• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103 
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106 
107 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)108 void __jbd2_debug(int level, const char *file, const char *func,
109 		  unsigned int line, const char *fmt, ...)
110 {
111 	struct va_format vaf;
112 	va_list args;
113 
114 	if (level > jbd2_journal_enable_debug)
115 		return;
116 	va_start(args, fmt);
117 	vaf.fmt = fmt;
118 	vaf.va = &args;
119 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 	va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124 
125 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 	if (!jbd2_journal_has_csum_v2or3_feature(j))
129 		return 1;
130 
131 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133 
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 	__u32 csum;
137 	__be32 old_csum;
138 
139 	old_csum = sb->s_checksum;
140 	sb->s_checksum = 0;
141 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 	sb->s_checksum = old_csum;
143 
144 	return cpu_to_be32(csum);
145 }
146 
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 	if (!jbd2_journal_has_csum_v2or3(j))
150 		return 1;
151 
152 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154 
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 	if (!jbd2_journal_has_csum_v2or3(j))
158 		return;
159 
160 	sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162 
163 /*
164  * Helper function used to manage commit timeouts
165  */
166 
commit_timeout(unsigned long __data)167 static void commit_timeout(unsigned long __data)
168 {
169 	struct task_struct * p = (struct task_struct *) __data;
170 
171 	wake_up_process(p);
172 }
173 
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189 
kjournald2(void * arg)190 static int kjournald2(void *arg)
191 {
192 	journal_t *journal = arg;
193 	transaction_t *transaction;
194 
195 	/*
196 	 * Set up an interval timer which can be used to trigger a commit wakeup
197 	 * after the commit interval expires
198 	 */
199 	setup_timer(&journal->j_commit_timer, commit_timeout,
200 			(unsigned long)current);
201 
202 	set_freezable();
203 
204 	/* Record that the journal thread is running */
205 	journal->j_task = current;
206 	wake_up(&journal->j_wait_done_commit);
207 
208 	/*
209 	 * And now, wait forever for commit wakeup events.
210 	 */
211 	write_lock(&journal->j_state_lock);
212 
213 loop:
214 	if (journal->j_flags & JBD2_UNMOUNT)
215 		goto end_loop;
216 
217 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 		journal->j_commit_sequence, journal->j_commit_request);
219 
220 	if (journal->j_commit_sequence != journal->j_commit_request) {
221 		jbd_debug(1, "OK, requests differ\n");
222 		write_unlock(&journal->j_state_lock);
223 		del_timer_sync(&journal->j_commit_timer);
224 		jbd2_journal_commit_transaction(journal);
225 		write_lock(&journal->j_state_lock);
226 		goto loop;
227 	}
228 
229 	wake_up(&journal->j_wait_done_commit);
230 	if (freezing(current)) {
231 		/*
232 		 * The simpler the better. Flushing journal isn't a
233 		 * good idea, because that depends on threads that may
234 		 * be already stopped.
235 		 */
236 		jbd_debug(1, "Now suspending kjournald2\n");
237 		write_unlock(&journal->j_state_lock);
238 		try_to_freeze();
239 		write_lock(&journal->j_state_lock);
240 	} else {
241 		/*
242 		 * We assume on resume that commits are already there,
243 		 * so we don't sleep
244 		 */
245 		DEFINE_WAIT(wait);
246 		int should_sleep = 1;
247 
248 		prepare_to_wait(&journal->j_wait_commit, &wait,
249 				TASK_INTERRUPTIBLE);
250 		if (journal->j_commit_sequence != journal->j_commit_request)
251 			should_sleep = 0;
252 		transaction = journal->j_running_transaction;
253 		if (transaction && time_after_eq(jiffies,
254 						transaction->t_expires))
255 			should_sleep = 0;
256 		if (journal->j_flags & JBD2_UNMOUNT)
257 			should_sleep = 0;
258 		if (should_sleep) {
259 			write_unlock(&journal->j_state_lock);
260 			schedule();
261 			write_lock(&journal->j_state_lock);
262 		}
263 		finish_wait(&journal->j_wait_commit, &wait);
264 	}
265 
266 	jbd_debug(1, "kjournald2 wakes\n");
267 
268 	/*
269 	 * Were we woken up by a commit wakeup event?
270 	 */
271 	transaction = journal->j_running_transaction;
272 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 		journal->j_commit_request = transaction->t_tid;
274 		jbd_debug(1, "woke because of timeout\n");
275 	}
276 	goto loop;
277 
278 end_loop:
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	write_unlock(&journal->j_state_lock);
284 	return 0;
285 }
286 
jbd2_journal_start_thread(journal_t * journal)287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289 	struct task_struct *t;
290 
291 	t = kthread_run(kjournald2, journal, "jbd2/%s",
292 			journal->j_devname);
293 	if (IS_ERR(t))
294 		return PTR_ERR(t);
295 
296 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 	return 0;
298 }
299 
journal_kill_thread(journal_t * journal)300 static void journal_kill_thread(journal_t *journal)
301 {
302 	write_lock(&journal->j_state_lock);
303 	journal->j_flags |= JBD2_UNMOUNT;
304 
305 	while (journal->j_task) {
306 		write_unlock(&journal->j_state_lock);
307 		wake_up(&journal->j_wait_commit);
308 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 		write_lock(&journal->j_state_lock);
310 	}
311 	write_unlock(&journal->j_state_lock);
312 }
313 
314 /*
315  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316  *
317  * Writes a metadata buffer to a given disk block.  The actual IO is not
318  * performed but a new buffer_head is constructed which labels the data
319  * to be written with the correct destination disk block.
320  *
321  * Any magic-number escaping which needs to be done will cause a
322  * copy-out here.  If the buffer happens to start with the
323  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324  * magic number is only written to the log for descripter blocks.  In
325  * this case, we copy the data and replace the first word with 0, and we
326  * return a result code which indicates that this buffer needs to be
327  * marked as an escaped buffer in the corresponding log descriptor
328  * block.  The missing word can then be restored when the block is read
329  * during recovery.
330  *
331  * If the source buffer has already been modified by a new transaction
332  * since we took the last commit snapshot, we use the frozen copy of
333  * that data for IO. If we end up using the existing buffer_head's data
334  * for the write, then we have to make sure nobody modifies it while the
335  * IO is in progress. do_get_write_access() handles this.
336  *
337  * The function returns a pointer to the buffer_head to be used for IO.
338  *
339  *
340  * Return value:
341  *  <0: Error
342  * >=0: Finished OK
343  *
344  * On success:
345  * Bit 0 set == escape performed on the data
346  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347  */
348 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 				  struct journal_head  *jh_in,
351 				  struct buffer_head **bh_out,
352 				  sector_t blocknr)
353 {
354 	int need_copy_out = 0;
355 	int done_copy_out = 0;
356 	int do_escape = 0;
357 	char *mapped_data;
358 	struct buffer_head *new_bh;
359 	struct page *new_page;
360 	unsigned int new_offset;
361 	struct buffer_head *bh_in = jh2bh(jh_in);
362 	journal_t *journal = transaction->t_journal;
363 
364 	/*
365 	 * The buffer really shouldn't be locked: only the current committing
366 	 * transaction is allowed to write it, so nobody else is allowed
367 	 * to do any IO.
368 	 *
369 	 * akpm: except if we're journalling data, and write() output is
370 	 * also part of a shared mapping, and another thread has
371 	 * decided to launch a writepage() against this buffer.
372 	 */
373 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 
375 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376 
377 	/* keep subsequent assertions sane */
378 	atomic_set(&new_bh->b_count, 1);
379 
380 	jbd_lock_bh_state(bh_in);
381 repeat:
382 	/*
383 	 * If a new transaction has already done a buffer copy-out, then
384 	 * we use that version of the data for the commit.
385 	 */
386 	if (jh_in->b_frozen_data) {
387 		done_copy_out = 1;
388 		new_page = virt_to_page(jh_in->b_frozen_data);
389 		new_offset = offset_in_page(jh_in->b_frozen_data);
390 	} else {
391 		new_page = jh2bh(jh_in)->b_page;
392 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 	}
394 
395 	mapped_data = kmap_atomic(new_page);
396 	/*
397 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
398 	 * before checking for escaping, as the trigger may modify the magic
399 	 * offset.  If a copy-out happens afterwards, it will have the correct
400 	 * data in the buffer.
401 	 */
402 	if (!done_copy_out)
403 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 					   jh_in->b_triggers);
405 
406 	/*
407 	 * Check for escaping
408 	 */
409 	if (*((__be32 *)(mapped_data + new_offset)) ==
410 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 		need_copy_out = 1;
412 		do_escape = 1;
413 	}
414 	kunmap_atomic(mapped_data);
415 
416 	/*
417 	 * Do we need to do a data copy?
418 	 */
419 	if (need_copy_out && !done_copy_out) {
420 		char *tmp;
421 
422 		jbd_unlock_bh_state(bh_in);
423 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 		if (!tmp) {
425 			brelse(new_bh);
426 			return -ENOMEM;
427 		}
428 		jbd_lock_bh_state(bh_in);
429 		if (jh_in->b_frozen_data) {
430 			jbd2_free(tmp, bh_in->b_size);
431 			goto repeat;
432 		}
433 
434 		jh_in->b_frozen_data = tmp;
435 		mapped_data = kmap_atomic(new_page);
436 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 		kunmap_atomic(mapped_data);
438 
439 		new_page = virt_to_page(tmp);
440 		new_offset = offset_in_page(tmp);
441 		done_copy_out = 1;
442 
443 		/*
444 		 * This isn't strictly necessary, as we're using frozen
445 		 * data for the escaping, but it keeps consistency with
446 		 * b_frozen_data usage.
447 		 */
448 		jh_in->b_frozen_triggers = jh_in->b_triggers;
449 	}
450 
451 	/*
452 	 * Did we need to do an escaping?  Now we've done all the
453 	 * copying, we can finally do so.
454 	 */
455 	if (do_escape) {
456 		mapped_data = kmap_atomic(new_page);
457 		*((unsigned int *)(mapped_data + new_offset)) = 0;
458 		kunmap_atomic(mapped_data);
459 	}
460 
461 	set_bh_page(new_bh, new_page, new_offset);
462 	new_bh->b_size = bh_in->b_size;
463 	new_bh->b_bdev = journal->j_dev;
464 	new_bh->b_blocknr = blocknr;
465 	new_bh->b_private = bh_in;
466 	set_buffer_mapped(new_bh);
467 	set_buffer_dirty(new_bh);
468 
469 	*bh_out = new_bh;
470 
471 	/*
472 	 * The to-be-written buffer needs to get moved to the io queue,
473 	 * and the original buffer whose contents we are shadowing or
474 	 * copying is moved to the transaction's shadow queue.
475 	 */
476 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 	spin_lock(&journal->j_list_lock);
478 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 	spin_unlock(&journal->j_list_lock);
480 	set_buffer_shadow(bh_in);
481 	jbd_unlock_bh_state(bh_in);
482 
483 	return do_escape | (done_copy_out << 1);
484 }
485 
486 /*
487  * Allocation code for the journal file.  Manage the space left in the
488  * journal, so that we can begin checkpointing when appropriate.
489  */
490 
491 /*
492  * Called with j_state_lock locked for writing.
493  * Returns true if a transaction commit was started.
494  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497 	/* Return if the txn has already requested to be committed */
498 	if (journal->j_commit_request == target)
499 		return 0;
500 
501 	/*
502 	 * The only transaction we can possibly wait upon is the
503 	 * currently running transaction (if it exists).  Otherwise,
504 	 * the target tid must be an old one.
505 	 */
506 	if (journal->j_running_transaction &&
507 	    journal->j_running_transaction->t_tid == target) {
508 		/*
509 		 * We want a new commit: OK, mark the request and wakeup the
510 		 * commit thread.  We do _not_ do the commit ourselves.
511 		 */
512 
513 		journal->j_commit_request = target;
514 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 			  journal->j_commit_request,
516 			  journal->j_commit_sequence);
517 		journal->j_running_transaction->t_requested = jiffies;
518 		wake_up(&journal->j_wait_commit);
519 		return 1;
520 	} else if (!tid_geq(journal->j_commit_request, target))
521 		/* This should never happen, but if it does, preserve
522 		   the evidence before kjournald goes into a loop and
523 		   increments j_commit_sequence beyond all recognition. */
524 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 			  journal->j_commit_request,
526 			  journal->j_commit_sequence,
527 			  target, journal->j_running_transaction ?
528 			  journal->j_running_transaction->t_tid : 0);
529 	return 0;
530 }
531 
jbd2_log_start_commit(journal_t * journal,tid_t tid)532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534 	int ret;
535 
536 	write_lock(&journal->j_state_lock);
537 	ret = __jbd2_log_start_commit(journal, tid);
538 	write_unlock(&journal->j_state_lock);
539 	return ret;
540 }
541 
542 /*
543  * Force and wait any uncommitted transactions.  We can only force the running
544  * transaction if we don't have an active handle, otherwise, we will deadlock.
545  * Returns: <0 in case of error,
546  *           0 if nothing to commit,
547  *           1 if transaction was successfully committed.
548  */
__jbd2_journal_force_commit(journal_t * journal)549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551 	transaction_t *transaction = NULL;
552 	tid_t tid;
553 	int need_to_start = 0, ret = 0;
554 
555 	read_lock(&journal->j_state_lock);
556 	if (journal->j_running_transaction && !current->journal_info) {
557 		transaction = journal->j_running_transaction;
558 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 			need_to_start = 1;
560 	} else if (journal->j_committing_transaction)
561 		transaction = journal->j_committing_transaction;
562 
563 	if (!transaction) {
564 		/* Nothing to commit */
565 		read_unlock(&journal->j_state_lock);
566 		return 0;
567 	}
568 	tid = transaction->t_tid;
569 	read_unlock(&journal->j_state_lock);
570 	if (need_to_start)
571 		jbd2_log_start_commit(journal, tid);
572 	ret = jbd2_log_wait_commit(journal, tid);
573 	if (!ret)
574 		ret = 1;
575 
576 	return ret;
577 }
578 
579 /**
580  * Force and wait upon a commit if the calling process is not within
581  * transaction.  This is used for forcing out undo-protected data which contains
582  * bitmaps, when the fs is running out of space.
583  *
584  * @journal: journal to force
585  * Returns true if progress was made.
586  */
jbd2_journal_force_commit_nested(journal_t * journal)587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589 	int ret;
590 
591 	ret = __jbd2_journal_force_commit(journal);
592 	return ret > 0;
593 }
594 
595 /**
596  * int journal_force_commit() - force any uncommitted transactions
597  * @journal: journal to force
598  *
599  * Caller want unconditional commit. We can only force the running transaction
600  * if we don't have an active handle, otherwise, we will deadlock.
601  */
jbd2_journal_force_commit(journal_t * journal)602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604 	int ret;
605 
606 	J_ASSERT(!current->journal_info);
607 	ret = __jbd2_journal_force_commit(journal);
608 	if (ret > 0)
609 		ret = 0;
610 	return ret;
611 }
612 
613 /*
614  * Start a commit of the current running transaction (if any).  Returns true
615  * if a transaction is going to be committed (or is currently already
616  * committing), and fills its tid in at *ptid
617  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620 	int ret = 0;
621 
622 	write_lock(&journal->j_state_lock);
623 	if (journal->j_running_transaction) {
624 		tid_t tid = journal->j_running_transaction->t_tid;
625 
626 		__jbd2_log_start_commit(journal, tid);
627 		/* There's a running transaction and we've just made sure
628 		 * it's commit has been scheduled. */
629 		if (ptid)
630 			*ptid = tid;
631 		ret = 1;
632 	} else if (journal->j_committing_transaction) {
633 		/*
634 		 * If commit has been started, then we have to wait for
635 		 * completion of that transaction.
636 		 */
637 		if (ptid)
638 			*ptid = journal->j_committing_transaction->t_tid;
639 		ret = 1;
640 	}
641 	write_unlock(&journal->j_state_lock);
642 	return ret;
643 }
644 
645 /*
646  * Return 1 if a given transaction has not yet sent barrier request
647  * connected with a transaction commit. If 0 is returned, transaction
648  * may or may not have sent the barrier. Used to avoid sending barrier
649  * twice in common cases.
650  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653 	int ret = 0;
654 	transaction_t *commit_trans;
655 
656 	if (!(journal->j_flags & JBD2_BARRIER))
657 		return 0;
658 	read_lock(&journal->j_state_lock);
659 	/* Transaction already committed? */
660 	if (tid_geq(journal->j_commit_sequence, tid))
661 		goto out;
662 	commit_trans = journal->j_committing_transaction;
663 	if (!commit_trans || commit_trans->t_tid != tid) {
664 		ret = 1;
665 		goto out;
666 	}
667 	/*
668 	 * Transaction is being committed and we already proceeded to
669 	 * submitting a flush to fs partition?
670 	 */
671 	if (journal->j_fs_dev != journal->j_dev) {
672 		if (!commit_trans->t_need_data_flush ||
673 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
674 			goto out;
675 	} else {
676 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 			goto out;
678 	}
679 	ret = 1;
680 out:
681 	read_unlock(&journal->j_state_lock);
682 	return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685 
686 /*
687  * Wait for a specified commit to complete.
688  * The caller may not hold the journal lock.
689  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692 	int err = 0;
693 
694 	read_lock(&journal->j_state_lock);
695 #ifdef CONFIG_PROVE_LOCKING
696 	/*
697 	 * Some callers make sure transaction is already committing and in that
698 	 * case we cannot block on open handles anymore. So don't warn in that
699 	 * case.
700 	 */
701 	if (tid_gt(tid, journal->j_commit_sequence) &&
702 	    (!journal->j_committing_transaction ||
703 	     journal->j_committing_transaction->t_tid != tid)) {
704 		read_unlock(&journal->j_state_lock);
705 		jbd2_might_wait_for_commit(journal);
706 		read_lock(&journal->j_state_lock);
707 	}
708 #endif
709 #ifdef CONFIG_JBD2_DEBUG
710 	if (!tid_geq(journal->j_commit_request, tid)) {
711 		printk(KERN_ERR
712 		       "%s: error: j_commit_request=%d, tid=%d\n",
713 		       __func__, journal->j_commit_request, tid);
714 	}
715 #endif
716 	while (tid_gt(tid, journal->j_commit_sequence)) {
717 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
718 				  tid, journal->j_commit_sequence);
719 		read_unlock(&journal->j_state_lock);
720 		wake_up(&journal->j_wait_commit);
721 		wait_event(journal->j_wait_done_commit,
722 				!tid_gt(tid, journal->j_commit_sequence));
723 		read_lock(&journal->j_state_lock);
724 	}
725 	read_unlock(&journal->j_state_lock);
726 
727 	if (unlikely(is_journal_aborted(journal)))
728 		err = -EIO;
729 	return err;
730 }
731 
732 /*
733  * When this function returns the transaction corresponding to tid
734  * will be completed.  If the transaction has currently running, start
735  * committing that transaction before waiting for it to complete.  If
736  * the transaction id is stale, it is by definition already completed,
737  * so just return SUCCESS.
738  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)739 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
740 {
741 	int	need_to_wait = 1;
742 
743 	read_lock(&journal->j_state_lock);
744 	if (journal->j_running_transaction &&
745 	    journal->j_running_transaction->t_tid == tid) {
746 		if (journal->j_commit_request != tid) {
747 			/* transaction not yet started, so request it */
748 			read_unlock(&journal->j_state_lock);
749 			jbd2_log_start_commit(journal, tid);
750 			goto wait_commit;
751 		}
752 	} else if (!(journal->j_committing_transaction &&
753 		     journal->j_committing_transaction->t_tid == tid))
754 		need_to_wait = 0;
755 	read_unlock(&journal->j_state_lock);
756 	if (!need_to_wait)
757 		return 0;
758 wait_commit:
759 	return jbd2_log_wait_commit(journal, tid);
760 }
761 EXPORT_SYMBOL(jbd2_complete_transaction);
762 
763 /*
764  * Log buffer allocation routines:
765  */
766 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)767 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
768 {
769 	unsigned long blocknr;
770 
771 	write_lock(&journal->j_state_lock);
772 	J_ASSERT(journal->j_free > 1);
773 
774 	blocknr = journal->j_head;
775 	journal->j_head++;
776 	journal->j_free--;
777 	if (journal->j_head == journal->j_last)
778 		journal->j_head = journal->j_first;
779 	write_unlock(&journal->j_state_lock);
780 	return jbd2_journal_bmap(journal, blocknr, retp);
781 }
782 
783 /*
784  * Conversion of logical to physical block numbers for the journal
785  *
786  * On external journals the journal blocks are identity-mapped, so
787  * this is a no-op.  If needed, we can use j_blk_offset - everything is
788  * ready.
789  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)790 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
791 		 unsigned long long *retp)
792 {
793 	int err = 0;
794 	unsigned long long ret;
795 
796 	if (journal->j_inode) {
797 		ret = bmap(journal->j_inode, blocknr);
798 		if (ret)
799 			*retp = ret;
800 		else {
801 			printk(KERN_ALERT "%s: journal block not found "
802 					"at offset %lu on %s\n",
803 			       __func__, blocknr, journal->j_devname);
804 			err = -EIO;
805 			__journal_abort_soft(journal, err);
806 		}
807 	} else {
808 		*retp = blocknr; /* +journal->j_blk_offset */
809 	}
810 	return err;
811 }
812 
813 /*
814  * We play buffer_head aliasing tricks to write data/metadata blocks to
815  * the journal without copying their contents, but for journal
816  * descriptor blocks we do need to generate bona fide buffers.
817  *
818  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
819  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
820  * But we don't bother doing that, so there will be coherency problems with
821  * mmaps of blockdevs which hold live JBD-controlled filesystems.
822  */
823 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)824 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
825 {
826 	journal_t *journal = transaction->t_journal;
827 	struct buffer_head *bh;
828 	unsigned long long blocknr;
829 	journal_header_t *header;
830 	int err;
831 
832 	err = jbd2_journal_next_log_block(journal, &blocknr);
833 
834 	if (err)
835 		return NULL;
836 
837 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
838 	if (!bh)
839 		return NULL;
840 	lock_buffer(bh);
841 	memset(bh->b_data, 0, journal->j_blocksize);
842 	header = (journal_header_t *)bh->b_data;
843 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
844 	header->h_blocktype = cpu_to_be32(type);
845 	header->h_sequence = cpu_to_be32(transaction->t_tid);
846 	set_buffer_uptodate(bh);
847 	unlock_buffer(bh);
848 	BUFFER_TRACE(bh, "return this buffer");
849 	return bh;
850 }
851 
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)852 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
853 {
854 	struct jbd2_journal_block_tail *tail;
855 	__u32 csum;
856 
857 	if (!jbd2_journal_has_csum_v2or3(j))
858 		return;
859 
860 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
861 			sizeof(struct jbd2_journal_block_tail));
862 	tail->t_checksum = 0;
863 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
864 	tail->t_checksum = cpu_to_be32(csum);
865 }
866 
867 /*
868  * Return tid of the oldest transaction in the journal and block in the journal
869  * where the transaction starts.
870  *
871  * If the journal is now empty, return which will be the next transaction ID
872  * we will write and where will that transaction start.
873  *
874  * The return value is 0 if journal tail cannot be pushed any further, 1 if
875  * it can.
876  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)877 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
878 			      unsigned long *block)
879 {
880 	transaction_t *transaction;
881 	int ret;
882 
883 	read_lock(&journal->j_state_lock);
884 	spin_lock(&journal->j_list_lock);
885 	transaction = journal->j_checkpoint_transactions;
886 	if (transaction) {
887 		*tid = transaction->t_tid;
888 		*block = transaction->t_log_start;
889 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
890 		*tid = transaction->t_tid;
891 		*block = transaction->t_log_start;
892 	} else if ((transaction = journal->j_running_transaction) != NULL) {
893 		*tid = transaction->t_tid;
894 		*block = journal->j_head;
895 	} else {
896 		*tid = journal->j_transaction_sequence;
897 		*block = journal->j_head;
898 	}
899 	ret = tid_gt(*tid, journal->j_tail_sequence);
900 	spin_unlock(&journal->j_list_lock);
901 	read_unlock(&journal->j_state_lock);
902 
903 	return ret;
904 }
905 
906 /*
907  * Update information in journal structure and in on disk journal superblock
908  * about log tail. This function does not check whether information passed in
909  * really pushes log tail further. It's responsibility of the caller to make
910  * sure provided log tail information is valid (e.g. by holding
911  * j_checkpoint_mutex all the time between computing log tail and calling this
912  * function as is the case with jbd2_cleanup_journal_tail()).
913  *
914  * Requires j_checkpoint_mutex
915  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)916 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
917 {
918 	unsigned long freed;
919 	int ret;
920 
921 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
922 
923 	/*
924 	 * We cannot afford for write to remain in drive's caches since as
925 	 * soon as we update j_tail, next transaction can start reusing journal
926 	 * space and if we lose sb update during power failure we'd replay
927 	 * old transaction with possibly newly overwritten data.
928 	 */
929 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
930 	if (ret)
931 		goto out;
932 
933 	write_lock(&journal->j_state_lock);
934 	freed = block - journal->j_tail;
935 	if (block < journal->j_tail)
936 		freed += journal->j_last - journal->j_first;
937 
938 	trace_jbd2_update_log_tail(journal, tid, block, freed);
939 	jbd_debug(1,
940 		  "Cleaning journal tail from %d to %d (offset %lu), "
941 		  "freeing %lu\n",
942 		  journal->j_tail_sequence, tid, block, freed);
943 
944 	journal->j_free += freed;
945 	journal->j_tail_sequence = tid;
946 	journal->j_tail = block;
947 	write_unlock(&journal->j_state_lock);
948 
949 out:
950 	return ret;
951 }
952 
953 /*
954  * This is a variation of __jbd2_update_log_tail which checks for validity of
955  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
956  * with other threads updating log tail.
957  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)958 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
959 {
960 	mutex_lock(&journal->j_checkpoint_mutex);
961 	if (tid_gt(tid, journal->j_tail_sequence))
962 		__jbd2_update_log_tail(journal, tid, block);
963 	mutex_unlock(&journal->j_checkpoint_mutex);
964 }
965 
966 struct jbd2_stats_proc_session {
967 	journal_t *journal;
968 	struct transaction_stats_s *stats;
969 	int start;
970 	int max;
971 };
972 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)973 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
974 {
975 	return *pos ? NULL : SEQ_START_TOKEN;
976 }
977 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)978 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
979 {
980 	return NULL;
981 }
982 
jbd2_seq_info_show(struct seq_file * seq,void * v)983 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
984 {
985 	struct jbd2_stats_proc_session *s = seq->private;
986 
987 	if (v != SEQ_START_TOKEN)
988 		return 0;
989 	seq_printf(seq, "%lu transactions (%lu requested), "
990 		   "each up to %u blocks\n",
991 		   s->stats->ts_tid, s->stats->ts_requested,
992 		   s->journal->j_max_transaction_buffers);
993 	if (s->stats->ts_tid == 0)
994 		return 0;
995 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
996 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
997 	seq_printf(seq, "  %ums request delay\n",
998 	    (s->stats->ts_requested == 0) ? 0 :
999 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1000 			     s->stats->ts_requested));
1001 	seq_printf(seq, "  %ums running transaction\n",
1002 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1003 	seq_printf(seq, "  %ums transaction was being locked\n",
1004 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1005 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1006 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1007 	seq_printf(seq, "  %ums logging transaction\n",
1008 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1009 	seq_printf(seq, "  %lluus average transaction commit time\n",
1010 		   div_u64(s->journal->j_average_commit_time, 1000));
1011 	seq_printf(seq, "  %lu handles per transaction\n",
1012 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1013 	seq_printf(seq, "  %lu blocks per transaction\n",
1014 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1015 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1016 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1017 	return 0;
1018 }
1019 
jbd2_seq_info_stop(struct seq_file * seq,void * v)1020 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1021 {
1022 }
1023 
1024 static const struct seq_operations jbd2_seq_info_ops = {
1025 	.start  = jbd2_seq_info_start,
1026 	.next   = jbd2_seq_info_next,
1027 	.stop   = jbd2_seq_info_stop,
1028 	.show   = jbd2_seq_info_show,
1029 };
1030 
jbd2_seq_info_open(struct inode * inode,struct file * file)1031 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1032 {
1033 	journal_t *journal = PDE_DATA(inode);
1034 	struct jbd2_stats_proc_session *s;
1035 	int rc, size;
1036 
1037 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1038 	if (s == NULL)
1039 		return -ENOMEM;
1040 	size = sizeof(struct transaction_stats_s);
1041 	s->stats = kmalloc(size, GFP_KERNEL);
1042 	if (s->stats == NULL) {
1043 		kfree(s);
1044 		return -ENOMEM;
1045 	}
1046 	spin_lock(&journal->j_history_lock);
1047 	memcpy(s->stats, &journal->j_stats, size);
1048 	s->journal = journal;
1049 	spin_unlock(&journal->j_history_lock);
1050 
1051 	rc = seq_open(file, &jbd2_seq_info_ops);
1052 	if (rc == 0) {
1053 		struct seq_file *m = file->private_data;
1054 		m->private = s;
1055 	} else {
1056 		kfree(s->stats);
1057 		kfree(s);
1058 	}
1059 	return rc;
1060 
1061 }
1062 
jbd2_seq_info_release(struct inode * inode,struct file * file)1063 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1064 {
1065 	struct seq_file *seq = file->private_data;
1066 	struct jbd2_stats_proc_session *s = seq->private;
1067 	kfree(s->stats);
1068 	kfree(s);
1069 	return seq_release(inode, file);
1070 }
1071 
1072 static const struct file_operations jbd2_seq_info_fops = {
1073 	.owner		= THIS_MODULE,
1074 	.open           = jbd2_seq_info_open,
1075 	.read           = seq_read,
1076 	.llseek         = seq_lseek,
1077 	.release        = jbd2_seq_info_release,
1078 };
1079 
1080 static struct proc_dir_entry *proc_jbd2_stats;
1081 
jbd2_stats_proc_init(journal_t * journal)1082 static void jbd2_stats_proc_init(journal_t *journal)
1083 {
1084 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1085 	if (journal->j_proc_entry) {
1086 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1087 				 &jbd2_seq_info_fops, journal);
1088 	}
1089 }
1090 
jbd2_stats_proc_exit(journal_t * journal)1091 static void jbd2_stats_proc_exit(journal_t *journal)
1092 {
1093 	remove_proc_entry("info", journal->j_proc_entry);
1094 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1095 }
1096 
1097 /*
1098  * Management for journal control blocks: functions to create and
1099  * destroy journal_t structures, and to initialise and read existing
1100  * journal blocks from disk.  */
1101 
1102 /* First: create and setup a journal_t object in memory.  We initialise
1103  * very few fields yet: that has to wait until we have created the
1104  * journal structures from from scratch, or loaded them from disk. */
1105 
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1106 static journal_t *journal_init_common(struct block_device *bdev,
1107 			struct block_device *fs_dev,
1108 			unsigned long long start, int len, int blocksize)
1109 {
1110 	static struct lock_class_key jbd2_trans_commit_key;
1111 	journal_t *journal;
1112 	int err;
1113 	struct buffer_head *bh;
1114 	int n;
1115 
1116 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1117 	if (!journal)
1118 		return NULL;
1119 
1120 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1121 	init_waitqueue_head(&journal->j_wait_done_commit);
1122 	init_waitqueue_head(&journal->j_wait_commit);
1123 	init_waitqueue_head(&journal->j_wait_updates);
1124 	init_waitqueue_head(&journal->j_wait_reserved);
1125 	mutex_init(&journal->j_barrier);
1126 	mutex_init(&journal->j_checkpoint_mutex);
1127 	spin_lock_init(&journal->j_revoke_lock);
1128 	spin_lock_init(&journal->j_list_lock);
1129 	rwlock_init(&journal->j_state_lock);
1130 
1131 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1132 	journal->j_min_batch_time = 0;
1133 	journal->j_max_batch_time = 15000; /* 15ms */
1134 	atomic_set(&journal->j_reserved_credits, 0);
1135 
1136 	/* The journal is marked for error until we succeed with recovery! */
1137 	journal->j_flags = JBD2_ABORT;
1138 
1139 	/* Set up a default-sized revoke table for the new mount. */
1140 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1141 	if (err)
1142 		goto err_cleanup;
1143 
1144 	spin_lock_init(&journal->j_history_lock);
1145 
1146 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1147 			 &jbd2_trans_commit_key, 0);
1148 
1149 	/* journal descriptor can store up to n blocks -bzzz */
1150 	journal->j_blocksize = blocksize;
1151 	journal->j_dev = bdev;
1152 	journal->j_fs_dev = fs_dev;
1153 	journal->j_blk_offset = start;
1154 	journal->j_maxlen = len;
1155 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1156 	journal->j_wbufsize = n;
1157 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1158 					GFP_KERNEL);
1159 	if (!journal->j_wbuf)
1160 		goto err_cleanup;
1161 
1162 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1163 	if (!bh) {
1164 		pr_err("%s: Cannot get buffer for journal superblock\n",
1165 			__func__);
1166 		goto err_cleanup;
1167 	}
1168 	journal->j_sb_buffer = bh;
1169 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1170 
1171 	return journal;
1172 
1173 err_cleanup:
1174 	kfree(journal->j_wbuf);
1175 	jbd2_journal_destroy_revoke(journal);
1176 	kfree(journal);
1177 	return NULL;
1178 }
1179 
1180 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1181  *
1182  * Create a journal structure assigned some fixed set of disk blocks to
1183  * the journal.  We don't actually touch those disk blocks yet, but we
1184  * need to set up all of the mapping information to tell the journaling
1185  * system where the journal blocks are.
1186  *
1187  */
1188 
1189 /**
1190  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1191  *  @bdev: Block device on which to create the journal
1192  *  @fs_dev: Device which hold journalled filesystem for this journal.
1193  *  @start: Block nr Start of journal.
1194  *  @len:  Length of the journal in blocks.
1195  *  @blocksize: blocksize of journalling device
1196  *
1197  *  Returns: a newly created journal_t *
1198  *
1199  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1200  *  range of blocks on an arbitrary block device.
1201  *
1202  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1203 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1204 			struct block_device *fs_dev,
1205 			unsigned long long start, int len, int blocksize)
1206 {
1207 	journal_t *journal;
1208 
1209 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1210 	if (!journal)
1211 		return NULL;
1212 
1213 	bdevname(journal->j_dev, journal->j_devname);
1214 	strreplace(journal->j_devname, '/', '!');
1215 	jbd2_stats_proc_init(journal);
1216 
1217 	return journal;
1218 }
1219 
1220 /**
1221  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1222  *  @inode: An inode to create the journal in
1223  *
1224  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1225  * the journal.  The inode must exist already, must support bmap() and
1226  * must have all data blocks preallocated.
1227  */
jbd2_journal_init_inode(struct inode * inode)1228 journal_t *jbd2_journal_init_inode(struct inode *inode)
1229 {
1230 	journal_t *journal;
1231 	char *p;
1232 	unsigned long long blocknr;
1233 
1234 	blocknr = bmap(inode, 0);
1235 	if (!blocknr) {
1236 		pr_err("%s: Cannot locate journal superblock\n",
1237 			__func__);
1238 		return NULL;
1239 	}
1240 
1241 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1242 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1243 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1244 
1245 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1246 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1247 			inode->i_sb->s_blocksize);
1248 	if (!journal)
1249 		return NULL;
1250 
1251 	journal->j_inode = inode;
1252 	bdevname(journal->j_dev, journal->j_devname);
1253 	p = strreplace(journal->j_devname, '/', '!');
1254 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1255 	jbd2_stats_proc_init(journal);
1256 
1257 	return journal;
1258 }
1259 
1260 /*
1261  * If the journal init or create aborts, we need to mark the journal
1262  * superblock as being NULL to prevent the journal destroy from writing
1263  * back a bogus superblock.
1264  */
journal_fail_superblock(journal_t * journal)1265 static void journal_fail_superblock (journal_t *journal)
1266 {
1267 	struct buffer_head *bh = journal->j_sb_buffer;
1268 	brelse(bh);
1269 	journal->j_sb_buffer = NULL;
1270 }
1271 
1272 /*
1273  * Given a journal_t structure, initialise the various fields for
1274  * startup of a new journaling session.  We use this both when creating
1275  * a journal, and after recovering an old journal to reset it for
1276  * subsequent use.
1277  */
1278 
journal_reset(journal_t * journal)1279 static int journal_reset(journal_t *journal)
1280 {
1281 	journal_superblock_t *sb = journal->j_superblock;
1282 	unsigned long long first, last;
1283 
1284 	first = be32_to_cpu(sb->s_first);
1285 	last = be32_to_cpu(sb->s_maxlen);
1286 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1287 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1288 		       first, last);
1289 		journal_fail_superblock(journal);
1290 		return -EINVAL;
1291 	}
1292 
1293 	journal->j_first = first;
1294 	journal->j_last = last;
1295 
1296 	journal->j_head = first;
1297 	journal->j_tail = first;
1298 	journal->j_free = last - first;
1299 
1300 	journal->j_tail_sequence = journal->j_transaction_sequence;
1301 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1302 	journal->j_commit_request = journal->j_commit_sequence;
1303 
1304 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1305 
1306 	/*
1307 	 * As a special case, if the on-disk copy is already marked as needing
1308 	 * no recovery (s_start == 0), then we can safely defer the superblock
1309 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1310 	 * attempting a write to a potential-readonly device.
1311 	 */
1312 	if (sb->s_start == 0) {
1313 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 			"(start %ld, seq %d, errno %d)\n",
1315 			journal->j_tail, journal->j_tail_sequence,
1316 			journal->j_errno);
1317 		journal->j_flags |= JBD2_FLUSHED;
1318 	} else {
1319 		/* Lock here to make assertions happy... */
1320 		mutex_lock(&journal->j_checkpoint_mutex);
1321 		/*
1322 		 * Update log tail information. We use WRITE_FUA since new
1323 		 * transaction will start reusing journal space and so we
1324 		 * must make sure information about current log tail is on
1325 		 * disk before that.
1326 		 */
1327 		jbd2_journal_update_sb_log_tail(journal,
1328 						journal->j_tail_sequence,
1329 						journal->j_tail,
1330 						WRITE_FUA);
1331 		mutex_unlock(&journal->j_checkpoint_mutex);
1332 	}
1333 	return jbd2_journal_start_thread(journal);
1334 }
1335 
jbd2_write_superblock(journal_t * journal,int write_flags)1336 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1337 {
1338 	struct buffer_head *bh = journal->j_sb_buffer;
1339 	journal_superblock_t *sb = journal->j_superblock;
1340 	int ret;
1341 
1342 	trace_jbd2_write_superblock(journal, write_flags);
1343 	if (!(journal->j_flags & JBD2_BARRIER))
1344 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1345 	lock_buffer(bh);
1346 	if (buffer_write_io_error(bh)) {
1347 		/*
1348 		 * Oh, dear.  A previous attempt to write the journal
1349 		 * superblock failed.  This could happen because the
1350 		 * USB device was yanked out.  Or it could happen to
1351 		 * be a transient write error and maybe the block will
1352 		 * be remapped.  Nothing we can do but to retry the
1353 		 * write and hope for the best.
1354 		 */
1355 		printk(KERN_ERR "JBD2: previous I/O error detected "
1356 		       "for journal superblock update for %s.\n",
1357 		       journal->j_devname);
1358 		clear_buffer_write_io_error(bh);
1359 		set_buffer_uptodate(bh);
1360 	}
1361 	jbd2_superblock_csum_set(journal, sb);
1362 	get_bh(bh);
1363 	bh->b_end_io = end_buffer_write_sync;
1364 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1365 	wait_on_buffer(bh);
1366 	if (buffer_write_io_error(bh)) {
1367 		clear_buffer_write_io_error(bh);
1368 		set_buffer_uptodate(bh);
1369 		ret = -EIO;
1370 	}
1371 	if (ret) {
1372 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1373 		       "journal superblock for %s.\n", ret,
1374 		       journal->j_devname);
1375 		jbd2_journal_abort(journal, ret);
1376 	}
1377 
1378 	return ret;
1379 }
1380 
1381 /**
1382  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1383  * @journal: The journal to update.
1384  * @tail_tid: TID of the new transaction at the tail of the log
1385  * @tail_block: The first block of the transaction at the tail of the log
1386  * @write_op: With which operation should we write the journal sb
1387  *
1388  * Update a journal's superblock information about log tail and write it to
1389  * disk, waiting for the IO to complete.
1390  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1391 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1392 				     unsigned long tail_block, int write_op)
1393 {
1394 	journal_superblock_t *sb = journal->j_superblock;
1395 	int ret;
1396 
1397 	if (is_journal_aborted(journal))
1398 		return -EIO;
1399 
1400 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1401 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1402 		  tail_block, tail_tid);
1403 
1404 	sb->s_sequence = cpu_to_be32(tail_tid);
1405 	sb->s_start    = cpu_to_be32(tail_block);
1406 
1407 	ret = jbd2_write_superblock(journal, write_op);
1408 	if (ret)
1409 		goto out;
1410 
1411 	/* Log is no longer empty */
1412 	write_lock(&journal->j_state_lock);
1413 	WARN_ON(!sb->s_sequence);
1414 	journal->j_flags &= ~JBD2_FLUSHED;
1415 	write_unlock(&journal->j_state_lock);
1416 
1417 out:
1418 	return ret;
1419 }
1420 
1421 /**
1422  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1423  * @journal: The journal to update.
1424  * @write_op: With which operation should we write the journal sb
1425  *
1426  * Update a journal's dynamic superblock fields to show that journal is empty.
1427  * Write updated superblock to disk waiting for IO to complete.
1428  */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1429 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1430 {
1431 	journal_superblock_t *sb = journal->j_superblock;
1432 
1433 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1434 	read_lock(&journal->j_state_lock);
1435 	/* Is it already empty? */
1436 	if (sb->s_start == 0) {
1437 		read_unlock(&journal->j_state_lock);
1438 		return;
1439 	}
1440 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1441 		  journal->j_tail_sequence);
1442 
1443 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1444 	sb->s_start    = cpu_to_be32(0);
1445 	read_unlock(&journal->j_state_lock);
1446 
1447 	jbd2_write_superblock(journal, write_op);
1448 
1449 	/* Log is no longer empty */
1450 	write_lock(&journal->j_state_lock);
1451 	journal->j_flags |= JBD2_FLUSHED;
1452 	write_unlock(&journal->j_state_lock);
1453 }
1454 
1455 
1456 /**
1457  * jbd2_journal_update_sb_errno() - Update error in the journal.
1458  * @journal: The journal to update.
1459  *
1460  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1461  * to complete.
1462  */
jbd2_journal_update_sb_errno(journal_t * journal)1463 void jbd2_journal_update_sb_errno(journal_t *journal)
1464 {
1465 	journal_superblock_t *sb = journal->j_superblock;
1466 
1467 	read_lock(&journal->j_state_lock);
1468 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1469 		  journal->j_errno);
1470 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1471 	read_unlock(&journal->j_state_lock);
1472 
1473 	jbd2_write_superblock(journal, WRITE_FUA);
1474 }
1475 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1476 
1477 /*
1478  * Read the superblock for a given journal, performing initial
1479  * validation of the format.
1480  */
journal_get_superblock(journal_t * journal)1481 static int journal_get_superblock(journal_t *journal)
1482 {
1483 	struct buffer_head *bh;
1484 	journal_superblock_t *sb;
1485 	int err = -EIO;
1486 
1487 	bh = journal->j_sb_buffer;
1488 
1489 	J_ASSERT(bh != NULL);
1490 	if (!buffer_uptodate(bh)) {
1491 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1492 		wait_on_buffer(bh);
1493 		if (!buffer_uptodate(bh)) {
1494 			printk(KERN_ERR
1495 				"JBD2: IO error reading journal superblock\n");
1496 			goto out;
1497 		}
1498 	}
1499 
1500 	if (buffer_verified(bh))
1501 		return 0;
1502 
1503 	sb = journal->j_superblock;
1504 
1505 	err = -EINVAL;
1506 
1507 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1508 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1509 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1510 		goto out;
1511 	}
1512 
1513 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1514 	case JBD2_SUPERBLOCK_V1:
1515 		journal->j_format_version = 1;
1516 		break;
1517 	case JBD2_SUPERBLOCK_V2:
1518 		journal->j_format_version = 2;
1519 		break;
1520 	default:
1521 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1522 		goto out;
1523 	}
1524 
1525 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1526 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1527 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1528 		printk(KERN_WARNING "JBD2: journal file too short\n");
1529 		goto out;
1530 	}
1531 
1532 	if (be32_to_cpu(sb->s_first) == 0 ||
1533 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1534 		printk(KERN_WARNING
1535 			"JBD2: Invalid start block of journal: %u\n",
1536 			be32_to_cpu(sb->s_first));
1537 		goto out;
1538 	}
1539 
1540 	if (jbd2_has_feature_csum2(journal) &&
1541 	    jbd2_has_feature_csum3(journal)) {
1542 		/* Can't have checksum v2 and v3 at the same time! */
1543 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1544 		       "at the same time!\n");
1545 		goto out;
1546 	}
1547 
1548 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1549 	    jbd2_has_feature_checksum(journal)) {
1550 		/* Can't have checksum v1 and v2 on at the same time! */
1551 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1552 		       "at the same time!\n");
1553 		goto out;
1554 	}
1555 
1556 	if (!jbd2_verify_csum_type(journal, sb)) {
1557 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1558 		goto out;
1559 	}
1560 
1561 	/* Load the checksum driver */
1562 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1563 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1564 		if (IS_ERR(journal->j_chksum_driver)) {
1565 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1566 			err = PTR_ERR(journal->j_chksum_driver);
1567 			journal->j_chksum_driver = NULL;
1568 			goto out;
1569 		}
1570 	}
1571 
1572 	/* Check superblock checksum */
1573 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1574 		printk(KERN_ERR "JBD2: journal checksum error\n");
1575 		err = -EFSBADCRC;
1576 		goto out;
1577 	}
1578 
1579 	/* Precompute checksum seed for all metadata */
1580 	if (jbd2_journal_has_csum_v2or3(journal))
1581 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1582 						   sizeof(sb->s_uuid));
1583 
1584 	set_buffer_verified(bh);
1585 
1586 	return 0;
1587 
1588 out:
1589 	journal_fail_superblock(journal);
1590 	return err;
1591 }
1592 
1593 /*
1594  * Load the on-disk journal superblock and read the key fields into the
1595  * journal_t.
1596  */
1597 
load_superblock(journal_t * journal)1598 static int load_superblock(journal_t *journal)
1599 {
1600 	int err;
1601 	journal_superblock_t *sb;
1602 
1603 	err = journal_get_superblock(journal);
1604 	if (err)
1605 		return err;
1606 
1607 	sb = journal->j_superblock;
1608 
1609 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1610 	journal->j_tail = be32_to_cpu(sb->s_start);
1611 	journal->j_first = be32_to_cpu(sb->s_first);
1612 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1613 	journal->j_errno = be32_to_cpu(sb->s_errno);
1614 
1615 	return 0;
1616 }
1617 
1618 
1619 /**
1620  * int jbd2_journal_load() - Read journal from disk.
1621  * @journal: Journal to act on.
1622  *
1623  * Given a journal_t structure which tells us which disk blocks contain
1624  * a journal, read the journal from disk to initialise the in-memory
1625  * structures.
1626  */
jbd2_journal_load(journal_t * journal)1627 int jbd2_journal_load(journal_t *journal)
1628 {
1629 	int err;
1630 	journal_superblock_t *sb;
1631 
1632 	err = load_superblock(journal);
1633 	if (err)
1634 		return err;
1635 
1636 	sb = journal->j_superblock;
1637 	/* If this is a V2 superblock, then we have to check the
1638 	 * features flags on it. */
1639 
1640 	if (journal->j_format_version >= 2) {
1641 		if ((sb->s_feature_ro_compat &
1642 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1643 		    (sb->s_feature_incompat &
1644 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1645 			printk(KERN_WARNING
1646 				"JBD2: Unrecognised features on journal\n");
1647 			return -EINVAL;
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * Create a slab for this blocksize
1653 	 */
1654 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1655 	if (err)
1656 		return err;
1657 
1658 	/* Let the recovery code check whether it needs to recover any
1659 	 * data from the journal. */
1660 	if (jbd2_journal_recover(journal))
1661 		goto recovery_error;
1662 
1663 	if (journal->j_failed_commit) {
1664 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1665 		       "is corrupt.\n", journal->j_failed_commit,
1666 		       journal->j_devname);
1667 		return -EFSCORRUPTED;
1668 	}
1669 
1670 	/* OK, we've finished with the dynamic journal bits:
1671 	 * reinitialise the dynamic contents of the superblock in memory
1672 	 * and reset them on disk. */
1673 	if (journal_reset(journal))
1674 		goto recovery_error;
1675 
1676 	journal->j_flags &= ~JBD2_ABORT;
1677 	journal->j_flags |= JBD2_LOADED;
1678 	return 0;
1679 
1680 recovery_error:
1681 	printk(KERN_WARNING "JBD2: recovery failed\n");
1682 	return -EIO;
1683 }
1684 
1685 /**
1686  * void jbd2_journal_destroy() - Release a journal_t structure.
1687  * @journal: Journal to act on.
1688  *
1689  * Release a journal_t structure once it is no longer in use by the
1690  * journaled object.
1691  * Return <0 if we couldn't clean up the journal.
1692  */
jbd2_journal_destroy(journal_t * journal)1693 int jbd2_journal_destroy(journal_t *journal)
1694 {
1695 	int err = 0;
1696 
1697 	/* Wait for the commit thread to wake up and die. */
1698 	journal_kill_thread(journal);
1699 
1700 	/* Force a final log commit */
1701 	if (journal->j_running_transaction)
1702 		jbd2_journal_commit_transaction(journal);
1703 
1704 	/* Force any old transactions to disk */
1705 
1706 	/* Totally anal locking here... */
1707 	spin_lock(&journal->j_list_lock);
1708 	while (journal->j_checkpoint_transactions != NULL) {
1709 		spin_unlock(&journal->j_list_lock);
1710 		mutex_lock(&journal->j_checkpoint_mutex);
1711 		err = jbd2_log_do_checkpoint(journal);
1712 		mutex_unlock(&journal->j_checkpoint_mutex);
1713 		/*
1714 		 * If checkpointing failed, just free the buffers to avoid
1715 		 * looping forever
1716 		 */
1717 		if (err) {
1718 			jbd2_journal_destroy_checkpoint(journal);
1719 			spin_lock(&journal->j_list_lock);
1720 			break;
1721 		}
1722 		spin_lock(&journal->j_list_lock);
1723 	}
1724 
1725 	J_ASSERT(journal->j_running_transaction == NULL);
1726 	J_ASSERT(journal->j_committing_transaction == NULL);
1727 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1728 	spin_unlock(&journal->j_list_lock);
1729 
1730 	if (journal->j_sb_buffer) {
1731 		if (!is_journal_aborted(journal)) {
1732 			mutex_lock(&journal->j_checkpoint_mutex);
1733 
1734 			write_lock(&journal->j_state_lock);
1735 			journal->j_tail_sequence =
1736 				++journal->j_transaction_sequence;
1737 			write_unlock(&journal->j_state_lock);
1738 
1739 			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1740 			mutex_unlock(&journal->j_checkpoint_mutex);
1741 		} else
1742 			err = -EIO;
1743 		brelse(journal->j_sb_buffer);
1744 	}
1745 
1746 	if (journal->j_proc_entry)
1747 		jbd2_stats_proc_exit(journal);
1748 	iput(journal->j_inode);
1749 	if (journal->j_revoke)
1750 		jbd2_journal_destroy_revoke(journal);
1751 	if (journal->j_chksum_driver)
1752 		crypto_free_shash(journal->j_chksum_driver);
1753 	kfree(journal->j_wbuf);
1754 	kfree(journal);
1755 
1756 	return err;
1757 }
1758 
1759 
1760 /**
1761  *int jbd2_journal_check_used_features () - Check if features specified are used.
1762  * @journal: Journal to check.
1763  * @compat: bitmask of compatible features
1764  * @ro: bitmask of features that force read-only mount
1765  * @incompat: bitmask of incompatible features
1766  *
1767  * Check whether the journal uses all of a given set of
1768  * features.  Return true (non-zero) if it does.
1769  **/
1770 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1771 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1772 				 unsigned long ro, unsigned long incompat)
1773 {
1774 	journal_superblock_t *sb;
1775 
1776 	if (!compat && !ro && !incompat)
1777 		return 1;
1778 	/* Load journal superblock if it is not loaded yet. */
1779 	if (journal->j_format_version == 0 &&
1780 	    journal_get_superblock(journal) != 0)
1781 		return 0;
1782 	if (journal->j_format_version == 1)
1783 		return 0;
1784 
1785 	sb = journal->j_superblock;
1786 
1787 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1788 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1789 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1790 		return 1;
1791 
1792 	return 0;
1793 }
1794 
1795 /**
1796  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1797  * @journal: Journal to check.
1798  * @compat: bitmask of compatible features
1799  * @ro: bitmask of features that force read-only mount
1800  * @incompat: bitmask of incompatible features
1801  *
1802  * Check whether the journaling code supports the use of
1803  * all of a given set of features on this journal.  Return true
1804  * (non-zero) if it can. */
1805 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1806 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1807 				      unsigned long ro, unsigned long incompat)
1808 {
1809 	if (!compat && !ro && !incompat)
1810 		return 1;
1811 
1812 	/* We can support any known requested features iff the
1813 	 * superblock is in version 2.  Otherwise we fail to support any
1814 	 * extended sb features. */
1815 
1816 	if (journal->j_format_version != 2)
1817 		return 0;
1818 
1819 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1820 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1821 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1822 		return 1;
1823 
1824 	return 0;
1825 }
1826 
1827 /**
1828  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1829  * @journal: Journal to act on.
1830  * @compat: bitmask of compatible features
1831  * @ro: bitmask of features that force read-only mount
1832  * @incompat: bitmask of incompatible features
1833  *
1834  * Mark a given journal feature as present on the
1835  * superblock.  Returns true if the requested features could be set.
1836  *
1837  */
1838 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1839 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1840 			  unsigned long ro, unsigned long incompat)
1841 {
1842 #define INCOMPAT_FEATURE_ON(f) \
1843 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1844 #define COMPAT_FEATURE_ON(f) \
1845 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1846 	journal_superblock_t *sb;
1847 
1848 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1849 		return 1;
1850 
1851 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1852 		return 0;
1853 
1854 	/* If enabling v2 checksums, turn on v3 instead */
1855 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1856 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1857 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1858 	}
1859 
1860 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1861 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1862 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1863 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1864 
1865 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1866 		  compat, ro, incompat);
1867 
1868 	sb = journal->j_superblock;
1869 
1870 	/* If enabling v3 checksums, update superblock */
1871 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1872 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1873 		sb->s_feature_compat &=
1874 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1875 
1876 		/* Load the checksum driver */
1877 		if (journal->j_chksum_driver == NULL) {
1878 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1879 								      0, 0);
1880 			if (IS_ERR(journal->j_chksum_driver)) {
1881 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1882 				       "driver.\n");
1883 				journal->j_chksum_driver = NULL;
1884 				return 0;
1885 			}
1886 
1887 			/* Precompute checksum seed for all metadata */
1888 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1889 							   sb->s_uuid,
1890 							   sizeof(sb->s_uuid));
1891 		}
1892 	}
1893 
1894 	/* If enabling v1 checksums, downgrade superblock */
1895 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1896 		sb->s_feature_incompat &=
1897 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1898 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1899 
1900 	sb->s_feature_compat    |= cpu_to_be32(compat);
1901 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1902 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1903 
1904 	return 1;
1905 #undef COMPAT_FEATURE_ON
1906 #undef INCOMPAT_FEATURE_ON
1907 }
1908 
1909 /*
1910  * jbd2_journal_clear_features () - Clear a given journal feature in the
1911  * 				    superblock
1912  * @journal: Journal to act on.
1913  * @compat: bitmask of compatible features
1914  * @ro: bitmask of features that force read-only mount
1915  * @incompat: bitmask of incompatible features
1916  *
1917  * Clear a given journal feature as present on the
1918  * superblock.
1919  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1920 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1921 				unsigned long ro, unsigned long incompat)
1922 {
1923 	journal_superblock_t *sb;
1924 
1925 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1926 		  compat, ro, incompat);
1927 
1928 	sb = journal->j_superblock;
1929 
1930 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1931 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1932 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1933 }
1934 EXPORT_SYMBOL(jbd2_journal_clear_features);
1935 
1936 /**
1937  * int jbd2_journal_flush () - Flush journal
1938  * @journal: Journal to act on.
1939  *
1940  * Flush all data for a given journal to disk and empty the journal.
1941  * Filesystems can use this when remounting readonly to ensure that
1942  * recovery does not need to happen on remount.
1943  */
1944 
jbd2_journal_flush(journal_t * journal)1945 int jbd2_journal_flush(journal_t *journal)
1946 {
1947 	int err = 0;
1948 	transaction_t *transaction = NULL;
1949 
1950 	write_lock(&journal->j_state_lock);
1951 
1952 	/* Force everything buffered to the log... */
1953 	if (journal->j_running_transaction) {
1954 		transaction = journal->j_running_transaction;
1955 		__jbd2_log_start_commit(journal, transaction->t_tid);
1956 	} else if (journal->j_committing_transaction)
1957 		transaction = journal->j_committing_transaction;
1958 
1959 	/* Wait for the log commit to complete... */
1960 	if (transaction) {
1961 		tid_t tid = transaction->t_tid;
1962 
1963 		write_unlock(&journal->j_state_lock);
1964 		jbd2_log_wait_commit(journal, tid);
1965 	} else {
1966 		write_unlock(&journal->j_state_lock);
1967 	}
1968 
1969 	/* ...and flush everything in the log out to disk. */
1970 	spin_lock(&journal->j_list_lock);
1971 	while (!err && journal->j_checkpoint_transactions != NULL) {
1972 		spin_unlock(&journal->j_list_lock);
1973 		mutex_lock(&journal->j_checkpoint_mutex);
1974 		err = jbd2_log_do_checkpoint(journal);
1975 		mutex_unlock(&journal->j_checkpoint_mutex);
1976 		spin_lock(&journal->j_list_lock);
1977 	}
1978 	spin_unlock(&journal->j_list_lock);
1979 
1980 	if (is_journal_aborted(journal))
1981 		return -EIO;
1982 
1983 	mutex_lock(&journal->j_checkpoint_mutex);
1984 	if (!err) {
1985 		err = jbd2_cleanup_journal_tail(journal);
1986 		if (err < 0) {
1987 			mutex_unlock(&journal->j_checkpoint_mutex);
1988 			goto out;
1989 		}
1990 		err = 0;
1991 	}
1992 
1993 	/* Finally, mark the journal as really needing no recovery.
1994 	 * This sets s_start==0 in the underlying superblock, which is
1995 	 * the magic code for a fully-recovered superblock.  Any future
1996 	 * commits of data to the journal will restore the current
1997 	 * s_start value. */
1998 	jbd2_mark_journal_empty(journal, WRITE_FUA);
1999 	mutex_unlock(&journal->j_checkpoint_mutex);
2000 	write_lock(&journal->j_state_lock);
2001 	J_ASSERT(!journal->j_running_transaction);
2002 	J_ASSERT(!journal->j_committing_transaction);
2003 	J_ASSERT(!journal->j_checkpoint_transactions);
2004 	J_ASSERT(journal->j_head == journal->j_tail);
2005 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2006 	write_unlock(&journal->j_state_lock);
2007 out:
2008 	return err;
2009 }
2010 
2011 /**
2012  * int jbd2_journal_wipe() - Wipe journal contents
2013  * @journal: Journal to act on.
2014  * @write: flag (see below)
2015  *
2016  * Wipe out all of the contents of a journal, safely.  This will produce
2017  * a warning if the journal contains any valid recovery information.
2018  * Must be called between journal_init_*() and jbd2_journal_load().
2019  *
2020  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2021  * we merely suppress recovery.
2022  */
2023 
jbd2_journal_wipe(journal_t * journal,int write)2024 int jbd2_journal_wipe(journal_t *journal, int write)
2025 {
2026 	int err = 0;
2027 
2028 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2029 
2030 	err = load_superblock(journal);
2031 	if (err)
2032 		return err;
2033 
2034 	if (!journal->j_tail)
2035 		goto no_recovery;
2036 
2037 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2038 		write ? "Clearing" : "Ignoring");
2039 
2040 	err = jbd2_journal_skip_recovery(journal);
2041 	if (write) {
2042 		/* Lock to make assertions happy... */
2043 		mutex_lock(&journal->j_checkpoint_mutex);
2044 		jbd2_mark_journal_empty(journal, WRITE_FUA);
2045 		mutex_unlock(&journal->j_checkpoint_mutex);
2046 	}
2047 
2048  no_recovery:
2049 	return err;
2050 }
2051 
2052 /*
2053  * Journal abort has very specific semantics, which we describe
2054  * for journal abort.
2055  *
2056  * Two internal functions, which provide abort to the jbd layer
2057  * itself are here.
2058  */
2059 
2060 /*
2061  * Quick version for internal journal use (doesn't lock the journal).
2062  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2063  * and don't attempt to make any other journal updates.
2064  */
__jbd2_journal_abort_hard(journal_t * journal)2065 void __jbd2_journal_abort_hard(journal_t *journal)
2066 {
2067 	transaction_t *transaction;
2068 
2069 	if (journal->j_flags & JBD2_ABORT)
2070 		return;
2071 
2072 	printk(KERN_ERR "Aborting journal on device %s.\n",
2073 	       journal->j_devname);
2074 
2075 	write_lock(&journal->j_state_lock);
2076 	journal->j_flags |= JBD2_ABORT;
2077 	transaction = journal->j_running_transaction;
2078 	if (transaction)
2079 		__jbd2_log_start_commit(journal, transaction->t_tid);
2080 	write_unlock(&journal->j_state_lock);
2081 }
2082 
2083 /* Soft abort: record the abort error status in the journal superblock,
2084  * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2085 static void __journal_abort_soft (journal_t *journal, int errno)
2086 {
2087 	if (journal->j_flags & JBD2_ABORT)
2088 		return;
2089 
2090 	if (!journal->j_errno)
2091 		journal->j_errno = errno;
2092 
2093 	__jbd2_journal_abort_hard(journal);
2094 
2095 	if (errno) {
2096 		jbd2_journal_update_sb_errno(journal);
2097 		write_lock(&journal->j_state_lock);
2098 		journal->j_flags |= JBD2_REC_ERR;
2099 		write_unlock(&journal->j_state_lock);
2100 	}
2101 }
2102 
2103 /**
2104  * void jbd2_journal_abort () - Shutdown the journal immediately.
2105  * @journal: the journal to shutdown.
2106  * @errno:   an error number to record in the journal indicating
2107  *           the reason for the shutdown.
2108  *
2109  * Perform a complete, immediate shutdown of the ENTIRE
2110  * journal (not of a single transaction).  This operation cannot be
2111  * undone without closing and reopening the journal.
2112  *
2113  * The jbd2_journal_abort function is intended to support higher level error
2114  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2115  * mode.
2116  *
2117  * Journal abort has very specific semantics.  Any existing dirty,
2118  * unjournaled buffers in the main filesystem will still be written to
2119  * disk by bdflush, but the journaling mechanism will be suspended
2120  * immediately and no further transaction commits will be honoured.
2121  *
2122  * Any dirty, journaled buffers will be written back to disk without
2123  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2124  * filesystem, but we _do_ attempt to leave as much data as possible
2125  * behind for fsck to use for cleanup.
2126  *
2127  * Any attempt to get a new transaction handle on a journal which is in
2128  * ABORT state will just result in an -EROFS error return.  A
2129  * jbd2_journal_stop on an existing handle will return -EIO if we have
2130  * entered abort state during the update.
2131  *
2132  * Recursive transactions are not disturbed by journal abort until the
2133  * final jbd2_journal_stop, which will receive the -EIO error.
2134  *
2135  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2136  * which will be recorded (if possible) in the journal superblock.  This
2137  * allows a client to record failure conditions in the middle of a
2138  * transaction without having to complete the transaction to record the
2139  * failure to disk.  ext3_error, for example, now uses this
2140  * functionality.
2141  *
2142  * Errors which originate from within the journaling layer will NOT
2143  * supply an errno; a null errno implies that absolutely no further
2144  * writes are done to the journal (unless there are any already in
2145  * progress).
2146  *
2147  */
2148 
jbd2_journal_abort(journal_t * journal,int errno)2149 void jbd2_journal_abort(journal_t *journal, int errno)
2150 {
2151 	__journal_abort_soft(journal, errno);
2152 }
2153 
2154 /**
2155  * int jbd2_journal_errno () - returns the journal's error state.
2156  * @journal: journal to examine.
2157  *
2158  * This is the errno number set with jbd2_journal_abort(), the last
2159  * time the journal was mounted - if the journal was stopped
2160  * without calling abort this will be 0.
2161  *
2162  * If the journal has been aborted on this mount time -EROFS will
2163  * be returned.
2164  */
jbd2_journal_errno(journal_t * journal)2165 int jbd2_journal_errno(journal_t *journal)
2166 {
2167 	int err;
2168 
2169 	read_lock(&journal->j_state_lock);
2170 	if (journal->j_flags & JBD2_ABORT)
2171 		err = -EROFS;
2172 	else
2173 		err = journal->j_errno;
2174 	read_unlock(&journal->j_state_lock);
2175 	return err;
2176 }
2177 
2178 /**
2179  * int jbd2_journal_clear_err () - clears the journal's error state
2180  * @journal: journal to act on.
2181  *
2182  * An error must be cleared or acked to take a FS out of readonly
2183  * mode.
2184  */
jbd2_journal_clear_err(journal_t * journal)2185 int jbd2_journal_clear_err(journal_t *journal)
2186 {
2187 	int err = 0;
2188 
2189 	write_lock(&journal->j_state_lock);
2190 	if (journal->j_flags & JBD2_ABORT)
2191 		err = -EROFS;
2192 	else
2193 		journal->j_errno = 0;
2194 	write_unlock(&journal->j_state_lock);
2195 	return err;
2196 }
2197 
2198 /**
2199  * void jbd2_journal_ack_err() - Ack journal err.
2200  * @journal: journal to act on.
2201  *
2202  * An error must be cleared or acked to take a FS out of readonly
2203  * mode.
2204  */
jbd2_journal_ack_err(journal_t * journal)2205 void jbd2_journal_ack_err(journal_t *journal)
2206 {
2207 	write_lock(&journal->j_state_lock);
2208 	if (journal->j_errno)
2209 		journal->j_flags |= JBD2_ACK_ERR;
2210 	write_unlock(&journal->j_state_lock);
2211 }
2212 
jbd2_journal_blocks_per_page(struct inode * inode)2213 int jbd2_journal_blocks_per_page(struct inode *inode)
2214 {
2215 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2216 }
2217 
2218 /*
2219  * helper functions to deal with 32 or 64bit block numbers.
2220  */
journal_tag_bytes(journal_t * journal)2221 size_t journal_tag_bytes(journal_t *journal)
2222 {
2223 	size_t sz;
2224 
2225 	if (jbd2_has_feature_csum3(journal))
2226 		return sizeof(journal_block_tag3_t);
2227 
2228 	sz = sizeof(journal_block_tag_t);
2229 
2230 	if (jbd2_has_feature_csum2(journal))
2231 		sz += sizeof(__u16);
2232 
2233 	if (jbd2_has_feature_64bit(journal))
2234 		return sz;
2235 	else
2236 		return sz - sizeof(__u32);
2237 }
2238 
2239 /*
2240  * JBD memory management
2241  *
2242  * These functions are used to allocate block-sized chunks of memory
2243  * used for making copies of buffer_head data.  Very often it will be
2244  * page-sized chunks of data, but sometimes it will be in
2245  * sub-page-size chunks.  (For example, 16k pages on Power systems
2246  * with a 4k block file system.)  For blocks smaller than a page, we
2247  * use a SLAB allocator.  There are slab caches for each block size,
2248  * which are allocated at mount time, if necessary, and we only free
2249  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2250  * this reason we don't need to a mutex to protect access to
2251  * jbd2_slab[] allocating or releasing memory; only in
2252  * jbd2_journal_create_slab().
2253  */
2254 #define JBD2_MAX_SLABS 8
2255 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2256 
2257 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2258 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2259 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2260 };
2261 
2262 
jbd2_journal_destroy_slabs(void)2263 static void jbd2_journal_destroy_slabs(void)
2264 {
2265 	int i;
2266 
2267 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2268 		if (jbd2_slab[i])
2269 			kmem_cache_destroy(jbd2_slab[i]);
2270 		jbd2_slab[i] = NULL;
2271 	}
2272 }
2273 
jbd2_journal_create_slab(size_t size)2274 static int jbd2_journal_create_slab(size_t size)
2275 {
2276 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2277 	int i = order_base_2(size) - 10;
2278 	size_t slab_size;
2279 
2280 	if (size == PAGE_SIZE)
2281 		return 0;
2282 
2283 	if (i >= JBD2_MAX_SLABS)
2284 		return -EINVAL;
2285 
2286 	if (unlikely(i < 0))
2287 		i = 0;
2288 	mutex_lock(&jbd2_slab_create_mutex);
2289 	if (jbd2_slab[i]) {
2290 		mutex_unlock(&jbd2_slab_create_mutex);
2291 		return 0;	/* Already created */
2292 	}
2293 
2294 	slab_size = 1 << (i+10);
2295 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2296 					 slab_size, 0, NULL);
2297 	mutex_unlock(&jbd2_slab_create_mutex);
2298 	if (!jbd2_slab[i]) {
2299 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2300 		return -ENOMEM;
2301 	}
2302 	return 0;
2303 }
2304 
get_slab(size_t size)2305 static struct kmem_cache *get_slab(size_t size)
2306 {
2307 	int i = order_base_2(size) - 10;
2308 
2309 	BUG_ON(i >= JBD2_MAX_SLABS);
2310 	if (unlikely(i < 0))
2311 		i = 0;
2312 	BUG_ON(jbd2_slab[i] == NULL);
2313 	return jbd2_slab[i];
2314 }
2315 
jbd2_alloc(size_t size,gfp_t flags)2316 void *jbd2_alloc(size_t size, gfp_t flags)
2317 {
2318 	void *ptr;
2319 
2320 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2321 
2322 	if (size < PAGE_SIZE)
2323 		ptr = kmem_cache_alloc(get_slab(size), flags);
2324 	else
2325 		ptr = (void *)__get_free_pages(flags, get_order(size));
2326 
2327 	/* Check alignment; SLUB has gotten this wrong in the past,
2328 	 * and this can lead to user data corruption! */
2329 	BUG_ON(((unsigned long) ptr) & (size-1));
2330 
2331 	return ptr;
2332 }
2333 
jbd2_free(void * ptr,size_t size)2334 void jbd2_free(void *ptr, size_t size)
2335 {
2336 	if (size < PAGE_SIZE)
2337 		kmem_cache_free(get_slab(size), ptr);
2338 	else
2339 		free_pages((unsigned long)ptr, get_order(size));
2340 };
2341 
2342 /*
2343  * Journal_head storage management
2344  */
2345 static struct kmem_cache *jbd2_journal_head_cache;
2346 #ifdef CONFIG_JBD2_DEBUG
2347 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2348 #endif
2349 
jbd2_journal_init_journal_head_cache(void)2350 static int jbd2_journal_init_journal_head_cache(void)
2351 {
2352 	int retval;
2353 
2354 	J_ASSERT(jbd2_journal_head_cache == NULL);
2355 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2356 				sizeof(struct journal_head),
2357 				0,		/* offset */
2358 				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2359 				NULL);		/* ctor */
2360 	retval = 0;
2361 	if (!jbd2_journal_head_cache) {
2362 		retval = -ENOMEM;
2363 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2364 	}
2365 	return retval;
2366 }
2367 
jbd2_journal_destroy_journal_head_cache(void)2368 static void jbd2_journal_destroy_journal_head_cache(void)
2369 {
2370 	if (jbd2_journal_head_cache) {
2371 		kmem_cache_destroy(jbd2_journal_head_cache);
2372 		jbd2_journal_head_cache = NULL;
2373 	}
2374 }
2375 
2376 /*
2377  * journal_head splicing and dicing
2378  */
journal_alloc_journal_head(void)2379 static struct journal_head *journal_alloc_journal_head(void)
2380 {
2381 	struct journal_head *ret;
2382 
2383 #ifdef CONFIG_JBD2_DEBUG
2384 	atomic_inc(&nr_journal_heads);
2385 #endif
2386 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2387 	if (!ret) {
2388 		jbd_debug(1, "out of memory for journal_head\n");
2389 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2390 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2391 				GFP_NOFS | __GFP_NOFAIL);
2392 	}
2393 	return ret;
2394 }
2395 
journal_free_journal_head(struct journal_head * jh)2396 static void journal_free_journal_head(struct journal_head *jh)
2397 {
2398 #ifdef CONFIG_JBD2_DEBUG
2399 	atomic_dec(&nr_journal_heads);
2400 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2401 #endif
2402 	kmem_cache_free(jbd2_journal_head_cache, jh);
2403 }
2404 
2405 /*
2406  * A journal_head is attached to a buffer_head whenever JBD has an
2407  * interest in the buffer.
2408  *
2409  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2410  * is set.  This bit is tested in core kernel code where we need to take
2411  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2412  * there.
2413  *
2414  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2415  *
2416  * When a buffer has its BH_JBD bit set it is immune from being released by
2417  * core kernel code, mainly via ->b_count.
2418  *
2419  * A journal_head is detached from its buffer_head when the journal_head's
2420  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2421  * transaction (b_cp_transaction) hold their references to b_jcount.
2422  *
2423  * Various places in the kernel want to attach a journal_head to a buffer_head
2424  * _before_ attaching the journal_head to a transaction.  To protect the
2425  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2426  * journal_head's b_jcount refcount by one.  The caller must call
2427  * jbd2_journal_put_journal_head() to undo this.
2428  *
2429  * So the typical usage would be:
2430  *
2431  *	(Attach a journal_head if needed.  Increments b_jcount)
2432  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2433  *	...
2434  *      (Get another reference for transaction)
2435  *	jbd2_journal_grab_journal_head(bh);
2436  *	jh->b_transaction = xxx;
2437  *	(Put original reference)
2438  *	jbd2_journal_put_journal_head(jh);
2439  */
2440 
2441 /*
2442  * Give a buffer_head a journal_head.
2443  *
2444  * May sleep.
2445  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2446 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2447 {
2448 	struct journal_head *jh;
2449 	struct journal_head *new_jh = NULL;
2450 
2451 repeat:
2452 	if (!buffer_jbd(bh))
2453 		new_jh = journal_alloc_journal_head();
2454 
2455 	jbd_lock_bh_journal_head(bh);
2456 	if (buffer_jbd(bh)) {
2457 		jh = bh2jh(bh);
2458 	} else {
2459 		J_ASSERT_BH(bh,
2460 			(atomic_read(&bh->b_count) > 0) ||
2461 			(bh->b_page && bh->b_page->mapping));
2462 
2463 		if (!new_jh) {
2464 			jbd_unlock_bh_journal_head(bh);
2465 			goto repeat;
2466 		}
2467 
2468 		jh = new_jh;
2469 		new_jh = NULL;		/* We consumed it */
2470 		set_buffer_jbd(bh);
2471 		bh->b_private = jh;
2472 		jh->b_bh = bh;
2473 		get_bh(bh);
2474 		BUFFER_TRACE(bh, "added journal_head");
2475 	}
2476 	jh->b_jcount++;
2477 	jbd_unlock_bh_journal_head(bh);
2478 	if (new_jh)
2479 		journal_free_journal_head(new_jh);
2480 	return bh->b_private;
2481 }
2482 
2483 /*
2484  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2485  * having a journal_head, return NULL
2486  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2487 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2488 {
2489 	struct journal_head *jh = NULL;
2490 
2491 	jbd_lock_bh_journal_head(bh);
2492 	if (buffer_jbd(bh)) {
2493 		jh = bh2jh(bh);
2494 		jh->b_jcount++;
2495 	}
2496 	jbd_unlock_bh_journal_head(bh);
2497 	return jh;
2498 }
2499 
__journal_remove_journal_head(struct buffer_head * bh)2500 static void __journal_remove_journal_head(struct buffer_head *bh)
2501 {
2502 	struct journal_head *jh = bh2jh(bh);
2503 
2504 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2505 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2506 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2507 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2508 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2509 	J_ASSERT_BH(bh, buffer_jbd(bh));
2510 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2511 	BUFFER_TRACE(bh, "remove journal_head");
2512 	if (jh->b_frozen_data) {
2513 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2514 		jbd2_free(jh->b_frozen_data, bh->b_size);
2515 	}
2516 	if (jh->b_committed_data) {
2517 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2518 		jbd2_free(jh->b_committed_data, bh->b_size);
2519 	}
2520 	bh->b_private = NULL;
2521 	jh->b_bh = NULL;	/* debug, really */
2522 	clear_buffer_jbd(bh);
2523 	journal_free_journal_head(jh);
2524 }
2525 
2526 /*
2527  * Drop a reference on the passed journal_head.  If it fell to zero then
2528  * release the journal_head from the buffer_head.
2529  */
jbd2_journal_put_journal_head(struct journal_head * jh)2530 void jbd2_journal_put_journal_head(struct journal_head *jh)
2531 {
2532 	struct buffer_head *bh = jh2bh(jh);
2533 
2534 	jbd_lock_bh_journal_head(bh);
2535 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2536 	--jh->b_jcount;
2537 	if (!jh->b_jcount) {
2538 		__journal_remove_journal_head(bh);
2539 		jbd_unlock_bh_journal_head(bh);
2540 		__brelse(bh);
2541 	} else
2542 		jbd_unlock_bh_journal_head(bh);
2543 }
2544 
2545 /*
2546  * Initialize jbd inode head
2547  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2548 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2549 {
2550 	jinode->i_transaction = NULL;
2551 	jinode->i_next_transaction = NULL;
2552 	jinode->i_vfs_inode = inode;
2553 	jinode->i_flags = 0;
2554 	INIT_LIST_HEAD(&jinode->i_list);
2555 }
2556 
2557 /*
2558  * Function to be called before we start removing inode from memory (i.e.,
2559  * clear_inode() is a fine place to be called from). It removes inode from
2560  * transaction's lists.
2561  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2562 void jbd2_journal_release_jbd_inode(journal_t *journal,
2563 				    struct jbd2_inode *jinode)
2564 {
2565 	if (!journal)
2566 		return;
2567 restart:
2568 	spin_lock(&journal->j_list_lock);
2569 	/* Is commit writing out inode - we have to wait */
2570 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2571 		wait_queue_head_t *wq;
2572 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2573 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2574 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2575 		spin_unlock(&journal->j_list_lock);
2576 		schedule();
2577 		finish_wait(wq, &wait.wait);
2578 		goto restart;
2579 	}
2580 
2581 	if (jinode->i_transaction) {
2582 		list_del(&jinode->i_list);
2583 		jinode->i_transaction = NULL;
2584 	}
2585 	spin_unlock(&journal->j_list_lock);
2586 }
2587 
2588 
2589 #ifdef CONFIG_PROC_FS
2590 
2591 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2592 
jbd2_create_jbd_stats_proc_entry(void)2593 static void __init jbd2_create_jbd_stats_proc_entry(void)
2594 {
2595 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2596 }
2597 
jbd2_remove_jbd_stats_proc_entry(void)2598 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2599 {
2600 	if (proc_jbd2_stats)
2601 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2602 }
2603 
2604 #else
2605 
2606 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2607 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2608 
2609 #endif
2610 
2611 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2612 
jbd2_journal_init_handle_cache(void)2613 static int __init jbd2_journal_init_handle_cache(void)
2614 {
2615 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2616 	if (jbd2_handle_cache == NULL) {
2617 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2618 		return -ENOMEM;
2619 	}
2620 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2621 	if (jbd2_inode_cache == NULL) {
2622 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2623 		kmem_cache_destroy(jbd2_handle_cache);
2624 		return -ENOMEM;
2625 	}
2626 	return 0;
2627 }
2628 
jbd2_journal_destroy_handle_cache(void)2629 static void jbd2_journal_destroy_handle_cache(void)
2630 {
2631 	if (jbd2_handle_cache)
2632 		kmem_cache_destroy(jbd2_handle_cache);
2633 	if (jbd2_inode_cache)
2634 		kmem_cache_destroy(jbd2_inode_cache);
2635 
2636 }
2637 
2638 /*
2639  * Module startup and shutdown
2640  */
2641 
journal_init_caches(void)2642 static int __init journal_init_caches(void)
2643 {
2644 	int ret;
2645 
2646 	ret = jbd2_journal_init_revoke_caches();
2647 	if (ret == 0)
2648 		ret = jbd2_journal_init_journal_head_cache();
2649 	if (ret == 0)
2650 		ret = jbd2_journal_init_handle_cache();
2651 	if (ret == 0)
2652 		ret = jbd2_journal_init_transaction_cache();
2653 	return ret;
2654 }
2655 
jbd2_journal_destroy_caches(void)2656 static void jbd2_journal_destroy_caches(void)
2657 {
2658 	jbd2_journal_destroy_revoke_caches();
2659 	jbd2_journal_destroy_journal_head_cache();
2660 	jbd2_journal_destroy_handle_cache();
2661 	jbd2_journal_destroy_transaction_cache();
2662 	jbd2_journal_destroy_slabs();
2663 }
2664 
journal_init(void)2665 static int __init journal_init(void)
2666 {
2667 	int ret;
2668 
2669 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2670 
2671 	ret = journal_init_caches();
2672 	if (ret == 0) {
2673 		jbd2_create_jbd_stats_proc_entry();
2674 	} else {
2675 		jbd2_journal_destroy_caches();
2676 	}
2677 	return ret;
2678 }
2679 
journal_exit(void)2680 static void __exit journal_exit(void)
2681 {
2682 #ifdef CONFIG_JBD2_DEBUG
2683 	int n = atomic_read(&nr_journal_heads);
2684 	if (n)
2685 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2686 #endif
2687 	jbd2_remove_jbd_stats_proc_entry();
2688 	jbd2_journal_destroy_caches();
2689 }
2690 
2691 MODULE_LICENSE("GPL");
2692 module_init(journal_init);
2693 module_exit(journal_exit);
2694 
2695