402 	if (!switch_ip || !ptss_ip)
1403 		return 0;
1404 
1405 	if (pt->have_sched_switch == 1)
1406 		ptss = "perf_trace_sched_switch";
1407 	else
1408 		ptss = "__perf_event_task_sched_out";
1409 
1410 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1411 		if (!strcmp(sym->name, ptss)) {
1412 			ip = map->unmap_ip(map, sym->start);
1413 			if (ip >= map->start && ip < map->end) {
1414 				*ptss_ip = ip;
1415 				break;
1416 			}
1417 		}
1418 	}
1419 
1420 	return switch_ip;
1421 }
1422 
intel_pt_enable_sync_switch(struct intel_pt * pt)1423 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1424 {
1425 	unsigned int i;
1426 
1427 	pt->sync_switch = true;
1428 
1429 	for (i = 0; i < pt->queues.nr_queues; i++) {
1430 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1431 		struct intel_pt_queue *ptq = queue->priv;
1432 
1433 		if (ptq)
1434 			ptq->sync_switch = true;
1435 	}
1436 }
1437 
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)1438 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1439 {
1440 	const struct intel_pt_state *state = ptq->state;
1441 	struct intel_pt *pt = ptq->pt;
1442 	int err;
1443 
1444 	if (!pt->kernel_start) {
1445 		pt->kernel_start = machine__kernel_start(pt->machine);
1446 		if (pt->per_cpu_mmaps &&
1447 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1448 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1449 		    !pt->sampling_mode) {
1450 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1451 			if (pt->switch_ip) {
1452 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1453 					     pt->switch_ip, pt->ptss_ip);
1454 				intel_pt_enable_sync_switch(pt);
1455 			}
1456 		}
1457 	}
1458 
1459 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1460 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1461 	while (1) {
1462 		err = intel_pt_sample(ptq);
1463 		if (err)
1464 			return err;
1465 
1466 		state = intel_pt_decode(ptq->decoder);
1467 		if (state->err) {
1468 			if (state->err == INTEL_PT_ERR_NODATA)
1469 				return 1;
1470 			if (ptq->sync_switch &&
1471 			    state->from_ip >= pt->kernel_start) {
1472 				ptq->sync_switch = false;
1473 				intel_pt_next_tid(pt, ptq);
1474 			}
1475 			if (pt->synth_opts.errors) {
1476 				err = intel_pt_synth_error(pt, state->err,
1477 							   ptq->cpu, ptq->pid,
1478 							   ptq->tid,
1479 							   state->from_ip);
1480 				if (err)
1481 					return err;
1482 			}
1483 			continue;
1484 		}
1485 
1486 		ptq->state = state;
1487 		ptq->have_sample = true;
1488 		intel_pt_sample_flags(ptq);
1489 
1490 		/* Use estimated TSC upon return to user space */
1491 		if (pt->est_tsc &&
1492 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1493 		    state->to_ip && state->to_ip < pt->kernel_start) {
1494 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1495 				     state->timestamp, state->est_timestamp);
1496 			ptq->timestamp = state->est_timestamp;
1497 		/* Use estimated TSC in unknown switch state */
1498 		} else if (ptq->sync_switch &&
1499 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1500 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
1501 			   ptq->next_tid == -1) {
1502 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1503 				     state->timestamp, state->est_timestamp);
1504 			ptq->timestamp = state->est_timestamp;
1505 		} else if (state->timestamp > ptq->timestamp) {
1506 			ptq->timestamp = state->timestamp;
1507 		}
1508 
1509 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1510 			*timestamp = ptq->timestamp;
1511 			return 0;
1512 		}
1513 	}
1514 	return 0;
1515 }
1516 
intel_pt_update_queues(struct intel_pt * pt)1517 static inline int intel_pt_update_queues(struct intel_pt *pt)
1518 {
1519 	if (pt->queues.new_data) {
1520 		pt->queues.new_data = false;
1521 		return intel_pt_setup_queues(pt);
1522 	}
1523 	return 0;
1524 }
1525 
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)1526 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1527 {
1528 	unsigned int queue_nr;
1529 	u64 ts;
1530 	int ret;
1531 
1532 	while (1) {
1533 		struct auxtrace_queue *queue;
1534 		struct intel_pt_queue *ptq;
1535 
1536 		if (!pt->heap.heap_cnt)
1537 			return 0;
1538 
1539 		if (pt->heap.heap_array[0].ordinal >= timestamp)
1540 			return 0;
1541 
1542 		queue_nr = pt->heap.heap_array[0].queue_nr;
1543 		queue = &pt->queues.queue_array[queue_nr];
1544 		ptq = queue->priv;
1545 
1546 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1547 			     queue_nr, pt->heap.heap_array[0].ordinal,
1548 			     timestamp);
1549 
1550 		auxtrace_heap__pop(&pt->heap);
1551 
1552 		if (pt->heap.heap_cnt) {
1553 			ts = pt->heap.heap_array[0].ordinal + 1;
1554 			if (ts > timestamp)
1555 				ts = timestamp;
1556 		} else {
1557 			ts = timestamp;
1558 		}
1559 
1560 		intel_pt_set_pid_tid_cpu(pt, queue);
1561 
1562 		ret = intel_pt_run_decoder(ptq, &ts);
1563 
1564 		if (ret < 0) {
1565 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
1566 			return ret;
1567 		}
1568 
1569 		if (!ret) {
1570 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1571 			if (ret < 0)
1572 				return ret;
1573 		} else {
1574 			ptq->on_heap = false;
1575 		}
1576 	}
1577 
1578 	return 0;
1579 }
1580 
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)1581 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1582 					    u64 time_)
1583 {
1584 	struct auxtrace_queues *queues = &pt->queues;
1585 	unsigned int i;
1586 	u64 ts = 0;
1587 
1588 	for (i = 0; i < queues->nr_queues; i++) {
1589 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1590 		struct intel_pt_queue *ptq = queue->priv;
1591 
1592 		if (ptq && (tid == -1 || ptq->tid == tid)) {
1593 			ptq->time = time_;
1594 			intel_pt_set_pid_tid_cpu(pt, queue);
1595 			intel_pt_run_decoder(ptq, &ts);
1596 		}
1597 	}
1598 	return 0;
1599 }
1600 
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)1601 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1602 {
1603 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1604 				    sample->pid, sample->tid, 0);
1605 }
1606 
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)1607 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1608 {
1609 	unsigned i, j;
1610 
1611 	if (cpu < 0 || !pt->queues.nr_queues)
1612 		return NULL;
1613 
1614 	if ((unsigned)cpu >= pt->queues.nr_queues)
1615 		i = pt->queues.nr_queues - 1;
1616 	else
1617 		i = cpu;
1618 
1619 	if (pt->queues.queue_array[i].cpu == cpu)
1620 		return pt->queues.queue_array[i].priv;
1621 
1622 	for (j = 0; i > 0; j++) {
1623 		if (pt->queues.queue_array[--i].cpu == cpu)
1624 			return pt->queues.queue_array[i].priv;
1625 	}
1626 
1627 	for (; j < pt->queues.nr_queues; j++) {
1628 		if (pt->queues.queue_array[j].cpu == cpu)
1629 			return pt->queues.queue_array[j].priv;
1630 	}
1631 
1632 	return NULL;
1633 }
1634 
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)1635 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1636 				u64 timestamp)
1637 {
1638 	struct intel_pt_queue *ptq;
1639 	int err;
1640 
1641 	if (!pt->sync_switch)
1642 		return 1;
1643 
1644 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
1645 	if (!ptq || !ptq->sync_switch)
1646 		return 1;
1647 
1648 	switch (ptq->switch_state) {
1649 	case INTEL_PT_SS_NOT_TRACING:
1650 		ptq->next_tid = -1;
1651 		break;
1652 	case INTEL_PT_SS_UNKNOWN:
1653 	case INTEL_PT_SS_TRACING:
1654 		ptq->next_tid = tid;
1655 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1656 		return 0;
1657 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1658 		if (!ptq->on_heap) {
1659 			ptq->timestamp = perf_time_to_tsc(timestamp,
1660 							  &pt->tc);
1661 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1662 						 ptq->timestamp);
1663 			if (err)
1664 				return err;
1665 			ptq->on_heap = true;
1666 		}
1667 		ptq->switch_state = INTEL_PT_SS_TRACING;
1668 		break;
1669 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1670 		ptq->next_tid = tid;
1671 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1672 		break;
1673 	default:
1674 		break;
1675 	}
1676 
1677 	return 1;
1678 }
1679 
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)1680 static int intel_pt_process_switch(struct intel_pt *pt,
1681 				   struct perf_sample *sample)
1682 {
1683 	struct perf_evsel *evsel;
1684 	pid_t tid;
1685 	int cpu, ret;
1686 
1687 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1688 	if (evsel != pt->switch_evsel)
1689 		return 0;
1690 
1691 	tid = perf_evsel__intval(evsel, sample, "next_pid");
1692 	cpu = sample->cpu;
1693 
1694 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1695 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1696 		     &pt->tc));
1697 
1698 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1699 	if (ret <= 0)
1700 		return ret;
1701 
1702 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
1703 }
1704 
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)1705 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1706 				   struct perf_sample *sample)
1707 {
1708 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1709 	pid_t pid, tid;
1710 	int cpu, ret;
1711 
1712 	cpu = sample->cpu;
1713 
1714 	if (pt->have_sched_switch == 3) {
1715 		if (!out)
1716 			return 0;
1717 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1718 			pr_err("Expecting CPU-wide context switch event\n");
1719 			return -EINVAL;
1720 		}
1721 		pid = event->context_switch.next_prev_pid;
1722 		tid = event->context_switch.next_prev_tid;
1723 	} else {
1724 		if (out)
1725 			return 0;
1726 		pid = sample->pid;
1727 		tid = sample->tid;
1728 	}
1729 
1730 	if (tid == -1) {
1731 		pr_err("context_switch event has no tid\n");
1732 		return -EINVAL;
1733 	}
1734 
1735 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1736 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1737 		     &pt->tc));
1738 
1739 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1740 	if (ret <= 0)
1741 		return ret;
1742 
1743 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
1744 }
1745 
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)1746 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1747 					 union perf_event *event,
1748 					 struct perf_sample *sample)
1749 {
1750 	if (!pt->per_cpu_mmaps)
1751 		return 0;
1752 
1753 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1754 		     sample->cpu, event->itrace_start.pid,
1755 		     event->itrace_start.tid, sample->time,
1756 		     perf_time_to_tsc(sample->time, &pt->tc));
1757 
1758 	return machine__set_current_tid(pt->machine, sample->cpu,
1759 					event->itrace_start.pid,
1760 					event->itrace_start.tid);
1761 }
1762 
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)1763 static int intel_pt_process_event(struct perf_session *session,
1764 				  union perf_event *event,
1765 				  struct perf_sample *sample,
1766 				  struct perf_tool *tool)
1767 {
1768 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1769 					   auxtrace);
1770 	u64 timestamp;
1771 	int err = 0;
1772 
1773 	if (dump_trace)
1774 		return 0;
1775 
1776 	if (!tool->ordered_events) {
1777 		pr_err("Intel Processor Trace requires ordered events\n");
1778 		return -EINVAL;
1779 	}
1780 
1781 	if (sample->time && sample->time != (u64)-1)
1782 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1783 	else
1784 		timestamp = 0;
1785 
1786 	if (timestamp || pt->timeless_decoding) {
1787 		err = intel_pt_update_queues(pt);
1788 		if (err)
1789 			return err;
1790 	}
1791 
1792 	if (pt->timeless_decoding) {
1793 		if (event->header.type == PERF_RECORD_EXIT) {
1794 			err = intel_pt_process_timeless_queues(pt,
1795 							       event->fork.tid,
1796 							       sample->time);
1797 		}
1798 	} else if (timestamp) {
1799 		err = intel_pt_process_queues(pt, timestamp);
1800 	}
1801 	if (err)
1802 		return err;
1803 
1804 	if (event->header.type == PERF_RECORD_AUX &&
1805 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1806 	    pt->synth_opts.errors) {
1807 		err = intel_pt_lost(pt, sample);
1808 		if (err)
1809 			return err;
1810 	}
1811 
1812 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1813 		err = intel_pt_process_switch(pt, sample);
1814 	else if (event->header.type == PERF_RECORD_ITRACE_START)
1815 		err = intel_pt_process_itrace_start(pt, event, sample);
1816 	else if (event->header.type == PERF_RECORD_SWITCH ||
1817 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
1818 		err = intel_pt_context_switch(pt, event, sample);
1819 
1820 	intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
1821 		     perf_event__name(event->header.type), event->header.type,
1822 		     sample->cpu, sample->time, timestamp);
1823 
1824 	return err;
1825 }
1826 
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)1827 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
1828 {
1829 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1830 					   auxtrace);
1831 	int ret;
1832 
1833 	if (dump_trace)
1834 		return 0;
1835 
1836 	if (!tool->ordered_events)
1837 		return -EINVAL;
1838 
1839 	ret = intel_pt_update_queues(pt);
1840 	if (ret < 0)
1841 		return ret;
1842 
1843 	if (pt->timeless_decoding)
1844 		return intel_pt_process_timeless_queues(pt, -1,
1845 							MAX_TIMESTAMP - 1);
1846 
1847 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
1848 }
1849 
intel_pt_free_events(struct perf_session * session)1850 static void intel_pt_free_events(struct perf_session *session)
1851 {
1852 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1853 					   auxtrace);
1854 	struct auxtrace_queues *queues = &pt->queues;
1855 	unsigned int i;
1856 
1857 	for (i = 0; i < queues->nr_queues; i++) {
1858 		intel_pt_free_queue(queues->queue_array[i].priv);
1859 		queues->queue_array[i].priv = NULL;
1860 	}
1861 	intel_pt_log_disable();
1862 	auxtrace_queues__free(queues);
1863 }
1864 
intel_pt_free(struct perf_session * session)1865 static void intel_pt_free(struct perf_session *session)
1866 {
1867 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1868 					   auxtrace);
1869 
1870 	auxtrace_heap__free(&pt->heap);
1871 	intel_pt_free_events(session);
1872 	session->auxtrace = NULL;
1873 	thread__put(pt->unknown_thread);
1874 	addr_filters__exit(&pt->filts);
1875 	zfree(&pt->filter);
1876 	free(pt);
1877 }
1878 
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)1879 static int intel_pt_process_auxtrace_event(struct perf_session *session,
1880 					   union perf_event *event,
1881 					   struct perf_tool *tool __maybe_unused)
1882 {
1883 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1884 					   auxtrace);
1885 
1886 	if (pt->sampling_mode)
1887 		return 0;
1888 
1889 	if (!pt->data_queued) {
1890 		struct auxtrace_buffer *buffer;
1891 		off_t data_offset;
1892 		int fd = perf_data_file__fd(session->file);
1893 		int err;
1894 
1895 		if (perf_data_file__is_pipe(session->file)) {
1896 			data_offset = 0;
1897 		} else {
1898 			data_offset = lseek(fd, 0, SEEK_CUR);
1899 			if (data_offset == -1)
1900 				return -errno;
1901 		}
1902 
1903 		err = auxtrace_queues__add_event(&pt->queues, session, event,
1904 						 data_offset, &buffer);
1905 		if (err)
1906 			return err;
1907 
1908 		/* Dump here now we have copied a piped trace out of the pipe */
1909 		if (dump_trace) {
1910 			if (auxtrace_buffer__get_data(buffer, fd)) {
1911 				intel_pt_dump_event(pt, buffer->data,
1912 						    buffer->size);
1913 				auxtrace_buffer__put_data(buffer);
1914 			}
1915 		}
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 struct intel_pt_synth {
1922 	struct perf_tool dummy_tool;
1923 	struct perf_session *session;
1924 };
1925 
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1926 static int intel_pt_event_synth(struct perf_tool *tool,
1927 				union perf_event *event,
1928 				struct perf_sample *sample __maybe_unused,
1929 				struct machine *machine __maybe_unused)
1930 {
1931 	struct intel_pt_synth *intel_pt_synth =
1932 			container_of(tool, struct intel_pt_synth, dummy_tool);
1933 
1934 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
1935 						 NULL);
1936 }
1937 
intel_pt_synth_event(struct perf_session * session,struct perf_event_attr * attr,u64 id)1938 static int intel_pt_synth_event(struct perf_session *session,
1939 				struct perf_event_attr *attr, u64 id)
1940 {
1941 	struct intel_pt_synth intel_pt_synth;
1942 
1943 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
1944 	intel_pt_synth.session = session;
1945 
1946 	return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
1947 					   &id, intel_pt_event_synth);
1948 }
1949 
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)1950 static int intel_pt_synth_events(struct intel_pt *pt,
1951 				 struct perf_session *session)
1952 {
1953 	struct perf_evlist *evlist = session->evlist;
1954 	struct perf_evsel *evsel;
1955 	struct perf_event_attr attr;
1956 	bool found = false;
1957 	u64 id;
1958 	int err;
1959 
1960 	evlist__for_each_entry(evlist, evsel) {
1961 		if (evsel->attr.type == pt->pmu_type && evsel->ids) {
1962 			found = true;
1963 			break;
1964 		}
1965 	}
1966 
1967 	if (!found) {
1968 		pr_debug("There are no selected events with Intel Processor Trace data\n");
1969 		return 0;
1970 	}
1971 
1972 	memset(&attr, 0, sizeof(struct perf_event_attr));
1973 	attr.size = sizeof(struct perf_event_attr);
1974 	attr.type = PERF_TYPE_HARDWARE;
1975 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
1976 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1977 			    PERF_SAMPLE_PERIOD;
1978 	if (pt->timeless_decoding)
1979 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1980 	else
1981 		attr.sample_type |= PERF_SAMPLE_TIME;
1982 	if (!pt->per_cpu_mmaps)
1983 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
1984 	attr.exclude_user = evsel->attr.exclude_user;
1985 	attr.exclude_kernel = evsel->attr.exclude_kernel;
1986 	attr.exclude_hv = evsel->attr.exclude_hv;
1987 	attr.exclude_host = evsel->attr.exclude_host;
1988 	attr.exclude_guest = evsel->attr.exclude_guest;
1989 	attr.sample_id_all = evsel->attr.sample_id_all;
1990 	attr.read_format = evsel->attr.read_format;
1991 
1992 	id = evsel->id[0] + 1000000000;
1993 	if (!id)
1994 		id = 1;
1995 
1996 	if (pt->synth_opts.instructions) {
1997 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1998 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
1999 			attr.sample_period =
2000 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2001 		else
2002 			attr.sample_period = pt->synth_opts.period;
2003 		pt->instructions_sample_period = attr.sample_period;
2004 		if (pt->synth_opts.callchain)
2005 			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2006 		if (pt->synth_opts.last_branch)
2007 			attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2008 		pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2009 			 id, (u64)attr.sample_type);
2010 		err = intel_pt_synth_event(session, &attr, id);
2011 		if (err) {
2012 			pr_err("%s: failed to synthesize 'instructions' event type\n",
2013 			       __func__);
2014 			return err;
2015 		}
2016 		pt->sample_instructions = true;
2017 		pt->instructions_sample_type = attr.sample_type;
2018 		pt->instructions_id = id;
2019 		id += 1;
2020 	}
2021 
2022 	if (pt->synth_opts.transactions) {
2023 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2024 		attr.sample_period = 1;
2025 		if (pt->synth_opts.callchain)
2026 			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2027 		if (pt->synth_opts.last_branch)
2028 			attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2029 		pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2030 			 id, (u64)attr.sample_type);
2031 		err = intel_pt_synth_event(session, &attr, id);
2032 		if (err) {
2033 			pr_err("%s: failed to synthesize 'transactions' event type\n",
2034 			       __func__);
2035 			return err;
2036 		}
2037 		pt->sample_transactions = true;
2038 		pt->transactions_id = id;
2039 		id += 1;
2040 		evlist__for_each_entry(evlist, evsel) {
2041 			if (evsel->id && evsel->id[0] == pt->transactions_id) {
2042 				if (evsel->name)
2043 					zfree(&evsel->name);
2044 				evsel->name = strdup("transactions");
2045 				break;
2046 			}
2047 		}
2048 	}
2049 
2050 	if (pt->synth_opts.branches) {
2051 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2052 		attr.sample_period = 1;
2053 		attr.sample_type |= PERF_SAMPLE_ADDR;
2054 		attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
2055 		attr.sample_type &= ~(u64)PERF_SAMPLE_BRANCH_STACK;
2056 		pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2057 			 id, (u64)attr.sample_type);
2058 		err = intel_pt_synth_event(session, &attr, id);
2059 		if (err) {
2060 			pr_err("%s: failed to synthesize 'branches' event type\n",
2061 			       __func__);
2062 			return err;
2063 		}
2064 		pt->sample_branches = true;
2065 		pt->branches_sample_type = attr.sample_type;
2066 		pt->branches_id = id;
2067 	}
2068 
2069 	pt->synth_needs_swap = evsel->needs_swap;
2070 
2071 	return 0;
2072 }
2073 
intel_pt_find_sched_switch(struct perf_evlist * evlist)2074 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2075 {
2076 	struct perf_evsel *evsel;
2077 
2078 	evlist__for_each_entry_reverse(evlist, evsel) {
2079 		const char *name = perf_evsel__name(evsel);
2080 
2081 		if (!strcmp(name, "sched:sched_switch"))
2082 			return evsel;
2083 	}
2084 
2085 	return NULL;
2086 }
2087 
intel_pt_find_switch(struct perf_evlist * evlist)2088 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2089 {
2090 	struct perf_evsel *evsel;
2091 
2092 	evlist__for_each_entry(evlist, evsel) {
2093 		if (evsel->attr.context_switch)
2094 			return true;
2095 	}
2096 
2097 	return false;
2098 }
2099 
intel_pt_perf_config(const char * var,const char * value,void * data)2100 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2101 {
2102 	struct intel_pt *pt = data;
2103 
2104 	if (!strcmp(var, "intel-pt.mispred-all"))
2105 		pt->mispred_all = perf_config_bool(var, value);
2106 
2107 	return 0;
2108 }
2109 
2110 static const char * const intel_pt_info_fmts[] = {
2111 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
2112 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
2113 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
2114 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
2115 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
2116 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
2117 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
2118 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
2119 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
2120 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
2121 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
2122 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
2123 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
2124 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
2125 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
2126 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
2127 };
2128 
intel_pt_print_info(u64 * arr,int start,int finish)2129 static void intel_pt_print_info(u64 *arr, int start, int finish)
2130 {
2131 	int i;
2132 
2133 	if (!dump_trace)
2134 		return;
2135 
2136 	for (i = start; i <= finish; i++)
2137 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2138 }
2139 
intel_pt_print_info_str(const char * name,const char * str)2140 static void intel_pt_print_info_str(const char *name, const char *str)
2141 {
2142 	if (!dump_trace)
2143 		return;
2144 
2145 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2146 }
2147 
intel_pt_has(struct auxtrace_info_event * auxtrace_info,int pos)2148 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2149 {
2150 	return auxtrace_info->header.size >=
2151 		sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2152 }
2153 
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)2154 int intel_pt_process_auxtrace_info(union perf_event *event,
2155 				   struct perf_session *session)
2156 {
2157 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2158 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2159 	struct intel_pt *pt;
2160 	void *info_end;
2161 	u64 *info;
2162 	int err;
2163 
2164 	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2165 					min_sz)
2166 		return -EINVAL;
2167 
2168 	pt = zalloc(sizeof(struct intel_pt));
2169 	if (!pt)
2170 		return -ENOMEM;
2171 
2172 	addr_filters__init(&pt->filts);
2173 
2174 	perf_config(intel_pt_perf_config, pt);
2175 
2176 	err = auxtrace_queues__init(&pt->queues);
2177 	if (err)
2178 		goto err_free;
2179 
2180 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2181 
2182 	pt->session = session;
2183 	pt->machine = &session->machines.host; /* No kvm support */
2184 	pt->auxtrace_type = auxtrace_info->type;
2185 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2186 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2187 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2188 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2189 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2190 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2191 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2192 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2193 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2194 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2195 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2196 			    INTEL_PT_PER_CPU_MMAPS);
2197 
2198 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2199 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2200 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2201 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2202 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2203 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2204 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2205 				    INTEL_PT_CYC_BIT);
2206 	}
2207 
2208 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2209 		pt->max_non_turbo_ratio =
2210 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2211 		intel_pt_print_info(&auxtrace_info->priv[0],
2212 				    INTEL_PT_MAX_NONTURBO_RATIO,
2213 				    INTEL_PT_MAX_NONTURBO_RATIO);
2214 	}
2215 
2216 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2217 	info_end = (void *)info + auxtrace_info->header.size;
2218 
2219 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2220 		size_t len;
2221 
2222 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2223 		intel_pt_print_info(&auxtrace_info->priv[0],
2224 				    INTEL_PT_FILTER_STR_LEN,
2225 				    INTEL_PT_FILTER_STR_LEN);
2226 		if (len) {
2227 			const char *filter = (const char *)info;
2228 
2229 			len = roundup(len + 1, 8);
2230 			info += len >> 3;
2231 			if ((void *)info > info_end) {
2232 				pr_err("%s: bad filter string length\n", __func__);
2233 				err = -EINVAL;
2234 				goto err_free_queues;
2235 			}
2236 			pt->filter = memdup(filter, len);
2237 			if (!pt->filter) {
2238 				err = -ENOMEM;
2239 				goto err_free_queues;
2240 			}
2241 			if (session->header.needs_swap)
2242 				mem_bswap_64(pt->filter, len);
2243 			if (pt->filter[len - 1]) {
2244 				pr_err("%s: filter string not null terminated\n", __func__);
2245 				err = -EINVAL;
2246 				goto err_free_queues;
2247 			}
2248 			err = addr_filters__parse_bare_filter(&pt->filts,
2249 							      filter);
2250 			if (err)
2251 				goto err_free_queues;
2252 		}
2253 		intel_pt_print_info_str("Filter string", pt->filter);
2254 	}
2255 
2256 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2257 	pt->have_tsc = intel_pt_have_tsc(pt);
2258 	pt->sampling_mode = false;
2259 	pt->est_tsc = !pt->timeless_decoding;
2260 
2261 	pt->unknown_thread = thread__new(999999999, 999999999);
2262 	if (!pt->unknown_thread) {
2263 		err = -ENOMEM;
2264 		goto err_free_queues;
2265 	}
2266 
2267 	/*
2268 	 * Since this thread will not be kept in any rbtree not in a
2269 	 * list, initialize its list node so that at thread__put() the
2270 	 * current thread lifetime assuption is kept and we don't segfault
2271 	 * at list_del_init().
2272 	 */
2273 	INIT_LIST_HEAD(&pt->unknown_thread->node);
2274 
2275 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2276 	if (err)
2277 		goto err_delete_thread;
2278 	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2279 		err = -ENOMEM;
2280 		goto err_delete_thread;
2281 	}
2282 
2283 	pt->auxtrace.process_event = intel_pt_process_event;
2284 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2285 	pt->auxtrace.flush_events = intel_pt_flush;
2286 	pt->auxtrace.free_events = intel_pt_free_events;
2287 	pt->auxtrace.free = intel_pt_free;
2288 	session->auxtrace = &pt->auxtrace;
2289 
2290 	if (dump_trace)
2291 		return 0;
2292 
2293 	if (pt->have_sched_switch == 1) {
2294 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2295 		if (!pt->switch_evsel) {
2296 			pr_err("%s: missing sched_switch event\n", __func__);
2297 			err = -EINVAL;
2298 			goto err_delete_thread;
2299 		}
2300 	} else if (pt->have_sched_switch == 2 &&
2301 		   !intel_pt_find_switch(session->evlist)) {
2302 		pr_err("%s: missing context_switch attribute flag\n", __func__);
2303 		err = -EINVAL;
2304 		goto err_delete_thread;
2305 	}
2306 
2307 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2308 		pt->synth_opts = *session->itrace_synth_opts;
2309 	} else {
2310 		itrace_synth_opts__set_default(&pt->synth_opts);
2311 		if (use_browser != -1) {
2312 			pt->synth_opts.branches = false;
2313 			pt->synth_opts.callchain = true;
2314 		}
2315 		if (session->itrace_synth_opts)
2316 			pt->synth_opts.thread_stack =
2317 				session->itrace_synth_opts->thread_stack;
2318 	}
2319 
2320 	if (pt->synth_opts.log)
2321 		intel_pt_log_enable();
2322 
2323 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
2324 	if (pt->tc.time_mult) {
2325 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2326 
2327 		if (!pt->max_non_turbo_ratio)
2328 			pt->max_non_turbo_ratio =
2329 					(tsc_freq + 50000000) / 100000000;
2330 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2331 		intel_pt_log("Maximum non-turbo ratio %u\n",
2332 			     pt->max_non_turbo_ratio);
2333 	}
2334 
2335 	if (pt->synth_opts.calls)
2336 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2337 				       PERF_IP_FLAG_TRACE_END;
2338 	if (pt->synth_opts.returns)
2339 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
2340 				       PERF_IP_FLAG_TRACE_BEGIN;
2341 
2342 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2343 		symbol_conf.use_callchain = true;
2344 		if (callchain_register_param(&callchain_param) < 0) {
2345 			symbol_conf.use_callchain = false;
2346 			pt->synth_opts.callchain = false;
2347 		}
2348 	}
2349 
2350 	err = intel_pt_synth_events(pt, session);
2351 	if (err)
2352 		goto err_delete_thread;
2353 
2354 	err = auxtrace_queues__process_index(&pt->queues, session);
2355 	if (err)
2356 		goto err_delete_thread;
2357 
2358 	if (pt->queues.populated)
2359 		pt->data_queued = true;
2360 
2361 	if (pt->timeless_decoding)
2362 		pr_debug2("Intel PT decoding without timestamps\n");
2363 
2364 	return 0;
2365 
2366 err_delete_thread:
2367 	thread__zput(pt->unknown_thread);
2368 err_free_queues:
2369 	intel_pt_log_disable();
2370 	auxtrace_queues__free(&pt->queues);
2371 	session->auxtrace = NULL;
2372 err_free:
2373 	addr_filters__exit(&pt->filts);
2374 	zfree(&pt->filter);
2375 	free(pt);
2376 	return err;
2377 }
2378