1 /*
2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34
35 /*
36 * We allow up to a page of inline data to go with the SQE
37 */
38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE
39
40 struct nvmet_rdma_cmd {
41 struct ib_sge sge[2];
42 struct ib_cqe cqe;
43 struct ib_recv_wr wr;
44 struct scatterlist inline_sg;
45 struct page *inline_page;
46 struct nvme_command *nvme_cmd;
47 struct nvmet_rdma_queue *queue;
48 };
49
50 enum {
51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
53 };
54
55 struct nvmet_rdma_rsp {
56 struct ib_sge send_sge;
57 struct ib_cqe send_cqe;
58 struct ib_send_wr send_wr;
59
60 struct nvmet_rdma_cmd *cmd;
61 struct nvmet_rdma_queue *queue;
62
63 struct ib_cqe read_cqe;
64 struct rdma_rw_ctx rw;
65
66 struct nvmet_req req;
67
68 u8 n_rdma;
69 u32 flags;
70 u32 invalidate_rkey;
71
72 struct list_head wait_list;
73 struct list_head free_list;
74 };
75
76 enum nvmet_rdma_queue_state {
77 NVMET_RDMA_Q_CONNECTING,
78 NVMET_RDMA_Q_LIVE,
79 NVMET_RDMA_Q_DISCONNECTING,
80 NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82
83 struct nvmet_rdma_queue {
84 struct rdma_cm_id *cm_id;
85 struct nvmet_port *port;
86 struct ib_cq *cq;
87 atomic_t sq_wr_avail;
88 struct nvmet_rdma_device *dev;
89 spinlock_t state_lock;
90 enum nvmet_rdma_queue_state state;
91 struct nvmet_cq nvme_cq;
92 struct nvmet_sq nvme_sq;
93
94 struct nvmet_rdma_rsp *rsps;
95 struct list_head free_rsps;
96 spinlock_t rsps_lock;
97 struct nvmet_rdma_cmd *cmds;
98
99 struct work_struct release_work;
100 struct list_head rsp_wait_list;
101 struct list_head rsp_wr_wait_list;
102 spinlock_t rsp_wr_wait_lock;
103
104 int idx;
105 int host_qid;
106 int recv_queue_size;
107 int send_queue_size;
108
109 struct list_head queue_list;
110 };
111
112 struct nvmet_rdma_device {
113 struct ib_device *device;
114 struct ib_pd *pd;
115 struct ib_srq *srq;
116 struct nvmet_rdma_cmd *srq_cmds;
117 size_t srq_size;
118 struct kref ref;
119 struct list_head entry;
120 };
121
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141
142 /* XXX: really should move to a generic header sooner or later.. */
get_unaligned_le24(const u8 * p)143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147
nvmet_rdma_need_data_in(struct nvmet_rdma_rsp * rsp)148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150 return nvme_is_write(rsp->req.cmd) &&
151 rsp->req.data_len &&
152 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154
nvmet_rdma_need_data_out(struct nvmet_rdma_rsp * rsp)155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157 return !nvme_is_write(rsp->req.cmd) &&
158 rsp->req.data_len &&
159 !rsp->req.rsp->status &&
160 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162
163 static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue * queue)164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166 struct nvmet_rdma_rsp *rsp;
167 unsigned long flags;
168
169 spin_lock_irqsave(&queue->rsps_lock, flags);
170 rsp = list_first_entry(&queue->free_rsps,
171 struct nvmet_rdma_rsp, free_list);
172 list_del(&rsp->free_list);
173 spin_unlock_irqrestore(&queue->rsps_lock, flags);
174
175 return rsp;
176 }
177
178 static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp * rsp)179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181 unsigned long flags;
182
183 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187
nvmet_rdma_free_sgl(struct scatterlist * sgl,unsigned int nents)188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190 struct scatterlist *sg;
191 int count;
192
193 if (!sgl || !nents)
194 return;
195
196 for_each_sg(sgl, sg, nents, count)
197 __free_page(sg_page(sg));
198 kfree(sgl);
199 }
200
nvmet_rdma_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length)201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202 u32 length)
203 {
204 struct scatterlist *sg;
205 struct page *page;
206 unsigned int nent;
207 int i = 0;
208
209 nent = DIV_ROUND_UP(length, PAGE_SIZE);
210 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211 if (!sg)
212 goto out;
213
214 sg_init_table(sg, nent);
215
216 while (length) {
217 u32 page_len = min_t(u32, length, PAGE_SIZE);
218
219 page = alloc_page(GFP_KERNEL);
220 if (!page)
221 goto out_free_pages;
222
223 sg_set_page(&sg[i], page, page_len, 0);
224 length -= page_len;
225 i++;
226 }
227 *sgl = sg;
228 *nents = nent;
229 return 0;
230
231 out_free_pages:
232 while (i > 0) {
233 i--;
234 __free_page(sg_page(&sg[i]));
235 }
236 kfree(sg);
237 out:
238 return NVME_SC_INTERNAL;
239 }
240
nvmet_rdma_alloc_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242 struct nvmet_rdma_cmd *c, bool admin)
243 {
244 /* NVMe command / RDMA RECV */
245 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246 if (!c->nvme_cmd)
247 goto out;
248
249 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252 goto out_free_cmd;
253
254 c->sge[0].length = sizeof(*c->nvme_cmd);
255 c->sge[0].lkey = ndev->pd->local_dma_lkey;
256
257 if (!admin) {
258 c->inline_page = alloc_pages(GFP_KERNEL,
259 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260 if (!c->inline_page)
261 goto out_unmap_cmd;
262 c->sge[1].addr = ib_dma_map_page(ndev->device,
263 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264 DMA_FROM_DEVICE);
265 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266 goto out_free_inline_page;
267 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268 c->sge[1].lkey = ndev->pd->local_dma_lkey;
269 }
270
271 c->cqe.done = nvmet_rdma_recv_done;
272
273 c->wr.wr_cqe = &c->cqe;
274 c->wr.sg_list = c->sge;
275 c->wr.num_sge = admin ? 1 : 2;
276
277 return 0;
278
279 out_free_inline_page:
280 if (!admin) {
281 __free_pages(c->inline_page,
282 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283 }
284 out_unmap_cmd:
285 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288 kfree(c->nvme_cmd);
289
290 out:
291 return -ENOMEM;
292 }
293
nvmet_rdma_free_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295 struct nvmet_rdma_cmd *c, bool admin)
296 {
297 if (!admin) {
298 ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300 __free_pages(c->inline_page,
301 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302 }
303 ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305 kfree(c->nvme_cmd);
306 }
307
308 static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device * ndev,int nr_cmds,bool admin)309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310 int nr_cmds, bool admin)
311 {
312 struct nvmet_rdma_cmd *cmds;
313 int ret = -EINVAL, i;
314
315 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316 if (!cmds)
317 goto out;
318
319 for (i = 0; i < nr_cmds; i++) {
320 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321 if (ret)
322 goto out_free;
323 }
324
325 return cmds;
326
327 out_free:
328 while (--i >= 0)
329 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330 kfree(cmds);
331 out:
332 return ERR_PTR(ret);
333 }
334
nvmet_rdma_free_cmds(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmds,int nr_cmds,bool admin)335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338 int i;
339
340 for (i = 0; i < nr_cmds; i++)
341 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342 kfree(cmds);
343 }
344
nvmet_rdma_alloc_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346 struct nvmet_rdma_rsp *r)
347 {
348 /* NVMe CQE / RDMA SEND */
349 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350 if (!r->req.rsp)
351 goto out;
352
353 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354 sizeof(*r->req.rsp), DMA_TO_DEVICE);
355 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356 goto out_free_rsp;
357
358 r->send_sge.length = sizeof(*r->req.rsp);
359 r->send_sge.lkey = ndev->pd->local_dma_lkey;
360
361 r->send_cqe.done = nvmet_rdma_send_done;
362
363 r->send_wr.wr_cqe = &r->send_cqe;
364 r->send_wr.sg_list = &r->send_sge;
365 r->send_wr.num_sge = 1;
366 r->send_wr.send_flags = IB_SEND_SIGNALED;
367
368 /* Data In / RDMA READ */
369 r->read_cqe.done = nvmet_rdma_read_data_done;
370 return 0;
371
372 out_free_rsp:
373 kfree(r->req.rsp);
374 out:
375 return -ENOMEM;
376 }
377
nvmet_rdma_free_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379 struct nvmet_rdma_rsp *r)
380 {
381 ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382 sizeof(*r->req.rsp), DMA_TO_DEVICE);
383 kfree(r->req.rsp);
384 }
385
386 static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue * queue)387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389 struct nvmet_rdma_device *ndev = queue->dev;
390 int nr_rsps = queue->recv_queue_size * 2;
391 int ret = -EINVAL, i;
392
393 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394 GFP_KERNEL);
395 if (!queue->rsps)
396 goto out;
397
398 for (i = 0; i < nr_rsps; i++) {
399 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400
401 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402 if (ret)
403 goto out_free;
404
405 list_add_tail(&rsp->free_list, &queue->free_rsps);
406 }
407
408 return 0;
409
410 out_free:
411 while (--i >= 0) {
412 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413
414 list_del(&rsp->free_list);
415 nvmet_rdma_free_rsp(ndev, rsp);
416 }
417 kfree(queue->rsps);
418 out:
419 return ret;
420 }
421
nvmet_rdma_free_rsps(struct nvmet_rdma_queue * queue)422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424 struct nvmet_rdma_device *ndev = queue->dev;
425 int i, nr_rsps = queue->recv_queue_size * 2;
426
427 for (i = 0; i < nr_rsps; i++) {
428 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429
430 list_del(&rsp->free_list);
431 nvmet_rdma_free_rsp(ndev, rsp);
432 }
433 kfree(queue->rsps);
434 }
435
nvmet_rdma_post_recv(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmd)436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437 struct nvmet_rdma_cmd *cmd)
438 {
439 struct ib_recv_wr *bad_wr;
440
441 ib_dma_sync_single_for_device(ndev->device,
442 cmd->sge[0].addr, cmd->sge[0].length,
443 DMA_FROM_DEVICE);
444
445 if (ndev->srq)
446 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
447 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
448 }
449
nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue * queue)450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
451 {
452 spin_lock(&queue->rsp_wr_wait_lock);
453 while (!list_empty(&queue->rsp_wr_wait_list)) {
454 struct nvmet_rdma_rsp *rsp;
455 bool ret;
456
457 rsp = list_entry(queue->rsp_wr_wait_list.next,
458 struct nvmet_rdma_rsp, wait_list);
459 list_del(&rsp->wait_list);
460
461 spin_unlock(&queue->rsp_wr_wait_lock);
462 ret = nvmet_rdma_execute_command(rsp);
463 spin_lock(&queue->rsp_wr_wait_lock);
464
465 if (!ret) {
466 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
467 break;
468 }
469 }
470 spin_unlock(&queue->rsp_wr_wait_lock);
471 }
472
473
nvmet_rdma_release_rsp(struct nvmet_rdma_rsp * rsp)474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
475 {
476 struct nvmet_rdma_queue *queue = rsp->queue;
477
478 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
479
480 if (rsp->n_rdma) {
481 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
482 queue->cm_id->port_num, rsp->req.sg,
483 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
484 }
485
486 if (rsp->req.sg != &rsp->cmd->inline_sg)
487 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
488
489 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
490 nvmet_rdma_process_wr_wait_list(queue);
491
492 nvmet_rdma_put_rsp(rsp);
493 }
494
nvmet_rdma_error_comp(struct nvmet_rdma_queue * queue)495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
496 {
497 if (queue->nvme_sq.ctrl) {
498 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
499 } else {
500 /*
501 * we didn't setup the controller yet in case
502 * of admin connect error, just disconnect and
503 * cleanup the queue
504 */
505 nvmet_rdma_queue_disconnect(queue);
506 }
507 }
508
nvmet_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
510 {
511 struct nvmet_rdma_rsp *rsp =
512 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
513
514 nvmet_rdma_release_rsp(rsp);
515
516 if (unlikely(wc->status != IB_WC_SUCCESS &&
517 wc->status != IB_WC_WR_FLUSH_ERR)) {
518 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
519 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
520 nvmet_rdma_error_comp(rsp->queue);
521 }
522 }
523
nvmet_rdma_queue_response(struct nvmet_req * req)524 static void nvmet_rdma_queue_response(struct nvmet_req *req)
525 {
526 struct nvmet_rdma_rsp *rsp =
527 container_of(req, struct nvmet_rdma_rsp, req);
528 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
529 struct ib_send_wr *first_wr, *bad_wr;
530
531 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
532 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
533 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
534 } else {
535 rsp->send_wr.opcode = IB_WR_SEND;
536 }
537
538 if (nvmet_rdma_need_data_out(rsp))
539 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
540 cm_id->port_num, NULL, &rsp->send_wr);
541 else
542 first_wr = &rsp->send_wr;
543
544 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
545
546 ib_dma_sync_single_for_device(rsp->queue->dev->device,
547 rsp->send_sge.addr, rsp->send_sge.length,
548 DMA_TO_DEVICE);
549
550 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
551 pr_err("sending cmd response failed\n");
552 nvmet_rdma_release_rsp(rsp);
553 }
554 }
555
nvmet_rdma_read_data_done(struct ib_cq * cq,struct ib_wc * wc)556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
557 {
558 struct nvmet_rdma_rsp *rsp =
559 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
560 struct nvmet_rdma_queue *queue = cq->cq_context;
561
562 WARN_ON(rsp->n_rdma <= 0);
563 atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
564 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
565 queue->cm_id->port_num, rsp->req.sg,
566 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
567 rsp->n_rdma = 0;
568
569 if (unlikely(wc->status != IB_WC_SUCCESS)) {
570 nvmet_rdma_release_rsp(rsp);
571 if (wc->status != IB_WC_WR_FLUSH_ERR) {
572 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
573 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
574 nvmet_rdma_error_comp(queue);
575 }
576 return;
577 }
578
579 rsp->req.execute(&rsp->req);
580 }
581
nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp * rsp,u32 len,u64 off)582 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
583 u64 off)
584 {
585 sg_init_table(&rsp->cmd->inline_sg, 1);
586 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
587 rsp->req.sg = &rsp->cmd->inline_sg;
588 rsp->req.sg_cnt = 1;
589 }
590
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp * rsp)591 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
592 {
593 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
594 u64 off = le64_to_cpu(sgl->addr);
595 u32 len = le32_to_cpu(sgl->length);
596
597 if (!nvme_is_write(rsp->req.cmd))
598 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
599
600 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
601 pr_err("invalid inline data offset!\n");
602 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
603 }
604
605 /* no data command? */
606 if (!len)
607 return 0;
608
609 nvmet_rdma_use_inline_sg(rsp, len, off);
610 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
611 return 0;
612 }
613
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp * rsp,struct nvme_keyed_sgl_desc * sgl,bool invalidate)614 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
615 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
616 {
617 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
618 u64 addr = le64_to_cpu(sgl->addr);
619 u32 len = get_unaligned_le24(sgl->length);
620 u32 key = get_unaligned_le32(sgl->key);
621 int ret;
622 u16 status;
623
624 /* no data command? */
625 if (!len)
626 return 0;
627
628 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
629 len);
630 if (status)
631 return status;
632
633 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
634 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
635 nvmet_data_dir(&rsp->req));
636 if (ret < 0)
637 return NVME_SC_INTERNAL;
638 rsp->n_rdma += ret;
639
640 if (invalidate) {
641 rsp->invalidate_rkey = key;
642 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
643 }
644
645 return 0;
646 }
647
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp * rsp)648 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
649 {
650 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
651
652 switch (sgl->type >> 4) {
653 case NVME_SGL_FMT_DATA_DESC:
654 switch (sgl->type & 0xf) {
655 case NVME_SGL_FMT_OFFSET:
656 return nvmet_rdma_map_sgl_inline(rsp);
657 default:
658 pr_err("invalid SGL subtype: %#x\n", sgl->type);
659 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
660 }
661 case NVME_KEY_SGL_FMT_DATA_DESC:
662 switch (sgl->type & 0xf) {
663 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
664 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
665 case NVME_SGL_FMT_ADDRESS:
666 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
667 default:
668 pr_err("invalid SGL subtype: %#x\n", sgl->type);
669 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
670 }
671 default:
672 pr_err("invalid SGL type: %#x\n", sgl->type);
673 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
674 }
675 }
676
nvmet_rdma_execute_command(struct nvmet_rdma_rsp * rsp)677 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
678 {
679 struct nvmet_rdma_queue *queue = rsp->queue;
680
681 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
682 &queue->sq_wr_avail) < 0)) {
683 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
684 1 + rsp->n_rdma, queue->idx,
685 queue->nvme_sq.ctrl->cntlid);
686 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
687 return false;
688 }
689
690 if (nvmet_rdma_need_data_in(rsp)) {
691 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
692 queue->cm_id->port_num, &rsp->read_cqe, NULL))
693 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
694 } else {
695 rsp->req.execute(&rsp->req);
696 }
697
698 return true;
699 }
700
nvmet_rdma_handle_command(struct nvmet_rdma_queue * queue,struct nvmet_rdma_rsp * cmd)701 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
702 struct nvmet_rdma_rsp *cmd)
703 {
704 u16 status;
705
706 ib_dma_sync_single_for_cpu(queue->dev->device,
707 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
708 DMA_FROM_DEVICE);
709 ib_dma_sync_single_for_cpu(queue->dev->device,
710 cmd->send_sge.addr, cmd->send_sge.length,
711 DMA_TO_DEVICE);
712
713 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
714 &queue->nvme_sq, &nvmet_rdma_ops))
715 return;
716
717 status = nvmet_rdma_map_sgl(cmd);
718 if (status)
719 goto out_err;
720
721 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
722 spin_lock(&queue->rsp_wr_wait_lock);
723 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
724 spin_unlock(&queue->rsp_wr_wait_lock);
725 }
726
727 return;
728
729 out_err:
730 nvmet_req_complete(&cmd->req, status);
731 }
732
nvmet_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)733 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
734 {
735 struct nvmet_rdma_cmd *cmd =
736 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
737 struct nvmet_rdma_queue *queue = cq->cq_context;
738 struct nvmet_rdma_rsp *rsp;
739
740 if (unlikely(wc->status != IB_WC_SUCCESS)) {
741 if (wc->status != IB_WC_WR_FLUSH_ERR) {
742 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
743 wc->wr_cqe, ib_wc_status_msg(wc->status),
744 wc->status);
745 nvmet_rdma_error_comp(queue);
746 }
747 return;
748 }
749
750 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
751 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
752 nvmet_rdma_error_comp(queue);
753 return;
754 }
755
756 cmd->queue = queue;
757 rsp = nvmet_rdma_get_rsp(queue);
758 rsp->queue = queue;
759 rsp->cmd = cmd;
760 rsp->flags = 0;
761 rsp->req.cmd = cmd->nvme_cmd;
762 rsp->req.port = queue->port;
763 rsp->n_rdma = 0;
764
765 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
766 unsigned long flags;
767
768 spin_lock_irqsave(&queue->state_lock, flags);
769 if (queue->state == NVMET_RDMA_Q_CONNECTING)
770 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
771 else
772 nvmet_rdma_put_rsp(rsp);
773 spin_unlock_irqrestore(&queue->state_lock, flags);
774 return;
775 }
776
777 nvmet_rdma_handle_command(queue, rsp);
778 }
779
nvmet_rdma_destroy_srq(struct nvmet_rdma_device * ndev)780 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
781 {
782 if (!ndev->srq)
783 return;
784
785 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
786 ib_destroy_srq(ndev->srq);
787 }
788
nvmet_rdma_init_srq(struct nvmet_rdma_device * ndev)789 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
790 {
791 struct ib_srq_init_attr srq_attr = { NULL, };
792 struct ib_srq *srq;
793 size_t srq_size;
794 int ret, i;
795
796 srq_size = 4095; /* XXX: tune */
797
798 srq_attr.attr.max_wr = srq_size;
799 srq_attr.attr.max_sge = 2;
800 srq_attr.attr.srq_limit = 0;
801 srq_attr.srq_type = IB_SRQT_BASIC;
802 srq = ib_create_srq(ndev->pd, &srq_attr);
803 if (IS_ERR(srq)) {
804 /*
805 * If SRQs aren't supported we just go ahead and use normal
806 * non-shared receive queues.
807 */
808 pr_info("SRQ requested but not supported.\n");
809 return 0;
810 }
811
812 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
813 if (IS_ERR(ndev->srq_cmds)) {
814 ret = PTR_ERR(ndev->srq_cmds);
815 goto out_destroy_srq;
816 }
817
818 ndev->srq = srq;
819 ndev->srq_size = srq_size;
820
821 for (i = 0; i < srq_size; i++)
822 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
823
824 return 0;
825
826 out_destroy_srq:
827 ib_destroy_srq(srq);
828 return ret;
829 }
830
nvmet_rdma_free_dev(struct kref * ref)831 static void nvmet_rdma_free_dev(struct kref *ref)
832 {
833 struct nvmet_rdma_device *ndev =
834 container_of(ref, struct nvmet_rdma_device, ref);
835
836 mutex_lock(&device_list_mutex);
837 list_del(&ndev->entry);
838 mutex_unlock(&device_list_mutex);
839
840 nvmet_rdma_destroy_srq(ndev);
841 ib_dealloc_pd(ndev->pd);
842
843 kfree(ndev);
844 }
845
846 static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id * cm_id)847 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
848 {
849 struct nvmet_rdma_device *ndev;
850 int ret;
851
852 mutex_lock(&device_list_mutex);
853 list_for_each_entry(ndev, &device_list, entry) {
854 if (ndev->device->node_guid == cm_id->device->node_guid &&
855 kref_get_unless_zero(&ndev->ref))
856 goto out_unlock;
857 }
858
859 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
860 if (!ndev)
861 goto out_err;
862
863 ndev->device = cm_id->device;
864 kref_init(&ndev->ref);
865
866 ndev->pd = ib_alloc_pd(ndev->device, 0);
867 if (IS_ERR(ndev->pd))
868 goto out_free_dev;
869
870 if (nvmet_rdma_use_srq) {
871 ret = nvmet_rdma_init_srq(ndev);
872 if (ret)
873 goto out_free_pd;
874 }
875
876 list_add(&ndev->entry, &device_list);
877 out_unlock:
878 mutex_unlock(&device_list_mutex);
879 pr_debug("added %s.\n", ndev->device->name);
880 return ndev;
881
882 out_free_pd:
883 ib_dealloc_pd(ndev->pd);
884 out_free_dev:
885 kfree(ndev);
886 out_err:
887 mutex_unlock(&device_list_mutex);
888 return NULL;
889 }
890
nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue * queue)891 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
892 {
893 struct ib_qp_init_attr qp_attr;
894 struct nvmet_rdma_device *ndev = queue->dev;
895 int comp_vector, nr_cqe, ret, i;
896
897 /*
898 * Spread the io queues across completion vectors,
899 * but still keep all admin queues on vector 0.
900 */
901 comp_vector = !queue->host_qid ? 0 :
902 queue->idx % ndev->device->num_comp_vectors;
903
904 /*
905 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
906 */
907 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
908
909 queue->cq = ib_alloc_cq(ndev->device, queue,
910 nr_cqe + 1, comp_vector,
911 IB_POLL_WORKQUEUE);
912 if (IS_ERR(queue->cq)) {
913 ret = PTR_ERR(queue->cq);
914 pr_err("failed to create CQ cqe= %d ret= %d\n",
915 nr_cqe + 1, ret);
916 goto out;
917 }
918
919 memset(&qp_attr, 0, sizeof(qp_attr));
920 qp_attr.qp_context = queue;
921 qp_attr.event_handler = nvmet_rdma_qp_event;
922 qp_attr.send_cq = queue->cq;
923 qp_attr.recv_cq = queue->cq;
924 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
925 qp_attr.qp_type = IB_QPT_RC;
926 /* +1 for drain */
927 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
928 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
929 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
930 ndev->device->attrs.max_sge);
931
932 if (ndev->srq) {
933 qp_attr.srq = ndev->srq;
934 } else {
935 /* +1 for drain */
936 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
937 qp_attr.cap.max_recv_sge = 2;
938 }
939
940 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
941 if (ret) {
942 pr_err("failed to create_qp ret= %d\n", ret);
943 goto err_destroy_cq;
944 }
945
946 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
947
948 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
949 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
950 qp_attr.cap.max_send_wr, queue->cm_id);
951
952 if (!ndev->srq) {
953 for (i = 0; i < queue->recv_queue_size; i++) {
954 queue->cmds[i].queue = queue;
955 nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
956 }
957 }
958
959 out:
960 return ret;
961
962 err_destroy_cq:
963 ib_free_cq(queue->cq);
964 goto out;
965 }
966
nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue * queue)967 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
968 {
969 ib_drain_qp(queue->cm_id->qp);
970 rdma_destroy_qp(queue->cm_id);
971 ib_free_cq(queue->cq);
972 }
973
nvmet_rdma_free_queue(struct nvmet_rdma_queue * queue)974 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
975 {
976 pr_info("freeing queue %d\n", queue->idx);
977
978 nvmet_sq_destroy(&queue->nvme_sq);
979
980 nvmet_rdma_destroy_queue_ib(queue);
981 if (!queue->dev->srq) {
982 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
983 queue->recv_queue_size,
984 !queue->host_qid);
985 }
986 nvmet_rdma_free_rsps(queue);
987 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
988 kfree(queue);
989 }
990
nvmet_rdma_release_queue_work(struct work_struct * w)991 static void nvmet_rdma_release_queue_work(struct work_struct *w)
992 {
993 struct nvmet_rdma_queue *queue =
994 container_of(w, struct nvmet_rdma_queue, release_work);
995 struct rdma_cm_id *cm_id = queue->cm_id;
996 struct nvmet_rdma_device *dev = queue->dev;
997 enum nvmet_rdma_queue_state state = queue->state;
998
999 nvmet_rdma_free_queue(queue);
1000
1001 if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
1002 rdma_destroy_id(cm_id);
1003
1004 kref_put(&dev->ref, nvmet_rdma_free_dev);
1005 }
1006
1007 static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param * conn,struct nvmet_rdma_queue * queue)1008 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1009 struct nvmet_rdma_queue *queue)
1010 {
1011 struct nvme_rdma_cm_req *req;
1012
1013 req = (struct nvme_rdma_cm_req *)conn->private_data;
1014 if (!req || conn->private_data_len == 0)
1015 return NVME_RDMA_CM_INVALID_LEN;
1016
1017 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1018 return NVME_RDMA_CM_INVALID_RECFMT;
1019
1020 queue->host_qid = le16_to_cpu(req->qid);
1021
1022 /*
1023 * req->hsqsize corresponds to our recv queue size plus 1
1024 * req->hrqsize corresponds to our send queue size
1025 */
1026 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1027 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1028
1029 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1030 return NVME_RDMA_CM_INVALID_HSQSIZE;
1031
1032 /* XXX: Should we enforce some kind of max for IO queues? */
1033
1034 return 0;
1035 }
1036
nvmet_rdma_cm_reject(struct rdma_cm_id * cm_id,enum nvme_rdma_cm_status status)1037 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1038 enum nvme_rdma_cm_status status)
1039 {
1040 struct nvme_rdma_cm_rej rej;
1041
1042 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1043 rej.sts = cpu_to_le16(status);
1044
1045 return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1046 }
1047
1048 static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device * ndev,struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1049 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1050 struct rdma_cm_id *cm_id,
1051 struct rdma_cm_event *event)
1052 {
1053 struct nvmet_rdma_queue *queue;
1054 int ret;
1055
1056 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1057 if (!queue) {
1058 ret = NVME_RDMA_CM_NO_RSC;
1059 goto out_reject;
1060 }
1061
1062 ret = nvmet_sq_init(&queue->nvme_sq);
1063 if (ret)
1064 goto out_free_queue;
1065
1066 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1067 if (ret)
1068 goto out_destroy_sq;
1069
1070 /*
1071 * Schedules the actual release because calling rdma_destroy_id from
1072 * inside a CM callback would trigger a deadlock. (great API design..)
1073 */
1074 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1075 queue->dev = ndev;
1076 queue->cm_id = cm_id;
1077
1078 spin_lock_init(&queue->state_lock);
1079 queue->state = NVMET_RDMA_Q_CONNECTING;
1080 INIT_LIST_HEAD(&queue->rsp_wait_list);
1081 INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1082 spin_lock_init(&queue->rsp_wr_wait_lock);
1083 INIT_LIST_HEAD(&queue->free_rsps);
1084 spin_lock_init(&queue->rsps_lock);
1085 INIT_LIST_HEAD(&queue->queue_list);
1086
1087 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1088 if (queue->idx < 0) {
1089 ret = NVME_RDMA_CM_NO_RSC;
1090 goto out_free_queue;
1091 }
1092
1093 ret = nvmet_rdma_alloc_rsps(queue);
1094 if (ret) {
1095 ret = NVME_RDMA_CM_NO_RSC;
1096 goto out_ida_remove;
1097 }
1098
1099 if (!ndev->srq) {
1100 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1101 queue->recv_queue_size,
1102 !queue->host_qid);
1103 if (IS_ERR(queue->cmds)) {
1104 ret = NVME_RDMA_CM_NO_RSC;
1105 goto out_free_responses;
1106 }
1107 }
1108
1109 ret = nvmet_rdma_create_queue_ib(queue);
1110 if (ret) {
1111 pr_err("%s: creating RDMA queue failed (%d).\n",
1112 __func__, ret);
1113 ret = NVME_RDMA_CM_NO_RSC;
1114 goto out_free_cmds;
1115 }
1116
1117 return queue;
1118
1119 out_free_cmds:
1120 if (!ndev->srq) {
1121 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1122 queue->recv_queue_size,
1123 !queue->host_qid);
1124 }
1125 out_free_responses:
1126 nvmet_rdma_free_rsps(queue);
1127 out_ida_remove:
1128 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1129 out_destroy_sq:
1130 nvmet_sq_destroy(&queue->nvme_sq);
1131 out_free_queue:
1132 kfree(queue);
1133 out_reject:
1134 nvmet_rdma_cm_reject(cm_id, ret);
1135 return NULL;
1136 }
1137
nvmet_rdma_qp_event(struct ib_event * event,void * priv)1138 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1139 {
1140 struct nvmet_rdma_queue *queue = priv;
1141
1142 switch (event->event) {
1143 case IB_EVENT_COMM_EST:
1144 rdma_notify(queue->cm_id, event->event);
1145 break;
1146 default:
1147 pr_err("received unrecognized IB QP event %d\n", event->event);
1148 break;
1149 }
1150 }
1151
nvmet_rdma_cm_accept(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue,struct rdma_conn_param * p)1152 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1153 struct nvmet_rdma_queue *queue,
1154 struct rdma_conn_param *p)
1155 {
1156 struct rdma_conn_param param = { };
1157 struct nvme_rdma_cm_rep priv = { };
1158 int ret = -ENOMEM;
1159
1160 param.rnr_retry_count = 7;
1161 param.flow_control = 1;
1162 param.initiator_depth = min_t(u8, p->initiator_depth,
1163 queue->dev->device->attrs.max_qp_init_rd_atom);
1164 param.private_data = &priv;
1165 param.private_data_len = sizeof(priv);
1166 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1167 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1168
1169 ret = rdma_accept(cm_id, ¶m);
1170 if (ret)
1171 pr_err("rdma_accept failed (error code = %d)\n", ret);
1172
1173 return ret;
1174 }
1175
nvmet_rdma_queue_connect(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1176 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1177 struct rdma_cm_event *event)
1178 {
1179 struct nvmet_rdma_device *ndev;
1180 struct nvmet_rdma_queue *queue;
1181 int ret = -EINVAL;
1182
1183 ndev = nvmet_rdma_find_get_device(cm_id);
1184 if (!ndev) {
1185 pr_err("no client data!\n");
1186 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1187 return -ECONNREFUSED;
1188 }
1189
1190 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1191 if (!queue) {
1192 ret = -ENOMEM;
1193 goto put_device;
1194 }
1195 queue->port = cm_id->context;
1196
1197 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1198 if (ret)
1199 goto release_queue;
1200
1201 mutex_lock(&nvmet_rdma_queue_mutex);
1202 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1203 mutex_unlock(&nvmet_rdma_queue_mutex);
1204
1205 return 0;
1206
1207 release_queue:
1208 nvmet_rdma_free_queue(queue);
1209 put_device:
1210 kref_put(&ndev->ref, nvmet_rdma_free_dev);
1211
1212 return ret;
1213 }
1214
nvmet_rdma_queue_established(struct nvmet_rdma_queue * queue)1215 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1216 {
1217 unsigned long flags;
1218
1219 spin_lock_irqsave(&queue->state_lock, flags);
1220 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1221 pr_warn("trying to establish a connected queue\n");
1222 goto out_unlock;
1223 }
1224 queue->state = NVMET_RDMA_Q_LIVE;
1225
1226 while (!list_empty(&queue->rsp_wait_list)) {
1227 struct nvmet_rdma_rsp *cmd;
1228
1229 cmd = list_first_entry(&queue->rsp_wait_list,
1230 struct nvmet_rdma_rsp, wait_list);
1231 list_del(&cmd->wait_list);
1232
1233 spin_unlock_irqrestore(&queue->state_lock, flags);
1234 nvmet_rdma_handle_command(queue, cmd);
1235 spin_lock_irqsave(&queue->state_lock, flags);
1236 }
1237
1238 out_unlock:
1239 spin_unlock_irqrestore(&queue->state_lock, flags);
1240 }
1241
__nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1242 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1243 {
1244 bool disconnect = false;
1245 unsigned long flags;
1246
1247 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1248
1249 spin_lock_irqsave(&queue->state_lock, flags);
1250 switch (queue->state) {
1251 case NVMET_RDMA_Q_CONNECTING:
1252 case NVMET_RDMA_Q_LIVE:
1253 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1254 case NVMET_RDMA_IN_DEVICE_REMOVAL:
1255 disconnect = true;
1256 break;
1257 case NVMET_RDMA_Q_DISCONNECTING:
1258 break;
1259 }
1260 spin_unlock_irqrestore(&queue->state_lock, flags);
1261
1262 if (disconnect) {
1263 rdma_disconnect(queue->cm_id);
1264 schedule_work(&queue->release_work);
1265 }
1266 }
1267
nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1268 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1269 {
1270 bool disconnect = false;
1271
1272 mutex_lock(&nvmet_rdma_queue_mutex);
1273 if (!list_empty(&queue->queue_list)) {
1274 list_del_init(&queue->queue_list);
1275 disconnect = true;
1276 }
1277 mutex_unlock(&nvmet_rdma_queue_mutex);
1278
1279 if (disconnect)
1280 __nvmet_rdma_queue_disconnect(queue);
1281 }
1282
nvmet_rdma_queue_connect_fail(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1283 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1284 struct nvmet_rdma_queue *queue)
1285 {
1286 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1287
1288 mutex_lock(&nvmet_rdma_queue_mutex);
1289 if (!list_empty(&queue->queue_list))
1290 list_del_init(&queue->queue_list);
1291 mutex_unlock(&nvmet_rdma_queue_mutex);
1292
1293 pr_err("failed to connect queue %d\n", queue->idx);
1294 schedule_work(&queue->release_work);
1295 }
1296
1297 /**
1298 * nvme_rdma_device_removal() - Handle RDMA device removal
1299 * @queue: nvmet rdma queue (cm id qp_context)
1300 * @addr: nvmet address (cm_id context)
1301 *
1302 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1303 * to unplug so we should take care of destroying our RDMA resources.
1304 * This event will be generated for each allocated cm_id.
1305 *
1306 * Note that this event can be generated on a normal queue cm_id
1307 * and/or a device bound listener cm_id (where in this case
1308 * queue will be null).
1309 *
1310 * we claim ownership on destroying the cm_id. For queues we move
1311 * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port
1312 * we nullify the priv to prevent double cm_id destruction and destroying
1313 * the cm_id implicitely by returning a non-zero rc to the callout.
1314 */
nvmet_rdma_device_removal(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1315 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1316 struct nvmet_rdma_queue *queue)
1317 {
1318 unsigned long flags;
1319
1320 if (!queue) {
1321 struct nvmet_port *port = cm_id->context;
1322
1323 /*
1324 * This is a listener cm_id. Make sure that
1325 * future remove_port won't invoke a double
1326 * cm_id destroy. use atomic xchg to make sure
1327 * we don't compete with remove_port.
1328 */
1329 if (xchg(&port->priv, NULL) != cm_id)
1330 return 0;
1331 } else {
1332 /*
1333 * This is a queue cm_id. Make sure that
1334 * release queue will not destroy the cm_id
1335 * and schedule all ctrl queues removal (only
1336 * if the queue is not disconnecting already).
1337 */
1338 spin_lock_irqsave(&queue->state_lock, flags);
1339 if (queue->state != NVMET_RDMA_Q_DISCONNECTING)
1340 queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL;
1341 spin_unlock_irqrestore(&queue->state_lock, flags);
1342 nvmet_rdma_queue_disconnect(queue);
1343 flush_scheduled_work();
1344 }
1345
1346 /*
1347 * We need to return 1 so that the core will destroy
1348 * it's own ID. What a great API design..
1349 */
1350 return 1;
1351 }
1352
nvmet_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1353 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1354 struct rdma_cm_event *event)
1355 {
1356 struct nvmet_rdma_queue *queue = NULL;
1357 int ret = 0;
1358
1359 if (cm_id->qp)
1360 queue = cm_id->qp->qp_context;
1361
1362 pr_debug("%s (%d): status %d id %p\n",
1363 rdma_event_msg(event->event), event->event,
1364 event->status, cm_id);
1365
1366 switch (event->event) {
1367 case RDMA_CM_EVENT_CONNECT_REQUEST:
1368 ret = nvmet_rdma_queue_connect(cm_id, event);
1369 break;
1370 case RDMA_CM_EVENT_ESTABLISHED:
1371 nvmet_rdma_queue_established(queue);
1372 break;
1373 case RDMA_CM_EVENT_ADDR_CHANGE:
1374 case RDMA_CM_EVENT_DISCONNECTED:
1375 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1376 /*
1377 * We might end up here when we already freed the qp
1378 * which means queue release sequence is in progress,
1379 * so don't get in the way...
1380 */
1381 if (queue)
1382 nvmet_rdma_queue_disconnect(queue);
1383 break;
1384 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1385 ret = nvmet_rdma_device_removal(cm_id, queue);
1386 break;
1387 case RDMA_CM_EVENT_REJECTED:
1388 case RDMA_CM_EVENT_UNREACHABLE:
1389 case RDMA_CM_EVENT_CONNECT_ERROR:
1390 nvmet_rdma_queue_connect_fail(cm_id, queue);
1391 break;
1392 default:
1393 pr_err("received unrecognized RDMA CM event %d\n",
1394 event->event);
1395 break;
1396 }
1397
1398 return ret;
1399 }
1400
nvmet_rdma_delete_ctrl(struct nvmet_ctrl * ctrl)1401 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1402 {
1403 struct nvmet_rdma_queue *queue;
1404
1405 restart:
1406 mutex_lock(&nvmet_rdma_queue_mutex);
1407 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1408 if (queue->nvme_sq.ctrl == ctrl) {
1409 list_del_init(&queue->queue_list);
1410 mutex_unlock(&nvmet_rdma_queue_mutex);
1411
1412 __nvmet_rdma_queue_disconnect(queue);
1413 goto restart;
1414 }
1415 }
1416 mutex_unlock(&nvmet_rdma_queue_mutex);
1417 }
1418
nvmet_rdma_add_port(struct nvmet_port * port)1419 static int nvmet_rdma_add_port(struct nvmet_port *port)
1420 {
1421 struct rdma_cm_id *cm_id;
1422 struct sockaddr_in addr_in;
1423 u16 port_in;
1424 int ret;
1425
1426 switch (port->disc_addr.adrfam) {
1427 case NVMF_ADDR_FAMILY_IP4:
1428 break;
1429 default:
1430 pr_err("address family %d not supported\n",
1431 port->disc_addr.adrfam);
1432 return -EINVAL;
1433 }
1434
1435 ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in);
1436 if (ret)
1437 return ret;
1438
1439 addr_in.sin_family = AF_INET;
1440 addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr);
1441 addr_in.sin_port = htons(port_in);
1442
1443 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1444 RDMA_PS_TCP, IB_QPT_RC);
1445 if (IS_ERR(cm_id)) {
1446 pr_err("CM ID creation failed\n");
1447 return PTR_ERR(cm_id);
1448 }
1449
1450 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in);
1451 if (ret) {
1452 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret);
1453 goto out_destroy_id;
1454 }
1455
1456 ret = rdma_listen(cm_id, 128);
1457 if (ret) {
1458 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret);
1459 goto out_destroy_id;
1460 }
1461
1462 pr_info("enabling port %d (%pISpc)\n",
1463 le16_to_cpu(port->disc_addr.portid), &addr_in);
1464 port->priv = cm_id;
1465 return 0;
1466
1467 out_destroy_id:
1468 rdma_destroy_id(cm_id);
1469 return ret;
1470 }
1471
nvmet_rdma_remove_port(struct nvmet_port * port)1472 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1473 {
1474 struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1475
1476 if (cm_id)
1477 rdma_destroy_id(cm_id);
1478 }
1479
1480 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1481 .owner = THIS_MODULE,
1482 .type = NVMF_TRTYPE_RDMA,
1483 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE,
1484 .msdbd = 1,
1485 .has_keyed_sgls = 1,
1486 .add_port = nvmet_rdma_add_port,
1487 .remove_port = nvmet_rdma_remove_port,
1488 .queue_response = nvmet_rdma_queue_response,
1489 .delete_ctrl = nvmet_rdma_delete_ctrl,
1490 };
1491
nvmet_rdma_init(void)1492 static int __init nvmet_rdma_init(void)
1493 {
1494 return nvmet_register_transport(&nvmet_rdma_ops);
1495 }
1496
nvmet_rdma_exit(void)1497 static void __exit nvmet_rdma_exit(void)
1498 {
1499 struct nvmet_rdma_queue *queue;
1500
1501 nvmet_unregister_transport(&nvmet_rdma_ops);
1502
1503 flush_scheduled_work();
1504
1505 mutex_lock(&nvmet_rdma_queue_mutex);
1506 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1507 struct nvmet_rdma_queue, queue_list))) {
1508 list_del_init(&queue->queue_list);
1509
1510 mutex_unlock(&nvmet_rdma_queue_mutex);
1511 __nvmet_rdma_queue_disconnect(queue);
1512 mutex_lock(&nvmet_rdma_queue_mutex);
1513 }
1514 mutex_unlock(&nvmet_rdma_queue_mutex);
1515
1516 flush_scheduled_work();
1517 ida_destroy(&nvmet_rdma_queue_ida);
1518 }
1519
1520 module_init(nvmet_rdma_init);
1521 module_exit(nvmet_rdma_exit);
1522
1523 MODULE_LICENSE("GPL v2");
1524 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1525