• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38 
39 
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!trylock_super(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80 
81 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 	if (!total_objects)
85 		total_objects = 1;
86 
87 	/* proportion the scan between the caches */
88 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91 
92 	/*
93 	 * prune the dcache first as the icache is pinned by it, then
94 	 * prune the icache, followed by the filesystem specific caches
95 	 *
96 	 * Ensure that we always scan at least one object - memcg kmem
97 	 * accounting uses this to fully empty the caches.
98 	 */
99 	sc->nr_to_scan = dentries + 1;
100 	freed = prune_dcache_sb(sb, sc);
101 	sc->nr_to_scan = inodes + 1;
102 	freed += prune_icache_sb(sb, sc);
103 
104 	if (fs_objects) {
105 		sc->nr_to_scan = fs_objects + 1;
106 		freed += sb->s_op->free_cached_objects(sb, sc);
107 	}
108 
109 	up_read(&sb->s_umount);
110 	return freed;
111 }
112 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)113 static unsigned long super_cache_count(struct shrinker *shrink,
114 				       struct shrink_control *sc)
115 {
116 	struct super_block *sb;
117 	long	total_objects = 0;
118 
119 	sb = container_of(shrink, struct super_block, s_shrink);
120 
121 	/*
122 	 * Don't call trylock_super as it is a potential
123 	 * scalability bottleneck. The counts could get updated
124 	 * between super_cache_count and super_cache_scan anyway.
125 	 * Call to super_cache_count with shrinker_rwsem held
126 	 * ensures the safety of call to list_lru_shrink_count() and
127 	 * s_op->nr_cached_objects().
128 	 */
129 	if (sb->s_op && sb->s_op->nr_cached_objects)
130 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
131 
132 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134 
135 	total_objects = vfs_pressure_ratio(total_objects);
136 	return total_objects;
137 }
138 
destroy_super_work(struct work_struct * work)139 static void destroy_super_work(struct work_struct *work)
140 {
141 	struct super_block *s = container_of(work, struct super_block,
142 							destroy_work);
143 	int i;
144 
145 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 	kfree(s);
148 }
149 
destroy_super_rcu(struct rcu_head * head)150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 	struct super_block *s = container_of(head, struct super_block, rcu);
153 	INIT_WORK(&s->destroy_work, destroy_super_work);
154 	schedule_work(&s->destroy_work);
155 }
156 
157 /**
158  *	destroy_super	-	frees a superblock
159  *	@s: superblock to free
160  *
161  *	Frees a superblock.
162  */
destroy_super(struct super_block * s)163 static void destroy_super(struct super_block *s)
164 {
165 	list_lru_destroy(&s->s_dentry_lru);
166 	list_lru_destroy(&s->s_inode_lru);
167 	security_sb_free(s);
168 	WARN_ON(!list_empty(&s->s_mounts));
169 	put_user_ns(s->s_user_ns);
170 	kfree(s->s_subtype);
171 	kfree(s->s_options);
172 	call_rcu(&s->rcu, destroy_super_rcu);
173 }
174 
175 /**
176  *	alloc_super	-	create new superblock
177  *	@type:	filesystem type superblock should belong to
178  *	@flags: the mount flags
179  *	@user_ns: User namespace for the super_block
180  *
181  *	Allocates and initializes a new &struct super_block.  alloc_super()
182  *	returns a pointer new superblock or %NULL if allocation had failed.
183  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 				       struct user_namespace *user_ns)
186 {
187 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
188 	static const struct super_operations default_op;
189 	int i;
190 
191 	if (!s)
192 		return NULL;
193 
194 	INIT_LIST_HEAD(&s->s_mounts);
195 	s->s_user_ns = get_user_ns(user_ns);
196 
197 	if (security_sb_alloc(s))
198 		goto fail;
199 
200 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 					sb_writers_name[i],
203 					&type->s_writers_key[i]))
204 			goto fail;
205 	}
206 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 	s->s_bdi = &noop_backing_dev_info;
208 	s->s_flags = flags;
209 	if (s->s_user_ns != &init_user_ns)
210 		s->s_iflags |= SB_I_NODEV;
211 	INIT_HLIST_NODE(&s->s_instances);
212 	INIT_HLIST_BL_HEAD(&s->s_anon);
213 	mutex_init(&s->s_sync_lock);
214 	INIT_LIST_HEAD(&s->s_inodes);
215 	spin_lock_init(&s->s_inode_list_lock);
216 	INIT_LIST_HEAD(&s->s_inodes_wb);
217 	spin_lock_init(&s->s_inode_wblist_lock);
218 
219 	if (list_lru_init_memcg(&s->s_dentry_lru))
220 		goto fail;
221 	if (list_lru_init_memcg(&s->s_inode_lru))
222 		goto fail;
223 
224 	init_rwsem(&s->s_umount);
225 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 	/*
227 	 * sget() can have s_umount recursion.
228 	 *
229 	 * When it cannot find a suitable sb, it allocates a new
230 	 * one (this one), and tries again to find a suitable old
231 	 * one.
232 	 *
233 	 * In case that succeeds, it will acquire the s_umount
234 	 * lock of the old one. Since these are clearly distrinct
235 	 * locks, and this object isn't exposed yet, there's no
236 	 * risk of deadlocks.
237 	 *
238 	 * Annotate this by putting this lock in a different
239 	 * subclass.
240 	 */
241 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 	s->s_count = 1;
243 	atomic_set(&s->s_active, 1);
244 	mutex_init(&s->s_vfs_rename_mutex);
245 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 	mutex_init(&s->s_dquot.dqio_mutex);
247 	mutex_init(&s->s_dquot.dqonoff_mutex);
248 	s->s_maxbytes = MAX_NON_LFS;
249 	s->s_op = &default_op;
250 	s->s_time_gran = 1000000000;
251 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
252 
253 	s->s_shrink.seeks = DEFAULT_SEEKS;
254 	s->s_shrink.scan_objects = super_cache_scan;
255 	s->s_shrink.count_objects = super_cache_count;
256 	s->s_shrink.batch = 1024;
257 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
258 	return s;
259 
260 fail:
261 	destroy_super(s);
262 	return NULL;
263 }
264 
265 /* Superblock refcounting  */
266 
267 /*
268  * Drop a superblock's refcount.  The caller must hold sb_lock.
269  */
__put_super(struct super_block * sb)270 static void __put_super(struct super_block *sb)
271 {
272 	if (!--sb->s_count) {
273 		list_del_init(&sb->s_list);
274 		destroy_super(sb);
275 	}
276 }
277 
278 /**
279  *	put_super	-	drop a temporary reference to superblock
280  *	@sb: superblock in question
281  *
282  *	Drops a temporary reference, frees superblock if there's no
283  *	references left.
284  */
put_super(struct super_block * sb)285 static void put_super(struct super_block *sb)
286 {
287 	spin_lock(&sb_lock);
288 	__put_super(sb);
289 	spin_unlock(&sb_lock);
290 }
291 
292 
293 /**
294  *	deactivate_locked_super	-	drop an active reference to superblock
295  *	@s: superblock to deactivate
296  *
297  *	Drops an active reference to superblock, converting it into a temporary
298  *	one if there is no other active references left.  In that case we
299  *	tell fs driver to shut it down and drop the temporary reference we
300  *	had just acquired.
301  *
302  *	Caller holds exclusive lock on superblock; that lock is released.
303  */
deactivate_locked_super(struct super_block * s)304 void deactivate_locked_super(struct super_block *s)
305 {
306 	struct file_system_type *fs = s->s_type;
307 	if (atomic_dec_and_test(&s->s_active)) {
308 		cleancache_invalidate_fs(s);
309 		unregister_shrinker(&s->s_shrink);
310 		fs->kill_sb(s);
311 
312 		/*
313 		 * Since list_lru_destroy() may sleep, we cannot call it from
314 		 * put_super(), where we hold the sb_lock. Therefore we destroy
315 		 * the lru lists right now.
316 		 */
317 		list_lru_destroy(&s->s_dentry_lru);
318 		list_lru_destroy(&s->s_inode_lru);
319 
320 		put_filesystem(fs);
321 		put_super(s);
322 	} else {
323 		up_write(&s->s_umount);
324 	}
325 }
326 
327 EXPORT_SYMBOL(deactivate_locked_super);
328 
329 /**
330  *	deactivate_super	-	drop an active reference to superblock
331  *	@s: superblock to deactivate
332  *
333  *	Variant of deactivate_locked_super(), except that superblock is *not*
334  *	locked by caller.  If we are going to drop the final active reference,
335  *	lock will be acquired prior to that.
336  */
deactivate_super(struct super_block * s)337 void deactivate_super(struct super_block *s)
338 {
339         if (!atomic_add_unless(&s->s_active, -1, 1)) {
340 		down_write(&s->s_umount);
341 		deactivate_locked_super(s);
342 	}
343 }
344 
345 EXPORT_SYMBOL(deactivate_super);
346 
347 /**
348  *	grab_super - acquire an active reference
349  *	@s: reference we are trying to make active
350  *
351  *	Tries to acquire an active reference.  grab_super() is used when we
352  * 	had just found a superblock in super_blocks or fs_type->fs_supers
353  *	and want to turn it into a full-blown active reference.  grab_super()
354  *	is called with sb_lock held and drops it.  Returns 1 in case of
355  *	success, 0 if we had failed (superblock contents was already dead or
356  *	dying when grab_super() had been called).  Note that this is only
357  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
358  *	of their type), so increment of ->s_count is OK here.
359  */
grab_super(struct super_block * s)360 static int grab_super(struct super_block *s) __releases(sb_lock)
361 {
362 	s->s_count++;
363 	spin_unlock(&sb_lock);
364 	down_write(&s->s_umount);
365 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
366 		put_super(s);
367 		return 1;
368 	}
369 	up_write(&s->s_umount);
370 	put_super(s);
371 	return 0;
372 }
373 
374 /*
375  *	trylock_super - try to grab ->s_umount shared
376  *	@sb: reference we are trying to grab
377  *
378  *	Try to prevent fs shutdown.  This is used in places where we
379  *	cannot take an active reference but we need to ensure that the
380  *	filesystem is not shut down while we are working on it. It returns
381  *	false if we cannot acquire s_umount or if we lose the race and
382  *	filesystem already got into shutdown, and returns true with the s_umount
383  *	lock held in read mode in case of success. On successful return,
384  *	the caller must drop the s_umount lock when done.
385  *
386  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
387  *	The reason why it's safe is that we are OK with doing trylock instead
388  *	of down_read().  There's a couple of places that are OK with that, but
389  *	it's very much not a general-purpose interface.
390  */
trylock_super(struct super_block * sb)391 bool trylock_super(struct super_block *sb)
392 {
393 	if (down_read_trylock(&sb->s_umount)) {
394 		if (!hlist_unhashed(&sb->s_instances) &&
395 		    sb->s_root && (sb->s_flags & MS_BORN))
396 			return true;
397 		up_read(&sb->s_umount);
398 	}
399 
400 	return false;
401 }
402 
403 /**
404  *	generic_shutdown_super	-	common helper for ->kill_sb()
405  *	@sb: superblock to kill
406  *
407  *	generic_shutdown_super() does all fs-independent work on superblock
408  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
409  *	that need destruction out of superblock, call generic_shutdown_super()
410  *	and release aforementioned objects.  Note: dentries and inodes _are_
411  *	taken care of and do not need specific handling.
412  *
413  *	Upon calling this function, the filesystem may no longer alter or
414  *	rearrange the set of dentries belonging to this super_block, nor may it
415  *	change the attachments of dentries to inodes.
416  */
generic_shutdown_super(struct super_block * sb)417 void generic_shutdown_super(struct super_block *sb)
418 {
419 	const struct super_operations *sop = sb->s_op;
420 
421 	if (sb->s_root) {
422 		shrink_dcache_for_umount(sb);
423 		sync_filesystem(sb);
424 		sb->s_flags &= ~MS_ACTIVE;
425 
426 		fsnotify_unmount_inodes(sb);
427 		cgroup_writeback_umount();
428 
429 		evict_inodes(sb);
430 
431 		if (sb->s_dio_done_wq) {
432 			destroy_workqueue(sb->s_dio_done_wq);
433 			sb->s_dio_done_wq = NULL;
434 		}
435 
436 		if (sop->put_super)
437 			sop->put_super(sb);
438 
439 		if (!list_empty(&sb->s_inodes)) {
440 			printk("VFS: Busy inodes after unmount of %s. "
441 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
442 			   sb->s_id);
443 		}
444 	}
445 	spin_lock(&sb_lock);
446 	/* should be initialized for __put_super_and_need_restart() */
447 	hlist_del_init(&sb->s_instances);
448 	spin_unlock(&sb_lock);
449 	up_write(&sb->s_umount);
450 }
451 
452 EXPORT_SYMBOL(generic_shutdown_super);
453 
454 /**
455  *	sget_userns -	find or create a superblock
456  *	@type:	filesystem type superblock should belong to
457  *	@test:	comparison callback
458  *	@set:	setup callback
459  *	@flags:	mount flags
460  *	@user_ns: User namespace for the super_block
461  *	@data:	argument to each of them
462  */
sget_userns(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,struct user_namespace * user_ns,void * data)463 struct super_block *sget_userns(struct file_system_type *type,
464 			int (*test)(struct super_block *,void *),
465 			int (*set)(struct super_block *,void *),
466 			int flags, struct user_namespace *user_ns,
467 			void *data)
468 {
469 	struct super_block *s = NULL;
470 	struct super_block *old;
471 	int err;
472 
473 	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
474 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
475 	    !capable(CAP_SYS_ADMIN))
476 		return ERR_PTR(-EPERM);
477 retry:
478 	spin_lock(&sb_lock);
479 	if (test) {
480 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
481 			if (!test(old, data))
482 				continue;
483 			if (user_ns != old->s_user_ns) {
484 				spin_unlock(&sb_lock);
485 				if (s) {
486 					up_write(&s->s_umount);
487 					destroy_super(s);
488 				}
489 				return ERR_PTR(-EBUSY);
490 			}
491 			if (!grab_super(old))
492 				goto retry;
493 			if (s) {
494 				up_write(&s->s_umount);
495 				destroy_super(s);
496 				s = NULL;
497 			}
498 			return old;
499 		}
500 	}
501 	if (!s) {
502 		spin_unlock(&sb_lock);
503 		s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
504 		if (!s)
505 			return ERR_PTR(-ENOMEM);
506 		goto retry;
507 	}
508 
509 	err = set(s, data);
510 	if (err) {
511 		spin_unlock(&sb_lock);
512 		up_write(&s->s_umount);
513 		destroy_super(s);
514 		return ERR_PTR(err);
515 	}
516 	s->s_type = type;
517 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
518 	list_add_tail(&s->s_list, &super_blocks);
519 	hlist_add_head(&s->s_instances, &type->fs_supers);
520 	spin_unlock(&sb_lock);
521 	get_filesystem(type);
522 	err = register_shrinker(&s->s_shrink);
523 	if (err) {
524 		deactivate_locked_super(s);
525 		s = ERR_PTR(err);
526 	}
527 	return s;
528 }
529 
530 EXPORT_SYMBOL(sget_userns);
531 
532 /**
533  *	sget	-	find or create a superblock
534  *	@type:	  filesystem type superblock should belong to
535  *	@test:	  comparison callback
536  *	@set:	  setup callback
537  *	@flags:	  mount flags
538  *	@data:	  argument to each of them
539  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)540 struct super_block *sget(struct file_system_type *type,
541 			int (*test)(struct super_block *,void *),
542 			int (*set)(struct super_block *,void *),
543 			int flags,
544 			void *data)
545 {
546 	struct user_namespace *user_ns = current_user_ns();
547 
548 	/* We don't yet pass the user namespace of the parent
549 	 * mount through to here so always use &init_user_ns
550 	 * until that changes.
551 	 */
552 	if (flags & MS_SUBMOUNT)
553 		user_ns = &init_user_ns;
554 
555 	/* Ensure the requestor has permissions over the target filesystem */
556 	if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
557 		return ERR_PTR(-EPERM);
558 
559 	return sget_userns(type, test, set, flags, user_ns, data);
560 }
561 
562 EXPORT_SYMBOL(sget);
563 
drop_super(struct super_block * sb)564 void drop_super(struct super_block *sb)
565 {
566 	up_read(&sb->s_umount);
567 	put_super(sb);
568 }
569 
570 EXPORT_SYMBOL(drop_super);
571 
572 /**
573  *	iterate_supers - call function for all active superblocks
574  *	@f: function to call
575  *	@arg: argument to pass to it
576  *
577  *	Scans the superblock list and calls given function, passing it
578  *	locked superblock and given argument.
579  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)580 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
581 {
582 	struct super_block *sb, *p = NULL;
583 
584 	spin_lock(&sb_lock);
585 	list_for_each_entry(sb, &super_blocks, s_list) {
586 		if (hlist_unhashed(&sb->s_instances))
587 			continue;
588 		sb->s_count++;
589 		spin_unlock(&sb_lock);
590 
591 		down_read(&sb->s_umount);
592 		if (sb->s_root && (sb->s_flags & MS_BORN))
593 			f(sb, arg);
594 		up_read(&sb->s_umount);
595 
596 		spin_lock(&sb_lock);
597 		if (p)
598 			__put_super(p);
599 		p = sb;
600 	}
601 	if (p)
602 		__put_super(p);
603 	spin_unlock(&sb_lock);
604 }
605 
606 /**
607  *	iterate_supers_type - call function for superblocks of given type
608  *	@type: fs type
609  *	@f: function to call
610  *	@arg: argument to pass to it
611  *
612  *	Scans the superblock list and calls given function, passing it
613  *	locked superblock and given argument.
614  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)615 void iterate_supers_type(struct file_system_type *type,
616 	void (*f)(struct super_block *, void *), void *arg)
617 {
618 	struct super_block *sb, *p = NULL;
619 
620 	spin_lock(&sb_lock);
621 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
622 		sb->s_count++;
623 		spin_unlock(&sb_lock);
624 
625 		down_read(&sb->s_umount);
626 		if (sb->s_root && (sb->s_flags & MS_BORN))
627 			f(sb, arg);
628 		up_read(&sb->s_umount);
629 
630 		spin_lock(&sb_lock);
631 		if (p)
632 			__put_super(p);
633 		p = sb;
634 	}
635 	if (p)
636 		__put_super(p);
637 	spin_unlock(&sb_lock);
638 }
639 
640 EXPORT_SYMBOL(iterate_supers_type);
641 
642 /**
643  *	get_super - get the superblock of a device
644  *	@bdev: device to get the superblock for
645  *
646  *	Scans the superblock list and finds the superblock of the file system
647  *	mounted on the device given. %NULL is returned if no match is found.
648  */
649 
get_super(struct block_device * bdev)650 struct super_block *get_super(struct block_device *bdev)
651 {
652 	struct super_block *sb;
653 
654 	if (!bdev)
655 		return NULL;
656 
657 	spin_lock(&sb_lock);
658 rescan:
659 	list_for_each_entry(sb, &super_blocks, s_list) {
660 		if (hlist_unhashed(&sb->s_instances))
661 			continue;
662 		if (sb->s_bdev == bdev) {
663 			sb->s_count++;
664 			spin_unlock(&sb_lock);
665 			down_read(&sb->s_umount);
666 			/* still alive? */
667 			if (sb->s_root && (sb->s_flags & MS_BORN))
668 				return sb;
669 			up_read(&sb->s_umount);
670 			/* nope, got unmounted */
671 			spin_lock(&sb_lock);
672 			__put_super(sb);
673 			goto rescan;
674 		}
675 	}
676 	spin_unlock(&sb_lock);
677 	return NULL;
678 }
679 
680 EXPORT_SYMBOL(get_super);
681 
682 /**
683  *	get_super_thawed - get thawed superblock of a device
684  *	@bdev: device to get the superblock for
685  *
686  *	Scans the superblock list and finds the superblock of the file system
687  *	mounted on the device. The superblock is returned once it is thawed
688  *	(or immediately if it was not frozen). %NULL is returned if no match
689  *	is found.
690  */
get_super_thawed(struct block_device * bdev)691 struct super_block *get_super_thawed(struct block_device *bdev)
692 {
693 	while (1) {
694 		struct super_block *s = get_super(bdev);
695 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
696 			return s;
697 		up_read(&s->s_umount);
698 		wait_event(s->s_writers.wait_unfrozen,
699 			   s->s_writers.frozen == SB_UNFROZEN);
700 		put_super(s);
701 	}
702 }
703 EXPORT_SYMBOL(get_super_thawed);
704 
705 /**
706  * get_active_super - get an active reference to the superblock of a device
707  * @bdev: device to get the superblock for
708  *
709  * Scans the superblock list and finds the superblock of the file system
710  * mounted on the device given.  Returns the superblock with an active
711  * reference or %NULL if none was found.
712  */
get_active_super(struct block_device * bdev)713 struct super_block *get_active_super(struct block_device *bdev)
714 {
715 	struct super_block *sb;
716 
717 	if (!bdev)
718 		return NULL;
719 
720 restart:
721 	spin_lock(&sb_lock);
722 	list_for_each_entry(sb, &super_blocks, s_list) {
723 		if (hlist_unhashed(&sb->s_instances))
724 			continue;
725 		if (sb->s_bdev == bdev) {
726 			if (!grab_super(sb))
727 				goto restart;
728 			up_write(&sb->s_umount);
729 			return sb;
730 		}
731 	}
732 	spin_unlock(&sb_lock);
733 	return NULL;
734 }
735 
user_get_super(dev_t dev)736 struct super_block *user_get_super(dev_t dev)
737 {
738 	struct super_block *sb;
739 
740 	spin_lock(&sb_lock);
741 rescan:
742 	list_for_each_entry(sb, &super_blocks, s_list) {
743 		if (hlist_unhashed(&sb->s_instances))
744 			continue;
745 		if (sb->s_dev ==  dev) {
746 			sb->s_count++;
747 			spin_unlock(&sb_lock);
748 			down_read(&sb->s_umount);
749 			/* still alive? */
750 			if (sb->s_root && (sb->s_flags & MS_BORN))
751 				return sb;
752 			up_read(&sb->s_umount);
753 			/* nope, got unmounted */
754 			spin_lock(&sb_lock);
755 			__put_super(sb);
756 			goto rescan;
757 		}
758 	}
759 	spin_unlock(&sb_lock);
760 	return NULL;
761 }
762 
763 /**
764  *	do_remount_sb2 - asks filesystem to change mount options.
765  *	@mnt:   mount we are looking at
766  *	@sb:	superblock in question
767  *	@flags:	numeric part of options
768  *	@data:	the rest of options
769  *      @force: whether or not to force the change
770  *
771  *	Alters the mount options of a mounted file system.
772  */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int flags,void * data,int force)773 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
774 {
775 	int retval;
776 	int remount_ro;
777 
778 	if (sb->s_writers.frozen != SB_UNFROZEN)
779 		return -EBUSY;
780 
781 #ifdef CONFIG_BLOCK
782 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
783 		return -EACCES;
784 #endif
785 
786 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
787 
788 	if (remount_ro) {
789 		if (!hlist_empty(&sb->s_pins)) {
790 			up_write(&sb->s_umount);
791 			group_pin_kill(&sb->s_pins);
792 			down_write(&sb->s_umount);
793 			if (!sb->s_root)
794 				return 0;
795 			if (sb->s_writers.frozen != SB_UNFROZEN)
796 				return -EBUSY;
797 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
798 		}
799 	}
800 	shrink_dcache_sb(sb);
801 
802 	/* If we are remounting RDONLY and current sb is read/write,
803 	   make sure there are no rw files opened */
804 	if (remount_ro) {
805 		if (force) {
806 			sb->s_readonly_remount = 1;
807 			smp_wmb();
808 		} else {
809 			retval = sb_prepare_remount_readonly(sb);
810 			if (retval)
811 				return retval;
812 		}
813 	}
814 
815 	if (mnt && sb->s_op->remount_fs2) {
816 		retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
817 		if (retval) {
818 			if (!force)
819 				goto cancel_readonly;
820 			/* If forced remount, go ahead despite any errors */
821 			WARN(1, "forced remount of a %s fs returned %i\n",
822 			     sb->s_type->name, retval);
823 		}
824 	} else if (sb->s_op->remount_fs) {
825 		retval = sb->s_op->remount_fs(sb, &flags, data);
826 		if (retval) {
827 			if (!force)
828 				goto cancel_readonly;
829 			/* If forced remount, go ahead despite any errors */
830 			WARN(1, "forced remount of a %s fs returned %i\n",
831 			     sb->s_type->name, retval);
832 		}
833 	}
834 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
835 	/* Needs to be ordered wrt mnt_is_readonly() */
836 	smp_wmb();
837 	sb->s_readonly_remount = 0;
838 
839 	/*
840 	 * Some filesystems modify their metadata via some other path than the
841 	 * bdev buffer cache (eg. use a private mapping, or directories in
842 	 * pagecache, etc). Also file data modifications go via their own
843 	 * mappings. So If we try to mount readonly then copy the filesystem
844 	 * from bdev, we could get stale data, so invalidate it to give a best
845 	 * effort at coherency.
846 	 */
847 	if (remount_ro && sb->s_bdev)
848 		invalidate_bdev(sb->s_bdev);
849 	return 0;
850 
851 cancel_readonly:
852 	sb->s_readonly_remount = 0;
853 	return retval;
854 }
855 
do_remount_sb(struct super_block * sb,int flags,void * data,int force)856 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
857 {
858 	return do_remount_sb2(NULL, sb, flags, data, force);
859 }
860 
do_emergency_remount(struct work_struct * work)861 static void do_emergency_remount(struct work_struct *work)
862 {
863 	struct super_block *sb, *p = NULL;
864 
865 	spin_lock(&sb_lock);
866 	list_for_each_entry_reverse(sb, &super_blocks, s_list) {
867 		if (hlist_unhashed(&sb->s_instances))
868 			continue;
869 		sb->s_count++;
870 		spin_unlock(&sb_lock);
871 		down_write(&sb->s_umount);
872 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
873 		    !(sb->s_flags & MS_RDONLY)) {
874 			/*
875 			 * What lock protects sb->s_flags??
876 			 */
877 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
878 		}
879 		up_write(&sb->s_umount);
880 		spin_lock(&sb_lock);
881 		if (p)
882 			__put_super(p);
883 		p = sb;
884 	}
885 	if (p)
886 		__put_super(p);
887 	spin_unlock(&sb_lock);
888 	kfree(work);
889 	printk("Emergency Remount complete\n");
890 }
891 
emergency_remount(void)892 void emergency_remount(void)
893 {
894 	struct work_struct *work;
895 
896 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
897 	if (work) {
898 		INIT_WORK(work, do_emergency_remount);
899 		schedule_work(work);
900 	}
901 }
902 
903 /*
904  * Unnamed block devices are dummy devices used by virtual
905  * filesystems which don't use real block-devices.  -- jrs
906  */
907 
908 static DEFINE_IDA(unnamed_dev_ida);
909 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
910 /* Many userspace utilities consider an FSID of 0 invalid.
911  * Always return at least 1 from get_anon_bdev.
912  */
913 static int unnamed_dev_start = 1;
914 
get_anon_bdev(dev_t * p)915 int get_anon_bdev(dev_t *p)
916 {
917 	int dev;
918 	int error;
919 
920  retry:
921 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
922 		return -ENOMEM;
923 	spin_lock(&unnamed_dev_lock);
924 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
925 	if (!error)
926 		unnamed_dev_start = dev + 1;
927 	spin_unlock(&unnamed_dev_lock);
928 	if (error == -EAGAIN)
929 		/* We raced and lost with another CPU. */
930 		goto retry;
931 	else if (error)
932 		return -EAGAIN;
933 
934 	if (dev >= (1 << MINORBITS)) {
935 		spin_lock(&unnamed_dev_lock);
936 		ida_remove(&unnamed_dev_ida, dev);
937 		if (unnamed_dev_start > dev)
938 			unnamed_dev_start = dev;
939 		spin_unlock(&unnamed_dev_lock);
940 		return -EMFILE;
941 	}
942 	*p = MKDEV(0, dev & MINORMASK);
943 	return 0;
944 }
945 EXPORT_SYMBOL(get_anon_bdev);
946 
free_anon_bdev(dev_t dev)947 void free_anon_bdev(dev_t dev)
948 {
949 	int slot = MINOR(dev);
950 	spin_lock(&unnamed_dev_lock);
951 	ida_remove(&unnamed_dev_ida, slot);
952 	if (slot < unnamed_dev_start)
953 		unnamed_dev_start = slot;
954 	spin_unlock(&unnamed_dev_lock);
955 }
956 EXPORT_SYMBOL(free_anon_bdev);
957 
set_anon_super(struct super_block * s,void * data)958 int set_anon_super(struct super_block *s, void *data)
959 {
960 	return get_anon_bdev(&s->s_dev);
961 }
962 
963 EXPORT_SYMBOL(set_anon_super);
964 
kill_anon_super(struct super_block * sb)965 void kill_anon_super(struct super_block *sb)
966 {
967 	dev_t dev = sb->s_dev;
968 	generic_shutdown_super(sb);
969 	free_anon_bdev(dev);
970 }
971 
972 EXPORT_SYMBOL(kill_anon_super);
973 
kill_litter_super(struct super_block * sb)974 void kill_litter_super(struct super_block *sb)
975 {
976 	if (sb->s_root)
977 		d_genocide(sb->s_root);
978 	kill_anon_super(sb);
979 }
980 
981 EXPORT_SYMBOL(kill_litter_super);
982 
ns_test_super(struct super_block * sb,void * data)983 static int ns_test_super(struct super_block *sb, void *data)
984 {
985 	return sb->s_fs_info == data;
986 }
987 
ns_set_super(struct super_block * sb,void * data)988 static int ns_set_super(struct super_block *sb, void *data)
989 {
990 	sb->s_fs_info = data;
991 	return set_anon_super(sb, NULL);
992 }
993 
mount_ns(struct file_system_type * fs_type,int flags,void * data,void * ns,struct user_namespace * user_ns,int (* fill_super)(struct super_block *,void *,int))994 struct dentry *mount_ns(struct file_system_type *fs_type,
995 	int flags, void *data, void *ns, struct user_namespace *user_ns,
996 	int (*fill_super)(struct super_block *, void *, int))
997 {
998 	struct super_block *sb;
999 
1000 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1001 	 * over the namespace.
1002 	 */
1003 	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1004 		return ERR_PTR(-EPERM);
1005 
1006 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1007 			 user_ns, ns);
1008 	if (IS_ERR(sb))
1009 		return ERR_CAST(sb);
1010 
1011 	if (!sb->s_root) {
1012 		int err;
1013 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1014 		if (err) {
1015 			deactivate_locked_super(sb);
1016 			return ERR_PTR(err);
1017 		}
1018 
1019 		sb->s_flags |= MS_ACTIVE;
1020 	}
1021 
1022 	return dget(sb->s_root);
1023 }
1024 
1025 EXPORT_SYMBOL(mount_ns);
1026 
1027 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)1028 static int set_bdev_super(struct super_block *s, void *data)
1029 {
1030 	s->s_bdev = data;
1031 	s->s_dev = s->s_bdev->bd_dev;
1032 
1033 	/*
1034 	 * We set the bdi here to the queue backing, file systems can
1035 	 * overwrite this in ->fill_super()
1036 	 */
1037 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1038 	return 0;
1039 }
1040 
test_bdev_super(struct super_block * s,void * data)1041 static int test_bdev_super(struct super_block *s, void *data)
1042 {
1043 	return (void *)s->s_bdev == data;
1044 }
1045 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1046 struct dentry *mount_bdev(struct file_system_type *fs_type,
1047 	int flags, const char *dev_name, void *data,
1048 	int (*fill_super)(struct super_block *, void *, int))
1049 {
1050 	struct block_device *bdev;
1051 	struct super_block *s;
1052 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1053 	int error = 0;
1054 
1055 	if (!(flags & MS_RDONLY))
1056 		mode |= FMODE_WRITE;
1057 
1058 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1059 	if (IS_ERR(bdev))
1060 		return ERR_CAST(bdev);
1061 
1062 	/*
1063 	 * once the super is inserted into the list by sget, s_umount
1064 	 * will protect the lockfs code from trying to start a snapshot
1065 	 * while we are mounting
1066 	 */
1067 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1068 	if (bdev->bd_fsfreeze_count > 0) {
1069 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1070 		error = -EBUSY;
1071 		goto error_bdev;
1072 	}
1073 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1074 		 bdev);
1075 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1076 	if (IS_ERR(s))
1077 		goto error_s;
1078 
1079 	if (s->s_root) {
1080 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1081 			deactivate_locked_super(s);
1082 			error = -EBUSY;
1083 			goto error_bdev;
1084 		}
1085 
1086 		/*
1087 		 * s_umount nests inside bd_mutex during
1088 		 * __invalidate_device().  blkdev_put() acquires
1089 		 * bd_mutex and can't be called under s_umount.  Drop
1090 		 * s_umount temporarily.  This is safe as we're
1091 		 * holding an active reference.
1092 		 */
1093 		up_write(&s->s_umount);
1094 		blkdev_put(bdev, mode);
1095 		down_write(&s->s_umount);
1096 	} else {
1097 		s->s_mode = mode;
1098 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1099 		sb_set_blocksize(s, block_size(bdev));
1100 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1101 		if (error) {
1102 			deactivate_locked_super(s);
1103 			goto error;
1104 		}
1105 
1106 		s->s_flags |= MS_ACTIVE;
1107 		bdev->bd_super = s;
1108 	}
1109 
1110 	return dget(s->s_root);
1111 
1112 error_s:
1113 	error = PTR_ERR(s);
1114 error_bdev:
1115 	blkdev_put(bdev, mode);
1116 error:
1117 	return ERR_PTR(error);
1118 }
1119 EXPORT_SYMBOL(mount_bdev);
1120 
kill_block_super(struct super_block * sb)1121 void kill_block_super(struct super_block *sb)
1122 {
1123 	struct block_device *bdev = sb->s_bdev;
1124 	fmode_t mode = sb->s_mode;
1125 
1126 	bdev->bd_super = NULL;
1127 	generic_shutdown_super(sb);
1128 	sync_blockdev(bdev);
1129 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1130 	blkdev_put(bdev, mode | FMODE_EXCL);
1131 }
1132 
1133 EXPORT_SYMBOL(kill_block_super);
1134 #endif
1135 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1136 struct dentry *mount_nodev(struct file_system_type *fs_type,
1137 	int flags, void *data,
1138 	int (*fill_super)(struct super_block *, void *, int))
1139 {
1140 	int error;
1141 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1142 
1143 	if (IS_ERR(s))
1144 		return ERR_CAST(s);
1145 
1146 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1147 	if (error) {
1148 		deactivate_locked_super(s);
1149 		return ERR_PTR(error);
1150 	}
1151 	s->s_flags |= MS_ACTIVE;
1152 	return dget(s->s_root);
1153 }
1154 EXPORT_SYMBOL(mount_nodev);
1155 
compare_single(struct super_block * s,void * p)1156 static int compare_single(struct super_block *s, void *p)
1157 {
1158 	return 1;
1159 }
1160 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1161 struct dentry *mount_single(struct file_system_type *fs_type,
1162 	int flags, void *data,
1163 	int (*fill_super)(struct super_block *, void *, int))
1164 {
1165 	struct super_block *s;
1166 	int error;
1167 
1168 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1169 	if (IS_ERR(s))
1170 		return ERR_CAST(s);
1171 	if (!s->s_root) {
1172 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1173 		if (error) {
1174 			deactivate_locked_super(s);
1175 			return ERR_PTR(error);
1176 		}
1177 		s->s_flags |= MS_ACTIVE;
1178 	} else {
1179 		do_remount_sb(s, flags, data, 0);
1180 	}
1181 	return dget(s->s_root);
1182 }
1183 EXPORT_SYMBOL(mount_single);
1184 
1185 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1186 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1187 {
1188 	struct dentry *root;
1189 	struct super_block *sb;
1190 	char *secdata = NULL;
1191 	int error = -ENOMEM;
1192 
1193 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1194 		secdata = alloc_secdata();
1195 		if (!secdata)
1196 			goto out;
1197 
1198 		error = security_sb_copy_data(data, secdata);
1199 		if (error)
1200 			goto out_free_secdata;
1201 	}
1202 
1203 	if (type->mount2)
1204 		root = type->mount2(mnt, type, flags, name, data);
1205 	else
1206 		root = type->mount(type, flags, name, data);
1207 	if (IS_ERR(root)) {
1208 		error = PTR_ERR(root);
1209 		goto out_free_secdata;
1210 	}
1211 	sb = root->d_sb;
1212 	BUG_ON(!sb);
1213 	WARN_ON(!sb->s_bdi);
1214 	sb->s_flags |= MS_BORN;
1215 
1216 	error = security_sb_kern_mount(sb, flags, secdata);
1217 	if (error)
1218 		goto out_sb;
1219 
1220 	/*
1221 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1222 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1223 	 * this warning for a little while to try and catch filesystems that
1224 	 * violate this rule.
1225 	 */
1226 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1227 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1228 
1229 	up_write(&sb->s_umount);
1230 	free_secdata(secdata);
1231 	return root;
1232 out_sb:
1233 	dput(root);
1234 	deactivate_locked_super(sb);
1235 out_free_secdata:
1236 	free_secdata(secdata);
1237 out:
1238 	return ERR_PTR(error);
1239 }
1240 
1241 /*
1242  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1243  * instead.
1244  */
__sb_end_write(struct super_block * sb,int level)1245 void __sb_end_write(struct super_block *sb, int level)
1246 {
1247 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1248 }
1249 EXPORT_SYMBOL(__sb_end_write);
1250 
1251 /*
1252  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1253  * instead.
1254  */
__sb_start_write(struct super_block * sb,int level,bool wait)1255 int __sb_start_write(struct super_block *sb, int level, bool wait)
1256 {
1257 	bool force_trylock = false;
1258 	int ret = 1;
1259 
1260 #ifdef CONFIG_LOCKDEP
1261 	/*
1262 	 * We want lockdep to tell us about possible deadlocks with freezing
1263 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1264 	 * protection works as getting a read lock but there are subtle
1265 	 * problems. XFS for example gets freeze protection on internal level
1266 	 * twice in some cases, which is OK only because we already hold a
1267 	 * freeze protection also on higher level. Due to these cases we have
1268 	 * to use wait == F (trylock mode) which must not fail.
1269 	 */
1270 	if (wait) {
1271 		int i;
1272 
1273 		for (i = 0; i < level - 1; i++)
1274 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1275 				force_trylock = true;
1276 				break;
1277 			}
1278 	}
1279 #endif
1280 	if (wait && !force_trylock)
1281 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1282 	else
1283 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1284 
1285 	WARN_ON(force_trylock && !ret);
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL(__sb_start_write);
1289 
1290 /**
1291  * sb_wait_write - wait until all writers to given file system finish
1292  * @sb: the super for which we wait
1293  * @level: type of writers we wait for (normal vs page fault)
1294  *
1295  * This function waits until there are no writers of given type to given file
1296  * system.
1297  */
sb_wait_write(struct super_block * sb,int level)1298 static void sb_wait_write(struct super_block *sb, int level)
1299 {
1300 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1301 }
1302 
1303 /*
1304  * We are going to return to userspace and forget about these locks, the
1305  * ownership goes to the caller of thaw_super() which does unlock().
1306  */
lockdep_sb_freeze_release(struct super_block * sb)1307 static void lockdep_sb_freeze_release(struct super_block *sb)
1308 {
1309 	int level;
1310 
1311 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1312 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1313 }
1314 
1315 /*
1316  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1317  */
lockdep_sb_freeze_acquire(struct super_block * sb)1318 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1319 {
1320 	int level;
1321 
1322 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1323 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1324 }
1325 
sb_freeze_unlock(struct super_block * sb)1326 static void sb_freeze_unlock(struct super_block *sb)
1327 {
1328 	int level;
1329 
1330 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1331 		percpu_up_write(sb->s_writers.rw_sem + level);
1332 }
1333 
1334 /**
1335  * freeze_super - lock the filesystem and force it into a consistent state
1336  * @sb: the super to lock
1337  *
1338  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1339  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1340  * -EBUSY.
1341  *
1342  * During this function, sb->s_writers.frozen goes through these values:
1343  *
1344  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1345  *
1346  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1347  * writes should be blocked, though page faults are still allowed. We wait for
1348  * all writes to complete and then proceed to the next stage.
1349  *
1350  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1351  * but internal fs threads can still modify the filesystem (although they
1352  * should not dirty new pages or inodes), writeback can run etc. After waiting
1353  * for all running page faults we sync the filesystem which will clean all
1354  * dirty pages and inodes (no new dirty pages or inodes can be created when
1355  * sync is running).
1356  *
1357  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1358  * modification are blocked (e.g. XFS preallocation truncation on inode
1359  * reclaim). This is usually implemented by blocking new transactions for
1360  * filesystems that have them and need this additional guard. After all
1361  * internal writers are finished we call ->freeze_fs() to finish filesystem
1362  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1363  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1364  *
1365  * sb->s_writers.frozen is protected by sb->s_umount.
1366  */
freeze_super(struct super_block * sb)1367 int freeze_super(struct super_block *sb)
1368 {
1369 	int ret;
1370 
1371 	atomic_inc(&sb->s_active);
1372 	down_write(&sb->s_umount);
1373 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1374 		deactivate_locked_super(sb);
1375 		return -EBUSY;
1376 	}
1377 
1378 	if (!(sb->s_flags & MS_BORN)) {
1379 		up_write(&sb->s_umount);
1380 		return 0;	/* sic - it's "nothing to do" */
1381 	}
1382 
1383 	if (sb->s_flags & MS_RDONLY) {
1384 		/* Nothing to do really... */
1385 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1386 		up_write(&sb->s_umount);
1387 		return 0;
1388 	}
1389 
1390 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1391 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1392 	up_write(&sb->s_umount);
1393 	sb_wait_write(sb, SB_FREEZE_WRITE);
1394 	down_write(&sb->s_umount);
1395 
1396 	/* Now we go and block page faults... */
1397 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1398 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1399 
1400 	/* All writers are done so after syncing there won't be dirty data */
1401 	sync_filesystem(sb);
1402 
1403 	/* Now wait for internal filesystem counter */
1404 	sb->s_writers.frozen = SB_FREEZE_FS;
1405 	sb_wait_write(sb, SB_FREEZE_FS);
1406 
1407 	if (sb->s_op->freeze_fs) {
1408 		ret = sb->s_op->freeze_fs(sb);
1409 		if (ret) {
1410 			printk(KERN_ERR
1411 				"VFS:Filesystem freeze failed\n");
1412 			sb->s_writers.frozen = SB_UNFROZEN;
1413 			sb_freeze_unlock(sb);
1414 			wake_up(&sb->s_writers.wait_unfrozen);
1415 			deactivate_locked_super(sb);
1416 			return ret;
1417 		}
1418 	}
1419 	/*
1420 	 * For debugging purposes so that fs can warn if it sees write activity
1421 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1422 	 */
1423 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1424 	lockdep_sb_freeze_release(sb);
1425 	up_write(&sb->s_umount);
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL(freeze_super);
1429 
1430 /**
1431  * thaw_super -- unlock filesystem
1432  * @sb: the super to thaw
1433  *
1434  * Unlocks the filesystem and marks it writeable again after freeze_super().
1435  */
thaw_super(struct super_block * sb)1436 int thaw_super(struct super_block *sb)
1437 {
1438 	int error;
1439 
1440 	down_write(&sb->s_umount);
1441 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1442 		up_write(&sb->s_umount);
1443 		return -EINVAL;
1444 	}
1445 
1446 	if (sb->s_flags & MS_RDONLY) {
1447 		sb->s_writers.frozen = SB_UNFROZEN;
1448 		goto out;
1449 	}
1450 
1451 	lockdep_sb_freeze_acquire(sb);
1452 
1453 	if (sb->s_op->unfreeze_fs) {
1454 		error = sb->s_op->unfreeze_fs(sb);
1455 		if (error) {
1456 			printk(KERN_ERR
1457 				"VFS:Filesystem thaw failed\n");
1458 			lockdep_sb_freeze_release(sb);
1459 			up_write(&sb->s_umount);
1460 			return error;
1461 		}
1462 	}
1463 
1464 	sb->s_writers.frozen = SB_UNFROZEN;
1465 	sb_freeze_unlock(sb);
1466 out:
1467 	wake_up(&sb->s_writers.wait_unfrozen);
1468 	deactivate_locked_super(sb);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(thaw_super);
1472