• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
jbd2_journal_free_transaction(transaction_t * transaction)60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
wait_transaction_locked(journal_t * journal)149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	jbd2_might_wait_for_commit(journal);
163 	schedule();
164 	finish_wait(&journal->j_wait_transaction_locked, &wait);
165 }
166 
sub_reserved_credits(journal_t * journal,int blocks)167 static void sub_reserved_credits(journal_t *journal, int blocks)
168 {
169 	atomic_sub(blocks, &journal->j_reserved_credits);
170 	wake_up(&journal->j_wait_reserved);
171 }
172 
173 /*
174  * Wait until we can add credits for handle to the running transaction.  Called
175  * with j_state_lock held for reading. Returns 0 if handle joined the running
176  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
177  * caller must retry.
178  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)179 static int add_transaction_credits(journal_t *journal, int blocks,
180 				   int rsv_blocks)
181 {
182 	transaction_t *t = journal->j_running_transaction;
183 	int needed;
184 	int total = blocks + rsv_blocks;
185 
186 	/*
187 	 * If the current transaction is locked down for commit, wait
188 	 * for the lock to be released.
189 	 */
190 	if (t->t_state == T_LOCKED) {
191 		wait_transaction_locked(journal);
192 		return 1;
193 	}
194 
195 	/*
196 	 * If there is not enough space left in the log to write all
197 	 * potential buffers requested by this operation, we need to
198 	 * stall pending a log checkpoint to free some more log space.
199 	 */
200 	needed = atomic_add_return(total, &t->t_outstanding_credits);
201 	if (needed > journal->j_max_transaction_buffers) {
202 		/*
203 		 * If the current transaction is already too large,
204 		 * then start to commit it: we can then go back and
205 		 * attach this handle to a new transaction.
206 		 */
207 		atomic_sub(total, &t->t_outstanding_credits);
208 
209 		/*
210 		 * Is the number of reserved credits in the current transaction too
211 		 * big to fit this handle? Wait until reserved credits are freed.
212 		 */
213 		if (atomic_read(&journal->j_reserved_credits) + total >
214 		    journal->j_max_transaction_buffers) {
215 			read_unlock(&journal->j_state_lock);
216 			jbd2_might_wait_for_commit(journal);
217 			wait_event(journal->j_wait_reserved,
218 				   atomic_read(&journal->j_reserved_credits) + total <=
219 				   journal->j_max_transaction_buffers);
220 			return 1;
221 		}
222 
223 		wait_transaction_locked(journal);
224 		return 1;
225 	}
226 
227 	/*
228 	 * The commit code assumes that it can get enough log space
229 	 * without forcing a checkpoint.  This is *critical* for
230 	 * correctness: a checkpoint of a buffer which is also
231 	 * associated with a committing transaction creates a deadlock,
232 	 * so commit simply cannot force through checkpoints.
233 	 *
234 	 * We must therefore ensure the necessary space in the journal
235 	 * *before* starting to dirty potentially checkpointed buffers
236 	 * in the new transaction.
237 	 */
238 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239 		atomic_sub(total, &t->t_outstanding_credits);
240 		read_unlock(&journal->j_state_lock);
241 		jbd2_might_wait_for_commit(journal);
242 		write_lock(&journal->j_state_lock);
243 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
244 			__jbd2_log_wait_for_space(journal);
245 		write_unlock(&journal->j_state_lock);
246 		return 1;
247 	}
248 
249 	/* No reservation? We are done... */
250 	if (!rsv_blocks)
251 		return 0;
252 
253 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
254 	/* We allow at most half of a transaction to be reserved */
255 	if (needed > journal->j_max_transaction_buffers / 2) {
256 		sub_reserved_credits(journal, rsv_blocks);
257 		atomic_sub(total, &t->t_outstanding_credits);
258 		read_unlock(&journal->j_state_lock);
259 		jbd2_might_wait_for_commit(journal);
260 		wait_event(journal->j_wait_reserved,
261 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
262 			 <= journal->j_max_transaction_buffers / 2);
263 		return 1;
264 	}
265 	return 0;
266 }
267 
268 /*
269  * start_this_handle: Given a handle, deal with any locking or stalling
270  * needed to make sure that there is enough journal space for the handle
271  * to begin.  Attach the handle to a transaction and set up the
272  * transaction's buffer credits.
273  */
274 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)275 static int start_this_handle(journal_t *journal, handle_t *handle,
276 			     gfp_t gfp_mask)
277 {
278 	transaction_t	*transaction, *new_transaction = NULL;
279 	int		blocks = handle->h_buffer_credits;
280 	int		rsv_blocks = 0;
281 	unsigned long ts = jiffies;
282 
283 	if (handle->h_rsv_handle)
284 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
285 
286 	/*
287 	 * Limit the number of reserved credits to 1/2 of maximum transaction
288 	 * size and limit the number of total credits to not exceed maximum
289 	 * transaction size per operation.
290 	 */
291 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
292 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
293 		printk(KERN_ERR "JBD2: %s wants too many credits "
294 		       "credits:%d rsv_credits:%d max:%d\n",
295 		       current->comm, blocks, rsv_blocks,
296 		       journal->j_max_transaction_buffers);
297 		WARN_ON(1);
298 		return -ENOSPC;
299 	}
300 
301 alloc_transaction:
302 	if (!journal->j_running_transaction) {
303 		/*
304 		 * If __GFP_FS is not present, then we may be being called from
305 		 * inside the fs writeback layer, so we MUST NOT fail.
306 		 */
307 		if ((gfp_mask & __GFP_FS) == 0)
308 			gfp_mask |= __GFP_NOFAIL;
309 		new_transaction = kmem_cache_zalloc(transaction_cache,
310 						    gfp_mask);
311 		if (!new_transaction)
312 			return -ENOMEM;
313 	}
314 
315 	jbd_debug(3, "New handle %p going live.\n", handle);
316 
317 	/*
318 	 * We need to hold j_state_lock until t_updates has been incremented,
319 	 * for proper journal barrier handling
320 	 */
321 repeat:
322 	read_lock(&journal->j_state_lock);
323 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
324 	if (is_journal_aborted(journal) ||
325 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
326 		read_unlock(&journal->j_state_lock);
327 		jbd2_journal_free_transaction(new_transaction);
328 		return -EROFS;
329 	}
330 
331 	/*
332 	 * Wait on the journal's transaction barrier if necessary. Specifically
333 	 * we allow reserved handles to proceed because otherwise commit could
334 	 * deadlock on page writeback not being able to complete.
335 	 */
336 	if (!handle->h_reserved && journal->j_barrier_count) {
337 		read_unlock(&journal->j_state_lock);
338 		wait_event(journal->j_wait_transaction_locked,
339 				journal->j_barrier_count == 0);
340 		goto repeat;
341 	}
342 
343 	if (!journal->j_running_transaction) {
344 		read_unlock(&journal->j_state_lock);
345 		if (!new_transaction)
346 			goto alloc_transaction;
347 		write_lock(&journal->j_state_lock);
348 		if (!journal->j_running_transaction &&
349 		    (handle->h_reserved || !journal->j_barrier_count)) {
350 			jbd2_get_transaction(journal, new_transaction);
351 			new_transaction = NULL;
352 		}
353 		write_unlock(&journal->j_state_lock);
354 		goto repeat;
355 	}
356 
357 	transaction = journal->j_running_transaction;
358 
359 	if (!handle->h_reserved) {
360 		/* We may have dropped j_state_lock - restart in that case */
361 		if (add_transaction_credits(journal, blocks, rsv_blocks))
362 			goto repeat;
363 	} else {
364 		/*
365 		 * We have handle reserved so we are allowed to join T_LOCKED
366 		 * transaction and we don't have to check for transaction size
367 		 * and journal space.
368 		 */
369 		sub_reserved_credits(journal, blocks);
370 		handle->h_reserved = 0;
371 	}
372 
373 	/* OK, account for the buffers that this operation expects to
374 	 * use and add the handle to the running transaction.
375 	 */
376 	update_t_max_wait(transaction, ts);
377 	handle->h_transaction = transaction;
378 	handle->h_requested_credits = blocks;
379 	handle->h_start_jiffies = jiffies;
380 	atomic_inc(&transaction->t_updates);
381 	atomic_inc(&transaction->t_handle_count);
382 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
383 		  handle, blocks,
384 		  atomic_read(&transaction->t_outstanding_credits),
385 		  jbd2_log_space_left(journal));
386 	read_unlock(&journal->j_state_lock);
387 	current->journal_info = handle;
388 
389 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
390 	jbd2_journal_free_transaction(new_transaction);
391 	return 0;
392 }
393 
394 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)395 static handle_t *new_handle(int nblocks)
396 {
397 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
398 	if (!handle)
399 		return NULL;
400 	handle->h_buffer_credits = nblocks;
401 	handle->h_ref = 1;
402 
403 	return handle;
404 }
405 
406 /**
407  * handle_t *jbd2_journal_start() - Obtain a new handle.
408  * @journal: Journal to start transaction on.
409  * @nblocks: number of block buffer we might modify
410  *
411  * We make sure that the transaction can guarantee at least nblocks of
412  * modified buffers in the log.  We block until the log can guarantee
413  * that much space. Additionally, if rsv_blocks > 0, we also create another
414  * handle with rsv_blocks reserved blocks in the journal. This handle is
415  * is stored in h_rsv_handle. It is not attached to any particular transaction
416  * and thus doesn't block transaction commit. If the caller uses this reserved
417  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
418  * on the parent handle will dispose the reserved one. Reserved handle has to
419  * be converted to a normal handle using jbd2_journal_start_reserved() before
420  * it can be used.
421  *
422  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
423  * on failure.
424  */
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
426 			      gfp_t gfp_mask, unsigned int type,
427 			      unsigned int line_no)
428 {
429 	handle_t *handle = journal_current_handle();
430 	int err;
431 
432 	if (!journal)
433 		return ERR_PTR(-EROFS);
434 
435 	if (handle) {
436 		J_ASSERT(handle->h_transaction->t_journal == journal);
437 		handle->h_ref++;
438 		return handle;
439 	}
440 
441 	handle = new_handle(nblocks);
442 	if (!handle)
443 		return ERR_PTR(-ENOMEM);
444 	if (rsv_blocks) {
445 		handle_t *rsv_handle;
446 
447 		rsv_handle = new_handle(rsv_blocks);
448 		if (!rsv_handle) {
449 			jbd2_free_handle(handle);
450 			return ERR_PTR(-ENOMEM);
451 		}
452 		rsv_handle->h_reserved = 1;
453 		rsv_handle->h_journal = journal;
454 		handle->h_rsv_handle = rsv_handle;
455 	}
456 
457 	err = start_this_handle(journal, handle, gfp_mask);
458 	if (err < 0) {
459 		if (handle->h_rsv_handle)
460 			jbd2_free_handle(handle->h_rsv_handle);
461 		jbd2_free_handle(handle);
462 		return ERR_PTR(err);
463 	}
464 	handle->h_type = type;
465 	handle->h_line_no = line_no;
466 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
467 				handle->h_transaction->t_tid, type,
468 				line_no, nblocks);
469 	return handle;
470 }
471 EXPORT_SYMBOL(jbd2__journal_start);
472 
473 
jbd2_journal_start(journal_t * journal,int nblocks)474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
475 {
476 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
477 }
478 EXPORT_SYMBOL(jbd2_journal_start);
479 
jbd2_journal_free_reserved(handle_t * handle)480 void jbd2_journal_free_reserved(handle_t *handle)
481 {
482 	journal_t *journal = handle->h_journal;
483 
484 	WARN_ON(!handle->h_reserved);
485 	sub_reserved_credits(journal, handle->h_buffer_credits);
486 	jbd2_free_handle(handle);
487 }
488 EXPORT_SYMBOL(jbd2_journal_free_reserved);
489 
490 /**
491  * int jbd2_journal_start_reserved() - start reserved handle
492  * @handle: handle to start
493  * @type: for handle statistics
494  * @line_no: for handle statistics
495  *
496  * Start handle that has been previously reserved with jbd2_journal_reserve().
497  * This attaches @handle to the running transaction (or creates one if there's
498  * not transaction running). Unlike jbd2_journal_start() this function cannot
499  * block on journal commit, checkpointing, or similar stuff. It can block on
500  * memory allocation or frozen journal though.
501  *
502  * Return 0 on success, non-zero on error - handle is freed in that case.
503  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)504 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
505 				unsigned int line_no)
506 {
507 	journal_t *journal = handle->h_journal;
508 	int ret = -EIO;
509 
510 	if (WARN_ON(!handle->h_reserved)) {
511 		/* Someone passed in normal handle? Just stop it. */
512 		jbd2_journal_stop(handle);
513 		return ret;
514 	}
515 	/*
516 	 * Usefulness of mixing of reserved and unreserved handles is
517 	 * questionable. So far nobody seems to need it so just error out.
518 	 */
519 	if (WARN_ON(current->journal_info)) {
520 		jbd2_journal_free_reserved(handle);
521 		return ret;
522 	}
523 
524 	handle->h_journal = NULL;
525 	/*
526 	 * GFP_NOFS is here because callers are likely from writeback or
527 	 * similarly constrained call sites
528 	 */
529 	ret = start_this_handle(journal, handle, GFP_NOFS);
530 	if (ret < 0) {
531 		jbd2_journal_free_reserved(handle);
532 		return ret;
533 	}
534 	handle->h_type = type;
535 	handle->h_line_no = line_no;
536 	return 0;
537 }
538 EXPORT_SYMBOL(jbd2_journal_start_reserved);
539 
540 /**
541  * int jbd2_journal_extend() - extend buffer credits.
542  * @handle:  handle to 'extend'
543  * @nblocks: nr blocks to try to extend by.
544  *
545  * Some transactions, such as large extends and truncates, can be done
546  * atomically all at once or in several stages.  The operation requests
547  * a credit for a number of buffer modifications in advance, but can
548  * extend its credit if it needs more.
549  *
550  * jbd2_journal_extend tries to give the running handle more buffer credits.
551  * It does not guarantee that allocation - this is a best-effort only.
552  * The calling process MUST be able to deal cleanly with a failure to
553  * extend here.
554  *
555  * Return 0 on success, non-zero on failure.
556  *
557  * return code < 0 implies an error
558  * return code > 0 implies normal transaction-full status.
559  */
jbd2_journal_extend(handle_t * handle,int nblocks)560 int jbd2_journal_extend(handle_t *handle, int nblocks)
561 {
562 	transaction_t *transaction = handle->h_transaction;
563 	journal_t *journal;
564 	int result;
565 	int wanted;
566 
567 	if (is_handle_aborted(handle))
568 		return -EROFS;
569 	journal = transaction->t_journal;
570 
571 	result = 1;
572 
573 	read_lock(&journal->j_state_lock);
574 
575 	/* Don't extend a locked-down transaction! */
576 	if (transaction->t_state != T_RUNNING) {
577 		jbd_debug(3, "denied handle %p %d blocks: "
578 			  "transaction not running\n", handle, nblocks);
579 		goto error_out;
580 	}
581 
582 	spin_lock(&transaction->t_handle_lock);
583 	wanted = atomic_add_return(nblocks,
584 				   &transaction->t_outstanding_credits);
585 
586 	if (wanted > journal->j_max_transaction_buffers) {
587 		jbd_debug(3, "denied handle %p %d blocks: "
588 			  "transaction too large\n", handle, nblocks);
589 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
590 		goto unlock;
591 	}
592 
593 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
594 	    jbd2_log_space_left(journal)) {
595 		jbd_debug(3, "denied handle %p %d blocks: "
596 			  "insufficient log space\n", handle, nblocks);
597 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
598 		goto unlock;
599 	}
600 
601 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
602 				 transaction->t_tid,
603 				 handle->h_type, handle->h_line_no,
604 				 handle->h_buffer_credits,
605 				 nblocks);
606 
607 	handle->h_buffer_credits += nblocks;
608 	handle->h_requested_credits += nblocks;
609 	result = 0;
610 
611 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
612 unlock:
613 	spin_unlock(&transaction->t_handle_lock);
614 error_out:
615 	read_unlock(&journal->j_state_lock);
616 	return result;
617 }
618 
619 
620 /**
621  * int jbd2_journal_restart() - restart a handle .
622  * @handle:  handle to restart
623  * @nblocks: nr credits requested
624  * @gfp_mask: memory allocation flags (for start_this_handle)
625  *
626  * Restart a handle for a multi-transaction filesystem
627  * operation.
628  *
629  * If the jbd2_journal_extend() call above fails to grant new buffer credits
630  * to a running handle, a call to jbd2_journal_restart will commit the
631  * handle's transaction so far and reattach the handle to a new
632  * transaction capable of guaranteeing the requested number of
633  * credits. We preserve reserved handle if there's any attached to the
634  * passed in handle.
635  */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)636 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
637 {
638 	transaction_t *transaction = handle->h_transaction;
639 	journal_t *journal;
640 	tid_t		tid;
641 	int		need_to_start, ret;
642 
643 	/* If we've had an abort of any type, don't even think about
644 	 * actually doing the restart! */
645 	if (is_handle_aborted(handle))
646 		return 0;
647 	journal = transaction->t_journal;
648 
649 	/*
650 	 * First unlink the handle from its current transaction, and start the
651 	 * commit on that.
652 	 */
653 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
654 	J_ASSERT(journal_current_handle() == handle);
655 
656 	read_lock(&journal->j_state_lock);
657 	spin_lock(&transaction->t_handle_lock);
658 	atomic_sub(handle->h_buffer_credits,
659 		   &transaction->t_outstanding_credits);
660 	if (handle->h_rsv_handle) {
661 		sub_reserved_credits(journal,
662 				     handle->h_rsv_handle->h_buffer_credits);
663 	}
664 	if (atomic_dec_and_test(&transaction->t_updates))
665 		wake_up(&journal->j_wait_updates);
666 	tid = transaction->t_tid;
667 	spin_unlock(&transaction->t_handle_lock);
668 	handle->h_transaction = NULL;
669 	current->journal_info = NULL;
670 
671 	jbd_debug(2, "restarting handle %p\n", handle);
672 	need_to_start = !tid_geq(journal->j_commit_request, tid);
673 	read_unlock(&journal->j_state_lock);
674 	if (need_to_start)
675 		jbd2_log_start_commit(journal, tid);
676 
677 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
678 	handle->h_buffer_credits = nblocks;
679 	ret = start_this_handle(journal, handle, gfp_mask);
680 	return ret;
681 }
682 EXPORT_SYMBOL(jbd2__journal_restart);
683 
684 
jbd2_journal_restart(handle_t * handle,int nblocks)685 int jbd2_journal_restart(handle_t *handle, int nblocks)
686 {
687 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
688 }
689 EXPORT_SYMBOL(jbd2_journal_restart);
690 
691 /**
692  * void jbd2_journal_lock_updates () - establish a transaction barrier.
693  * @journal:  Journal to establish a barrier on.
694  *
695  * This locks out any further updates from being started, and blocks
696  * until all existing updates have completed, returning only once the
697  * journal is in a quiescent state with no updates running.
698  *
699  * The journal lock should not be held on entry.
700  */
jbd2_journal_lock_updates(journal_t * journal)701 void jbd2_journal_lock_updates(journal_t *journal)
702 {
703 	DEFINE_WAIT(wait);
704 
705 	jbd2_might_wait_for_commit(journal);
706 
707 	write_lock(&journal->j_state_lock);
708 	++journal->j_barrier_count;
709 
710 	/* Wait until there are no reserved handles */
711 	if (atomic_read(&journal->j_reserved_credits)) {
712 		write_unlock(&journal->j_state_lock);
713 		wait_event(journal->j_wait_reserved,
714 			   atomic_read(&journal->j_reserved_credits) == 0);
715 		write_lock(&journal->j_state_lock);
716 	}
717 
718 	/* Wait until there are no running updates */
719 	while (1) {
720 		transaction_t *transaction = journal->j_running_transaction;
721 
722 		if (!transaction)
723 			break;
724 
725 		spin_lock(&transaction->t_handle_lock);
726 		prepare_to_wait(&journal->j_wait_updates, &wait,
727 				TASK_UNINTERRUPTIBLE);
728 		if (!atomic_read(&transaction->t_updates)) {
729 			spin_unlock(&transaction->t_handle_lock);
730 			finish_wait(&journal->j_wait_updates, &wait);
731 			break;
732 		}
733 		spin_unlock(&transaction->t_handle_lock);
734 		write_unlock(&journal->j_state_lock);
735 		schedule();
736 		finish_wait(&journal->j_wait_updates, &wait);
737 		write_lock(&journal->j_state_lock);
738 	}
739 	write_unlock(&journal->j_state_lock);
740 
741 	/*
742 	 * We have now established a barrier against other normal updates, but
743 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
744 	 * to make sure that we serialise special journal-locked operations
745 	 * too.
746 	 */
747 	mutex_lock(&journal->j_barrier);
748 }
749 
750 /**
751  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
752  * @journal:  Journal to release the barrier on.
753  *
754  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
755  *
756  * Should be called without the journal lock held.
757  */
jbd2_journal_unlock_updates(journal_t * journal)758 void jbd2_journal_unlock_updates (journal_t *journal)
759 {
760 	J_ASSERT(journal->j_barrier_count != 0);
761 
762 	mutex_unlock(&journal->j_barrier);
763 	write_lock(&journal->j_state_lock);
764 	--journal->j_barrier_count;
765 	write_unlock(&journal->j_state_lock);
766 	wake_up(&journal->j_wait_transaction_locked);
767 }
768 
warn_dirty_buffer(struct buffer_head * bh)769 static void warn_dirty_buffer(struct buffer_head *bh)
770 {
771 	printk(KERN_WARNING
772 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
773 	       "There's a risk of filesystem corruption in case of system "
774 	       "crash.\n",
775 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
776 }
777 
778 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)779 static void jbd2_freeze_jh_data(struct journal_head *jh)
780 {
781 	struct page *page;
782 	int offset;
783 	char *source;
784 	struct buffer_head *bh = jh2bh(jh);
785 
786 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
787 	page = bh->b_page;
788 	offset = offset_in_page(bh->b_data);
789 	source = kmap_atomic(page);
790 	/* Fire data frozen trigger just before we copy the data */
791 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
792 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
793 	kunmap_atomic(source);
794 
795 	/*
796 	 * Now that the frozen data is saved off, we need to store any matching
797 	 * triggers.
798 	 */
799 	jh->b_frozen_triggers = jh->b_triggers;
800 }
801 
802 /*
803  * If the buffer is already part of the current transaction, then there
804  * is nothing we need to do.  If it is already part of a prior
805  * transaction which we are still committing to disk, then we need to
806  * make sure that we do not overwrite the old copy: we do copy-out to
807  * preserve the copy going to disk.  We also account the buffer against
808  * the handle's metadata buffer credits (unless the buffer is already
809  * part of the transaction, that is).
810  *
811  */
812 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)813 do_get_write_access(handle_t *handle, struct journal_head *jh,
814 			int force_copy)
815 {
816 	struct buffer_head *bh;
817 	transaction_t *transaction = handle->h_transaction;
818 	journal_t *journal;
819 	int error;
820 	char *frozen_buffer = NULL;
821 	unsigned long start_lock, time_lock;
822 
823 	if (is_handle_aborted(handle))
824 		return -EROFS;
825 	journal = transaction->t_journal;
826 
827 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
828 
829 	JBUFFER_TRACE(jh, "entry");
830 repeat:
831 	bh = jh2bh(jh);
832 
833 	/* @@@ Need to check for errors here at some point. */
834 
835  	start_lock = jiffies;
836 	lock_buffer(bh);
837 	jbd_lock_bh_state(bh);
838 
839 	/* If it takes too long to lock the buffer, trace it */
840 	time_lock = jbd2_time_diff(start_lock, jiffies);
841 	if (time_lock > HZ/10)
842 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
843 			jiffies_to_msecs(time_lock));
844 
845 	/* We now hold the buffer lock so it is safe to query the buffer
846 	 * state.  Is the buffer dirty?
847 	 *
848 	 * If so, there are two possibilities.  The buffer may be
849 	 * non-journaled, and undergoing a quite legitimate writeback.
850 	 * Otherwise, it is journaled, and we don't expect dirty buffers
851 	 * in that state (the buffers should be marked JBD_Dirty
852 	 * instead.)  So either the IO is being done under our own
853 	 * control and this is a bug, or it's a third party IO such as
854 	 * dump(8) (which may leave the buffer scheduled for read ---
855 	 * ie. locked but not dirty) or tune2fs (which may actually have
856 	 * the buffer dirtied, ugh.)  */
857 
858 	if (buffer_dirty(bh)) {
859 		/*
860 		 * First question: is this buffer already part of the current
861 		 * transaction or the existing committing transaction?
862 		 */
863 		if (jh->b_transaction) {
864 			J_ASSERT_JH(jh,
865 				jh->b_transaction == transaction ||
866 				jh->b_transaction ==
867 					journal->j_committing_transaction);
868 			if (jh->b_next_transaction)
869 				J_ASSERT_JH(jh, jh->b_next_transaction ==
870 							transaction);
871 			warn_dirty_buffer(bh);
872 		}
873 		/*
874 		 * In any case we need to clean the dirty flag and we must
875 		 * do it under the buffer lock to be sure we don't race
876 		 * with running write-out.
877 		 */
878 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
879 		clear_buffer_dirty(bh);
880 		set_buffer_jbddirty(bh);
881 	}
882 
883 	unlock_buffer(bh);
884 
885 	error = -EROFS;
886 	if (is_handle_aborted(handle)) {
887 		jbd_unlock_bh_state(bh);
888 		goto out;
889 	}
890 	error = 0;
891 
892 	/*
893 	 * The buffer is already part of this transaction if b_transaction or
894 	 * b_next_transaction points to it
895 	 */
896 	if (jh->b_transaction == transaction ||
897 	    jh->b_next_transaction == transaction)
898 		goto done;
899 
900 	/*
901 	 * this is the first time this transaction is touching this buffer,
902 	 * reset the modified flag
903 	 */
904        jh->b_modified = 0;
905 
906 	/*
907 	 * If the buffer is not journaled right now, we need to make sure it
908 	 * doesn't get written to disk before the caller actually commits the
909 	 * new data
910 	 */
911 	if (!jh->b_transaction) {
912 		JBUFFER_TRACE(jh, "no transaction");
913 		J_ASSERT_JH(jh, !jh->b_next_transaction);
914 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
915 		/*
916 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
917 		 * visible before attaching it to the running transaction.
918 		 * Paired with barrier in jbd2_write_access_granted()
919 		 */
920 		smp_wmb();
921 		spin_lock(&journal->j_list_lock);
922 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
923 		spin_unlock(&journal->j_list_lock);
924 		goto done;
925 	}
926 	/*
927 	 * If there is already a copy-out version of this buffer, then we don't
928 	 * need to make another one
929 	 */
930 	if (jh->b_frozen_data) {
931 		JBUFFER_TRACE(jh, "has frozen data");
932 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
933 		goto attach_next;
934 	}
935 
936 	JBUFFER_TRACE(jh, "owned by older transaction");
937 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
938 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
939 
940 	/*
941 	 * There is one case we have to be very careful about.  If the
942 	 * committing transaction is currently writing this buffer out to disk
943 	 * and has NOT made a copy-out, then we cannot modify the buffer
944 	 * contents at all right now.  The essence of copy-out is that it is
945 	 * the extra copy, not the primary copy, which gets journaled.  If the
946 	 * primary copy is already going to disk then we cannot do copy-out
947 	 * here.
948 	 */
949 	if (buffer_shadow(bh)) {
950 		JBUFFER_TRACE(jh, "on shadow: sleep");
951 		jbd_unlock_bh_state(bh);
952 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
953 		goto repeat;
954 	}
955 
956 	/*
957 	 * Only do the copy if the currently-owning transaction still needs it.
958 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
959 	 * past that stage (here we use the fact that BH_Shadow is set under
960 	 * bh_state lock together with refiling to BJ_Shadow list and at this
961 	 * point we know the buffer doesn't have BH_Shadow set).
962 	 *
963 	 * Subtle point, though: if this is a get_undo_access, then we will be
964 	 * relying on the frozen_data to contain the new value of the
965 	 * committed_data record after the transaction, so we HAVE to force the
966 	 * frozen_data copy in that case.
967 	 */
968 	if (jh->b_jlist == BJ_Metadata || force_copy) {
969 		JBUFFER_TRACE(jh, "generate frozen data");
970 		if (!frozen_buffer) {
971 			JBUFFER_TRACE(jh, "allocate memory for buffer");
972 			jbd_unlock_bh_state(bh);
973 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
974 						   GFP_NOFS | __GFP_NOFAIL);
975 			goto repeat;
976 		}
977 		jh->b_frozen_data = frozen_buffer;
978 		frozen_buffer = NULL;
979 		jbd2_freeze_jh_data(jh);
980 	}
981 attach_next:
982 	/*
983 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
984 	 * before attaching it to the running transaction. Paired with barrier
985 	 * in jbd2_write_access_granted()
986 	 */
987 	smp_wmb();
988 	jh->b_next_transaction = transaction;
989 
990 done:
991 	jbd_unlock_bh_state(bh);
992 
993 	/*
994 	 * If we are about to journal a buffer, then any revoke pending on it is
995 	 * no longer valid
996 	 */
997 	jbd2_journal_cancel_revoke(handle, jh);
998 
999 out:
1000 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1001 		jbd2_free(frozen_buffer, bh->b_size);
1002 
1003 	JBUFFER_TRACE(jh, "exit");
1004 	return error;
1005 }
1006 
1007 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1008 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1009 							bool undo)
1010 {
1011 	struct journal_head *jh;
1012 	bool ret = false;
1013 
1014 	/* Dirty buffers require special handling... */
1015 	if (buffer_dirty(bh))
1016 		return false;
1017 
1018 	/*
1019 	 * RCU protects us from dereferencing freed pages. So the checks we do
1020 	 * are guaranteed not to oops. However the jh slab object can get freed
1021 	 * & reallocated while we work with it. So we have to be careful. When
1022 	 * we see jh attached to the running transaction, we know it must stay
1023 	 * so until the transaction is committed. Thus jh won't be freed and
1024 	 * will be attached to the same bh while we run.  However it can
1025 	 * happen jh gets freed, reallocated, and attached to the transaction
1026 	 * just after we get pointer to it from bh. So we have to be careful
1027 	 * and recheck jh still belongs to our bh before we return success.
1028 	 */
1029 	rcu_read_lock();
1030 	if (!buffer_jbd(bh))
1031 		goto out;
1032 	/* This should be bh2jh() but that doesn't work with inline functions */
1033 	jh = READ_ONCE(bh->b_private);
1034 	if (!jh)
1035 		goto out;
1036 	/* For undo access buffer must have data copied */
1037 	if (undo && !jh->b_committed_data)
1038 		goto out;
1039 	if (jh->b_transaction != handle->h_transaction &&
1040 	    jh->b_next_transaction != handle->h_transaction)
1041 		goto out;
1042 	/*
1043 	 * There are two reasons for the barrier here:
1044 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1045 	 * detect when jh went through free, realloc, attach to transaction
1046 	 * while we were checking. Paired with implicit barrier in that path.
1047 	 * 2) So that access to bh done after jbd2_write_access_granted()
1048 	 * doesn't get reordered and see inconsistent state of concurrent
1049 	 * do_get_write_access().
1050 	 */
1051 	smp_mb();
1052 	if (unlikely(jh->b_bh != bh))
1053 		goto out;
1054 	ret = true;
1055 out:
1056 	rcu_read_unlock();
1057 	return ret;
1058 }
1059 
1060 /**
1061  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1062  * @handle: transaction to add buffer modifications to
1063  * @bh:     bh to be used for metadata writes
1064  *
1065  * Returns an error code or 0 on success.
1066  *
1067  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1068  * because we're write()ing a buffer which is also part of a shared mapping.
1069  */
1070 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1071 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1072 {
1073 	struct journal_head *jh;
1074 	int rc;
1075 
1076 	if (jbd2_write_access_granted(handle, bh, false))
1077 		return 0;
1078 
1079 	jh = jbd2_journal_add_journal_head(bh);
1080 	/* We do not want to get caught playing with fields which the
1081 	 * log thread also manipulates.  Make sure that the buffer
1082 	 * completes any outstanding IO before proceeding. */
1083 	rc = do_get_write_access(handle, jh, 0);
1084 	jbd2_journal_put_journal_head(jh);
1085 	return rc;
1086 }
1087 
1088 
1089 /*
1090  * When the user wants to journal a newly created buffer_head
1091  * (ie. getblk() returned a new buffer and we are going to populate it
1092  * manually rather than reading off disk), then we need to keep the
1093  * buffer_head locked until it has been completely filled with new
1094  * data.  In this case, we should be able to make the assertion that
1095  * the bh is not already part of an existing transaction.
1096  *
1097  * The buffer should already be locked by the caller by this point.
1098  * There is no lock ranking violation: it was a newly created,
1099  * unlocked buffer beforehand. */
1100 
1101 /**
1102  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1103  * @handle: transaction to new buffer to
1104  * @bh: new buffer.
1105  *
1106  * Call this if you create a new bh.
1107  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1108 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1109 {
1110 	transaction_t *transaction = handle->h_transaction;
1111 	journal_t *journal;
1112 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1113 	int err;
1114 
1115 	jbd_debug(5, "journal_head %p\n", jh);
1116 	err = -EROFS;
1117 	if (is_handle_aborted(handle))
1118 		goto out;
1119 	journal = transaction->t_journal;
1120 	err = 0;
1121 
1122 	JBUFFER_TRACE(jh, "entry");
1123 	/*
1124 	 * The buffer may already belong to this transaction due to pre-zeroing
1125 	 * in the filesystem's new_block code.  It may also be on the previous,
1126 	 * committing transaction's lists, but it HAS to be in Forget state in
1127 	 * that case: the transaction must have deleted the buffer for it to be
1128 	 * reused here.
1129 	 */
1130 	jbd_lock_bh_state(bh);
1131 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1132 		jh->b_transaction == NULL ||
1133 		(jh->b_transaction == journal->j_committing_transaction &&
1134 			  jh->b_jlist == BJ_Forget)));
1135 
1136 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1137 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1138 
1139 	if (jh->b_transaction == NULL) {
1140 		/*
1141 		 * Previous jbd2_journal_forget() could have left the buffer
1142 		 * with jbddirty bit set because it was being committed. When
1143 		 * the commit finished, we've filed the buffer for
1144 		 * checkpointing and marked it dirty. Now we are reallocating
1145 		 * the buffer so the transaction freeing it must have
1146 		 * committed and so it's safe to clear the dirty bit.
1147 		 */
1148 		clear_buffer_dirty(jh2bh(jh));
1149 		/* first access by this transaction */
1150 		jh->b_modified = 0;
1151 
1152 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1153 		spin_lock(&journal->j_list_lock);
1154 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1155 		spin_unlock(&journal->j_list_lock);
1156 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1157 		/* first access by this transaction */
1158 		jh->b_modified = 0;
1159 
1160 		JBUFFER_TRACE(jh, "set next transaction");
1161 		spin_lock(&journal->j_list_lock);
1162 		jh->b_next_transaction = transaction;
1163 		spin_unlock(&journal->j_list_lock);
1164 	}
1165 	jbd_unlock_bh_state(bh);
1166 
1167 	/*
1168 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1169 	 * blocks which contain freed but then revoked metadata.  We need
1170 	 * to cancel the revoke in case we end up freeing it yet again
1171 	 * and the reallocating as data - this would cause a second revoke,
1172 	 * which hits an assertion error.
1173 	 */
1174 	JBUFFER_TRACE(jh, "cancelling revoke");
1175 	jbd2_journal_cancel_revoke(handle, jh);
1176 out:
1177 	jbd2_journal_put_journal_head(jh);
1178 	return err;
1179 }
1180 
1181 /**
1182  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1183  *     non-rewindable consequences
1184  * @handle: transaction
1185  * @bh: buffer to undo
1186  *
1187  * Sometimes there is a need to distinguish between metadata which has
1188  * been committed to disk and that which has not.  The ext3fs code uses
1189  * this for freeing and allocating space, we have to make sure that we
1190  * do not reuse freed space until the deallocation has been committed,
1191  * since if we overwrote that space we would make the delete
1192  * un-rewindable in case of a crash.
1193  *
1194  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1195  * buffer for parts of non-rewindable operations such as delete
1196  * operations on the bitmaps.  The journaling code must keep a copy of
1197  * the buffer's contents prior to the undo_access call until such time
1198  * as we know that the buffer has definitely been committed to disk.
1199  *
1200  * We never need to know which transaction the committed data is part
1201  * of, buffers touched here are guaranteed to be dirtied later and so
1202  * will be committed to a new transaction in due course, at which point
1203  * we can discard the old committed data pointer.
1204  *
1205  * Returns error number or 0 on success.
1206  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1207 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1208 {
1209 	int err;
1210 	struct journal_head *jh;
1211 	char *committed_data = NULL;
1212 
1213 	JBUFFER_TRACE(jh, "entry");
1214 	if (jbd2_write_access_granted(handle, bh, true))
1215 		return 0;
1216 
1217 	jh = jbd2_journal_add_journal_head(bh);
1218 	/*
1219 	 * Do this first --- it can drop the journal lock, so we want to
1220 	 * make sure that obtaining the committed_data is done
1221 	 * atomically wrt. completion of any outstanding commits.
1222 	 */
1223 	err = do_get_write_access(handle, jh, 1);
1224 	if (err)
1225 		goto out;
1226 
1227 repeat:
1228 	if (!jh->b_committed_data)
1229 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1230 					    GFP_NOFS|__GFP_NOFAIL);
1231 
1232 	jbd_lock_bh_state(bh);
1233 	if (!jh->b_committed_data) {
1234 		/* Copy out the current buffer contents into the
1235 		 * preserved, committed copy. */
1236 		JBUFFER_TRACE(jh, "generate b_committed data");
1237 		if (!committed_data) {
1238 			jbd_unlock_bh_state(bh);
1239 			goto repeat;
1240 		}
1241 
1242 		jh->b_committed_data = committed_data;
1243 		committed_data = NULL;
1244 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1245 	}
1246 	jbd_unlock_bh_state(bh);
1247 out:
1248 	jbd2_journal_put_journal_head(jh);
1249 	if (unlikely(committed_data))
1250 		jbd2_free(committed_data, bh->b_size);
1251 	return err;
1252 }
1253 
1254 /**
1255  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1256  * @bh: buffer to trigger on
1257  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1258  *
1259  * Set any triggers on this journal_head.  This is always safe, because
1260  * triggers for a committing buffer will be saved off, and triggers for
1261  * a running transaction will match the buffer in that transaction.
1262  *
1263  * Call with NULL to clear the triggers.
1264  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1265 void jbd2_journal_set_triggers(struct buffer_head *bh,
1266 			       struct jbd2_buffer_trigger_type *type)
1267 {
1268 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1269 
1270 	if (WARN_ON(!jh))
1271 		return;
1272 	jh->b_triggers = type;
1273 	jbd2_journal_put_journal_head(jh);
1274 }
1275 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1276 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1277 				struct jbd2_buffer_trigger_type *triggers)
1278 {
1279 	struct buffer_head *bh = jh2bh(jh);
1280 
1281 	if (!triggers || !triggers->t_frozen)
1282 		return;
1283 
1284 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1285 }
1286 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1287 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1288 			       struct jbd2_buffer_trigger_type *triggers)
1289 {
1290 	if (!triggers || !triggers->t_abort)
1291 		return;
1292 
1293 	triggers->t_abort(triggers, jh2bh(jh));
1294 }
1295 
1296 /**
1297  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1298  * @handle: transaction to add buffer to.
1299  * @bh: buffer to mark
1300  *
1301  * mark dirty metadata which needs to be journaled as part of the current
1302  * transaction.
1303  *
1304  * The buffer must have previously had jbd2_journal_get_write_access()
1305  * called so that it has a valid journal_head attached to the buffer
1306  * head.
1307  *
1308  * The buffer is placed on the transaction's metadata list and is marked
1309  * as belonging to the transaction.
1310  *
1311  * Returns error number or 0 on success.
1312  *
1313  * Special care needs to be taken if the buffer already belongs to the
1314  * current committing transaction (in which case we should have frozen
1315  * data present for that commit).  In that case, we don't relink the
1316  * buffer: that only gets done when the old transaction finally
1317  * completes its commit.
1318  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1319 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1320 {
1321 	transaction_t *transaction = handle->h_transaction;
1322 	journal_t *journal;
1323 	struct journal_head *jh;
1324 	int ret = 0;
1325 
1326 	if (is_handle_aborted(handle))
1327 		return -EROFS;
1328 	if (!buffer_jbd(bh)) {
1329 		ret = -EUCLEAN;
1330 		goto out;
1331 	}
1332 	/*
1333 	 * We don't grab jh reference here since the buffer must be part
1334 	 * of the running transaction.
1335 	 */
1336 	jh = bh2jh(bh);
1337 	/*
1338 	 * This and the following assertions are unreliable since we may see jh
1339 	 * in inconsistent state unless we grab bh_state lock. But this is
1340 	 * crucial to catch bugs so let's do a reliable check until the
1341 	 * lockless handling is fully proven.
1342 	 */
1343 	if (jh->b_transaction != transaction &&
1344 	    jh->b_next_transaction != transaction) {
1345 		jbd_lock_bh_state(bh);
1346 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1347 				jh->b_next_transaction == transaction);
1348 		jbd_unlock_bh_state(bh);
1349 	}
1350 	if (jh->b_modified == 1) {
1351 		/* If it's in our transaction it must be in BJ_Metadata list. */
1352 		if (jh->b_transaction == transaction &&
1353 		    jh->b_jlist != BJ_Metadata) {
1354 			jbd_lock_bh_state(bh);
1355 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1356 					jh->b_jlist == BJ_Metadata);
1357 			jbd_unlock_bh_state(bh);
1358 		}
1359 		goto out;
1360 	}
1361 
1362 	journal = transaction->t_journal;
1363 	jbd_debug(5, "journal_head %p\n", jh);
1364 	JBUFFER_TRACE(jh, "entry");
1365 
1366 	jbd_lock_bh_state(bh);
1367 
1368 	if (jh->b_modified == 0) {
1369 		/*
1370 		 * This buffer's got modified and becoming part
1371 		 * of the transaction. This needs to be done
1372 		 * once a transaction -bzzz
1373 		 */
1374 		jh->b_modified = 1;
1375 		if (handle->h_buffer_credits <= 0) {
1376 			ret = -ENOSPC;
1377 			goto out_unlock_bh;
1378 		}
1379 		handle->h_buffer_credits--;
1380 	}
1381 
1382 	/*
1383 	 * fastpath, to avoid expensive locking.  If this buffer is already
1384 	 * on the running transaction's metadata list there is nothing to do.
1385 	 * Nobody can take it off again because there is a handle open.
1386 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1387 	 * result in this test being false, so we go in and take the locks.
1388 	 */
1389 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1390 		JBUFFER_TRACE(jh, "fastpath");
1391 		if (unlikely(jh->b_transaction !=
1392 			     journal->j_running_transaction)) {
1393 			printk(KERN_ERR "JBD2: %s: "
1394 			       "jh->b_transaction (%llu, %p, %u) != "
1395 			       "journal->j_running_transaction (%p, %u)\n",
1396 			       journal->j_devname,
1397 			       (unsigned long long) bh->b_blocknr,
1398 			       jh->b_transaction,
1399 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1400 			       journal->j_running_transaction,
1401 			       journal->j_running_transaction ?
1402 			       journal->j_running_transaction->t_tid : 0);
1403 			ret = -EINVAL;
1404 		}
1405 		goto out_unlock_bh;
1406 	}
1407 
1408 	set_buffer_jbddirty(bh);
1409 
1410 	/*
1411 	 * Metadata already on the current transaction list doesn't
1412 	 * need to be filed.  Metadata on another transaction's list must
1413 	 * be committing, and will be refiled once the commit completes:
1414 	 * leave it alone for now.
1415 	 */
1416 	if (jh->b_transaction != transaction) {
1417 		JBUFFER_TRACE(jh, "already on other transaction");
1418 		if (unlikely(((jh->b_transaction !=
1419 			       journal->j_committing_transaction)) ||
1420 			     (jh->b_next_transaction != transaction))) {
1421 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1422 			       "bad jh for block %llu: "
1423 			       "transaction (%p, %u), "
1424 			       "jh->b_transaction (%p, %u), "
1425 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1426 			       journal->j_devname,
1427 			       (unsigned long long) bh->b_blocknr,
1428 			       transaction, transaction->t_tid,
1429 			       jh->b_transaction,
1430 			       jh->b_transaction ?
1431 			       jh->b_transaction->t_tid : 0,
1432 			       jh->b_next_transaction,
1433 			       jh->b_next_transaction ?
1434 			       jh->b_next_transaction->t_tid : 0,
1435 			       jh->b_jlist);
1436 			WARN_ON(1);
1437 			ret = -EINVAL;
1438 		}
1439 		/* And this case is illegal: we can't reuse another
1440 		 * transaction's data buffer, ever. */
1441 		goto out_unlock_bh;
1442 	}
1443 
1444 	/* That test should have eliminated the following case: */
1445 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1446 
1447 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1448 	spin_lock(&journal->j_list_lock);
1449 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1450 	spin_unlock(&journal->j_list_lock);
1451 out_unlock_bh:
1452 	jbd_unlock_bh_state(bh);
1453 out:
1454 	JBUFFER_TRACE(jh, "exit");
1455 	return ret;
1456 }
1457 
1458 /**
1459  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1460  * @handle: transaction handle
1461  * @bh:     bh to 'forget'
1462  *
1463  * We can only do the bforget if there are no commits pending against the
1464  * buffer.  If the buffer is dirty in the current running transaction we
1465  * can safely unlink it.
1466  *
1467  * bh may not be a journalled buffer at all - it may be a non-JBD
1468  * buffer which came off the hashtable.  Check for this.
1469  *
1470  * Decrements bh->b_count by one.
1471  *
1472  * Allow this call even if the handle has aborted --- it may be part of
1473  * the caller's cleanup after an abort.
1474  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1475 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1476 {
1477 	transaction_t *transaction = handle->h_transaction;
1478 	journal_t *journal;
1479 	struct journal_head *jh;
1480 	int drop_reserve = 0;
1481 	int err = 0;
1482 	int was_modified = 0;
1483 
1484 	if (is_handle_aborted(handle))
1485 		return -EROFS;
1486 	journal = transaction->t_journal;
1487 
1488 	BUFFER_TRACE(bh, "entry");
1489 
1490 	jbd_lock_bh_state(bh);
1491 
1492 	if (!buffer_jbd(bh))
1493 		goto not_jbd;
1494 	jh = bh2jh(bh);
1495 
1496 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1497 	 * Don't do any jbd operations, and return an error. */
1498 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1499 			 "inconsistent data on disk")) {
1500 		err = -EIO;
1501 		goto not_jbd;
1502 	}
1503 
1504 	/* keep track of whether or not this transaction modified us */
1505 	was_modified = jh->b_modified;
1506 
1507 	/*
1508 	 * The buffer's going from the transaction, we must drop
1509 	 * all references -bzzz
1510 	 */
1511 	jh->b_modified = 0;
1512 
1513 	if (jh->b_transaction == transaction) {
1514 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1515 
1516 		/* If we are forgetting a buffer which is already part
1517 		 * of this transaction, then we can just drop it from
1518 		 * the transaction immediately. */
1519 		clear_buffer_dirty(bh);
1520 		clear_buffer_jbddirty(bh);
1521 
1522 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1523 
1524 		/*
1525 		 * we only want to drop a reference if this transaction
1526 		 * modified the buffer
1527 		 */
1528 		if (was_modified)
1529 			drop_reserve = 1;
1530 
1531 		/*
1532 		 * We are no longer going to journal this buffer.
1533 		 * However, the commit of this transaction is still
1534 		 * important to the buffer: the delete that we are now
1535 		 * processing might obsolete an old log entry, so by
1536 		 * committing, we can satisfy the buffer's checkpoint.
1537 		 *
1538 		 * So, if we have a checkpoint on the buffer, we should
1539 		 * now refile the buffer on our BJ_Forget list so that
1540 		 * we know to remove the checkpoint after we commit.
1541 		 */
1542 
1543 		spin_lock(&journal->j_list_lock);
1544 		if (jh->b_cp_transaction) {
1545 			__jbd2_journal_temp_unlink_buffer(jh);
1546 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1547 		} else {
1548 			__jbd2_journal_unfile_buffer(jh);
1549 			if (!buffer_jbd(bh)) {
1550 				spin_unlock(&journal->j_list_lock);
1551 				jbd_unlock_bh_state(bh);
1552 				__bforget(bh);
1553 				goto drop;
1554 			}
1555 		}
1556 		spin_unlock(&journal->j_list_lock);
1557 	} else if (jh->b_transaction) {
1558 		J_ASSERT_JH(jh, (jh->b_transaction ==
1559 				 journal->j_committing_transaction));
1560 		/* However, if the buffer is still owned by a prior
1561 		 * (committing) transaction, we can't drop it yet... */
1562 		JBUFFER_TRACE(jh, "belongs to older transaction");
1563 		/* ... but we CAN drop it from the new transaction if we
1564 		 * have also modified it since the original commit. */
1565 
1566 		if (jh->b_next_transaction) {
1567 			J_ASSERT(jh->b_next_transaction == transaction);
1568 			spin_lock(&journal->j_list_lock);
1569 			jh->b_next_transaction = NULL;
1570 			spin_unlock(&journal->j_list_lock);
1571 
1572 			/*
1573 			 * only drop a reference if this transaction modified
1574 			 * the buffer
1575 			 */
1576 			if (was_modified)
1577 				drop_reserve = 1;
1578 		}
1579 	}
1580 
1581 not_jbd:
1582 	jbd_unlock_bh_state(bh);
1583 	__brelse(bh);
1584 drop:
1585 	if (drop_reserve) {
1586 		/* no need to reserve log space for this block -bzzz */
1587 		handle->h_buffer_credits++;
1588 	}
1589 	return err;
1590 }
1591 
1592 /**
1593  * int jbd2_journal_stop() - complete a transaction
1594  * @handle: transaction to complete.
1595  *
1596  * All done for a particular handle.
1597  *
1598  * There is not much action needed here.  We just return any remaining
1599  * buffer credits to the transaction and remove the handle.  The only
1600  * complication is that we need to start a commit operation if the
1601  * filesystem is marked for synchronous update.
1602  *
1603  * jbd2_journal_stop itself will not usually return an error, but it may
1604  * do so in unusual circumstances.  In particular, expect it to
1605  * return -EIO if a jbd2_journal_abort has been executed since the
1606  * transaction began.
1607  */
jbd2_journal_stop(handle_t * handle)1608 int jbd2_journal_stop(handle_t *handle)
1609 {
1610 	transaction_t *transaction = handle->h_transaction;
1611 	journal_t *journal;
1612 	int err = 0, wait_for_commit = 0;
1613 	tid_t tid;
1614 	pid_t pid;
1615 
1616 	if (!transaction) {
1617 		/*
1618 		 * Handle is already detached from the transaction so
1619 		 * there is nothing to do other than decrease a refcount,
1620 		 * or free the handle if refcount drops to zero
1621 		 */
1622 		if (--handle->h_ref > 0) {
1623 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1624 							 handle->h_ref);
1625 			return err;
1626 		} else {
1627 			if (handle->h_rsv_handle)
1628 				jbd2_free_handle(handle->h_rsv_handle);
1629 			goto free_and_exit;
1630 		}
1631 	}
1632 	journal = transaction->t_journal;
1633 
1634 	J_ASSERT(journal_current_handle() == handle);
1635 
1636 	if (is_handle_aborted(handle))
1637 		err = -EIO;
1638 	else
1639 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1640 
1641 	if (--handle->h_ref > 0) {
1642 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1643 			  handle->h_ref);
1644 		return err;
1645 	}
1646 
1647 	jbd_debug(4, "Handle %p going down\n", handle);
1648 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1649 				transaction->t_tid,
1650 				handle->h_type, handle->h_line_no,
1651 				jiffies - handle->h_start_jiffies,
1652 				handle->h_sync, handle->h_requested_credits,
1653 				(handle->h_requested_credits -
1654 				 handle->h_buffer_credits));
1655 
1656 	/*
1657 	 * Implement synchronous transaction batching.  If the handle
1658 	 * was synchronous, don't force a commit immediately.  Let's
1659 	 * yield and let another thread piggyback onto this
1660 	 * transaction.  Keep doing that while new threads continue to
1661 	 * arrive.  It doesn't cost much - we're about to run a commit
1662 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1663 	 * operations by 30x or more...
1664 	 *
1665 	 * We try and optimize the sleep time against what the
1666 	 * underlying disk can do, instead of having a static sleep
1667 	 * time.  This is useful for the case where our storage is so
1668 	 * fast that it is more optimal to go ahead and force a flush
1669 	 * and wait for the transaction to be committed than it is to
1670 	 * wait for an arbitrary amount of time for new writers to
1671 	 * join the transaction.  We achieve this by measuring how
1672 	 * long it takes to commit a transaction, and compare it with
1673 	 * how long this transaction has been running, and if run time
1674 	 * < commit time then we sleep for the delta and commit.  This
1675 	 * greatly helps super fast disks that would see slowdowns as
1676 	 * more threads started doing fsyncs.
1677 	 *
1678 	 * But don't do this if this process was the most recent one
1679 	 * to perform a synchronous write.  We do this to detect the
1680 	 * case where a single process is doing a stream of sync
1681 	 * writes.  No point in waiting for joiners in that case.
1682 	 *
1683 	 * Setting max_batch_time to 0 disables this completely.
1684 	 */
1685 	pid = current->pid;
1686 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1687 	    journal->j_max_batch_time) {
1688 		u64 commit_time, trans_time;
1689 
1690 		journal->j_last_sync_writer = pid;
1691 
1692 		read_lock(&journal->j_state_lock);
1693 		commit_time = journal->j_average_commit_time;
1694 		read_unlock(&journal->j_state_lock);
1695 
1696 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1697 						   transaction->t_start_time));
1698 
1699 		commit_time = max_t(u64, commit_time,
1700 				    1000*journal->j_min_batch_time);
1701 		commit_time = min_t(u64, commit_time,
1702 				    1000*journal->j_max_batch_time);
1703 
1704 		if (trans_time < commit_time) {
1705 			ktime_t expires = ktime_add_ns(ktime_get(),
1706 						       commit_time);
1707 			set_current_state(TASK_UNINTERRUPTIBLE);
1708 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1709 		}
1710 	}
1711 
1712 	if (handle->h_sync)
1713 		transaction->t_synchronous_commit = 1;
1714 	current->journal_info = NULL;
1715 	atomic_sub(handle->h_buffer_credits,
1716 		   &transaction->t_outstanding_credits);
1717 
1718 	/*
1719 	 * If the handle is marked SYNC, we need to set another commit
1720 	 * going!  We also want to force a commit if the current
1721 	 * transaction is occupying too much of the log, or if the
1722 	 * transaction is too old now.
1723 	 */
1724 	if (handle->h_sync ||
1725 	    (atomic_read(&transaction->t_outstanding_credits) >
1726 	     journal->j_max_transaction_buffers) ||
1727 	    time_after_eq(jiffies, transaction->t_expires)) {
1728 		/* Do this even for aborted journals: an abort still
1729 		 * completes the commit thread, it just doesn't write
1730 		 * anything to disk. */
1731 
1732 		jbd_debug(2, "transaction too old, requesting commit for "
1733 					"handle %p\n", handle);
1734 		/* This is non-blocking */
1735 		jbd2_log_start_commit(journal, transaction->t_tid);
1736 
1737 		/*
1738 		 * Special case: JBD2_SYNC synchronous updates require us
1739 		 * to wait for the commit to complete.
1740 		 */
1741 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1742 			wait_for_commit = 1;
1743 	}
1744 
1745 	/*
1746 	 * Once we drop t_updates, if it goes to zero the transaction
1747 	 * could start committing on us and eventually disappear.  So
1748 	 * once we do this, we must not dereference transaction
1749 	 * pointer again.
1750 	 */
1751 	tid = transaction->t_tid;
1752 	if (atomic_dec_and_test(&transaction->t_updates)) {
1753 		wake_up(&journal->j_wait_updates);
1754 		if (journal->j_barrier_count)
1755 			wake_up(&journal->j_wait_transaction_locked);
1756 	}
1757 
1758 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1759 
1760 	if (wait_for_commit)
1761 		err = jbd2_log_wait_commit(journal, tid);
1762 
1763 	if (handle->h_rsv_handle)
1764 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1765 free_and_exit:
1766 	jbd2_free_handle(handle);
1767 	return err;
1768 }
1769 
1770 /*
1771  *
1772  * List management code snippets: various functions for manipulating the
1773  * transaction buffer lists.
1774  *
1775  */
1776 
1777 /*
1778  * Append a buffer to a transaction list, given the transaction's list head
1779  * pointer.
1780  *
1781  * j_list_lock is held.
1782  *
1783  * jbd_lock_bh_state(jh2bh(jh)) is held.
1784  */
1785 
1786 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1787 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1788 {
1789 	if (!*list) {
1790 		jh->b_tnext = jh->b_tprev = jh;
1791 		*list = jh;
1792 	} else {
1793 		/* Insert at the tail of the list to preserve order */
1794 		struct journal_head *first = *list, *last = first->b_tprev;
1795 		jh->b_tprev = last;
1796 		jh->b_tnext = first;
1797 		last->b_tnext = first->b_tprev = jh;
1798 	}
1799 }
1800 
1801 /*
1802  * Remove a buffer from a transaction list, given the transaction's list
1803  * head pointer.
1804  *
1805  * Called with j_list_lock held, and the journal may not be locked.
1806  *
1807  * jbd_lock_bh_state(jh2bh(jh)) is held.
1808  */
1809 
1810 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1811 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1812 {
1813 	if (*list == jh) {
1814 		*list = jh->b_tnext;
1815 		if (*list == jh)
1816 			*list = NULL;
1817 	}
1818 	jh->b_tprev->b_tnext = jh->b_tnext;
1819 	jh->b_tnext->b_tprev = jh->b_tprev;
1820 }
1821 
1822 /*
1823  * Remove a buffer from the appropriate transaction list.
1824  *
1825  * Note that this function can *change* the value of
1826  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1827  * t_reserved_list.  If the caller is holding onto a copy of one of these
1828  * pointers, it could go bad.  Generally the caller needs to re-read the
1829  * pointer from the transaction_t.
1830  *
1831  * Called under j_list_lock.
1832  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1833 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1834 {
1835 	struct journal_head **list = NULL;
1836 	transaction_t *transaction;
1837 	struct buffer_head *bh = jh2bh(jh);
1838 
1839 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1840 	transaction = jh->b_transaction;
1841 	if (transaction)
1842 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1843 
1844 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1845 	if (jh->b_jlist != BJ_None)
1846 		J_ASSERT_JH(jh, transaction != NULL);
1847 
1848 	switch (jh->b_jlist) {
1849 	case BJ_None:
1850 		return;
1851 	case BJ_Metadata:
1852 		transaction->t_nr_buffers--;
1853 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1854 		list = &transaction->t_buffers;
1855 		break;
1856 	case BJ_Forget:
1857 		list = &transaction->t_forget;
1858 		break;
1859 	case BJ_Shadow:
1860 		list = &transaction->t_shadow_list;
1861 		break;
1862 	case BJ_Reserved:
1863 		list = &transaction->t_reserved_list;
1864 		break;
1865 	}
1866 
1867 	__blist_del_buffer(list, jh);
1868 	jh->b_jlist = BJ_None;
1869 	if (transaction && is_journal_aborted(transaction->t_journal))
1870 		clear_buffer_jbddirty(bh);
1871 	else if (test_clear_buffer_jbddirty(bh))
1872 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1873 }
1874 
1875 /*
1876  * Remove buffer from all transactions.
1877  *
1878  * Called with bh_state lock and j_list_lock
1879  *
1880  * jh and bh may be already freed when this function returns.
1881  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1882 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1883 {
1884 	__jbd2_journal_temp_unlink_buffer(jh);
1885 	jh->b_transaction = NULL;
1886 	jbd2_journal_put_journal_head(jh);
1887 }
1888 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1889 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1890 {
1891 	struct buffer_head *bh = jh2bh(jh);
1892 
1893 	/* Get reference so that buffer cannot be freed before we unlock it */
1894 	get_bh(bh);
1895 	jbd_lock_bh_state(bh);
1896 	spin_lock(&journal->j_list_lock);
1897 	__jbd2_journal_unfile_buffer(jh);
1898 	spin_unlock(&journal->j_list_lock);
1899 	jbd_unlock_bh_state(bh);
1900 	__brelse(bh);
1901 }
1902 
1903 /*
1904  * Called from jbd2_journal_try_to_free_buffers().
1905  *
1906  * Called under jbd_lock_bh_state(bh)
1907  */
1908 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1909 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1910 {
1911 	struct journal_head *jh;
1912 
1913 	jh = bh2jh(bh);
1914 
1915 	if (buffer_locked(bh) || buffer_dirty(bh))
1916 		goto out;
1917 
1918 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1919 		goto out;
1920 
1921 	spin_lock(&journal->j_list_lock);
1922 	if (jh->b_cp_transaction != NULL) {
1923 		/* written-back checkpointed metadata buffer */
1924 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1925 		__jbd2_journal_remove_checkpoint(jh);
1926 	}
1927 	spin_unlock(&journal->j_list_lock);
1928 out:
1929 	return;
1930 }
1931 
1932 /**
1933  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1934  * @journal: journal for operation
1935  * @page: to try and free
1936  * @gfp_mask: we use the mask to detect how hard should we try to release
1937  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1938  * code to release the buffers.
1939  *
1940  *
1941  * For all the buffers on this page,
1942  * if they are fully written out ordered data, move them onto BUF_CLEAN
1943  * so try_to_free_buffers() can reap them.
1944  *
1945  * This function returns non-zero if we wish try_to_free_buffers()
1946  * to be called. We do this if the page is releasable by try_to_free_buffers().
1947  * We also do it if the page has locked or dirty buffers and the caller wants
1948  * us to perform sync or async writeout.
1949  *
1950  * This complicates JBD locking somewhat.  We aren't protected by the
1951  * BKL here.  We wish to remove the buffer from its committing or
1952  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1953  *
1954  * This may *change* the value of transaction_t->t_datalist, so anyone
1955  * who looks at t_datalist needs to lock against this function.
1956  *
1957  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1958  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1959  * will come out of the lock with the buffer dirty, which makes it
1960  * ineligible for release here.
1961  *
1962  * Who else is affected by this?  hmm...  Really the only contender
1963  * is do_get_write_access() - it could be looking at the buffer while
1964  * journal_try_to_free_buffer() is changing its state.  But that
1965  * cannot happen because we never reallocate freed data as metadata
1966  * while the data is part of a transaction.  Yes?
1967  *
1968  * Return 0 on failure, 1 on success
1969  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1970 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1971 				struct page *page, gfp_t gfp_mask)
1972 {
1973 	struct buffer_head *head;
1974 	struct buffer_head *bh;
1975 	int ret = 0;
1976 
1977 	J_ASSERT(PageLocked(page));
1978 
1979 	head = page_buffers(page);
1980 	bh = head;
1981 	do {
1982 		struct journal_head *jh;
1983 
1984 		/*
1985 		 * We take our own ref against the journal_head here to avoid
1986 		 * having to add tons of locking around each instance of
1987 		 * jbd2_journal_put_journal_head().
1988 		 */
1989 		jh = jbd2_journal_grab_journal_head(bh);
1990 		if (!jh)
1991 			continue;
1992 
1993 		jbd_lock_bh_state(bh);
1994 		__journal_try_to_free_buffer(journal, bh);
1995 		jbd2_journal_put_journal_head(jh);
1996 		jbd_unlock_bh_state(bh);
1997 		if (buffer_jbd(bh))
1998 			goto busy;
1999 	} while ((bh = bh->b_this_page) != head);
2000 
2001 	ret = try_to_free_buffers(page);
2002 
2003 busy:
2004 	return ret;
2005 }
2006 
2007 /*
2008  * This buffer is no longer needed.  If it is on an older transaction's
2009  * checkpoint list we need to record it on this transaction's forget list
2010  * to pin this buffer (and hence its checkpointing transaction) down until
2011  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2012  * release it.
2013  * Returns non-zero if JBD no longer has an interest in the buffer.
2014  *
2015  * Called under j_list_lock.
2016  *
2017  * Called under jbd_lock_bh_state(bh).
2018  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2019 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2020 {
2021 	int may_free = 1;
2022 	struct buffer_head *bh = jh2bh(jh);
2023 
2024 	if (jh->b_cp_transaction) {
2025 		JBUFFER_TRACE(jh, "on running+cp transaction");
2026 		__jbd2_journal_temp_unlink_buffer(jh);
2027 		/*
2028 		 * We don't want to write the buffer anymore, clear the
2029 		 * bit so that we don't confuse checks in
2030 		 * __journal_file_buffer
2031 		 */
2032 		clear_buffer_dirty(bh);
2033 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2034 		may_free = 0;
2035 	} else {
2036 		JBUFFER_TRACE(jh, "on running transaction");
2037 		__jbd2_journal_unfile_buffer(jh);
2038 	}
2039 	return may_free;
2040 }
2041 
2042 /*
2043  * jbd2_journal_invalidatepage
2044  *
2045  * This code is tricky.  It has a number of cases to deal with.
2046  *
2047  * There are two invariants which this code relies on:
2048  *
2049  * i_size must be updated on disk before we start calling invalidatepage on the
2050  * data.
2051  *
2052  *  This is done in ext3 by defining an ext3_setattr method which
2053  *  updates i_size before truncate gets going.  By maintaining this
2054  *  invariant, we can be sure that it is safe to throw away any buffers
2055  *  attached to the current transaction: once the transaction commits,
2056  *  we know that the data will not be needed.
2057  *
2058  *  Note however that we can *not* throw away data belonging to the
2059  *  previous, committing transaction!
2060  *
2061  * Any disk blocks which *are* part of the previous, committing
2062  * transaction (and which therefore cannot be discarded immediately) are
2063  * not going to be reused in the new running transaction
2064  *
2065  *  The bitmap committed_data images guarantee this: any block which is
2066  *  allocated in one transaction and removed in the next will be marked
2067  *  as in-use in the committed_data bitmap, so cannot be reused until
2068  *  the next transaction to delete the block commits.  This means that
2069  *  leaving committing buffers dirty is quite safe: the disk blocks
2070  *  cannot be reallocated to a different file and so buffer aliasing is
2071  *  not possible.
2072  *
2073  *
2074  * The above applies mainly to ordered data mode.  In writeback mode we
2075  * don't make guarantees about the order in which data hits disk --- in
2076  * particular we don't guarantee that new dirty data is flushed before
2077  * transaction commit --- so it is always safe just to discard data
2078  * immediately in that mode.  --sct
2079  */
2080 
2081 /*
2082  * The journal_unmap_buffer helper function returns zero if the buffer
2083  * concerned remains pinned as an anonymous buffer belonging to an older
2084  * transaction.
2085  *
2086  * We're outside-transaction here.  Either or both of j_running_transaction
2087  * and j_committing_transaction may be NULL.
2088  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2089 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2090 				int partial_page)
2091 {
2092 	transaction_t *transaction;
2093 	struct journal_head *jh;
2094 	int may_free = 1;
2095 
2096 	BUFFER_TRACE(bh, "entry");
2097 
2098 	/*
2099 	 * It is safe to proceed here without the j_list_lock because the
2100 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2101 	 * holding the page lock. --sct
2102 	 */
2103 
2104 	if (!buffer_jbd(bh))
2105 		goto zap_buffer_unlocked;
2106 
2107 	/* OK, we have data buffer in journaled mode */
2108 	write_lock(&journal->j_state_lock);
2109 	jbd_lock_bh_state(bh);
2110 	spin_lock(&journal->j_list_lock);
2111 
2112 	jh = jbd2_journal_grab_journal_head(bh);
2113 	if (!jh)
2114 		goto zap_buffer_no_jh;
2115 
2116 	/*
2117 	 * We cannot remove the buffer from checkpoint lists until the
2118 	 * transaction adding inode to orphan list (let's call it T)
2119 	 * is committed.  Otherwise if the transaction changing the
2120 	 * buffer would be cleaned from the journal before T is
2121 	 * committed, a crash will cause that the correct contents of
2122 	 * the buffer will be lost.  On the other hand we have to
2123 	 * clear the buffer dirty bit at latest at the moment when the
2124 	 * transaction marking the buffer as freed in the filesystem
2125 	 * structures is committed because from that moment on the
2126 	 * block can be reallocated and used by a different page.
2127 	 * Since the block hasn't been freed yet but the inode has
2128 	 * already been added to orphan list, it is safe for us to add
2129 	 * the buffer to BJ_Forget list of the newest transaction.
2130 	 *
2131 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2132 	 * because the buffer_head may be attached to the page straddling
2133 	 * i_size (can happen only when blocksize < pagesize) and thus the
2134 	 * buffer_head can be reused when the file is extended again. So we end
2135 	 * up keeping around invalidated buffers attached to transactions'
2136 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2137 	 * the transaction this buffer was modified in.
2138 	 */
2139 	transaction = jh->b_transaction;
2140 	if (transaction == NULL) {
2141 		/* First case: not on any transaction.  If it
2142 		 * has no checkpoint link, then we can zap it:
2143 		 * it's a writeback-mode buffer so we don't care
2144 		 * if it hits disk safely. */
2145 		if (!jh->b_cp_transaction) {
2146 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2147 			goto zap_buffer;
2148 		}
2149 
2150 		if (!buffer_dirty(bh)) {
2151 			/* bdflush has written it.  We can drop it now */
2152 			__jbd2_journal_remove_checkpoint(jh);
2153 			goto zap_buffer;
2154 		}
2155 
2156 		/* OK, it must be in the journal but still not
2157 		 * written fully to disk: it's metadata or
2158 		 * journaled data... */
2159 
2160 		if (journal->j_running_transaction) {
2161 			/* ... and once the current transaction has
2162 			 * committed, the buffer won't be needed any
2163 			 * longer. */
2164 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2165 			may_free = __dispose_buffer(jh,
2166 					journal->j_running_transaction);
2167 			goto zap_buffer;
2168 		} else {
2169 			/* There is no currently-running transaction. So the
2170 			 * orphan record which we wrote for this file must have
2171 			 * passed into commit.  We must attach this buffer to
2172 			 * the committing transaction, if it exists. */
2173 			if (journal->j_committing_transaction) {
2174 				JBUFFER_TRACE(jh, "give to committing trans");
2175 				may_free = __dispose_buffer(jh,
2176 					journal->j_committing_transaction);
2177 				goto zap_buffer;
2178 			} else {
2179 				/* The orphan record's transaction has
2180 				 * committed.  We can cleanse this buffer */
2181 				clear_buffer_jbddirty(bh);
2182 				__jbd2_journal_remove_checkpoint(jh);
2183 				goto zap_buffer;
2184 			}
2185 		}
2186 	} else if (transaction == journal->j_committing_transaction) {
2187 		JBUFFER_TRACE(jh, "on committing transaction");
2188 		/*
2189 		 * The buffer is committing, we simply cannot touch
2190 		 * it. If the page is straddling i_size we have to wait
2191 		 * for commit and try again.
2192 		 */
2193 		if (partial_page) {
2194 			jbd2_journal_put_journal_head(jh);
2195 			spin_unlock(&journal->j_list_lock);
2196 			jbd_unlock_bh_state(bh);
2197 			write_unlock(&journal->j_state_lock);
2198 			return -EBUSY;
2199 		}
2200 		/*
2201 		 * OK, buffer won't be reachable after truncate. We just set
2202 		 * j_next_transaction to the running transaction (if there is
2203 		 * one) and mark buffer as freed so that commit code knows it
2204 		 * should clear dirty bits when it is done with the buffer.
2205 		 */
2206 		set_buffer_freed(bh);
2207 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2208 			jh->b_next_transaction = journal->j_running_transaction;
2209 		jbd2_journal_put_journal_head(jh);
2210 		spin_unlock(&journal->j_list_lock);
2211 		jbd_unlock_bh_state(bh);
2212 		write_unlock(&journal->j_state_lock);
2213 		return 0;
2214 	} else {
2215 		/* Good, the buffer belongs to the running transaction.
2216 		 * We are writing our own transaction's data, not any
2217 		 * previous one's, so it is safe to throw it away
2218 		 * (remember that we expect the filesystem to have set
2219 		 * i_size already for this truncate so recovery will not
2220 		 * expose the disk blocks we are discarding here.) */
2221 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2222 		JBUFFER_TRACE(jh, "on running transaction");
2223 		may_free = __dispose_buffer(jh, transaction);
2224 	}
2225 
2226 zap_buffer:
2227 	/*
2228 	 * This is tricky. Although the buffer is truncated, it may be reused
2229 	 * if blocksize < pagesize and it is attached to the page straddling
2230 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2231 	 * running transaction, journal_get_write_access() won't clear
2232 	 * b_modified and credit accounting gets confused. So clear b_modified
2233 	 * here.
2234 	 */
2235 	jh->b_modified = 0;
2236 	jbd2_journal_put_journal_head(jh);
2237 zap_buffer_no_jh:
2238 	spin_unlock(&journal->j_list_lock);
2239 	jbd_unlock_bh_state(bh);
2240 	write_unlock(&journal->j_state_lock);
2241 zap_buffer_unlocked:
2242 	clear_buffer_dirty(bh);
2243 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2244 	clear_buffer_mapped(bh);
2245 	clear_buffer_req(bh);
2246 	clear_buffer_new(bh);
2247 	clear_buffer_delay(bh);
2248 	clear_buffer_unwritten(bh);
2249 	bh->b_bdev = NULL;
2250 	return may_free;
2251 }
2252 
2253 /**
2254  * void jbd2_journal_invalidatepage()
2255  * @journal: journal to use for flush...
2256  * @page:    page to flush
2257  * @offset:  start of the range to invalidate
2258  * @length:  length of the range to invalidate
2259  *
2260  * Reap page buffers containing data after in the specified range in page.
2261  * Can return -EBUSY if buffers are part of the committing transaction and
2262  * the page is straddling i_size. Caller then has to wait for current commit
2263  * and try again.
2264  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2265 int jbd2_journal_invalidatepage(journal_t *journal,
2266 				struct page *page,
2267 				unsigned int offset,
2268 				unsigned int length)
2269 {
2270 	struct buffer_head *head, *bh, *next;
2271 	unsigned int stop = offset + length;
2272 	unsigned int curr_off = 0;
2273 	int partial_page = (offset || length < PAGE_SIZE);
2274 	int may_free = 1;
2275 	int ret = 0;
2276 
2277 	if (!PageLocked(page))
2278 		BUG();
2279 	if (!page_has_buffers(page))
2280 		return 0;
2281 
2282 	BUG_ON(stop > PAGE_SIZE || stop < length);
2283 
2284 	/* We will potentially be playing with lists other than just the
2285 	 * data lists (especially for journaled data mode), so be
2286 	 * cautious in our locking. */
2287 
2288 	head = bh = page_buffers(page);
2289 	do {
2290 		unsigned int next_off = curr_off + bh->b_size;
2291 		next = bh->b_this_page;
2292 
2293 		if (next_off > stop)
2294 			return 0;
2295 
2296 		if (offset <= curr_off) {
2297 			/* This block is wholly outside the truncation point */
2298 			lock_buffer(bh);
2299 			ret = journal_unmap_buffer(journal, bh, partial_page);
2300 			unlock_buffer(bh);
2301 			if (ret < 0)
2302 				return ret;
2303 			may_free &= ret;
2304 		}
2305 		curr_off = next_off;
2306 		bh = next;
2307 
2308 	} while (bh != head);
2309 
2310 	if (!partial_page) {
2311 		if (may_free && try_to_free_buffers(page))
2312 			J_ASSERT(!page_has_buffers(page));
2313 	}
2314 	return 0;
2315 }
2316 
2317 /*
2318  * File a buffer on the given transaction list.
2319  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2320 void __jbd2_journal_file_buffer(struct journal_head *jh,
2321 			transaction_t *transaction, int jlist)
2322 {
2323 	struct journal_head **list = NULL;
2324 	int was_dirty = 0;
2325 	struct buffer_head *bh = jh2bh(jh);
2326 
2327 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2328 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2329 
2330 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2331 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2332 				jh->b_transaction == NULL);
2333 
2334 	if (jh->b_transaction && jh->b_jlist == jlist)
2335 		return;
2336 
2337 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2338 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2339 		/*
2340 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2341 		 * instead of buffer_dirty. We should not see a dirty bit set
2342 		 * here because we clear it in do_get_write_access but e.g.
2343 		 * tune2fs can modify the sb and set the dirty bit at any time
2344 		 * so we try to gracefully handle that.
2345 		 */
2346 		if (buffer_dirty(bh))
2347 			warn_dirty_buffer(bh);
2348 		if (test_clear_buffer_dirty(bh) ||
2349 		    test_clear_buffer_jbddirty(bh))
2350 			was_dirty = 1;
2351 	}
2352 
2353 	if (jh->b_transaction)
2354 		__jbd2_journal_temp_unlink_buffer(jh);
2355 	else
2356 		jbd2_journal_grab_journal_head(bh);
2357 	jh->b_transaction = transaction;
2358 
2359 	switch (jlist) {
2360 	case BJ_None:
2361 		J_ASSERT_JH(jh, !jh->b_committed_data);
2362 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2363 		return;
2364 	case BJ_Metadata:
2365 		transaction->t_nr_buffers++;
2366 		list = &transaction->t_buffers;
2367 		break;
2368 	case BJ_Forget:
2369 		list = &transaction->t_forget;
2370 		break;
2371 	case BJ_Shadow:
2372 		list = &transaction->t_shadow_list;
2373 		break;
2374 	case BJ_Reserved:
2375 		list = &transaction->t_reserved_list;
2376 		break;
2377 	}
2378 
2379 	__blist_add_buffer(list, jh);
2380 	jh->b_jlist = jlist;
2381 
2382 	if (was_dirty)
2383 		set_buffer_jbddirty(bh);
2384 }
2385 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2386 void jbd2_journal_file_buffer(struct journal_head *jh,
2387 				transaction_t *transaction, int jlist)
2388 {
2389 	jbd_lock_bh_state(jh2bh(jh));
2390 	spin_lock(&transaction->t_journal->j_list_lock);
2391 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2392 	spin_unlock(&transaction->t_journal->j_list_lock);
2393 	jbd_unlock_bh_state(jh2bh(jh));
2394 }
2395 
2396 /*
2397  * Remove a buffer from its current buffer list in preparation for
2398  * dropping it from its current transaction entirely.  If the buffer has
2399  * already started to be used by a subsequent transaction, refile the
2400  * buffer on that transaction's metadata list.
2401  *
2402  * Called under j_list_lock
2403  * Called under jbd_lock_bh_state(jh2bh(jh))
2404  *
2405  * jh and bh may be already free when this function returns
2406  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2407 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2408 {
2409 	int was_dirty, jlist;
2410 	struct buffer_head *bh = jh2bh(jh);
2411 
2412 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2413 	if (jh->b_transaction)
2414 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2415 
2416 	/* If the buffer is now unused, just drop it. */
2417 	if (jh->b_next_transaction == NULL) {
2418 		__jbd2_journal_unfile_buffer(jh);
2419 		return;
2420 	}
2421 
2422 	/*
2423 	 * It has been modified by a later transaction: add it to the new
2424 	 * transaction's metadata list.
2425 	 */
2426 
2427 	was_dirty = test_clear_buffer_jbddirty(bh);
2428 	__jbd2_journal_temp_unlink_buffer(jh);
2429 	/*
2430 	 * We set b_transaction here because b_next_transaction will inherit
2431 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2432 	 * take a new one.
2433 	 */
2434 	jh->b_transaction = jh->b_next_transaction;
2435 	jh->b_next_transaction = NULL;
2436 	if (buffer_freed(bh))
2437 		jlist = BJ_Forget;
2438 	else if (jh->b_modified)
2439 		jlist = BJ_Metadata;
2440 	else
2441 		jlist = BJ_Reserved;
2442 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2443 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2444 
2445 	if (was_dirty)
2446 		set_buffer_jbddirty(bh);
2447 }
2448 
2449 /*
2450  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2451  * bh reference so that we can safely unlock bh.
2452  *
2453  * The jh and bh may be freed by this call.
2454  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2455 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2456 {
2457 	struct buffer_head *bh = jh2bh(jh);
2458 
2459 	/* Get reference so that buffer cannot be freed before we unlock it */
2460 	get_bh(bh);
2461 	jbd_lock_bh_state(bh);
2462 	spin_lock(&journal->j_list_lock);
2463 	__jbd2_journal_refile_buffer(jh);
2464 	jbd_unlock_bh_state(bh);
2465 	spin_unlock(&journal->j_list_lock);
2466 	__brelse(bh);
2467 }
2468 
2469 /*
2470  * File inode in the inode list of the handle's transaction
2471  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags)2472 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2473 				   unsigned long flags)
2474 {
2475 	transaction_t *transaction = handle->h_transaction;
2476 	journal_t *journal;
2477 
2478 	if (is_handle_aborted(handle))
2479 		return -EROFS;
2480 	journal = transaction->t_journal;
2481 
2482 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2483 			transaction->t_tid);
2484 
2485 	/*
2486 	 * First check whether inode isn't already on the transaction's
2487 	 * lists without taking the lock. Note that this check is safe
2488 	 * without the lock as we cannot race with somebody removing inode
2489 	 * from the transaction. The reason is that we remove inode from the
2490 	 * transaction only in journal_release_jbd_inode() and when we commit
2491 	 * the transaction. We are guarded from the first case by holding
2492 	 * a reference to the inode. We are safe against the second case
2493 	 * because if jinode->i_transaction == transaction, commit code
2494 	 * cannot touch the transaction because we hold reference to it,
2495 	 * and if jinode->i_next_transaction == transaction, commit code
2496 	 * will only file the inode where we want it.
2497 	 */
2498 	if ((jinode->i_transaction == transaction ||
2499 	    jinode->i_next_transaction == transaction) &&
2500 	    (jinode->i_flags & flags) == flags)
2501 		return 0;
2502 
2503 	spin_lock(&journal->j_list_lock);
2504 	jinode->i_flags |= flags;
2505 	/* Is inode already attached where we need it? */
2506 	if (jinode->i_transaction == transaction ||
2507 	    jinode->i_next_transaction == transaction)
2508 		goto done;
2509 
2510 	/*
2511 	 * We only ever set this variable to 1 so the test is safe. Since
2512 	 * t_need_data_flush is likely to be set, we do the test to save some
2513 	 * cacheline bouncing
2514 	 */
2515 	if (!transaction->t_need_data_flush)
2516 		transaction->t_need_data_flush = 1;
2517 	/* On some different transaction's list - should be
2518 	 * the committing one */
2519 	if (jinode->i_transaction) {
2520 		J_ASSERT(jinode->i_next_transaction == NULL);
2521 		J_ASSERT(jinode->i_transaction ==
2522 					journal->j_committing_transaction);
2523 		jinode->i_next_transaction = transaction;
2524 		goto done;
2525 	}
2526 	/* Not on any transaction list... */
2527 	J_ASSERT(!jinode->i_next_transaction);
2528 	jinode->i_transaction = transaction;
2529 	list_add(&jinode->i_list, &transaction->t_inode_list);
2530 done:
2531 	spin_unlock(&journal->j_list_lock);
2532 
2533 	return 0;
2534 }
2535 
jbd2_journal_inode_add_write(handle_t * handle,struct jbd2_inode * jinode)2536 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2537 {
2538 	return jbd2_journal_file_inode(handle, jinode,
2539 				       JI_WRITE_DATA | JI_WAIT_DATA);
2540 }
2541 
jbd2_journal_inode_add_wait(handle_t * handle,struct jbd2_inode * jinode)2542 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2543 {
2544 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2545 }
2546 
2547 /*
2548  * File truncate and transaction commit interact with each other in a
2549  * non-trivial way.  If a transaction writing data block A is
2550  * committing, we cannot discard the data by truncate until we have
2551  * written them.  Otherwise if we crashed after the transaction with
2552  * write has committed but before the transaction with truncate has
2553  * committed, we could see stale data in block A.  This function is a
2554  * helper to solve this problem.  It starts writeout of the truncated
2555  * part in case it is in the committing transaction.
2556  *
2557  * Filesystem code must call this function when inode is journaled in
2558  * ordered mode before truncation happens and after the inode has been
2559  * placed on orphan list with the new inode size. The second condition
2560  * avoids the race that someone writes new data and we start
2561  * committing the transaction after this function has been called but
2562  * before a transaction for truncate is started (and furthermore it
2563  * allows us to optimize the case where the addition to orphan list
2564  * happens in the same transaction as write --- we don't have to write
2565  * any data in such case).
2566  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2567 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2568 					struct jbd2_inode *jinode,
2569 					loff_t new_size)
2570 {
2571 	transaction_t *inode_trans, *commit_trans;
2572 	int ret = 0;
2573 
2574 	/* This is a quick check to avoid locking if not necessary */
2575 	if (!jinode->i_transaction)
2576 		goto out;
2577 	/* Locks are here just to force reading of recent values, it is
2578 	 * enough that the transaction was not committing before we started
2579 	 * a transaction adding the inode to orphan list */
2580 	read_lock(&journal->j_state_lock);
2581 	commit_trans = journal->j_committing_transaction;
2582 	read_unlock(&journal->j_state_lock);
2583 	spin_lock(&journal->j_list_lock);
2584 	inode_trans = jinode->i_transaction;
2585 	spin_unlock(&journal->j_list_lock);
2586 	if (inode_trans == commit_trans) {
2587 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2588 			new_size, LLONG_MAX);
2589 		if (ret)
2590 			jbd2_journal_abort(journal, ret);
2591 	}
2592 out:
2593 	return ret;
2594 }
2595