• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27 
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31 
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34 
35 /*
36  * We allow up to a page of inline data to go with the SQE
37  */
38 #define NVMET_RDMA_INLINE_DATA_SIZE	PAGE_SIZE
39 
40 struct nvmet_rdma_cmd {
41 	struct ib_sge		sge[2];
42 	struct ib_cqe		cqe;
43 	struct ib_recv_wr	wr;
44 	struct scatterlist	inline_sg;
45 	struct page		*inline_page;
46 	struct nvme_command     *nvme_cmd;
47 	struct nvmet_rdma_queue	*queue;
48 };
49 
50 enum {
51 	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
52 	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
53 };
54 
55 struct nvmet_rdma_rsp {
56 	struct ib_sge		send_sge;
57 	struct ib_cqe		send_cqe;
58 	struct ib_send_wr	send_wr;
59 
60 	struct nvmet_rdma_cmd	*cmd;
61 	struct nvmet_rdma_queue	*queue;
62 
63 	struct ib_cqe		read_cqe;
64 	struct rdma_rw_ctx	rw;
65 
66 	struct nvmet_req	req;
67 
68 	u8			n_rdma;
69 	u32			flags;
70 	u32			invalidate_rkey;
71 
72 	struct list_head	wait_list;
73 	struct list_head	free_list;
74 };
75 
76 enum nvmet_rdma_queue_state {
77 	NVMET_RDMA_Q_CONNECTING,
78 	NVMET_RDMA_Q_LIVE,
79 	NVMET_RDMA_Q_DISCONNECTING,
80 	NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82 
83 struct nvmet_rdma_queue {
84 	struct rdma_cm_id	*cm_id;
85 	struct nvmet_port	*port;
86 	struct ib_cq		*cq;
87 	atomic_t		sq_wr_avail;
88 	struct nvmet_rdma_device *dev;
89 	spinlock_t		state_lock;
90 	enum nvmet_rdma_queue_state state;
91 	struct nvmet_cq		nvme_cq;
92 	struct nvmet_sq		nvme_sq;
93 
94 	struct nvmet_rdma_rsp	*rsps;
95 	struct list_head	free_rsps;
96 	spinlock_t		rsps_lock;
97 	struct nvmet_rdma_cmd	*cmds;
98 
99 	struct work_struct	release_work;
100 	struct list_head	rsp_wait_list;
101 	struct list_head	rsp_wr_wait_list;
102 	spinlock_t		rsp_wr_wait_lock;
103 
104 	int			idx;
105 	int			host_qid;
106 	int			recv_queue_size;
107 	int			send_queue_size;
108 
109 	struct list_head	queue_list;
110 };
111 
112 struct nvmet_rdma_device {
113 	struct ib_device	*device;
114 	struct ib_pd		*pd;
115 	struct ib_srq		*srq;
116 	struct nvmet_rdma_cmd	*srq_cmds;
117 	size_t			srq_size;
118 	struct kref		ref;
119 	struct list_head	entry;
120 };
121 
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125 
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129 
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132 
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139 
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141 
142 /* XXX: really should move to a generic header sooner or later.. */
get_unaligned_le24(const u8 * p)143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145 	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147 
nvmet_rdma_need_data_in(struct nvmet_rdma_rsp * rsp)148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150 	return nvme_is_write(rsp->req.cmd) &&
151 		rsp->req.data_len &&
152 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154 
nvmet_rdma_need_data_out(struct nvmet_rdma_rsp * rsp)155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157 	return !nvme_is_write(rsp->req.cmd) &&
158 		rsp->req.data_len &&
159 		!rsp->req.rsp->status &&
160 		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162 
163 static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue * queue)164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166 	struct nvmet_rdma_rsp *rsp;
167 	unsigned long flags;
168 
169 	spin_lock_irqsave(&queue->rsps_lock, flags);
170 	rsp = list_first_entry(&queue->free_rsps,
171 				struct nvmet_rdma_rsp, free_list);
172 	list_del(&rsp->free_list);
173 	spin_unlock_irqrestore(&queue->rsps_lock, flags);
174 
175 	return rsp;
176 }
177 
178 static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp * rsp)179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184 	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185 	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187 
nvmet_rdma_free_sgl(struct scatterlist * sgl,unsigned int nents)188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190 	struct scatterlist *sg;
191 	int count;
192 
193 	if (!sgl || !nents)
194 		return;
195 
196 	for_each_sg(sgl, sg, nents, count)
197 		__free_page(sg_page(sg));
198 	kfree(sgl);
199 }
200 
nvmet_rdma_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length)201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202 		u32 length)
203 {
204 	struct scatterlist *sg;
205 	struct page *page;
206 	unsigned int nent;
207 	int i = 0;
208 
209 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
210 	sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211 	if (!sg)
212 		goto out;
213 
214 	sg_init_table(sg, nent);
215 
216 	while (length) {
217 		u32 page_len = min_t(u32, length, PAGE_SIZE);
218 
219 		page = alloc_page(GFP_KERNEL);
220 		if (!page)
221 			goto out_free_pages;
222 
223 		sg_set_page(&sg[i], page, page_len, 0);
224 		length -= page_len;
225 		i++;
226 	}
227 	*sgl = sg;
228 	*nents = nent;
229 	return 0;
230 
231 out_free_pages:
232 	while (i > 0) {
233 		i--;
234 		__free_page(sg_page(&sg[i]));
235 	}
236 	kfree(sg);
237 out:
238 	return NVME_SC_INTERNAL;
239 }
240 
nvmet_rdma_alloc_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242 			struct nvmet_rdma_cmd *c, bool admin)
243 {
244 	/* NVMe command / RDMA RECV */
245 	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246 	if (!c->nvme_cmd)
247 		goto out;
248 
249 	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251 	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252 		goto out_free_cmd;
253 
254 	c->sge[0].length = sizeof(*c->nvme_cmd);
255 	c->sge[0].lkey = ndev->pd->local_dma_lkey;
256 
257 	if (!admin) {
258 		c->inline_page = alloc_pages(GFP_KERNEL,
259 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260 		if (!c->inline_page)
261 			goto out_unmap_cmd;
262 		c->sge[1].addr = ib_dma_map_page(ndev->device,
263 				c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264 				DMA_FROM_DEVICE);
265 		if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266 			goto out_free_inline_page;
267 		c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268 		c->sge[1].lkey = ndev->pd->local_dma_lkey;
269 	}
270 
271 	c->cqe.done = nvmet_rdma_recv_done;
272 
273 	c->wr.wr_cqe = &c->cqe;
274 	c->wr.sg_list = c->sge;
275 	c->wr.num_sge = admin ? 1 : 2;
276 
277 	return 0;
278 
279 out_free_inline_page:
280 	if (!admin) {
281 		__free_pages(c->inline_page,
282 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283 	}
284 out_unmap_cmd:
285 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286 			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288 	kfree(c->nvme_cmd);
289 
290 out:
291 	return -ENOMEM;
292 }
293 
nvmet_rdma_free_cmd(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * c,bool admin)294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295 		struct nvmet_rdma_cmd *c, bool admin)
296 {
297 	if (!admin) {
298 		ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299 				NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300 		__free_pages(c->inline_page,
301 				get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302 	}
303 	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304 				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305 	kfree(c->nvme_cmd);
306 }
307 
308 static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device * ndev,int nr_cmds,bool admin)309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310 		int nr_cmds, bool admin)
311 {
312 	struct nvmet_rdma_cmd *cmds;
313 	int ret = -EINVAL, i;
314 
315 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316 	if (!cmds)
317 		goto out;
318 
319 	for (i = 0; i < nr_cmds; i++) {
320 		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321 		if (ret)
322 			goto out_free;
323 	}
324 
325 	return cmds;
326 
327 out_free:
328 	while (--i >= 0)
329 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330 	kfree(cmds);
331 out:
332 	return ERR_PTR(ret);
333 }
334 
nvmet_rdma_free_cmds(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmds,int nr_cmds,bool admin)335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336 		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338 	int i;
339 
340 	for (i = 0; i < nr_cmds; i++)
341 		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342 	kfree(cmds);
343 }
344 
nvmet_rdma_alloc_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346 		struct nvmet_rdma_rsp *r)
347 {
348 	/* NVMe CQE / RDMA SEND */
349 	r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350 	if (!r->req.rsp)
351 		goto out;
352 
353 	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354 			sizeof(*r->req.rsp), DMA_TO_DEVICE);
355 	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356 		goto out_free_rsp;
357 
358 	r->send_sge.length = sizeof(*r->req.rsp);
359 	r->send_sge.lkey = ndev->pd->local_dma_lkey;
360 
361 	r->send_cqe.done = nvmet_rdma_send_done;
362 
363 	r->send_wr.wr_cqe = &r->send_cqe;
364 	r->send_wr.sg_list = &r->send_sge;
365 	r->send_wr.num_sge = 1;
366 	r->send_wr.send_flags = IB_SEND_SIGNALED;
367 
368 	/* Data In / RDMA READ */
369 	r->read_cqe.done = nvmet_rdma_read_data_done;
370 	return 0;
371 
372 out_free_rsp:
373 	kfree(r->req.rsp);
374 out:
375 	return -ENOMEM;
376 }
377 
nvmet_rdma_free_rsp(struct nvmet_rdma_device * ndev,struct nvmet_rdma_rsp * r)378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379 		struct nvmet_rdma_rsp *r)
380 {
381 	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382 				sizeof(*r->req.rsp), DMA_TO_DEVICE);
383 	kfree(r->req.rsp);
384 }
385 
386 static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue * queue)387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389 	struct nvmet_rdma_device *ndev = queue->dev;
390 	int nr_rsps = queue->recv_queue_size * 2;
391 	int ret = -EINVAL, i;
392 
393 	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394 			GFP_KERNEL);
395 	if (!queue->rsps)
396 		goto out;
397 
398 	for (i = 0; i < nr_rsps; i++) {
399 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400 
401 		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402 		if (ret)
403 			goto out_free;
404 
405 		list_add_tail(&rsp->free_list, &queue->free_rsps);
406 	}
407 
408 	return 0;
409 
410 out_free:
411 	while (--i >= 0) {
412 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413 
414 		list_del(&rsp->free_list);
415 		nvmet_rdma_free_rsp(ndev, rsp);
416 	}
417 	kfree(queue->rsps);
418 out:
419 	return ret;
420 }
421 
nvmet_rdma_free_rsps(struct nvmet_rdma_queue * queue)422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424 	struct nvmet_rdma_device *ndev = queue->dev;
425 	int i, nr_rsps = queue->recv_queue_size * 2;
426 
427 	for (i = 0; i < nr_rsps; i++) {
428 		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429 
430 		list_del(&rsp->free_list);
431 		nvmet_rdma_free_rsp(ndev, rsp);
432 	}
433 	kfree(queue->rsps);
434 }
435 
nvmet_rdma_post_recv(struct nvmet_rdma_device * ndev,struct nvmet_rdma_cmd * cmd)436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437 		struct nvmet_rdma_cmd *cmd)
438 {
439 	struct ib_recv_wr *bad_wr;
440 
441 	ib_dma_sync_single_for_device(ndev->device,
442 		cmd->sge[0].addr, cmd->sge[0].length,
443 		DMA_FROM_DEVICE);
444 
445 	if (ndev->srq)
446 		return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
447 	return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
448 }
449 
nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue * queue)450 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
451 {
452 	spin_lock(&queue->rsp_wr_wait_lock);
453 	while (!list_empty(&queue->rsp_wr_wait_list)) {
454 		struct nvmet_rdma_rsp *rsp;
455 		bool ret;
456 
457 		rsp = list_entry(queue->rsp_wr_wait_list.next,
458 				struct nvmet_rdma_rsp, wait_list);
459 		list_del(&rsp->wait_list);
460 
461 		spin_unlock(&queue->rsp_wr_wait_lock);
462 		ret = nvmet_rdma_execute_command(rsp);
463 		spin_lock(&queue->rsp_wr_wait_lock);
464 
465 		if (!ret) {
466 			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
467 			break;
468 		}
469 	}
470 	spin_unlock(&queue->rsp_wr_wait_lock);
471 }
472 
473 
nvmet_rdma_release_rsp(struct nvmet_rdma_rsp * rsp)474 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
475 {
476 	struct nvmet_rdma_queue *queue = rsp->queue;
477 
478 	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
479 
480 	if (rsp->n_rdma) {
481 		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
482 				queue->cm_id->port_num, rsp->req.sg,
483 				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
484 	}
485 
486 	if (rsp->req.sg != &rsp->cmd->inline_sg)
487 		nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
488 
489 	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
490 		nvmet_rdma_process_wr_wait_list(queue);
491 
492 	nvmet_rdma_put_rsp(rsp);
493 }
494 
nvmet_rdma_error_comp(struct nvmet_rdma_queue * queue)495 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
496 {
497 	if (queue->nvme_sq.ctrl) {
498 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
499 	} else {
500 		/*
501 		 * we didn't setup the controller yet in case
502 		 * of admin connect error, just disconnect and
503 		 * cleanup the queue
504 		 */
505 		nvmet_rdma_queue_disconnect(queue);
506 	}
507 }
508 
nvmet_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)509 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
510 {
511 	struct nvmet_rdma_rsp *rsp =
512 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
513 
514 	nvmet_rdma_release_rsp(rsp);
515 
516 	if (unlikely(wc->status != IB_WC_SUCCESS &&
517 		     wc->status != IB_WC_WR_FLUSH_ERR)) {
518 		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
519 			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
520 		nvmet_rdma_error_comp(rsp->queue);
521 	}
522 }
523 
nvmet_rdma_queue_response(struct nvmet_req * req)524 static void nvmet_rdma_queue_response(struct nvmet_req *req)
525 {
526 	struct nvmet_rdma_rsp *rsp =
527 		container_of(req, struct nvmet_rdma_rsp, req);
528 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
529 	struct ib_send_wr *first_wr, *bad_wr;
530 
531 	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
532 		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
533 		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
534 	} else {
535 		rsp->send_wr.opcode = IB_WR_SEND;
536 	}
537 
538 	if (nvmet_rdma_need_data_out(rsp))
539 		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
540 				cm_id->port_num, NULL, &rsp->send_wr);
541 	else
542 		first_wr = &rsp->send_wr;
543 
544 	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
545 
546 	ib_dma_sync_single_for_device(rsp->queue->dev->device,
547 		rsp->send_sge.addr, rsp->send_sge.length,
548 		DMA_TO_DEVICE);
549 
550 	if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
551 		pr_err("sending cmd response failed\n");
552 		nvmet_rdma_release_rsp(rsp);
553 	}
554 }
555 
nvmet_rdma_read_data_done(struct ib_cq * cq,struct ib_wc * wc)556 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
557 {
558 	struct nvmet_rdma_rsp *rsp =
559 		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
560 	struct nvmet_rdma_queue *queue = cq->cq_context;
561 
562 	WARN_ON(rsp->n_rdma <= 0);
563 	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
564 	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
565 			queue->cm_id->port_num, rsp->req.sg,
566 			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
567 	rsp->n_rdma = 0;
568 
569 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
570 		nvmet_rdma_release_rsp(rsp);
571 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
572 			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
573 				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
574 			nvmet_rdma_error_comp(queue);
575 		}
576 		return;
577 	}
578 
579 	rsp->req.execute(&rsp->req);
580 }
581 
nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp * rsp,u32 len,u64 off)582 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
583 		u64 off)
584 {
585 	sg_init_table(&rsp->cmd->inline_sg, 1);
586 	sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
587 	rsp->req.sg = &rsp->cmd->inline_sg;
588 	rsp->req.sg_cnt = 1;
589 }
590 
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp * rsp)591 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
592 {
593 	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
594 	u64 off = le64_to_cpu(sgl->addr);
595 	u32 len = le32_to_cpu(sgl->length);
596 
597 	if (!nvme_is_write(rsp->req.cmd))
598 		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
599 
600 	if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
601 		pr_err("invalid inline data offset!\n");
602 		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
603 	}
604 
605 	/* no data command? */
606 	if (!len)
607 		return 0;
608 
609 	nvmet_rdma_use_inline_sg(rsp, len, off);
610 	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
611 	return 0;
612 }
613 
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp * rsp,struct nvme_keyed_sgl_desc * sgl,bool invalidate)614 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
615 		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
616 {
617 	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
618 	u64 addr = le64_to_cpu(sgl->addr);
619 	u32 len = get_unaligned_le24(sgl->length);
620 	u32 key = get_unaligned_le32(sgl->key);
621 	int ret;
622 	u16 status;
623 
624 	/* no data command? */
625 	if (!len)
626 		return 0;
627 
628 	status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
629 			len);
630 	if (status)
631 		return status;
632 
633 	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
634 			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
635 			nvmet_data_dir(&rsp->req));
636 	if (ret < 0)
637 		return NVME_SC_INTERNAL;
638 	rsp->n_rdma += ret;
639 
640 	if (invalidate) {
641 		rsp->invalidate_rkey = key;
642 		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
643 	}
644 
645 	return 0;
646 }
647 
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp * rsp)648 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
649 {
650 	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
651 
652 	switch (sgl->type >> 4) {
653 	case NVME_SGL_FMT_DATA_DESC:
654 		switch (sgl->type & 0xf) {
655 		case NVME_SGL_FMT_OFFSET:
656 			return nvmet_rdma_map_sgl_inline(rsp);
657 		default:
658 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
659 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
660 		}
661 	case NVME_KEY_SGL_FMT_DATA_DESC:
662 		switch (sgl->type & 0xf) {
663 		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
664 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
665 		case NVME_SGL_FMT_ADDRESS:
666 			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
667 		default:
668 			pr_err("invalid SGL subtype: %#x\n", sgl->type);
669 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
670 		}
671 	default:
672 		pr_err("invalid SGL type: %#x\n", sgl->type);
673 		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
674 	}
675 }
676 
nvmet_rdma_execute_command(struct nvmet_rdma_rsp * rsp)677 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
678 {
679 	struct nvmet_rdma_queue *queue = rsp->queue;
680 
681 	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
682 			&queue->sq_wr_avail) < 0)) {
683 		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
684 				1 + rsp->n_rdma, queue->idx,
685 				queue->nvme_sq.ctrl->cntlid);
686 		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
687 		return false;
688 	}
689 
690 	if (nvmet_rdma_need_data_in(rsp)) {
691 		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
692 				queue->cm_id->port_num, &rsp->read_cqe, NULL))
693 			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
694 	} else {
695 		rsp->req.execute(&rsp->req);
696 	}
697 
698 	return true;
699 }
700 
nvmet_rdma_handle_command(struct nvmet_rdma_queue * queue,struct nvmet_rdma_rsp * cmd)701 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
702 		struct nvmet_rdma_rsp *cmd)
703 {
704 	u16 status;
705 
706 	ib_dma_sync_single_for_cpu(queue->dev->device,
707 		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
708 		DMA_FROM_DEVICE);
709 	ib_dma_sync_single_for_cpu(queue->dev->device,
710 		cmd->send_sge.addr, cmd->send_sge.length,
711 		DMA_TO_DEVICE);
712 
713 	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
714 			&queue->nvme_sq, &nvmet_rdma_ops))
715 		return;
716 
717 	status = nvmet_rdma_map_sgl(cmd);
718 	if (status)
719 		goto out_err;
720 
721 	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
722 		spin_lock(&queue->rsp_wr_wait_lock);
723 		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
724 		spin_unlock(&queue->rsp_wr_wait_lock);
725 	}
726 
727 	return;
728 
729 out_err:
730 	nvmet_req_complete(&cmd->req, status);
731 }
732 
nvmet_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)733 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
734 {
735 	struct nvmet_rdma_cmd *cmd =
736 		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
737 	struct nvmet_rdma_queue *queue = cq->cq_context;
738 	struct nvmet_rdma_rsp *rsp;
739 
740 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
741 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
742 			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
743 				wc->wr_cqe, ib_wc_status_msg(wc->status),
744 				wc->status);
745 			nvmet_rdma_error_comp(queue);
746 		}
747 		return;
748 	}
749 
750 	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
751 		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
752 		nvmet_rdma_error_comp(queue);
753 		return;
754 	}
755 
756 	cmd->queue = queue;
757 	rsp = nvmet_rdma_get_rsp(queue);
758 	rsp->queue = queue;
759 	rsp->cmd = cmd;
760 	rsp->flags = 0;
761 	rsp->req.cmd = cmd->nvme_cmd;
762 	rsp->req.port = queue->port;
763 	rsp->n_rdma = 0;
764 
765 	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
766 		unsigned long flags;
767 
768 		spin_lock_irqsave(&queue->state_lock, flags);
769 		if (queue->state == NVMET_RDMA_Q_CONNECTING)
770 			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
771 		else
772 			nvmet_rdma_put_rsp(rsp);
773 		spin_unlock_irqrestore(&queue->state_lock, flags);
774 		return;
775 	}
776 
777 	nvmet_rdma_handle_command(queue, rsp);
778 }
779 
nvmet_rdma_destroy_srq(struct nvmet_rdma_device * ndev)780 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
781 {
782 	if (!ndev->srq)
783 		return;
784 
785 	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
786 	ib_destroy_srq(ndev->srq);
787 }
788 
nvmet_rdma_init_srq(struct nvmet_rdma_device * ndev)789 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
790 {
791 	struct ib_srq_init_attr srq_attr = { NULL, };
792 	struct ib_srq *srq;
793 	size_t srq_size;
794 	int ret, i;
795 
796 	srq_size = 4095;	/* XXX: tune */
797 
798 	srq_attr.attr.max_wr = srq_size;
799 	srq_attr.attr.max_sge = 2;
800 	srq_attr.attr.srq_limit = 0;
801 	srq_attr.srq_type = IB_SRQT_BASIC;
802 	srq = ib_create_srq(ndev->pd, &srq_attr);
803 	if (IS_ERR(srq)) {
804 		/*
805 		 * If SRQs aren't supported we just go ahead and use normal
806 		 * non-shared receive queues.
807 		 */
808 		pr_info("SRQ requested but not supported.\n");
809 		return 0;
810 	}
811 
812 	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
813 	if (IS_ERR(ndev->srq_cmds)) {
814 		ret = PTR_ERR(ndev->srq_cmds);
815 		goto out_destroy_srq;
816 	}
817 
818 	ndev->srq = srq;
819 	ndev->srq_size = srq_size;
820 
821 	for (i = 0; i < srq_size; i++)
822 		nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
823 
824 	return 0;
825 
826 out_destroy_srq:
827 	ib_destroy_srq(srq);
828 	return ret;
829 }
830 
nvmet_rdma_free_dev(struct kref * ref)831 static void nvmet_rdma_free_dev(struct kref *ref)
832 {
833 	struct nvmet_rdma_device *ndev =
834 		container_of(ref, struct nvmet_rdma_device, ref);
835 
836 	mutex_lock(&device_list_mutex);
837 	list_del(&ndev->entry);
838 	mutex_unlock(&device_list_mutex);
839 
840 	nvmet_rdma_destroy_srq(ndev);
841 	ib_dealloc_pd(ndev->pd);
842 
843 	kfree(ndev);
844 }
845 
846 static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id * cm_id)847 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
848 {
849 	struct nvmet_rdma_device *ndev;
850 	int ret;
851 
852 	mutex_lock(&device_list_mutex);
853 	list_for_each_entry(ndev, &device_list, entry) {
854 		if (ndev->device->node_guid == cm_id->device->node_guid &&
855 		    kref_get_unless_zero(&ndev->ref))
856 			goto out_unlock;
857 	}
858 
859 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
860 	if (!ndev)
861 		goto out_err;
862 
863 	ndev->device = cm_id->device;
864 	kref_init(&ndev->ref);
865 
866 	ndev->pd = ib_alloc_pd(ndev->device, 0);
867 	if (IS_ERR(ndev->pd))
868 		goto out_free_dev;
869 
870 	if (nvmet_rdma_use_srq) {
871 		ret = nvmet_rdma_init_srq(ndev);
872 		if (ret)
873 			goto out_free_pd;
874 	}
875 
876 	list_add(&ndev->entry, &device_list);
877 out_unlock:
878 	mutex_unlock(&device_list_mutex);
879 	pr_debug("added %s.\n", ndev->device->name);
880 	return ndev;
881 
882 out_free_pd:
883 	ib_dealloc_pd(ndev->pd);
884 out_free_dev:
885 	kfree(ndev);
886 out_err:
887 	mutex_unlock(&device_list_mutex);
888 	return NULL;
889 }
890 
nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue * queue)891 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
892 {
893 	struct ib_qp_init_attr qp_attr;
894 	struct nvmet_rdma_device *ndev = queue->dev;
895 	int comp_vector, nr_cqe, ret, i;
896 
897 	/*
898 	 * Spread the io queues across completion vectors,
899 	 * but still keep all admin queues on vector 0.
900 	 */
901 	comp_vector = !queue->host_qid ? 0 :
902 		queue->idx % ndev->device->num_comp_vectors;
903 
904 	/*
905 	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
906 	 */
907 	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
908 
909 	queue->cq = ib_alloc_cq(ndev->device, queue,
910 			nr_cqe + 1, comp_vector,
911 			IB_POLL_WORKQUEUE);
912 	if (IS_ERR(queue->cq)) {
913 		ret = PTR_ERR(queue->cq);
914 		pr_err("failed to create CQ cqe= %d ret= %d\n",
915 		       nr_cqe + 1, ret);
916 		goto out;
917 	}
918 
919 	memset(&qp_attr, 0, sizeof(qp_attr));
920 	qp_attr.qp_context = queue;
921 	qp_attr.event_handler = nvmet_rdma_qp_event;
922 	qp_attr.send_cq = queue->cq;
923 	qp_attr.recv_cq = queue->cq;
924 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
925 	qp_attr.qp_type = IB_QPT_RC;
926 	/* +1 for drain */
927 	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
928 	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
929 	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
930 					ndev->device->attrs.max_sge);
931 
932 	if (ndev->srq) {
933 		qp_attr.srq = ndev->srq;
934 	} else {
935 		/* +1 for drain */
936 		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
937 		qp_attr.cap.max_recv_sge = 2;
938 	}
939 
940 	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
941 	if (ret) {
942 		pr_err("failed to create_qp ret= %d\n", ret);
943 		goto err_destroy_cq;
944 	}
945 
946 	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
947 
948 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
949 		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
950 		 qp_attr.cap.max_send_wr, queue->cm_id);
951 
952 	if (!ndev->srq) {
953 		for (i = 0; i < queue->recv_queue_size; i++) {
954 			queue->cmds[i].queue = queue;
955 			nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
956 		}
957 	}
958 
959 out:
960 	return ret;
961 
962 err_destroy_cq:
963 	ib_free_cq(queue->cq);
964 	goto out;
965 }
966 
nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue * queue)967 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
968 {
969 	ib_drain_qp(queue->cm_id->qp);
970 	rdma_destroy_qp(queue->cm_id);
971 	ib_free_cq(queue->cq);
972 }
973 
nvmet_rdma_free_queue(struct nvmet_rdma_queue * queue)974 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
975 {
976 	pr_info("freeing queue %d\n", queue->idx);
977 
978 	nvmet_sq_destroy(&queue->nvme_sq);
979 
980 	nvmet_rdma_destroy_queue_ib(queue);
981 	if (!queue->dev->srq) {
982 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
983 				queue->recv_queue_size,
984 				!queue->host_qid);
985 	}
986 	nvmet_rdma_free_rsps(queue);
987 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
988 	kfree(queue);
989 }
990 
nvmet_rdma_release_queue_work(struct work_struct * w)991 static void nvmet_rdma_release_queue_work(struct work_struct *w)
992 {
993 	struct nvmet_rdma_queue *queue =
994 		container_of(w, struct nvmet_rdma_queue, release_work);
995 	struct rdma_cm_id *cm_id = queue->cm_id;
996 	struct nvmet_rdma_device *dev = queue->dev;
997 	enum nvmet_rdma_queue_state state = queue->state;
998 
999 	nvmet_rdma_free_queue(queue);
1000 
1001 	if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
1002 		rdma_destroy_id(cm_id);
1003 
1004 	kref_put(&dev->ref, nvmet_rdma_free_dev);
1005 }
1006 
1007 static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param * conn,struct nvmet_rdma_queue * queue)1008 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1009 				struct nvmet_rdma_queue *queue)
1010 {
1011 	struct nvme_rdma_cm_req *req;
1012 
1013 	req = (struct nvme_rdma_cm_req *)conn->private_data;
1014 	if (!req || conn->private_data_len == 0)
1015 		return NVME_RDMA_CM_INVALID_LEN;
1016 
1017 	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1018 		return NVME_RDMA_CM_INVALID_RECFMT;
1019 
1020 	queue->host_qid = le16_to_cpu(req->qid);
1021 
1022 	/*
1023 	 * req->hsqsize corresponds to our recv queue size plus 1
1024 	 * req->hrqsize corresponds to our send queue size
1025 	 */
1026 	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1027 	queue->send_queue_size = le16_to_cpu(req->hrqsize);
1028 
1029 	if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1030 		return NVME_RDMA_CM_INVALID_HSQSIZE;
1031 
1032 	/* XXX: Should we enforce some kind of max for IO queues? */
1033 
1034 	return 0;
1035 }
1036 
nvmet_rdma_cm_reject(struct rdma_cm_id * cm_id,enum nvme_rdma_cm_status status)1037 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1038 				enum nvme_rdma_cm_status status)
1039 {
1040 	struct nvme_rdma_cm_rej rej;
1041 
1042 	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1043 	rej.sts = cpu_to_le16(status);
1044 
1045 	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1046 }
1047 
1048 static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device * ndev,struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1049 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1050 		struct rdma_cm_id *cm_id,
1051 		struct rdma_cm_event *event)
1052 {
1053 	struct nvmet_rdma_queue *queue;
1054 	int ret;
1055 
1056 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1057 	if (!queue) {
1058 		ret = NVME_RDMA_CM_NO_RSC;
1059 		goto out_reject;
1060 	}
1061 
1062 	ret = nvmet_sq_init(&queue->nvme_sq);
1063 	if (ret)
1064 		goto out_free_queue;
1065 
1066 	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1067 	if (ret)
1068 		goto out_destroy_sq;
1069 
1070 	/*
1071 	 * Schedules the actual release because calling rdma_destroy_id from
1072 	 * inside a CM callback would trigger a deadlock. (great API design..)
1073 	 */
1074 	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1075 	queue->dev = ndev;
1076 	queue->cm_id = cm_id;
1077 
1078 	spin_lock_init(&queue->state_lock);
1079 	queue->state = NVMET_RDMA_Q_CONNECTING;
1080 	INIT_LIST_HEAD(&queue->rsp_wait_list);
1081 	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1082 	spin_lock_init(&queue->rsp_wr_wait_lock);
1083 	INIT_LIST_HEAD(&queue->free_rsps);
1084 	spin_lock_init(&queue->rsps_lock);
1085 	INIT_LIST_HEAD(&queue->queue_list);
1086 
1087 	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1088 	if (queue->idx < 0) {
1089 		ret = NVME_RDMA_CM_NO_RSC;
1090 		goto out_free_queue;
1091 	}
1092 
1093 	ret = nvmet_rdma_alloc_rsps(queue);
1094 	if (ret) {
1095 		ret = NVME_RDMA_CM_NO_RSC;
1096 		goto out_ida_remove;
1097 	}
1098 
1099 	if (!ndev->srq) {
1100 		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1101 				queue->recv_queue_size,
1102 				!queue->host_qid);
1103 		if (IS_ERR(queue->cmds)) {
1104 			ret = NVME_RDMA_CM_NO_RSC;
1105 			goto out_free_responses;
1106 		}
1107 	}
1108 
1109 	ret = nvmet_rdma_create_queue_ib(queue);
1110 	if (ret) {
1111 		pr_err("%s: creating RDMA queue failed (%d).\n",
1112 			__func__, ret);
1113 		ret = NVME_RDMA_CM_NO_RSC;
1114 		goto out_free_cmds;
1115 	}
1116 
1117 	return queue;
1118 
1119 out_free_cmds:
1120 	if (!ndev->srq) {
1121 		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1122 				queue->recv_queue_size,
1123 				!queue->host_qid);
1124 	}
1125 out_free_responses:
1126 	nvmet_rdma_free_rsps(queue);
1127 out_ida_remove:
1128 	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1129 out_destroy_sq:
1130 	nvmet_sq_destroy(&queue->nvme_sq);
1131 out_free_queue:
1132 	kfree(queue);
1133 out_reject:
1134 	nvmet_rdma_cm_reject(cm_id, ret);
1135 	return NULL;
1136 }
1137 
nvmet_rdma_qp_event(struct ib_event * event,void * priv)1138 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1139 {
1140 	struct nvmet_rdma_queue *queue = priv;
1141 
1142 	switch (event->event) {
1143 	case IB_EVENT_COMM_EST:
1144 		rdma_notify(queue->cm_id, event->event);
1145 		break;
1146 	default:
1147 		pr_err("received unrecognized IB QP event %d\n", event->event);
1148 		break;
1149 	}
1150 }
1151 
nvmet_rdma_cm_accept(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue,struct rdma_conn_param * p)1152 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1153 		struct nvmet_rdma_queue *queue,
1154 		struct rdma_conn_param *p)
1155 {
1156 	struct rdma_conn_param  param = { };
1157 	struct nvme_rdma_cm_rep priv = { };
1158 	int ret = -ENOMEM;
1159 
1160 	param.rnr_retry_count = 7;
1161 	param.flow_control = 1;
1162 	param.initiator_depth = min_t(u8, p->initiator_depth,
1163 		queue->dev->device->attrs.max_qp_init_rd_atom);
1164 	param.private_data = &priv;
1165 	param.private_data_len = sizeof(priv);
1166 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1167 	priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1168 
1169 	ret = rdma_accept(cm_id, &param);
1170 	if (ret)
1171 		pr_err("rdma_accept failed (error code = %d)\n", ret);
1172 
1173 	return ret;
1174 }
1175 
nvmet_rdma_queue_connect(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1176 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1177 		struct rdma_cm_event *event)
1178 {
1179 	struct nvmet_rdma_device *ndev;
1180 	struct nvmet_rdma_queue *queue;
1181 	int ret = -EINVAL;
1182 
1183 	ndev = nvmet_rdma_find_get_device(cm_id);
1184 	if (!ndev) {
1185 		pr_err("no client data!\n");
1186 		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1187 		return -ECONNREFUSED;
1188 	}
1189 
1190 	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1191 	if (!queue) {
1192 		ret = -ENOMEM;
1193 		goto put_device;
1194 	}
1195 	queue->port = cm_id->context;
1196 
1197 	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1198 	if (ret)
1199 		goto release_queue;
1200 
1201 	mutex_lock(&nvmet_rdma_queue_mutex);
1202 	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1203 	mutex_unlock(&nvmet_rdma_queue_mutex);
1204 
1205 	return 0;
1206 
1207 release_queue:
1208 	nvmet_rdma_free_queue(queue);
1209 put_device:
1210 	kref_put(&ndev->ref, nvmet_rdma_free_dev);
1211 
1212 	return ret;
1213 }
1214 
nvmet_rdma_queue_established(struct nvmet_rdma_queue * queue)1215 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1216 {
1217 	unsigned long flags;
1218 
1219 	spin_lock_irqsave(&queue->state_lock, flags);
1220 	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1221 		pr_warn("trying to establish a connected queue\n");
1222 		goto out_unlock;
1223 	}
1224 	queue->state = NVMET_RDMA_Q_LIVE;
1225 
1226 	while (!list_empty(&queue->rsp_wait_list)) {
1227 		struct nvmet_rdma_rsp *cmd;
1228 
1229 		cmd = list_first_entry(&queue->rsp_wait_list,
1230 					struct nvmet_rdma_rsp, wait_list);
1231 		list_del(&cmd->wait_list);
1232 
1233 		spin_unlock_irqrestore(&queue->state_lock, flags);
1234 		nvmet_rdma_handle_command(queue, cmd);
1235 		spin_lock_irqsave(&queue->state_lock, flags);
1236 	}
1237 
1238 out_unlock:
1239 	spin_unlock_irqrestore(&queue->state_lock, flags);
1240 }
1241 
__nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1242 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1243 {
1244 	bool disconnect = false;
1245 	unsigned long flags;
1246 
1247 	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1248 
1249 	spin_lock_irqsave(&queue->state_lock, flags);
1250 	switch (queue->state) {
1251 	case NVMET_RDMA_Q_CONNECTING:
1252 	case NVMET_RDMA_Q_LIVE:
1253 		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1254 	case NVMET_RDMA_IN_DEVICE_REMOVAL:
1255 		disconnect = true;
1256 		break;
1257 	case NVMET_RDMA_Q_DISCONNECTING:
1258 		break;
1259 	}
1260 	spin_unlock_irqrestore(&queue->state_lock, flags);
1261 
1262 	if (disconnect) {
1263 		rdma_disconnect(queue->cm_id);
1264 		schedule_work(&queue->release_work);
1265 	}
1266 }
1267 
nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue * queue)1268 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1269 {
1270 	bool disconnect = false;
1271 
1272 	mutex_lock(&nvmet_rdma_queue_mutex);
1273 	if (!list_empty(&queue->queue_list)) {
1274 		list_del_init(&queue->queue_list);
1275 		disconnect = true;
1276 	}
1277 	mutex_unlock(&nvmet_rdma_queue_mutex);
1278 
1279 	if (disconnect)
1280 		__nvmet_rdma_queue_disconnect(queue);
1281 }
1282 
nvmet_rdma_queue_connect_fail(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1283 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1284 		struct nvmet_rdma_queue *queue)
1285 {
1286 	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1287 
1288 	mutex_lock(&nvmet_rdma_queue_mutex);
1289 	if (!list_empty(&queue->queue_list))
1290 		list_del_init(&queue->queue_list);
1291 	mutex_unlock(&nvmet_rdma_queue_mutex);
1292 
1293 	pr_err("failed to connect queue %d\n", queue->idx);
1294 	schedule_work(&queue->release_work);
1295 }
1296 
1297 /**
1298  * nvme_rdma_device_removal() - Handle RDMA device removal
1299  * @queue:      nvmet rdma queue (cm id qp_context)
1300  * @addr:	nvmet address (cm_id context)
1301  *
1302  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1303  * to unplug so we should take care of destroying our RDMA resources.
1304  * This event will be generated for each allocated cm_id.
1305  *
1306  * Note that this event can be generated on a normal queue cm_id
1307  * and/or a device bound listener cm_id (where in this case
1308  * queue will be null).
1309  *
1310  * we claim ownership on destroying the cm_id. For queues we move
1311  * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port
1312  * we nullify the priv to prevent double cm_id destruction and destroying
1313  * the cm_id implicitely by returning a non-zero rc to the callout.
1314  */
nvmet_rdma_device_removal(struct rdma_cm_id * cm_id,struct nvmet_rdma_queue * queue)1315 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1316 		struct nvmet_rdma_queue *queue)
1317 {
1318 	unsigned long flags;
1319 
1320 	if (!queue) {
1321 		struct nvmet_port *port = cm_id->context;
1322 
1323 		/*
1324 		 * This is a listener cm_id. Make sure that
1325 		 * future remove_port won't invoke a double
1326 		 * cm_id destroy. use atomic xchg to make sure
1327 		 * we don't compete with remove_port.
1328 		 */
1329 		if (xchg(&port->priv, NULL) != cm_id)
1330 			return 0;
1331 	} else {
1332 		/*
1333 		 * This is a queue cm_id. Make sure that
1334 		 * release queue will not destroy the cm_id
1335 		 * and schedule all ctrl queues removal (only
1336 		 * if the queue is not disconnecting already).
1337 		 */
1338 		spin_lock_irqsave(&queue->state_lock, flags);
1339 		if (queue->state != NVMET_RDMA_Q_DISCONNECTING)
1340 			queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL;
1341 		spin_unlock_irqrestore(&queue->state_lock, flags);
1342 		nvmet_rdma_queue_disconnect(queue);
1343 		flush_scheduled_work();
1344 	}
1345 
1346 	/*
1347 	 * We need to return 1 so that the core will destroy
1348 	 * it's own ID.  What a great API design..
1349 	 */
1350 	return 1;
1351 }
1352 
nvmet_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)1353 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1354 		struct rdma_cm_event *event)
1355 {
1356 	struct nvmet_rdma_queue *queue = NULL;
1357 	int ret = 0;
1358 
1359 	if (cm_id->qp)
1360 		queue = cm_id->qp->qp_context;
1361 
1362 	pr_debug("%s (%d): status %d id %p\n",
1363 		rdma_event_msg(event->event), event->event,
1364 		event->status, cm_id);
1365 
1366 	switch (event->event) {
1367 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1368 		ret = nvmet_rdma_queue_connect(cm_id, event);
1369 		break;
1370 	case RDMA_CM_EVENT_ESTABLISHED:
1371 		nvmet_rdma_queue_established(queue);
1372 		break;
1373 	case RDMA_CM_EVENT_ADDR_CHANGE:
1374 	case RDMA_CM_EVENT_DISCONNECTED:
1375 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1376 		/*
1377 		 * We might end up here when we already freed the qp
1378 		 * which means queue release sequence is in progress,
1379 		 * so don't get in the way...
1380 		 */
1381 		if (queue)
1382 			nvmet_rdma_queue_disconnect(queue);
1383 		break;
1384 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1385 		ret = nvmet_rdma_device_removal(cm_id, queue);
1386 		break;
1387 	case RDMA_CM_EVENT_REJECTED:
1388 	case RDMA_CM_EVENT_UNREACHABLE:
1389 	case RDMA_CM_EVENT_CONNECT_ERROR:
1390 		nvmet_rdma_queue_connect_fail(cm_id, queue);
1391 		break;
1392 	default:
1393 		pr_err("received unrecognized RDMA CM event %d\n",
1394 			event->event);
1395 		break;
1396 	}
1397 
1398 	return ret;
1399 }
1400 
nvmet_rdma_delete_ctrl(struct nvmet_ctrl * ctrl)1401 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1402 {
1403 	struct nvmet_rdma_queue *queue;
1404 
1405 restart:
1406 	mutex_lock(&nvmet_rdma_queue_mutex);
1407 	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1408 		if (queue->nvme_sq.ctrl == ctrl) {
1409 			list_del_init(&queue->queue_list);
1410 			mutex_unlock(&nvmet_rdma_queue_mutex);
1411 
1412 			__nvmet_rdma_queue_disconnect(queue);
1413 			goto restart;
1414 		}
1415 	}
1416 	mutex_unlock(&nvmet_rdma_queue_mutex);
1417 }
1418 
nvmet_rdma_add_port(struct nvmet_port * port)1419 static int nvmet_rdma_add_port(struct nvmet_port *port)
1420 {
1421 	struct rdma_cm_id *cm_id;
1422 	struct sockaddr_in addr_in;
1423 	u16 port_in;
1424 	int ret;
1425 
1426 	switch (port->disc_addr.adrfam) {
1427 	case NVMF_ADDR_FAMILY_IP4:
1428 		break;
1429 	default:
1430 		pr_err("address family %d not supported\n",
1431 				port->disc_addr.adrfam);
1432 		return -EINVAL;
1433 	}
1434 
1435 	ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in);
1436 	if (ret)
1437 		return ret;
1438 
1439 	addr_in.sin_family = AF_INET;
1440 	addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr);
1441 	addr_in.sin_port = htons(port_in);
1442 
1443 	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1444 			RDMA_PS_TCP, IB_QPT_RC);
1445 	if (IS_ERR(cm_id)) {
1446 		pr_err("CM ID creation failed\n");
1447 		return PTR_ERR(cm_id);
1448 	}
1449 
1450 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in);
1451 	if (ret) {
1452 		pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret);
1453 		goto out_destroy_id;
1454 	}
1455 
1456 	ret = rdma_listen(cm_id, 128);
1457 	if (ret) {
1458 		pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret);
1459 		goto out_destroy_id;
1460 	}
1461 
1462 	pr_info("enabling port %d (%pISpc)\n",
1463 		le16_to_cpu(port->disc_addr.portid), &addr_in);
1464 	port->priv = cm_id;
1465 	return 0;
1466 
1467 out_destroy_id:
1468 	rdma_destroy_id(cm_id);
1469 	return ret;
1470 }
1471 
nvmet_rdma_remove_port(struct nvmet_port * port)1472 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1473 {
1474 	struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1475 
1476 	if (cm_id)
1477 		rdma_destroy_id(cm_id);
1478 }
1479 
1480 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1481 	.owner			= THIS_MODULE,
1482 	.type			= NVMF_TRTYPE_RDMA,
1483 	.sqe_inline_size	= NVMET_RDMA_INLINE_DATA_SIZE,
1484 	.msdbd			= 1,
1485 	.has_keyed_sgls		= 1,
1486 	.add_port		= nvmet_rdma_add_port,
1487 	.remove_port		= nvmet_rdma_remove_port,
1488 	.queue_response		= nvmet_rdma_queue_response,
1489 	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1490 };
1491 
nvmet_rdma_init(void)1492 static int __init nvmet_rdma_init(void)
1493 {
1494 	return nvmet_register_transport(&nvmet_rdma_ops);
1495 }
1496 
nvmet_rdma_exit(void)1497 static void __exit nvmet_rdma_exit(void)
1498 {
1499 	struct nvmet_rdma_queue *queue;
1500 
1501 	nvmet_unregister_transport(&nvmet_rdma_ops);
1502 
1503 	flush_scheduled_work();
1504 
1505 	mutex_lock(&nvmet_rdma_queue_mutex);
1506 	while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1507 			struct nvmet_rdma_queue, queue_list))) {
1508 		list_del_init(&queue->queue_list);
1509 
1510 		mutex_unlock(&nvmet_rdma_queue_mutex);
1511 		__nvmet_rdma_queue_disconnect(queue);
1512 		mutex_lock(&nvmet_rdma_queue_mutex);
1513 	}
1514 	mutex_unlock(&nvmet_rdma_queue_mutex);
1515 
1516 	flush_scheduled_work();
1517 	ida_destroy(&nvmet_rdma_queue_ida);
1518 }
1519 
1520 module_init(nvmet_rdma_init);
1521 module_exit(nvmet_rdma_exit);
1522 
1523 MODULE_LICENSE("GPL v2");
1524 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
1525