1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)108 void __jbd2_debug(int level, const char *file, const char *func,
109 unsigned int line, const char *fmt, ...)
110 {
111 struct va_format vaf;
112 va_list args;
113
114 if (level > jbd2_journal_enable_debug)
115 return;
116 va_start(args, fmt);
117 vaf.fmt = fmt;
118 vaf.va = &args;
119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 if (!jbd2_journal_has_csum_v2or3_feature(j))
129 return 1;
130
131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 __u32 csum;
137 __be32 old_csum;
138
139 old_csum = sb->s_checksum;
140 sb->s_checksum = 0;
141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 sb->s_checksum = old_csum;
143
144 return cpu_to_be32(csum);
145 }
146
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 if (!jbd2_journal_has_csum_v2or3(j))
150 return 1;
151
152 return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 if (!jbd2_journal_has_csum_v2or3(j))
158 return;
159
160 sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162
163 /*
164 * Helper function used to manage commit timeouts
165 */
166
commit_timeout(unsigned long __data)167 static void commit_timeout(unsigned long __data)
168 {
169 struct task_struct * p = (struct task_struct *) __data;
170
171 wake_up_process(p);
172 }
173
174 /*
175 * kjournald2: The main thread function used to manage a logging device
176 * journal.
177 *
178 * This kernel thread is responsible for two things:
179 *
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
183 *
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
188 */
189
kjournald2(void * arg)190 static int kjournald2(void *arg)
191 {
192 journal_t *journal = arg;
193 transaction_t *transaction;
194
195 /*
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
198 */
199 setup_timer(&journal->j_commit_timer, commit_timeout,
200 (unsigned long)current);
201
202 set_freezable();
203
204 /* Record that the journal thread is running */
205 journal->j_task = current;
206 wake_up(&journal->j_wait_done_commit);
207
208 /*
209 * And now, wait forever for commit wakeup events.
210 */
211 write_lock(&journal->j_state_lock);
212
213 loop:
214 if (journal->j_flags & JBD2_UNMOUNT)
215 goto end_loop;
216
217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 journal->j_commit_sequence, journal->j_commit_request);
219
220 if (journal->j_commit_sequence != journal->j_commit_request) {
221 jbd_debug(1, "OK, requests differ\n");
222 write_unlock(&journal->j_state_lock);
223 del_timer_sync(&journal->j_commit_timer);
224 jbd2_journal_commit_transaction(journal);
225 write_lock(&journal->j_state_lock);
226 goto loop;
227 }
228
229 wake_up(&journal->j_wait_done_commit);
230 if (freezing(current)) {
231 /*
232 * The simpler the better. Flushing journal isn't a
233 * good idea, because that depends on threads that may
234 * be already stopped.
235 */
236 jbd_debug(1, "Now suspending kjournald2\n");
237 write_unlock(&journal->j_state_lock);
238 try_to_freeze();
239 write_lock(&journal->j_state_lock);
240 } else {
241 /*
242 * We assume on resume that commits are already there,
243 * so we don't sleep
244 */
245 DEFINE_WAIT(wait);
246 int should_sleep = 1;
247
248 prepare_to_wait(&journal->j_wait_commit, &wait,
249 TASK_INTERRUPTIBLE);
250 if (journal->j_commit_sequence != journal->j_commit_request)
251 should_sleep = 0;
252 transaction = journal->j_running_transaction;
253 if (transaction && time_after_eq(jiffies,
254 transaction->t_expires))
255 should_sleep = 0;
256 if (journal->j_flags & JBD2_UNMOUNT)
257 should_sleep = 0;
258 if (should_sleep) {
259 write_unlock(&journal->j_state_lock);
260 schedule();
261 write_lock(&journal->j_state_lock);
262 }
263 finish_wait(&journal->j_wait_commit, &wait);
264 }
265
266 jbd_debug(1, "kjournald2 wakes\n");
267
268 /*
269 * Were we woken up by a commit wakeup event?
270 */
271 transaction = journal->j_running_transaction;
272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 journal->j_commit_request = transaction->t_tid;
274 jbd_debug(1, "woke because of timeout\n");
275 }
276 goto loop;
277
278 end_loop:
279 del_timer_sync(&journal->j_commit_timer);
280 journal->j_task = NULL;
281 wake_up(&journal->j_wait_done_commit);
282 jbd_debug(1, "Journal thread exiting.\n");
283 write_unlock(&journal->j_state_lock);
284 return 0;
285 }
286
jbd2_journal_start_thread(journal_t * journal)287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289 struct task_struct *t;
290
291 t = kthread_run(kjournald2, journal, "jbd2/%s",
292 journal->j_devname);
293 if (IS_ERR(t))
294 return PTR_ERR(t);
295
296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 return 0;
298 }
299
journal_kill_thread(journal_t * journal)300 static void journal_kill_thread(journal_t *journal)
301 {
302 write_lock(&journal->j_state_lock);
303 journal->j_flags |= JBD2_UNMOUNT;
304
305 while (journal->j_task) {
306 write_unlock(&journal->j_state_lock);
307 wake_up(&journal->j_wait_commit);
308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 write_lock(&journal->j_state_lock);
310 }
311 write_unlock(&journal->j_state_lock);
312 }
313
314 /*
315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 *
317 * Writes a metadata buffer to a given disk block. The actual IO is not
318 * performed but a new buffer_head is constructed which labels the data
319 * to be written with the correct destination disk block.
320 *
321 * Any magic-number escaping which needs to be done will cause a
322 * copy-out here. If the buffer happens to start with the
323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324 * magic number is only written to the log for descripter blocks. In
325 * this case, we copy the data and replace the first word with 0, and we
326 * return a result code which indicates that this buffer needs to be
327 * marked as an escaped buffer in the corresponding log descriptor
328 * block. The missing word can then be restored when the block is read
329 * during recovery.
330 *
331 * If the source buffer has already been modified by a new transaction
332 * since we took the last commit snapshot, we use the frozen copy of
333 * that data for IO. If we end up using the existing buffer_head's data
334 * for the write, then we have to make sure nobody modifies it while the
335 * IO is in progress. do_get_write_access() handles this.
336 *
337 * The function returns a pointer to the buffer_head to be used for IO.
338 *
339 *
340 * Return value:
341 * <0: Error
342 * >=0: Finished OK
343 *
344 * On success:
345 * Bit 0 set == escape performed on the data
346 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347 */
348
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 struct journal_head *jh_in,
351 struct buffer_head **bh_out,
352 sector_t blocknr)
353 {
354 int need_copy_out = 0;
355 int done_copy_out = 0;
356 int do_escape = 0;
357 char *mapped_data;
358 struct buffer_head *new_bh;
359 struct page *new_page;
360 unsigned int new_offset;
361 struct buffer_head *bh_in = jh2bh(jh_in);
362 journal_t *journal = transaction->t_journal;
363
364 /*
365 * The buffer really shouldn't be locked: only the current committing
366 * transaction is allowed to write it, so nobody else is allowed
367 * to do any IO.
368 *
369 * akpm: except if we're journalling data, and write() output is
370 * also part of a shared mapping, and another thread has
371 * decided to launch a writepage() against this buffer.
372 */
373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374
375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376
377 /* keep subsequent assertions sane */
378 atomic_set(&new_bh->b_count, 1);
379
380 jbd_lock_bh_state(bh_in);
381 repeat:
382 /*
383 * If a new transaction has already done a buffer copy-out, then
384 * we use that version of the data for the commit.
385 */
386 if (jh_in->b_frozen_data) {
387 done_copy_out = 1;
388 new_page = virt_to_page(jh_in->b_frozen_data);
389 new_offset = offset_in_page(jh_in->b_frozen_data);
390 } else {
391 new_page = jh2bh(jh_in)->b_page;
392 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 }
394
395 mapped_data = kmap_atomic(new_page);
396 /*
397 * Fire data frozen trigger if data already wasn't frozen. Do this
398 * before checking for escaping, as the trigger may modify the magic
399 * offset. If a copy-out happens afterwards, it will have the correct
400 * data in the buffer.
401 */
402 if (!done_copy_out)
403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 jh_in->b_triggers);
405
406 /*
407 * Check for escaping
408 */
409 if (*((__be32 *)(mapped_data + new_offset)) ==
410 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 need_copy_out = 1;
412 do_escape = 1;
413 }
414 kunmap_atomic(mapped_data);
415
416 /*
417 * Do we need to do a data copy?
418 */
419 if (need_copy_out && !done_copy_out) {
420 char *tmp;
421
422 jbd_unlock_bh_state(bh_in);
423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 if (!tmp) {
425 brelse(new_bh);
426 return -ENOMEM;
427 }
428 jbd_lock_bh_state(bh_in);
429 if (jh_in->b_frozen_data) {
430 jbd2_free(tmp, bh_in->b_size);
431 goto repeat;
432 }
433
434 jh_in->b_frozen_data = tmp;
435 mapped_data = kmap_atomic(new_page);
436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 kunmap_atomic(mapped_data);
438
439 new_page = virt_to_page(tmp);
440 new_offset = offset_in_page(tmp);
441 done_copy_out = 1;
442
443 /*
444 * This isn't strictly necessary, as we're using frozen
445 * data for the escaping, but it keeps consistency with
446 * b_frozen_data usage.
447 */
448 jh_in->b_frozen_triggers = jh_in->b_triggers;
449 }
450
451 /*
452 * Did we need to do an escaping? Now we've done all the
453 * copying, we can finally do so.
454 */
455 if (do_escape) {
456 mapped_data = kmap_atomic(new_page);
457 *((unsigned int *)(mapped_data + new_offset)) = 0;
458 kunmap_atomic(mapped_data);
459 }
460
461 set_bh_page(new_bh, new_page, new_offset);
462 new_bh->b_size = bh_in->b_size;
463 new_bh->b_bdev = journal->j_dev;
464 new_bh->b_blocknr = blocknr;
465 new_bh->b_private = bh_in;
466 set_buffer_mapped(new_bh);
467 set_buffer_dirty(new_bh);
468
469 *bh_out = new_bh;
470
471 /*
472 * The to-be-written buffer needs to get moved to the io queue,
473 * and the original buffer whose contents we are shadowing or
474 * copying is moved to the transaction's shadow queue.
475 */
476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 spin_lock(&journal->j_list_lock);
478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 spin_unlock(&journal->j_list_lock);
480 set_buffer_shadow(bh_in);
481 jbd_unlock_bh_state(bh_in);
482
483 return do_escape | (done_copy_out << 1);
484 }
485
486 /*
487 * Allocation code for the journal file. Manage the space left in the
488 * journal, so that we can begin checkpointing when appropriate.
489 */
490
491 /*
492 * Called with j_state_lock locked for writing.
493 * Returns true if a transaction commit was started.
494 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497 /* Return if the txn has already requested to be committed */
498 if (journal->j_commit_request == target)
499 return 0;
500
501 /*
502 * The only transaction we can possibly wait upon is the
503 * currently running transaction (if it exists). Otherwise,
504 * the target tid must be an old one.
505 */
506 if (journal->j_running_transaction &&
507 journal->j_running_transaction->t_tid == target) {
508 /*
509 * We want a new commit: OK, mark the request and wakeup the
510 * commit thread. We do _not_ do the commit ourselves.
511 */
512
513 journal->j_commit_request = target;
514 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 journal->j_commit_request,
516 journal->j_commit_sequence);
517 journal->j_running_transaction->t_requested = jiffies;
518 wake_up(&journal->j_wait_commit);
519 return 1;
520 } else if (!tid_geq(journal->j_commit_request, target))
521 /* This should never happen, but if it does, preserve
522 the evidence before kjournald goes into a loop and
523 increments j_commit_sequence beyond all recognition. */
524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 journal->j_commit_request,
526 journal->j_commit_sequence,
527 target, journal->j_running_transaction ?
528 journal->j_running_transaction->t_tid : 0);
529 return 0;
530 }
531
jbd2_log_start_commit(journal_t * journal,tid_t tid)532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534 int ret;
535
536 write_lock(&journal->j_state_lock);
537 ret = __jbd2_log_start_commit(journal, tid);
538 write_unlock(&journal->j_state_lock);
539 return ret;
540 }
541
542 /*
543 * Force and wait any uncommitted transactions. We can only force the running
544 * transaction if we don't have an active handle, otherwise, we will deadlock.
545 * Returns: <0 in case of error,
546 * 0 if nothing to commit,
547 * 1 if transaction was successfully committed.
548 */
__jbd2_journal_force_commit(journal_t * journal)549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551 transaction_t *transaction = NULL;
552 tid_t tid;
553 int need_to_start = 0, ret = 0;
554
555 read_lock(&journal->j_state_lock);
556 if (journal->j_running_transaction && !current->journal_info) {
557 transaction = journal->j_running_transaction;
558 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 need_to_start = 1;
560 } else if (journal->j_committing_transaction)
561 transaction = journal->j_committing_transaction;
562
563 if (!transaction) {
564 /* Nothing to commit */
565 read_unlock(&journal->j_state_lock);
566 return 0;
567 }
568 tid = transaction->t_tid;
569 read_unlock(&journal->j_state_lock);
570 if (need_to_start)
571 jbd2_log_start_commit(journal, tid);
572 ret = jbd2_log_wait_commit(journal, tid);
573 if (!ret)
574 ret = 1;
575
576 return ret;
577 }
578
579 /**
580 * Force and wait upon a commit if the calling process is not within
581 * transaction. This is used for forcing out undo-protected data which contains
582 * bitmaps, when the fs is running out of space.
583 *
584 * @journal: journal to force
585 * Returns true if progress was made.
586 */
jbd2_journal_force_commit_nested(journal_t * journal)587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589 int ret;
590
591 ret = __jbd2_journal_force_commit(journal);
592 return ret > 0;
593 }
594
595 /**
596 * int journal_force_commit() - force any uncommitted transactions
597 * @journal: journal to force
598 *
599 * Caller want unconditional commit. We can only force the running transaction
600 * if we don't have an active handle, otherwise, we will deadlock.
601 */
jbd2_journal_force_commit(journal_t * journal)602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604 int ret;
605
606 J_ASSERT(!current->journal_info);
607 ret = __jbd2_journal_force_commit(journal);
608 if (ret > 0)
609 ret = 0;
610 return ret;
611 }
612
613 /*
614 * Start a commit of the current running transaction (if any). Returns true
615 * if a transaction is going to be committed (or is currently already
616 * committing), and fills its tid in at *ptid
617 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620 int ret = 0;
621
622 write_lock(&journal->j_state_lock);
623 if (journal->j_running_transaction) {
624 tid_t tid = journal->j_running_transaction->t_tid;
625
626 __jbd2_log_start_commit(journal, tid);
627 /* There's a running transaction and we've just made sure
628 * it's commit has been scheduled. */
629 if (ptid)
630 *ptid = tid;
631 ret = 1;
632 } else if (journal->j_committing_transaction) {
633 /*
634 * If commit has been started, then we have to wait for
635 * completion of that transaction.
636 */
637 if (ptid)
638 *ptid = journal->j_committing_transaction->t_tid;
639 ret = 1;
640 }
641 write_unlock(&journal->j_state_lock);
642 return ret;
643 }
644
645 /*
646 * Return 1 if a given transaction has not yet sent barrier request
647 * connected with a transaction commit. If 0 is returned, transaction
648 * may or may not have sent the barrier. Used to avoid sending barrier
649 * twice in common cases.
650 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653 int ret = 0;
654 transaction_t *commit_trans;
655
656 if (!(journal->j_flags & JBD2_BARRIER))
657 return 0;
658 read_lock(&journal->j_state_lock);
659 /* Transaction already committed? */
660 if (tid_geq(journal->j_commit_sequence, tid))
661 goto out;
662 commit_trans = journal->j_committing_transaction;
663 if (!commit_trans || commit_trans->t_tid != tid) {
664 ret = 1;
665 goto out;
666 }
667 /*
668 * Transaction is being committed and we already proceeded to
669 * submitting a flush to fs partition?
670 */
671 if (journal->j_fs_dev != journal->j_dev) {
672 if (!commit_trans->t_need_data_flush ||
673 commit_trans->t_state >= T_COMMIT_DFLUSH)
674 goto out;
675 } else {
676 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 goto out;
678 }
679 ret = 1;
680 out:
681 read_unlock(&journal->j_state_lock);
682 return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685
686 /*
687 * Wait for a specified commit to complete.
688 * The caller may not hold the journal lock.
689 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692 int err = 0;
693
694 read_lock(&journal->j_state_lock);
695 #ifdef CONFIG_PROVE_LOCKING
696 /*
697 * Some callers make sure transaction is already committing and in that
698 * case we cannot block on open handles anymore. So don't warn in that
699 * case.
700 */
701 if (tid_gt(tid, journal->j_commit_sequence) &&
702 (!journal->j_committing_transaction ||
703 journal->j_committing_transaction->t_tid != tid)) {
704 read_unlock(&journal->j_state_lock);
705 jbd2_might_wait_for_commit(journal);
706 read_lock(&journal->j_state_lock);
707 }
708 #endif
709 #ifdef CONFIG_JBD2_DEBUG
710 if (!tid_geq(journal->j_commit_request, tid)) {
711 printk(KERN_ERR
712 "%s: error: j_commit_request=%d, tid=%d\n",
713 __func__, journal->j_commit_request, tid);
714 }
715 #endif
716 while (tid_gt(tid, journal->j_commit_sequence)) {
717 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
718 tid, journal->j_commit_sequence);
719 read_unlock(&journal->j_state_lock);
720 wake_up(&journal->j_wait_commit);
721 wait_event(journal->j_wait_done_commit,
722 !tid_gt(tid, journal->j_commit_sequence));
723 read_lock(&journal->j_state_lock);
724 }
725 read_unlock(&journal->j_state_lock);
726
727 if (unlikely(is_journal_aborted(journal)))
728 err = -EIO;
729 return err;
730 }
731
732 /*
733 * When this function returns the transaction corresponding to tid
734 * will be completed. If the transaction has currently running, start
735 * committing that transaction before waiting for it to complete. If
736 * the transaction id is stale, it is by definition already completed,
737 * so just return SUCCESS.
738 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)739 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
740 {
741 int need_to_wait = 1;
742
743 read_lock(&journal->j_state_lock);
744 if (journal->j_running_transaction &&
745 journal->j_running_transaction->t_tid == tid) {
746 if (journal->j_commit_request != tid) {
747 /* transaction not yet started, so request it */
748 read_unlock(&journal->j_state_lock);
749 jbd2_log_start_commit(journal, tid);
750 goto wait_commit;
751 }
752 } else if (!(journal->j_committing_transaction &&
753 journal->j_committing_transaction->t_tid == tid))
754 need_to_wait = 0;
755 read_unlock(&journal->j_state_lock);
756 if (!need_to_wait)
757 return 0;
758 wait_commit:
759 return jbd2_log_wait_commit(journal, tid);
760 }
761 EXPORT_SYMBOL(jbd2_complete_transaction);
762
763 /*
764 * Log buffer allocation routines:
765 */
766
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)767 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
768 {
769 unsigned long blocknr;
770
771 write_lock(&journal->j_state_lock);
772 J_ASSERT(journal->j_free > 1);
773
774 blocknr = journal->j_head;
775 journal->j_head++;
776 journal->j_free--;
777 if (journal->j_head == journal->j_last)
778 journal->j_head = journal->j_first;
779 write_unlock(&journal->j_state_lock);
780 return jbd2_journal_bmap(journal, blocknr, retp);
781 }
782
783 /*
784 * Conversion of logical to physical block numbers for the journal
785 *
786 * On external journals the journal blocks are identity-mapped, so
787 * this is a no-op. If needed, we can use j_blk_offset - everything is
788 * ready.
789 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)790 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
791 unsigned long long *retp)
792 {
793 int err = 0;
794 unsigned long long ret;
795
796 if (journal->j_inode) {
797 ret = bmap(journal->j_inode, blocknr);
798 if (ret)
799 *retp = ret;
800 else {
801 printk(KERN_ALERT "%s: journal block not found "
802 "at offset %lu on %s\n",
803 __func__, blocknr, journal->j_devname);
804 err = -EIO;
805 __journal_abort_soft(journal, err);
806 }
807 } else {
808 *retp = blocknr; /* +journal->j_blk_offset */
809 }
810 return err;
811 }
812
813 /*
814 * We play buffer_head aliasing tricks to write data/metadata blocks to
815 * the journal without copying their contents, but for journal
816 * descriptor blocks we do need to generate bona fide buffers.
817 *
818 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
819 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
820 * But we don't bother doing that, so there will be coherency problems with
821 * mmaps of blockdevs which hold live JBD-controlled filesystems.
822 */
823 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)824 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
825 {
826 journal_t *journal = transaction->t_journal;
827 struct buffer_head *bh;
828 unsigned long long blocknr;
829 journal_header_t *header;
830 int err;
831
832 err = jbd2_journal_next_log_block(journal, &blocknr);
833
834 if (err)
835 return NULL;
836
837 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
838 if (!bh)
839 return NULL;
840 lock_buffer(bh);
841 memset(bh->b_data, 0, journal->j_blocksize);
842 header = (journal_header_t *)bh->b_data;
843 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
844 header->h_blocktype = cpu_to_be32(type);
845 header->h_sequence = cpu_to_be32(transaction->t_tid);
846 set_buffer_uptodate(bh);
847 unlock_buffer(bh);
848 BUFFER_TRACE(bh, "return this buffer");
849 return bh;
850 }
851
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)852 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
853 {
854 struct jbd2_journal_block_tail *tail;
855 __u32 csum;
856
857 if (!jbd2_journal_has_csum_v2or3(j))
858 return;
859
860 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
861 sizeof(struct jbd2_journal_block_tail));
862 tail->t_checksum = 0;
863 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
864 tail->t_checksum = cpu_to_be32(csum);
865 }
866
867 /*
868 * Return tid of the oldest transaction in the journal and block in the journal
869 * where the transaction starts.
870 *
871 * If the journal is now empty, return which will be the next transaction ID
872 * we will write and where will that transaction start.
873 *
874 * The return value is 0 if journal tail cannot be pushed any further, 1 if
875 * it can.
876 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)877 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
878 unsigned long *block)
879 {
880 transaction_t *transaction;
881 int ret;
882
883 read_lock(&journal->j_state_lock);
884 spin_lock(&journal->j_list_lock);
885 transaction = journal->j_checkpoint_transactions;
886 if (transaction) {
887 *tid = transaction->t_tid;
888 *block = transaction->t_log_start;
889 } else if ((transaction = journal->j_committing_transaction) != NULL) {
890 *tid = transaction->t_tid;
891 *block = transaction->t_log_start;
892 } else if ((transaction = journal->j_running_transaction) != NULL) {
893 *tid = transaction->t_tid;
894 *block = journal->j_head;
895 } else {
896 *tid = journal->j_transaction_sequence;
897 *block = journal->j_head;
898 }
899 ret = tid_gt(*tid, journal->j_tail_sequence);
900 spin_unlock(&journal->j_list_lock);
901 read_unlock(&journal->j_state_lock);
902
903 return ret;
904 }
905
906 /*
907 * Update information in journal structure and in on disk journal superblock
908 * about log tail. This function does not check whether information passed in
909 * really pushes log tail further. It's responsibility of the caller to make
910 * sure provided log tail information is valid (e.g. by holding
911 * j_checkpoint_mutex all the time between computing log tail and calling this
912 * function as is the case with jbd2_cleanup_journal_tail()).
913 *
914 * Requires j_checkpoint_mutex
915 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)916 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
917 {
918 unsigned long freed;
919 int ret;
920
921 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
922
923 /*
924 * We cannot afford for write to remain in drive's caches since as
925 * soon as we update j_tail, next transaction can start reusing journal
926 * space and if we lose sb update during power failure we'd replay
927 * old transaction with possibly newly overwritten data.
928 */
929 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
930 if (ret)
931 goto out;
932
933 write_lock(&journal->j_state_lock);
934 freed = block - journal->j_tail;
935 if (block < journal->j_tail)
936 freed += journal->j_last - journal->j_first;
937
938 trace_jbd2_update_log_tail(journal, tid, block, freed);
939 jbd_debug(1,
940 "Cleaning journal tail from %d to %d (offset %lu), "
941 "freeing %lu\n",
942 journal->j_tail_sequence, tid, block, freed);
943
944 journal->j_free += freed;
945 journal->j_tail_sequence = tid;
946 journal->j_tail = block;
947 write_unlock(&journal->j_state_lock);
948
949 out:
950 return ret;
951 }
952
953 /*
954 * This is a variation of __jbd2_update_log_tail which checks for validity of
955 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
956 * with other threads updating log tail.
957 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)958 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
959 {
960 mutex_lock(&journal->j_checkpoint_mutex);
961 if (tid_gt(tid, journal->j_tail_sequence))
962 __jbd2_update_log_tail(journal, tid, block);
963 mutex_unlock(&journal->j_checkpoint_mutex);
964 }
965
966 struct jbd2_stats_proc_session {
967 journal_t *journal;
968 struct transaction_stats_s *stats;
969 int start;
970 int max;
971 };
972
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)973 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
974 {
975 return *pos ? NULL : SEQ_START_TOKEN;
976 }
977
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)978 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
979 {
980 return NULL;
981 }
982
jbd2_seq_info_show(struct seq_file * seq,void * v)983 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
984 {
985 struct jbd2_stats_proc_session *s = seq->private;
986
987 if (v != SEQ_START_TOKEN)
988 return 0;
989 seq_printf(seq, "%lu transactions (%lu requested), "
990 "each up to %u blocks\n",
991 s->stats->ts_tid, s->stats->ts_requested,
992 s->journal->j_max_transaction_buffers);
993 if (s->stats->ts_tid == 0)
994 return 0;
995 seq_printf(seq, "average: \n %ums waiting for transaction\n",
996 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
997 seq_printf(seq, " %ums request delay\n",
998 (s->stats->ts_requested == 0) ? 0 :
999 jiffies_to_msecs(s->stats->run.rs_request_delay /
1000 s->stats->ts_requested));
1001 seq_printf(seq, " %ums running transaction\n",
1002 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1003 seq_printf(seq, " %ums transaction was being locked\n",
1004 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1005 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1006 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1007 seq_printf(seq, " %ums logging transaction\n",
1008 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1009 seq_printf(seq, " %lluus average transaction commit time\n",
1010 div_u64(s->journal->j_average_commit_time, 1000));
1011 seq_printf(seq, " %lu handles per transaction\n",
1012 s->stats->run.rs_handle_count / s->stats->ts_tid);
1013 seq_printf(seq, " %lu blocks per transaction\n",
1014 s->stats->run.rs_blocks / s->stats->ts_tid);
1015 seq_printf(seq, " %lu logged blocks per transaction\n",
1016 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1017 return 0;
1018 }
1019
jbd2_seq_info_stop(struct seq_file * seq,void * v)1020 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1021 {
1022 }
1023
1024 static const struct seq_operations jbd2_seq_info_ops = {
1025 .start = jbd2_seq_info_start,
1026 .next = jbd2_seq_info_next,
1027 .stop = jbd2_seq_info_stop,
1028 .show = jbd2_seq_info_show,
1029 };
1030
jbd2_seq_info_open(struct inode * inode,struct file * file)1031 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1032 {
1033 journal_t *journal = PDE_DATA(inode);
1034 struct jbd2_stats_proc_session *s;
1035 int rc, size;
1036
1037 s = kmalloc(sizeof(*s), GFP_KERNEL);
1038 if (s == NULL)
1039 return -ENOMEM;
1040 size = sizeof(struct transaction_stats_s);
1041 s->stats = kmalloc(size, GFP_KERNEL);
1042 if (s->stats == NULL) {
1043 kfree(s);
1044 return -ENOMEM;
1045 }
1046 spin_lock(&journal->j_history_lock);
1047 memcpy(s->stats, &journal->j_stats, size);
1048 s->journal = journal;
1049 spin_unlock(&journal->j_history_lock);
1050
1051 rc = seq_open(file, &jbd2_seq_info_ops);
1052 if (rc == 0) {
1053 struct seq_file *m = file->private_data;
1054 m->private = s;
1055 } else {
1056 kfree(s->stats);
1057 kfree(s);
1058 }
1059 return rc;
1060
1061 }
1062
jbd2_seq_info_release(struct inode * inode,struct file * file)1063 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1064 {
1065 struct seq_file *seq = file->private_data;
1066 struct jbd2_stats_proc_session *s = seq->private;
1067 kfree(s->stats);
1068 kfree(s);
1069 return seq_release(inode, file);
1070 }
1071
1072 static const struct file_operations jbd2_seq_info_fops = {
1073 .owner = THIS_MODULE,
1074 .open = jbd2_seq_info_open,
1075 .read = seq_read,
1076 .llseek = seq_lseek,
1077 .release = jbd2_seq_info_release,
1078 };
1079
1080 static struct proc_dir_entry *proc_jbd2_stats;
1081
jbd2_stats_proc_init(journal_t * journal)1082 static void jbd2_stats_proc_init(journal_t *journal)
1083 {
1084 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1085 if (journal->j_proc_entry) {
1086 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1087 &jbd2_seq_info_fops, journal);
1088 }
1089 }
1090
jbd2_stats_proc_exit(journal_t * journal)1091 static void jbd2_stats_proc_exit(journal_t *journal)
1092 {
1093 remove_proc_entry("info", journal->j_proc_entry);
1094 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1095 }
1096
1097 /*
1098 * Management for journal control blocks: functions to create and
1099 * destroy journal_t structures, and to initialise and read existing
1100 * journal blocks from disk. */
1101
1102 /* First: create and setup a journal_t object in memory. We initialise
1103 * very few fields yet: that has to wait until we have created the
1104 * journal structures from from scratch, or loaded them from disk. */
1105
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1106 static journal_t *journal_init_common(struct block_device *bdev,
1107 struct block_device *fs_dev,
1108 unsigned long long start, int len, int blocksize)
1109 {
1110 static struct lock_class_key jbd2_trans_commit_key;
1111 journal_t *journal;
1112 int err;
1113 struct buffer_head *bh;
1114 int n;
1115
1116 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1117 if (!journal)
1118 return NULL;
1119
1120 init_waitqueue_head(&journal->j_wait_transaction_locked);
1121 init_waitqueue_head(&journal->j_wait_done_commit);
1122 init_waitqueue_head(&journal->j_wait_commit);
1123 init_waitqueue_head(&journal->j_wait_updates);
1124 init_waitqueue_head(&journal->j_wait_reserved);
1125 mutex_init(&journal->j_barrier);
1126 mutex_init(&journal->j_checkpoint_mutex);
1127 spin_lock_init(&journal->j_revoke_lock);
1128 spin_lock_init(&journal->j_list_lock);
1129 rwlock_init(&journal->j_state_lock);
1130
1131 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1132 journal->j_min_batch_time = 0;
1133 journal->j_max_batch_time = 15000; /* 15ms */
1134 atomic_set(&journal->j_reserved_credits, 0);
1135
1136 /* The journal is marked for error until we succeed with recovery! */
1137 journal->j_flags = JBD2_ABORT;
1138
1139 /* Set up a default-sized revoke table for the new mount. */
1140 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1141 if (err)
1142 goto err_cleanup;
1143
1144 spin_lock_init(&journal->j_history_lock);
1145
1146 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1147 &jbd2_trans_commit_key, 0);
1148
1149 /* journal descriptor can store up to n blocks -bzzz */
1150 journal->j_blocksize = blocksize;
1151 journal->j_dev = bdev;
1152 journal->j_fs_dev = fs_dev;
1153 journal->j_blk_offset = start;
1154 journal->j_maxlen = len;
1155 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1156 journal->j_wbufsize = n;
1157 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1158 GFP_KERNEL);
1159 if (!journal->j_wbuf)
1160 goto err_cleanup;
1161
1162 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1163 if (!bh) {
1164 pr_err("%s: Cannot get buffer for journal superblock\n",
1165 __func__);
1166 goto err_cleanup;
1167 }
1168 journal->j_sb_buffer = bh;
1169 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1170
1171 return journal;
1172
1173 err_cleanup:
1174 kfree(journal->j_wbuf);
1175 jbd2_journal_destroy_revoke(journal);
1176 kfree(journal);
1177 return NULL;
1178 }
1179
1180 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1181 *
1182 * Create a journal structure assigned some fixed set of disk blocks to
1183 * the journal. We don't actually touch those disk blocks yet, but we
1184 * need to set up all of the mapping information to tell the journaling
1185 * system where the journal blocks are.
1186 *
1187 */
1188
1189 /**
1190 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1191 * @bdev: Block device on which to create the journal
1192 * @fs_dev: Device which hold journalled filesystem for this journal.
1193 * @start: Block nr Start of journal.
1194 * @len: Length of the journal in blocks.
1195 * @blocksize: blocksize of journalling device
1196 *
1197 * Returns: a newly created journal_t *
1198 *
1199 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1200 * range of blocks on an arbitrary block device.
1201 *
1202 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1203 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1204 struct block_device *fs_dev,
1205 unsigned long long start, int len, int blocksize)
1206 {
1207 journal_t *journal;
1208
1209 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1210 if (!journal)
1211 return NULL;
1212
1213 bdevname(journal->j_dev, journal->j_devname);
1214 strreplace(journal->j_devname, '/', '!');
1215 jbd2_stats_proc_init(journal);
1216
1217 return journal;
1218 }
1219
1220 /**
1221 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1222 * @inode: An inode to create the journal in
1223 *
1224 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1225 * the journal. The inode must exist already, must support bmap() and
1226 * must have all data blocks preallocated.
1227 */
jbd2_journal_init_inode(struct inode * inode)1228 journal_t *jbd2_journal_init_inode(struct inode *inode)
1229 {
1230 journal_t *journal;
1231 char *p;
1232 unsigned long long blocknr;
1233
1234 blocknr = bmap(inode, 0);
1235 if (!blocknr) {
1236 pr_err("%s: Cannot locate journal superblock\n",
1237 __func__);
1238 return NULL;
1239 }
1240
1241 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1242 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1243 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1244
1245 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1246 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1247 inode->i_sb->s_blocksize);
1248 if (!journal)
1249 return NULL;
1250
1251 journal->j_inode = inode;
1252 bdevname(journal->j_dev, journal->j_devname);
1253 p = strreplace(journal->j_devname, '/', '!');
1254 sprintf(p, "-%lu", journal->j_inode->i_ino);
1255 jbd2_stats_proc_init(journal);
1256
1257 return journal;
1258 }
1259
1260 /*
1261 * If the journal init or create aborts, we need to mark the journal
1262 * superblock as being NULL to prevent the journal destroy from writing
1263 * back a bogus superblock.
1264 */
journal_fail_superblock(journal_t * journal)1265 static void journal_fail_superblock (journal_t *journal)
1266 {
1267 struct buffer_head *bh = journal->j_sb_buffer;
1268 brelse(bh);
1269 journal->j_sb_buffer = NULL;
1270 }
1271
1272 /*
1273 * Given a journal_t structure, initialise the various fields for
1274 * startup of a new journaling session. We use this both when creating
1275 * a journal, and after recovering an old journal to reset it for
1276 * subsequent use.
1277 */
1278
journal_reset(journal_t * journal)1279 static int journal_reset(journal_t *journal)
1280 {
1281 journal_superblock_t *sb = journal->j_superblock;
1282 unsigned long long first, last;
1283
1284 first = be32_to_cpu(sb->s_first);
1285 last = be32_to_cpu(sb->s_maxlen);
1286 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1287 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1288 first, last);
1289 journal_fail_superblock(journal);
1290 return -EINVAL;
1291 }
1292
1293 journal->j_first = first;
1294 journal->j_last = last;
1295
1296 journal->j_head = first;
1297 journal->j_tail = first;
1298 journal->j_free = last - first;
1299
1300 journal->j_tail_sequence = journal->j_transaction_sequence;
1301 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1302 journal->j_commit_request = journal->j_commit_sequence;
1303
1304 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1305
1306 /*
1307 * As a special case, if the on-disk copy is already marked as needing
1308 * no recovery (s_start == 0), then we can safely defer the superblock
1309 * update until the next commit by setting JBD2_FLUSHED. This avoids
1310 * attempting a write to a potential-readonly device.
1311 */
1312 if (sb->s_start == 0) {
1313 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 "(start %ld, seq %d, errno %d)\n",
1315 journal->j_tail, journal->j_tail_sequence,
1316 journal->j_errno);
1317 journal->j_flags |= JBD2_FLUSHED;
1318 } else {
1319 /* Lock here to make assertions happy... */
1320 mutex_lock(&journal->j_checkpoint_mutex);
1321 /*
1322 * Update log tail information. We use WRITE_FUA since new
1323 * transaction will start reusing journal space and so we
1324 * must make sure information about current log tail is on
1325 * disk before that.
1326 */
1327 jbd2_journal_update_sb_log_tail(journal,
1328 journal->j_tail_sequence,
1329 journal->j_tail,
1330 WRITE_FUA);
1331 mutex_unlock(&journal->j_checkpoint_mutex);
1332 }
1333 return jbd2_journal_start_thread(journal);
1334 }
1335
jbd2_write_superblock(journal_t * journal,int write_flags)1336 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1337 {
1338 struct buffer_head *bh = journal->j_sb_buffer;
1339 journal_superblock_t *sb = journal->j_superblock;
1340 int ret;
1341
1342 trace_jbd2_write_superblock(journal, write_flags);
1343 if (!(journal->j_flags & JBD2_BARRIER))
1344 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1345 lock_buffer(bh);
1346 if (buffer_write_io_error(bh)) {
1347 /*
1348 * Oh, dear. A previous attempt to write the journal
1349 * superblock failed. This could happen because the
1350 * USB device was yanked out. Or it could happen to
1351 * be a transient write error and maybe the block will
1352 * be remapped. Nothing we can do but to retry the
1353 * write and hope for the best.
1354 */
1355 printk(KERN_ERR "JBD2: previous I/O error detected "
1356 "for journal superblock update for %s.\n",
1357 journal->j_devname);
1358 clear_buffer_write_io_error(bh);
1359 set_buffer_uptodate(bh);
1360 }
1361 jbd2_superblock_csum_set(journal, sb);
1362 get_bh(bh);
1363 bh->b_end_io = end_buffer_write_sync;
1364 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1365 wait_on_buffer(bh);
1366 if (buffer_write_io_error(bh)) {
1367 clear_buffer_write_io_error(bh);
1368 set_buffer_uptodate(bh);
1369 ret = -EIO;
1370 }
1371 if (ret) {
1372 printk(KERN_ERR "JBD2: Error %d detected when updating "
1373 "journal superblock for %s.\n", ret,
1374 journal->j_devname);
1375 jbd2_journal_abort(journal, ret);
1376 }
1377
1378 return ret;
1379 }
1380
1381 /**
1382 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1383 * @journal: The journal to update.
1384 * @tail_tid: TID of the new transaction at the tail of the log
1385 * @tail_block: The first block of the transaction at the tail of the log
1386 * @write_op: With which operation should we write the journal sb
1387 *
1388 * Update a journal's superblock information about log tail and write it to
1389 * disk, waiting for the IO to complete.
1390 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1391 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1392 unsigned long tail_block, int write_op)
1393 {
1394 journal_superblock_t *sb = journal->j_superblock;
1395 int ret;
1396
1397 if (is_journal_aborted(journal))
1398 return -EIO;
1399
1400 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1401 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1402 tail_block, tail_tid);
1403
1404 sb->s_sequence = cpu_to_be32(tail_tid);
1405 sb->s_start = cpu_to_be32(tail_block);
1406
1407 ret = jbd2_write_superblock(journal, write_op);
1408 if (ret)
1409 goto out;
1410
1411 /* Log is no longer empty */
1412 write_lock(&journal->j_state_lock);
1413 WARN_ON(!sb->s_sequence);
1414 journal->j_flags &= ~JBD2_FLUSHED;
1415 write_unlock(&journal->j_state_lock);
1416
1417 out:
1418 return ret;
1419 }
1420
1421 /**
1422 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1423 * @journal: The journal to update.
1424 * @write_op: With which operation should we write the journal sb
1425 *
1426 * Update a journal's dynamic superblock fields to show that journal is empty.
1427 * Write updated superblock to disk waiting for IO to complete.
1428 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1429 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1430 {
1431 journal_superblock_t *sb = journal->j_superblock;
1432
1433 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1434 read_lock(&journal->j_state_lock);
1435 /* Is it already empty? */
1436 if (sb->s_start == 0) {
1437 read_unlock(&journal->j_state_lock);
1438 return;
1439 }
1440 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1441 journal->j_tail_sequence);
1442
1443 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1444 sb->s_start = cpu_to_be32(0);
1445 read_unlock(&journal->j_state_lock);
1446
1447 jbd2_write_superblock(journal, write_op);
1448
1449 /* Log is no longer empty */
1450 write_lock(&journal->j_state_lock);
1451 journal->j_flags |= JBD2_FLUSHED;
1452 write_unlock(&journal->j_state_lock);
1453 }
1454
1455
1456 /**
1457 * jbd2_journal_update_sb_errno() - Update error in the journal.
1458 * @journal: The journal to update.
1459 *
1460 * Update a journal's errno. Write updated superblock to disk waiting for IO
1461 * to complete.
1462 */
jbd2_journal_update_sb_errno(journal_t * journal)1463 void jbd2_journal_update_sb_errno(journal_t *journal)
1464 {
1465 journal_superblock_t *sb = journal->j_superblock;
1466
1467 read_lock(&journal->j_state_lock);
1468 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1469 journal->j_errno);
1470 sb->s_errno = cpu_to_be32(journal->j_errno);
1471 read_unlock(&journal->j_state_lock);
1472
1473 jbd2_write_superblock(journal, WRITE_FUA);
1474 }
1475 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1476
1477 /*
1478 * Read the superblock for a given journal, performing initial
1479 * validation of the format.
1480 */
journal_get_superblock(journal_t * journal)1481 static int journal_get_superblock(journal_t *journal)
1482 {
1483 struct buffer_head *bh;
1484 journal_superblock_t *sb;
1485 int err = -EIO;
1486
1487 bh = journal->j_sb_buffer;
1488
1489 J_ASSERT(bh != NULL);
1490 if (!buffer_uptodate(bh)) {
1491 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1492 wait_on_buffer(bh);
1493 if (!buffer_uptodate(bh)) {
1494 printk(KERN_ERR
1495 "JBD2: IO error reading journal superblock\n");
1496 goto out;
1497 }
1498 }
1499
1500 if (buffer_verified(bh))
1501 return 0;
1502
1503 sb = journal->j_superblock;
1504
1505 err = -EINVAL;
1506
1507 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1508 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1509 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1510 goto out;
1511 }
1512
1513 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1514 case JBD2_SUPERBLOCK_V1:
1515 journal->j_format_version = 1;
1516 break;
1517 case JBD2_SUPERBLOCK_V2:
1518 journal->j_format_version = 2;
1519 break;
1520 default:
1521 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1522 goto out;
1523 }
1524
1525 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1526 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1527 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1528 printk(KERN_WARNING "JBD2: journal file too short\n");
1529 goto out;
1530 }
1531
1532 if (be32_to_cpu(sb->s_first) == 0 ||
1533 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1534 printk(KERN_WARNING
1535 "JBD2: Invalid start block of journal: %u\n",
1536 be32_to_cpu(sb->s_first));
1537 goto out;
1538 }
1539
1540 if (jbd2_has_feature_csum2(journal) &&
1541 jbd2_has_feature_csum3(journal)) {
1542 /* Can't have checksum v2 and v3 at the same time! */
1543 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1544 "at the same time!\n");
1545 goto out;
1546 }
1547
1548 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1549 jbd2_has_feature_checksum(journal)) {
1550 /* Can't have checksum v1 and v2 on at the same time! */
1551 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1552 "at the same time!\n");
1553 goto out;
1554 }
1555
1556 if (!jbd2_verify_csum_type(journal, sb)) {
1557 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1558 goto out;
1559 }
1560
1561 /* Load the checksum driver */
1562 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1563 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1564 if (IS_ERR(journal->j_chksum_driver)) {
1565 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1566 err = PTR_ERR(journal->j_chksum_driver);
1567 journal->j_chksum_driver = NULL;
1568 goto out;
1569 }
1570 }
1571
1572 /* Check superblock checksum */
1573 if (!jbd2_superblock_csum_verify(journal, sb)) {
1574 printk(KERN_ERR "JBD2: journal checksum error\n");
1575 err = -EFSBADCRC;
1576 goto out;
1577 }
1578
1579 /* Precompute checksum seed for all metadata */
1580 if (jbd2_journal_has_csum_v2or3(journal))
1581 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1582 sizeof(sb->s_uuid));
1583
1584 set_buffer_verified(bh);
1585
1586 return 0;
1587
1588 out:
1589 journal_fail_superblock(journal);
1590 return err;
1591 }
1592
1593 /*
1594 * Load the on-disk journal superblock and read the key fields into the
1595 * journal_t.
1596 */
1597
load_superblock(journal_t * journal)1598 static int load_superblock(journal_t *journal)
1599 {
1600 int err;
1601 journal_superblock_t *sb;
1602
1603 err = journal_get_superblock(journal);
1604 if (err)
1605 return err;
1606
1607 sb = journal->j_superblock;
1608
1609 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1610 journal->j_tail = be32_to_cpu(sb->s_start);
1611 journal->j_first = be32_to_cpu(sb->s_first);
1612 journal->j_last = be32_to_cpu(sb->s_maxlen);
1613 journal->j_errno = be32_to_cpu(sb->s_errno);
1614
1615 return 0;
1616 }
1617
1618
1619 /**
1620 * int jbd2_journal_load() - Read journal from disk.
1621 * @journal: Journal to act on.
1622 *
1623 * Given a journal_t structure which tells us which disk blocks contain
1624 * a journal, read the journal from disk to initialise the in-memory
1625 * structures.
1626 */
jbd2_journal_load(journal_t * journal)1627 int jbd2_journal_load(journal_t *journal)
1628 {
1629 int err;
1630 journal_superblock_t *sb;
1631
1632 err = load_superblock(journal);
1633 if (err)
1634 return err;
1635
1636 sb = journal->j_superblock;
1637 /* If this is a V2 superblock, then we have to check the
1638 * features flags on it. */
1639
1640 if (journal->j_format_version >= 2) {
1641 if ((sb->s_feature_ro_compat &
1642 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1643 (sb->s_feature_incompat &
1644 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1645 printk(KERN_WARNING
1646 "JBD2: Unrecognised features on journal\n");
1647 return -EINVAL;
1648 }
1649 }
1650
1651 /*
1652 * Create a slab for this blocksize
1653 */
1654 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1655 if (err)
1656 return err;
1657
1658 /* Let the recovery code check whether it needs to recover any
1659 * data from the journal. */
1660 if (jbd2_journal_recover(journal))
1661 goto recovery_error;
1662
1663 if (journal->j_failed_commit) {
1664 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1665 "is corrupt.\n", journal->j_failed_commit,
1666 journal->j_devname);
1667 return -EFSCORRUPTED;
1668 }
1669
1670 /* OK, we've finished with the dynamic journal bits:
1671 * reinitialise the dynamic contents of the superblock in memory
1672 * and reset them on disk. */
1673 if (journal_reset(journal))
1674 goto recovery_error;
1675
1676 journal->j_flags &= ~JBD2_ABORT;
1677 journal->j_flags |= JBD2_LOADED;
1678 return 0;
1679
1680 recovery_error:
1681 printk(KERN_WARNING "JBD2: recovery failed\n");
1682 return -EIO;
1683 }
1684
1685 /**
1686 * void jbd2_journal_destroy() - Release a journal_t structure.
1687 * @journal: Journal to act on.
1688 *
1689 * Release a journal_t structure once it is no longer in use by the
1690 * journaled object.
1691 * Return <0 if we couldn't clean up the journal.
1692 */
jbd2_journal_destroy(journal_t * journal)1693 int jbd2_journal_destroy(journal_t *journal)
1694 {
1695 int err = 0;
1696
1697 /* Wait for the commit thread to wake up and die. */
1698 journal_kill_thread(journal);
1699
1700 /* Force a final log commit */
1701 if (journal->j_running_transaction)
1702 jbd2_journal_commit_transaction(journal);
1703
1704 /* Force any old transactions to disk */
1705
1706 /* Totally anal locking here... */
1707 spin_lock(&journal->j_list_lock);
1708 while (journal->j_checkpoint_transactions != NULL) {
1709 spin_unlock(&journal->j_list_lock);
1710 mutex_lock(&journal->j_checkpoint_mutex);
1711 err = jbd2_log_do_checkpoint(journal);
1712 mutex_unlock(&journal->j_checkpoint_mutex);
1713 /*
1714 * If checkpointing failed, just free the buffers to avoid
1715 * looping forever
1716 */
1717 if (err) {
1718 jbd2_journal_destroy_checkpoint(journal);
1719 spin_lock(&journal->j_list_lock);
1720 break;
1721 }
1722 spin_lock(&journal->j_list_lock);
1723 }
1724
1725 J_ASSERT(journal->j_running_transaction == NULL);
1726 J_ASSERT(journal->j_committing_transaction == NULL);
1727 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1728 spin_unlock(&journal->j_list_lock);
1729
1730 if (journal->j_sb_buffer) {
1731 if (!is_journal_aborted(journal)) {
1732 mutex_lock(&journal->j_checkpoint_mutex);
1733
1734 write_lock(&journal->j_state_lock);
1735 journal->j_tail_sequence =
1736 ++journal->j_transaction_sequence;
1737 write_unlock(&journal->j_state_lock);
1738
1739 jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1740 mutex_unlock(&journal->j_checkpoint_mutex);
1741 } else
1742 err = -EIO;
1743 brelse(journal->j_sb_buffer);
1744 }
1745
1746 if (journal->j_proc_entry)
1747 jbd2_stats_proc_exit(journal);
1748 iput(journal->j_inode);
1749 if (journal->j_revoke)
1750 jbd2_journal_destroy_revoke(journal);
1751 if (journal->j_chksum_driver)
1752 crypto_free_shash(journal->j_chksum_driver);
1753 kfree(journal->j_wbuf);
1754 kfree(journal);
1755
1756 return err;
1757 }
1758
1759
1760 /**
1761 *int jbd2_journal_check_used_features () - Check if features specified are used.
1762 * @journal: Journal to check.
1763 * @compat: bitmask of compatible features
1764 * @ro: bitmask of features that force read-only mount
1765 * @incompat: bitmask of incompatible features
1766 *
1767 * Check whether the journal uses all of a given set of
1768 * features. Return true (non-zero) if it does.
1769 **/
1770
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1771 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1772 unsigned long ro, unsigned long incompat)
1773 {
1774 journal_superblock_t *sb;
1775
1776 if (!compat && !ro && !incompat)
1777 return 1;
1778 /* Load journal superblock if it is not loaded yet. */
1779 if (journal->j_format_version == 0 &&
1780 journal_get_superblock(journal) != 0)
1781 return 0;
1782 if (journal->j_format_version == 1)
1783 return 0;
1784
1785 sb = journal->j_superblock;
1786
1787 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1788 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1789 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1790 return 1;
1791
1792 return 0;
1793 }
1794
1795 /**
1796 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1797 * @journal: Journal to check.
1798 * @compat: bitmask of compatible features
1799 * @ro: bitmask of features that force read-only mount
1800 * @incompat: bitmask of incompatible features
1801 *
1802 * Check whether the journaling code supports the use of
1803 * all of a given set of features on this journal. Return true
1804 * (non-zero) if it can. */
1805
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1806 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1807 unsigned long ro, unsigned long incompat)
1808 {
1809 if (!compat && !ro && !incompat)
1810 return 1;
1811
1812 /* We can support any known requested features iff the
1813 * superblock is in version 2. Otherwise we fail to support any
1814 * extended sb features. */
1815
1816 if (journal->j_format_version != 2)
1817 return 0;
1818
1819 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1820 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1821 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1822 return 1;
1823
1824 return 0;
1825 }
1826
1827 /**
1828 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1829 * @journal: Journal to act on.
1830 * @compat: bitmask of compatible features
1831 * @ro: bitmask of features that force read-only mount
1832 * @incompat: bitmask of incompatible features
1833 *
1834 * Mark a given journal feature as present on the
1835 * superblock. Returns true if the requested features could be set.
1836 *
1837 */
1838
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1839 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1840 unsigned long ro, unsigned long incompat)
1841 {
1842 #define INCOMPAT_FEATURE_ON(f) \
1843 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1844 #define COMPAT_FEATURE_ON(f) \
1845 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1846 journal_superblock_t *sb;
1847
1848 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1849 return 1;
1850
1851 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1852 return 0;
1853
1854 /* If enabling v2 checksums, turn on v3 instead */
1855 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1856 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1857 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1858 }
1859
1860 /* Asking for checksumming v3 and v1? Only give them v3. */
1861 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1862 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1863 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1864
1865 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1866 compat, ro, incompat);
1867
1868 sb = journal->j_superblock;
1869
1870 /* If enabling v3 checksums, update superblock */
1871 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1872 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1873 sb->s_feature_compat &=
1874 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1875
1876 /* Load the checksum driver */
1877 if (journal->j_chksum_driver == NULL) {
1878 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1879 0, 0);
1880 if (IS_ERR(journal->j_chksum_driver)) {
1881 printk(KERN_ERR "JBD2: Cannot load crc32c "
1882 "driver.\n");
1883 journal->j_chksum_driver = NULL;
1884 return 0;
1885 }
1886
1887 /* Precompute checksum seed for all metadata */
1888 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1889 sb->s_uuid,
1890 sizeof(sb->s_uuid));
1891 }
1892 }
1893
1894 /* If enabling v1 checksums, downgrade superblock */
1895 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1896 sb->s_feature_incompat &=
1897 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1898 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1899
1900 sb->s_feature_compat |= cpu_to_be32(compat);
1901 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1902 sb->s_feature_incompat |= cpu_to_be32(incompat);
1903
1904 return 1;
1905 #undef COMPAT_FEATURE_ON
1906 #undef INCOMPAT_FEATURE_ON
1907 }
1908
1909 /*
1910 * jbd2_journal_clear_features () - Clear a given journal feature in the
1911 * superblock
1912 * @journal: Journal to act on.
1913 * @compat: bitmask of compatible features
1914 * @ro: bitmask of features that force read-only mount
1915 * @incompat: bitmask of incompatible features
1916 *
1917 * Clear a given journal feature as present on the
1918 * superblock.
1919 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1920 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1921 unsigned long ro, unsigned long incompat)
1922 {
1923 journal_superblock_t *sb;
1924
1925 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1926 compat, ro, incompat);
1927
1928 sb = journal->j_superblock;
1929
1930 sb->s_feature_compat &= ~cpu_to_be32(compat);
1931 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1932 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1933 }
1934 EXPORT_SYMBOL(jbd2_journal_clear_features);
1935
1936 /**
1937 * int jbd2_journal_flush () - Flush journal
1938 * @journal: Journal to act on.
1939 *
1940 * Flush all data for a given journal to disk and empty the journal.
1941 * Filesystems can use this when remounting readonly to ensure that
1942 * recovery does not need to happen on remount.
1943 */
1944
jbd2_journal_flush(journal_t * journal)1945 int jbd2_journal_flush(journal_t *journal)
1946 {
1947 int err = 0;
1948 transaction_t *transaction = NULL;
1949
1950 write_lock(&journal->j_state_lock);
1951
1952 /* Force everything buffered to the log... */
1953 if (journal->j_running_transaction) {
1954 transaction = journal->j_running_transaction;
1955 __jbd2_log_start_commit(journal, transaction->t_tid);
1956 } else if (journal->j_committing_transaction)
1957 transaction = journal->j_committing_transaction;
1958
1959 /* Wait for the log commit to complete... */
1960 if (transaction) {
1961 tid_t tid = transaction->t_tid;
1962
1963 write_unlock(&journal->j_state_lock);
1964 jbd2_log_wait_commit(journal, tid);
1965 } else {
1966 write_unlock(&journal->j_state_lock);
1967 }
1968
1969 /* ...and flush everything in the log out to disk. */
1970 spin_lock(&journal->j_list_lock);
1971 while (!err && journal->j_checkpoint_transactions != NULL) {
1972 spin_unlock(&journal->j_list_lock);
1973 mutex_lock(&journal->j_checkpoint_mutex);
1974 err = jbd2_log_do_checkpoint(journal);
1975 mutex_unlock(&journal->j_checkpoint_mutex);
1976 spin_lock(&journal->j_list_lock);
1977 }
1978 spin_unlock(&journal->j_list_lock);
1979
1980 if (is_journal_aborted(journal))
1981 return -EIO;
1982
1983 mutex_lock(&journal->j_checkpoint_mutex);
1984 if (!err) {
1985 err = jbd2_cleanup_journal_tail(journal);
1986 if (err < 0) {
1987 mutex_unlock(&journal->j_checkpoint_mutex);
1988 goto out;
1989 }
1990 err = 0;
1991 }
1992
1993 /* Finally, mark the journal as really needing no recovery.
1994 * This sets s_start==0 in the underlying superblock, which is
1995 * the magic code for a fully-recovered superblock. Any future
1996 * commits of data to the journal will restore the current
1997 * s_start value. */
1998 jbd2_mark_journal_empty(journal, WRITE_FUA);
1999 mutex_unlock(&journal->j_checkpoint_mutex);
2000 write_lock(&journal->j_state_lock);
2001 J_ASSERT(!journal->j_running_transaction);
2002 J_ASSERT(!journal->j_committing_transaction);
2003 J_ASSERT(!journal->j_checkpoint_transactions);
2004 J_ASSERT(journal->j_head == journal->j_tail);
2005 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2006 write_unlock(&journal->j_state_lock);
2007 out:
2008 return err;
2009 }
2010
2011 /**
2012 * int jbd2_journal_wipe() - Wipe journal contents
2013 * @journal: Journal to act on.
2014 * @write: flag (see below)
2015 *
2016 * Wipe out all of the contents of a journal, safely. This will produce
2017 * a warning if the journal contains any valid recovery information.
2018 * Must be called between journal_init_*() and jbd2_journal_load().
2019 *
2020 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2021 * we merely suppress recovery.
2022 */
2023
jbd2_journal_wipe(journal_t * journal,int write)2024 int jbd2_journal_wipe(journal_t *journal, int write)
2025 {
2026 int err = 0;
2027
2028 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2029
2030 err = load_superblock(journal);
2031 if (err)
2032 return err;
2033
2034 if (!journal->j_tail)
2035 goto no_recovery;
2036
2037 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2038 write ? "Clearing" : "Ignoring");
2039
2040 err = jbd2_journal_skip_recovery(journal);
2041 if (write) {
2042 /* Lock to make assertions happy... */
2043 mutex_lock(&journal->j_checkpoint_mutex);
2044 jbd2_mark_journal_empty(journal, WRITE_FUA);
2045 mutex_unlock(&journal->j_checkpoint_mutex);
2046 }
2047
2048 no_recovery:
2049 return err;
2050 }
2051
2052 /*
2053 * Journal abort has very specific semantics, which we describe
2054 * for journal abort.
2055 *
2056 * Two internal functions, which provide abort to the jbd layer
2057 * itself are here.
2058 */
2059
2060 /*
2061 * Quick version for internal journal use (doesn't lock the journal).
2062 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2063 * and don't attempt to make any other journal updates.
2064 */
__jbd2_journal_abort_hard(journal_t * journal)2065 void __jbd2_journal_abort_hard(journal_t *journal)
2066 {
2067 transaction_t *transaction;
2068
2069 if (journal->j_flags & JBD2_ABORT)
2070 return;
2071
2072 printk(KERN_ERR "Aborting journal on device %s.\n",
2073 journal->j_devname);
2074
2075 write_lock(&journal->j_state_lock);
2076 journal->j_flags |= JBD2_ABORT;
2077 transaction = journal->j_running_transaction;
2078 if (transaction)
2079 __jbd2_log_start_commit(journal, transaction->t_tid);
2080 write_unlock(&journal->j_state_lock);
2081 }
2082
2083 /* Soft abort: record the abort error status in the journal superblock,
2084 * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2085 static void __journal_abort_soft (journal_t *journal, int errno)
2086 {
2087 if (journal->j_flags & JBD2_ABORT)
2088 return;
2089
2090 if (!journal->j_errno)
2091 journal->j_errno = errno;
2092
2093 __jbd2_journal_abort_hard(journal);
2094
2095 if (errno) {
2096 jbd2_journal_update_sb_errno(journal);
2097 write_lock(&journal->j_state_lock);
2098 journal->j_flags |= JBD2_REC_ERR;
2099 write_unlock(&journal->j_state_lock);
2100 }
2101 }
2102
2103 /**
2104 * void jbd2_journal_abort () - Shutdown the journal immediately.
2105 * @journal: the journal to shutdown.
2106 * @errno: an error number to record in the journal indicating
2107 * the reason for the shutdown.
2108 *
2109 * Perform a complete, immediate shutdown of the ENTIRE
2110 * journal (not of a single transaction). This operation cannot be
2111 * undone without closing and reopening the journal.
2112 *
2113 * The jbd2_journal_abort function is intended to support higher level error
2114 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2115 * mode.
2116 *
2117 * Journal abort has very specific semantics. Any existing dirty,
2118 * unjournaled buffers in the main filesystem will still be written to
2119 * disk by bdflush, but the journaling mechanism will be suspended
2120 * immediately and no further transaction commits will be honoured.
2121 *
2122 * Any dirty, journaled buffers will be written back to disk without
2123 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2124 * filesystem, but we _do_ attempt to leave as much data as possible
2125 * behind for fsck to use for cleanup.
2126 *
2127 * Any attempt to get a new transaction handle on a journal which is in
2128 * ABORT state will just result in an -EROFS error return. A
2129 * jbd2_journal_stop on an existing handle will return -EIO if we have
2130 * entered abort state during the update.
2131 *
2132 * Recursive transactions are not disturbed by journal abort until the
2133 * final jbd2_journal_stop, which will receive the -EIO error.
2134 *
2135 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2136 * which will be recorded (if possible) in the journal superblock. This
2137 * allows a client to record failure conditions in the middle of a
2138 * transaction without having to complete the transaction to record the
2139 * failure to disk. ext3_error, for example, now uses this
2140 * functionality.
2141 *
2142 * Errors which originate from within the journaling layer will NOT
2143 * supply an errno; a null errno implies that absolutely no further
2144 * writes are done to the journal (unless there are any already in
2145 * progress).
2146 *
2147 */
2148
jbd2_journal_abort(journal_t * journal,int errno)2149 void jbd2_journal_abort(journal_t *journal, int errno)
2150 {
2151 __journal_abort_soft(journal, errno);
2152 }
2153
2154 /**
2155 * int jbd2_journal_errno () - returns the journal's error state.
2156 * @journal: journal to examine.
2157 *
2158 * This is the errno number set with jbd2_journal_abort(), the last
2159 * time the journal was mounted - if the journal was stopped
2160 * without calling abort this will be 0.
2161 *
2162 * If the journal has been aborted on this mount time -EROFS will
2163 * be returned.
2164 */
jbd2_journal_errno(journal_t * journal)2165 int jbd2_journal_errno(journal_t *journal)
2166 {
2167 int err;
2168
2169 read_lock(&journal->j_state_lock);
2170 if (journal->j_flags & JBD2_ABORT)
2171 err = -EROFS;
2172 else
2173 err = journal->j_errno;
2174 read_unlock(&journal->j_state_lock);
2175 return err;
2176 }
2177
2178 /**
2179 * int jbd2_journal_clear_err () - clears the journal's error state
2180 * @journal: journal to act on.
2181 *
2182 * An error must be cleared or acked to take a FS out of readonly
2183 * mode.
2184 */
jbd2_journal_clear_err(journal_t * journal)2185 int jbd2_journal_clear_err(journal_t *journal)
2186 {
2187 int err = 0;
2188
2189 write_lock(&journal->j_state_lock);
2190 if (journal->j_flags & JBD2_ABORT)
2191 err = -EROFS;
2192 else
2193 journal->j_errno = 0;
2194 write_unlock(&journal->j_state_lock);
2195 return err;
2196 }
2197
2198 /**
2199 * void jbd2_journal_ack_err() - Ack journal err.
2200 * @journal: journal to act on.
2201 *
2202 * An error must be cleared or acked to take a FS out of readonly
2203 * mode.
2204 */
jbd2_journal_ack_err(journal_t * journal)2205 void jbd2_journal_ack_err(journal_t *journal)
2206 {
2207 write_lock(&journal->j_state_lock);
2208 if (journal->j_errno)
2209 journal->j_flags |= JBD2_ACK_ERR;
2210 write_unlock(&journal->j_state_lock);
2211 }
2212
jbd2_journal_blocks_per_page(struct inode * inode)2213 int jbd2_journal_blocks_per_page(struct inode *inode)
2214 {
2215 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2216 }
2217
2218 /*
2219 * helper functions to deal with 32 or 64bit block numbers.
2220 */
journal_tag_bytes(journal_t * journal)2221 size_t journal_tag_bytes(journal_t *journal)
2222 {
2223 size_t sz;
2224
2225 if (jbd2_has_feature_csum3(journal))
2226 return sizeof(journal_block_tag3_t);
2227
2228 sz = sizeof(journal_block_tag_t);
2229
2230 if (jbd2_has_feature_csum2(journal))
2231 sz += sizeof(__u16);
2232
2233 if (jbd2_has_feature_64bit(journal))
2234 return sz;
2235 else
2236 return sz - sizeof(__u32);
2237 }
2238
2239 /*
2240 * JBD memory management
2241 *
2242 * These functions are used to allocate block-sized chunks of memory
2243 * used for making copies of buffer_head data. Very often it will be
2244 * page-sized chunks of data, but sometimes it will be in
2245 * sub-page-size chunks. (For example, 16k pages on Power systems
2246 * with a 4k block file system.) For blocks smaller than a page, we
2247 * use a SLAB allocator. There are slab caches for each block size,
2248 * which are allocated at mount time, if necessary, and we only free
2249 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2250 * this reason we don't need to a mutex to protect access to
2251 * jbd2_slab[] allocating or releasing memory; only in
2252 * jbd2_journal_create_slab().
2253 */
2254 #define JBD2_MAX_SLABS 8
2255 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2256
2257 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2258 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2259 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2260 };
2261
2262
jbd2_journal_destroy_slabs(void)2263 static void jbd2_journal_destroy_slabs(void)
2264 {
2265 int i;
2266
2267 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2268 if (jbd2_slab[i])
2269 kmem_cache_destroy(jbd2_slab[i]);
2270 jbd2_slab[i] = NULL;
2271 }
2272 }
2273
jbd2_journal_create_slab(size_t size)2274 static int jbd2_journal_create_slab(size_t size)
2275 {
2276 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2277 int i = order_base_2(size) - 10;
2278 size_t slab_size;
2279
2280 if (size == PAGE_SIZE)
2281 return 0;
2282
2283 if (i >= JBD2_MAX_SLABS)
2284 return -EINVAL;
2285
2286 if (unlikely(i < 0))
2287 i = 0;
2288 mutex_lock(&jbd2_slab_create_mutex);
2289 if (jbd2_slab[i]) {
2290 mutex_unlock(&jbd2_slab_create_mutex);
2291 return 0; /* Already created */
2292 }
2293
2294 slab_size = 1 << (i+10);
2295 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2296 slab_size, 0, NULL);
2297 mutex_unlock(&jbd2_slab_create_mutex);
2298 if (!jbd2_slab[i]) {
2299 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2300 return -ENOMEM;
2301 }
2302 return 0;
2303 }
2304
get_slab(size_t size)2305 static struct kmem_cache *get_slab(size_t size)
2306 {
2307 int i = order_base_2(size) - 10;
2308
2309 BUG_ON(i >= JBD2_MAX_SLABS);
2310 if (unlikely(i < 0))
2311 i = 0;
2312 BUG_ON(jbd2_slab[i] == NULL);
2313 return jbd2_slab[i];
2314 }
2315
jbd2_alloc(size_t size,gfp_t flags)2316 void *jbd2_alloc(size_t size, gfp_t flags)
2317 {
2318 void *ptr;
2319
2320 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2321
2322 if (size < PAGE_SIZE)
2323 ptr = kmem_cache_alloc(get_slab(size), flags);
2324 else
2325 ptr = (void *)__get_free_pages(flags, get_order(size));
2326
2327 /* Check alignment; SLUB has gotten this wrong in the past,
2328 * and this can lead to user data corruption! */
2329 BUG_ON(((unsigned long) ptr) & (size-1));
2330
2331 return ptr;
2332 }
2333
jbd2_free(void * ptr,size_t size)2334 void jbd2_free(void *ptr, size_t size)
2335 {
2336 if (size < PAGE_SIZE)
2337 kmem_cache_free(get_slab(size), ptr);
2338 else
2339 free_pages((unsigned long)ptr, get_order(size));
2340 };
2341
2342 /*
2343 * Journal_head storage management
2344 */
2345 static struct kmem_cache *jbd2_journal_head_cache;
2346 #ifdef CONFIG_JBD2_DEBUG
2347 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2348 #endif
2349
jbd2_journal_init_journal_head_cache(void)2350 static int jbd2_journal_init_journal_head_cache(void)
2351 {
2352 int retval;
2353
2354 J_ASSERT(jbd2_journal_head_cache == NULL);
2355 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2356 sizeof(struct journal_head),
2357 0, /* offset */
2358 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2359 NULL); /* ctor */
2360 retval = 0;
2361 if (!jbd2_journal_head_cache) {
2362 retval = -ENOMEM;
2363 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2364 }
2365 return retval;
2366 }
2367
jbd2_journal_destroy_journal_head_cache(void)2368 static void jbd2_journal_destroy_journal_head_cache(void)
2369 {
2370 if (jbd2_journal_head_cache) {
2371 kmem_cache_destroy(jbd2_journal_head_cache);
2372 jbd2_journal_head_cache = NULL;
2373 }
2374 }
2375
2376 /*
2377 * journal_head splicing and dicing
2378 */
journal_alloc_journal_head(void)2379 static struct journal_head *journal_alloc_journal_head(void)
2380 {
2381 struct journal_head *ret;
2382
2383 #ifdef CONFIG_JBD2_DEBUG
2384 atomic_inc(&nr_journal_heads);
2385 #endif
2386 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2387 if (!ret) {
2388 jbd_debug(1, "out of memory for journal_head\n");
2389 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2390 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2391 GFP_NOFS | __GFP_NOFAIL);
2392 }
2393 return ret;
2394 }
2395
journal_free_journal_head(struct journal_head * jh)2396 static void journal_free_journal_head(struct journal_head *jh)
2397 {
2398 #ifdef CONFIG_JBD2_DEBUG
2399 atomic_dec(&nr_journal_heads);
2400 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2401 #endif
2402 kmem_cache_free(jbd2_journal_head_cache, jh);
2403 }
2404
2405 /*
2406 * A journal_head is attached to a buffer_head whenever JBD has an
2407 * interest in the buffer.
2408 *
2409 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2410 * is set. This bit is tested in core kernel code where we need to take
2411 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2412 * there.
2413 *
2414 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2415 *
2416 * When a buffer has its BH_JBD bit set it is immune from being released by
2417 * core kernel code, mainly via ->b_count.
2418 *
2419 * A journal_head is detached from its buffer_head when the journal_head's
2420 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2421 * transaction (b_cp_transaction) hold their references to b_jcount.
2422 *
2423 * Various places in the kernel want to attach a journal_head to a buffer_head
2424 * _before_ attaching the journal_head to a transaction. To protect the
2425 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2426 * journal_head's b_jcount refcount by one. The caller must call
2427 * jbd2_journal_put_journal_head() to undo this.
2428 *
2429 * So the typical usage would be:
2430 *
2431 * (Attach a journal_head if needed. Increments b_jcount)
2432 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2433 * ...
2434 * (Get another reference for transaction)
2435 * jbd2_journal_grab_journal_head(bh);
2436 * jh->b_transaction = xxx;
2437 * (Put original reference)
2438 * jbd2_journal_put_journal_head(jh);
2439 */
2440
2441 /*
2442 * Give a buffer_head a journal_head.
2443 *
2444 * May sleep.
2445 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2446 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2447 {
2448 struct journal_head *jh;
2449 struct journal_head *new_jh = NULL;
2450
2451 repeat:
2452 if (!buffer_jbd(bh))
2453 new_jh = journal_alloc_journal_head();
2454
2455 jbd_lock_bh_journal_head(bh);
2456 if (buffer_jbd(bh)) {
2457 jh = bh2jh(bh);
2458 } else {
2459 J_ASSERT_BH(bh,
2460 (atomic_read(&bh->b_count) > 0) ||
2461 (bh->b_page && bh->b_page->mapping));
2462
2463 if (!new_jh) {
2464 jbd_unlock_bh_journal_head(bh);
2465 goto repeat;
2466 }
2467
2468 jh = new_jh;
2469 new_jh = NULL; /* We consumed it */
2470 set_buffer_jbd(bh);
2471 bh->b_private = jh;
2472 jh->b_bh = bh;
2473 get_bh(bh);
2474 BUFFER_TRACE(bh, "added journal_head");
2475 }
2476 jh->b_jcount++;
2477 jbd_unlock_bh_journal_head(bh);
2478 if (new_jh)
2479 journal_free_journal_head(new_jh);
2480 return bh->b_private;
2481 }
2482
2483 /*
2484 * Grab a ref against this buffer_head's journal_head. If it ended up not
2485 * having a journal_head, return NULL
2486 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2487 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2488 {
2489 struct journal_head *jh = NULL;
2490
2491 jbd_lock_bh_journal_head(bh);
2492 if (buffer_jbd(bh)) {
2493 jh = bh2jh(bh);
2494 jh->b_jcount++;
2495 }
2496 jbd_unlock_bh_journal_head(bh);
2497 return jh;
2498 }
2499
__journal_remove_journal_head(struct buffer_head * bh)2500 static void __journal_remove_journal_head(struct buffer_head *bh)
2501 {
2502 struct journal_head *jh = bh2jh(bh);
2503
2504 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2505 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2506 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2507 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2508 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2509 J_ASSERT_BH(bh, buffer_jbd(bh));
2510 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2511 BUFFER_TRACE(bh, "remove journal_head");
2512 if (jh->b_frozen_data) {
2513 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2514 jbd2_free(jh->b_frozen_data, bh->b_size);
2515 }
2516 if (jh->b_committed_data) {
2517 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2518 jbd2_free(jh->b_committed_data, bh->b_size);
2519 }
2520 bh->b_private = NULL;
2521 jh->b_bh = NULL; /* debug, really */
2522 clear_buffer_jbd(bh);
2523 journal_free_journal_head(jh);
2524 }
2525
2526 /*
2527 * Drop a reference on the passed journal_head. If it fell to zero then
2528 * release the journal_head from the buffer_head.
2529 */
jbd2_journal_put_journal_head(struct journal_head * jh)2530 void jbd2_journal_put_journal_head(struct journal_head *jh)
2531 {
2532 struct buffer_head *bh = jh2bh(jh);
2533
2534 jbd_lock_bh_journal_head(bh);
2535 J_ASSERT_JH(jh, jh->b_jcount > 0);
2536 --jh->b_jcount;
2537 if (!jh->b_jcount) {
2538 __journal_remove_journal_head(bh);
2539 jbd_unlock_bh_journal_head(bh);
2540 __brelse(bh);
2541 } else
2542 jbd_unlock_bh_journal_head(bh);
2543 }
2544
2545 /*
2546 * Initialize jbd inode head
2547 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2548 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2549 {
2550 jinode->i_transaction = NULL;
2551 jinode->i_next_transaction = NULL;
2552 jinode->i_vfs_inode = inode;
2553 jinode->i_flags = 0;
2554 INIT_LIST_HEAD(&jinode->i_list);
2555 }
2556
2557 /*
2558 * Function to be called before we start removing inode from memory (i.e.,
2559 * clear_inode() is a fine place to be called from). It removes inode from
2560 * transaction's lists.
2561 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2562 void jbd2_journal_release_jbd_inode(journal_t *journal,
2563 struct jbd2_inode *jinode)
2564 {
2565 if (!journal)
2566 return;
2567 restart:
2568 spin_lock(&journal->j_list_lock);
2569 /* Is commit writing out inode - we have to wait */
2570 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2571 wait_queue_head_t *wq;
2572 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2573 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2574 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2575 spin_unlock(&journal->j_list_lock);
2576 schedule();
2577 finish_wait(wq, &wait.wait);
2578 goto restart;
2579 }
2580
2581 if (jinode->i_transaction) {
2582 list_del(&jinode->i_list);
2583 jinode->i_transaction = NULL;
2584 }
2585 spin_unlock(&journal->j_list_lock);
2586 }
2587
2588
2589 #ifdef CONFIG_PROC_FS
2590
2591 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2592
jbd2_create_jbd_stats_proc_entry(void)2593 static void __init jbd2_create_jbd_stats_proc_entry(void)
2594 {
2595 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2596 }
2597
jbd2_remove_jbd_stats_proc_entry(void)2598 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2599 {
2600 if (proc_jbd2_stats)
2601 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2602 }
2603
2604 #else
2605
2606 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2607 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2608
2609 #endif
2610
2611 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2612
jbd2_journal_init_handle_cache(void)2613 static int __init jbd2_journal_init_handle_cache(void)
2614 {
2615 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2616 if (jbd2_handle_cache == NULL) {
2617 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2618 return -ENOMEM;
2619 }
2620 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2621 if (jbd2_inode_cache == NULL) {
2622 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2623 kmem_cache_destroy(jbd2_handle_cache);
2624 return -ENOMEM;
2625 }
2626 return 0;
2627 }
2628
jbd2_journal_destroy_handle_cache(void)2629 static void jbd2_journal_destroy_handle_cache(void)
2630 {
2631 if (jbd2_handle_cache)
2632 kmem_cache_destroy(jbd2_handle_cache);
2633 if (jbd2_inode_cache)
2634 kmem_cache_destroy(jbd2_inode_cache);
2635
2636 }
2637
2638 /*
2639 * Module startup and shutdown
2640 */
2641
journal_init_caches(void)2642 static int __init journal_init_caches(void)
2643 {
2644 int ret;
2645
2646 ret = jbd2_journal_init_revoke_caches();
2647 if (ret == 0)
2648 ret = jbd2_journal_init_journal_head_cache();
2649 if (ret == 0)
2650 ret = jbd2_journal_init_handle_cache();
2651 if (ret == 0)
2652 ret = jbd2_journal_init_transaction_cache();
2653 return ret;
2654 }
2655
jbd2_journal_destroy_caches(void)2656 static void jbd2_journal_destroy_caches(void)
2657 {
2658 jbd2_journal_destroy_revoke_caches();
2659 jbd2_journal_destroy_journal_head_cache();
2660 jbd2_journal_destroy_handle_cache();
2661 jbd2_journal_destroy_transaction_cache();
2662 jbd2_journal_destroy_slabs();
2663 }
2664
journal_init(void)2665 static int __init journal_init(void)
2666 {
2667 int ret;
2668
2669 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2670
2671 ret = journal_init_caches();
2672 if (ret == 0) {
2673 jbd2_create_jbd_stats_proc_entry();
2674 } else {
2675 jbd2_journal_destroy_caches();
2676 }
2677 return ret;
2678 }
2679
journal_exit(void)2680 static void __exit journal_exit(void)
2681 {
2682 #ifdef CONFIG_JBD2_DEBUG
2683 int n = atomic_read(&nr_journal_heads);
2684 if (n)
2685 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2686 #endif
2687 jbd2_remove_jbd_stats_proc_entry();
2688 jbd2_journal_destroy_caches();
2689 }
2690
2691 MODULE_LICENSE("GPL");
2692 module_init(journal_init);
2693 module_exit(journal_exit);
2694
2695