1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38
39
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58 {
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!trylock_super(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80
81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 total_objects = dentries + inodes + fs_objects + 1;
84 if (!total_objects)
85 total_objects = 1;
86
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 *
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
98 */
99 sc->nr_to_scan = dentries + 1;
100 freed = prune_dcache_sb(sb, sc);
101 sc->nr_to_scan = inodes + 1;
102 freed += prune_icache_sb(sb, sc);
103
104 if (fs_objects) {
105 sc->nr_to_scan = fs_objects + 1;
106 freed += sb->s_op->free_cached_objects(sb, sc);
107 }
108
109 up_read(&sb->s_umount);
110 return freed;
111 }
112
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)113 static unsigned long super_cache_count(struct shrinker *shrink,
114 struct shrink_control *sc)
115 {
116 struct super_block *sb;
117 long total_objects = 0;
118
119 sb = container_of(shrink, struct super_block, s_shrink);
120
121 /*
122 * Don't call trylock_super as it is a potential
123 * scalability bottleneck. The counts could get updated
124 * between super_cache_count and super_cache_scan anyway.
125 * Call to super_cache_count with shrinker_rwsem held
126 * ensures the safety of call to list_lru_shrink_count() and
127 * s_op->nr_cached_objects().
128 */
129 if (sb->s_op && sb->s_op->nr_cached_objects)
130 total_objects = sb->s_op->nr_cached_objects(sb, sc);
131
132 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134
135 total_objects = vfs_pressure_ratio(total_objects);
136 return total_objects;
137 }
138
destroy_super_work(struct work_struct * work)139 static void destroy_super_work(struct work_struct *work)
140 {
141 struct super_block *s = container_of(work, struct super_block,
142 destroy_work);
143 int i;
144
145 for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 kfree(s);
148 }
149
destroy_super_rcu(struct rcu_head * head)150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 struct super_block *s = container_of(head, struct super_block, rcu);
153 INIT_WORK(&s->destroy_work, destroy_super_work);
154 schedule_work(&s->destroy_work);
155 }
156
157 /**
158 * destroy_super - frees a superblock
159 * @s: superblock to free
160 *
161 * Frees a superblock.
162 */
destroy_super(struct super_block * s)163 static void destroy_super(struct super_block *s)
164 {
165 list_lru_destroy(&s->s_dentry_lru);
166 list_lru_destroy(&s->s_inode_lru);
167 security_sb_free(s);
168 WARN_ON(!list_empty(&s->s_mounts));
169 put_user_ns(s->s_user_ns);
170 kfree(s->s_subtype);
171 kfree(s->s_options);
172 call_rcu(&s->rcu, destroy_super_rcu);
173 }
174
175 /**
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
180 *
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
183 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
186 {
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
189 int i;
190
191 if (!s)
192 return NULL;
193
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196
197 if (security_sb_alloc(s))
198 goto fail;
199
200 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 sb_writers_name[i],
203 &type->s_writers_key[i]))
204 goto fail;
205 }
206 init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 s->s_bdi = &noop_backing_dev_info;
208 s->s_flags = flags;
209 if (s->s_user_ns != &init_user_ns)
210 s->s_iflags |= SB_I_NODEV;
211 INIT_HLIST_NODE(&s->s_instances);
212 INIT_HLIST_BL_HEAD(&s->s_anon);
213 mutex_init(&s->s_sync_lock);
214 INIT_LIST_HEAD(&s->s_inodes);
215 spin_lock_init(&s->s_inode_list_lock);
216 INIT_LIST_HEAD(&s->s_inodes_wb);
217 spin_lock_init(&s->s_inode_wblist_lock);
218
219 if (list_lru_init_memcg(&s->s_dentry_lru))
220 goto fail;
221 if (list_lru_init_memcg(&s->s_inode_lru))
222 goto fail;
223
224 init_rwsem(&s->s_umount);
225 lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 /*
227 * sget() can have s_umount recursion.
228 *
229 * When it cannot find a suitable sb, it allocates a new
230 * one (this one), and tries again to find a suitable old
231 * one.
232 *
233 * In case that succeeds, it will acquire the s_umount
234 * lock of the old one. Since these are clearly distrinct
235 * locks, and this object isn't exposed yet, there's no
236 * risk of deadlocks.
237 *
238 * Annotate this by putting this lock in a different
239 * subclass.
240 */
241 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 s->s_count = 1;
243 atomic_set(&s->s_active, 1);
244 mutex_init(&s->s_vfs_rename_mutex);
245 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 mutex_init(&s->s_dquot.dqio_mutex);
247 mutex_init(&s->s_dquot.dqonoff_mutex);
248 s->s_maxbytes = MAX_NON_LFS;
249 s->s_op = &default_op;
250 s->s_time_gran = 1000000000;
251 s->cleancache_poolid = CLEANCACHE_NO_POOL;
252
253 s->s_shrink.seeks = DEFAULT_SEEKS;
254 s->s_shrink.scan_objects = super_cache_scan;
255 s->s_shrink.count_objects = super_cache_count;
256 s->s_shrink.batch = 1024;
257 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
258 return s;
259
260 fail:
261 destroy_super(s);
262 return NULL;
263 }
264
265 /* Superblock refcounting */
266
267 /*
268 * Drop a superblock's refcount. The caller must hold sb_lock.
269 */
__put_super(struct super_block * sb)270 static void __put_super(struct super_block *sb)
271 {
272 if (!--sb->s_count) {
273 list_del_init(&sb->s_list);
274 destroy_super(sb);
275 }
276 }
277
278 /**
279 * put_super - drop a temporary reference to superblock
280 * @sb: superblock in question
281 *
282 * Drops a temporary reference, frees superblock if there's no
283 * references left.
284 */
put_super(struct super_block * sb)285 static void put_super(struct super_block *sb)
286 {
287 spin_lock(&sb_lock);
288 __put_super(sb);
289 spin_unlock(&sb_lock);
290 }
291
292
293 /**
294 * deactivate_locked_super - drop an active reference to superblock
295 * @s: superblock to deactivate
296 *
297 * Drops an active reference to superblock, converting it into a temporary
298 * one if there is no other active references left. In that case we
299 * tell fs driver to shut it down and drop the temporary reference we
300 * had just acquired.
301 *
302 * Caller holds exclusive lock on superblock; that lock is released.
303 */
deactivate_locked_super(struct super_block * s)304 void deactivate_locked_super(struct super_block *s)
305 {
306 struct file_system_type *fs = s->s_type;
307 if (atomic_dec_and_test(&s->s_active)) {
308 cleancache_invalidate_fs(s);
309 unregister_shrinker(&s->s_shrink);
310 fs->kill_sb(s);
311
312 /*
313 * Since list_lru_destroy() may sleep, we cannot call it from
314 * put_super(), where we hold the sb_lock. Therefore we destroy
315 * the lru lists right now.
316 */
317 list_lru_destroy(&s->s_dentry_lru);
318 list_lru_destroy(&s->s_inode_lru);
319
320 put_filesystem(fs);
321 put_super(s);
322 } else {
323 up_write(&s->s_umount);
324 }
325 }
326
327 EXPORT_SYMBOL(deactivate_locked_super);
328
329 /**
330 * deactivate_super - drop an active reference to superblock
331 * @s: superblock to deactivate
332 *
333 * Variant of deactivate_locked_super(), except that superblock is *not*
334 * locked by caller. If we are going to drop the final active reference,
335 * lock will be acquired prior to that.
336 */
deactivate_super(struct super_block * s)337 void deactivate_super(struct super_block *s)
338 {
339 if (!atomic_add_unless(&s->s_active, -1, 1)) {
340 down_write(&s->s_umount);
341 deactivate_locked_super(s);
342 }
343 }
344
345 EXPORT_SYMBOL(deactivate_super);
346
347 /**
348 * grab_super - acquire an active reference
349 * @s: reference we are trying to make active
350 *
351 * Tries to acquire an active reference. grab_super() is used when we
352 * had just found a superblock in super_blocks or fs_type->fs_supers
353 * and want to turn it into a full-blown active reference. grab_super()
354 * is called with sb_lock held and drops it. Returns 1 in case of
355 * success, 0 if we had failed (superblock contents was already dead or
356 * dying when grab_super() had been called). Note that this is only
357 * called for superblocks not in rundown mode (== ones still on ->fs_supers
358 * of their type), so increment of ->s_count is OK here.
359 */
grab_super(struct super_block * s)360 static int grab_super(struct super_block *s) __releases(sb_lock)
361 {
362 s->s_count++;
363 spin_unlock(&sb_lock);
364 down_write(&s->s_umount);
365 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
366 put_super(s);
367 return 1;
368 }
369 up_write(&s->s_umount);
370 put_super(s);
371 return 0;
372 }
373
374 /*
375 * trylock_super - try to grab ->s_umount shared
376 * @sb: reference we are trying to grab
377 *
378 * Try to prevent fs shutdown. This is used in places where we
379 * cannot take an active reference but we need to ensure that the
380 * filesystem is not shut down while we are working on it. It returns
381 * false if we cannot acquire s_umount or if we lose the race and
382 * filesystem already got into shutdown, and returns true with the s_umount
383 * lock held in read mode in case of success. On successful return,
384 * the caller must drop the s_umount lock when done.
385 *
386 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
387 * The reason why it's safe is that we are OK with doing trylock instead
388 * of down_read(). There's a couple of places that are OK with that, but
389 * it's very much not a general-purpose interface.
390 */
trylock_super(struct super_block * sb)391 bool trylock_super(struct super_block *sb)
392 {
393 if (down_read_trylock(&sb->s_umount)) {
394 if (!hlist_unhashed(&sb->s_instances) &&
395 sb->s_root && (sb->s_flags & MS_BORN))
396 return true;
397 up_read(&sb->s_umount);
398 }
399
400 return false;
401 }
402
403 /**
404 * generic_shutdown_super - common helper for ->kill_sb()
405 * @sb: superblock to kill
406 *
407 * generic_shutdown_super() does all fs-independent work on superblock
408 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
409 * that need destruction out of superblock, call generic_shutdown_super()
410 * and release aforementioned objects. Note: dentries and inodes _are_
411 * taken care of and do not need specific handling.
412 *
413 * Upon calling this function, the filesystem may no longer alter or
414 * rearrange the set of dentries belonging to this super_block, nor may it
415 * change the attachments of dentries to inodes.
416 */
generic_shutdown_super(struct super_block * sb)417 void generic_shutdown_super(struct super_block *sb)
418 {
419 const struct super_operations *sop = sb->s_op;
420
421 if (sb->s_root) {
422 shrink_dcache_for_umount(sb);
423 sync_filesystem(sb);
424 sb->s_flags &= ~MS_ACTIVE;
425
426 fsnotify_unmount_inodes(sb);
427 cgroup_writeback_umount();
428
429 evict_inodes(sb);
430
431 if (sb->s_dio_done_wq) {
432 destroy_workqueue(sb->s_dio_done_wq);
433 sb->s_dio_done_wq = NULL;
434 }
435
436 if (sop->put_super)
437 sop->put_super(sb);
438
439 if (!list_empty(&sb->s_inodes)) {
440 printk("VFS: Busy inodes after unmount of %s. "
441 "Self-destruct in 5 seconds. Have a nice day...\n",
442 sb->s_id);
443 }
444 }
445 spin_lock(&sb_lock);
446 /* should be initialized for __put_super_and_need_restart() */
447 hlist_del_init(&sb->s_instances);
448 spin_unlock(&sb_lock);
449 up_write(&sb->s_umount);
450 }
451
452 EXPORT_SYMBOL(generic_shutdown_super);
453
454 /**
455 * sget_userns - find or create a superblock
456 * @type: filesystem type superblock should belong to
457 * @test: comparison callback
458 * @set: setup callback
459 * @flags: mount flags
460 * @user_ns: User namespace for the super_block
461 * @data: argument to each of them
462 */
sget_userns(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,struct user_namespace * user_ns,void * data)463 struct super_block *sget_userns(struct file_system_type *type,
464 int (*test)(struct super_block *,void *),
465 int (*set)(struct super_block *,void *),
466 int flags, struct user_namespace *user_ns,
467 void *data)
468 {
469 struct super_block *s = NULL;
470 struct super_block *old;
471 int err;
472
473 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
474 !(type->fs_flags & FS_USERNS_MOUNT) &&
475 !capable(CAP_SYS_ADMIN))
476 return ERR_PTR(-EPERM);
477 retry:
478 spin_lock(&sb_lock);
479 if (test) {
480 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
481 if (!test(old, data))
482 continue;
483 if (user_ns != old->s_user_ns) {
484 spin_unlock(&sb_lock);
485 if (s) {
486 up_write(&s->s_umount);
487 destroy_super(s);
488 }
489 return ERR_PTR(-EBUSY);
490 }
491 if (!grab_super(old))
492 goto retry;
493 if (s) {
494 up_write(&s->s_umount);
495 destroy_super(s);
496 s = NULL;
497 }
498 return old;
499 }
500 }
501 if (!s) {
502 spin_unlock(&sb_lock);
503 s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
504 if (!s)
505 return ERR_PTR(-ENOMEM);
506 goto retry;
507 }
508
509 err = set(s, data);
510 if (err) {
511 spin_unlock(&sb_lock);
512 up_write(&s->s_umount);
513 destroy_super(s);
514 return ERR_PTR(err);
515 }
516 s->s_type = type;
517 strlcpy(s->s_id, type->name, sizeof(s->s_id));
518 list_add_tail(&s->s_list, &super_blocks);
519 hlist_add_head(&s->s_instances, &type->fs_supers);
520 spin_unlock(&sb_lock);
521 get_filesystem(type);
522 err = register_shrinker(&s->s_shrink);
523 if (err) {
524 deactivate_locked_super(s);
525 s = ERR_PTR(err);
526 }
527 return s;
528 }
529
530 EXPORT_SYMBOL(sget_userns);
531
532 /**
533 * sget - find or create a superblock
534 * @type: filesystem type superblock should belong to
535 * @test: comparison callback
536 * @set: setup callback
537 * @flags: mount flags
538 * @data: argument to each of them
539 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)540 struct super_block *sget(struct file_system_type *type,
541 int (*test)(struct super_block *,void *),
542 int (*set)(struct super_block *,void *),
543 int flags,
544 void *data)
545 {
546 struct user_namespace *user_ns = current_user_ns();
547
548 /* We don't yet pass the user namespace of the parent
549 * mount through to here so always use &init_user_ns
550 * until that changes.
551 */
552 if (flags & MS_SUBMOUNT)
553 user_ns = &init_user_ns;
554
555 /* Ensure the requestor has permissions over the target filesystem */
556 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
557 return ERR_PTR(-EPERM);
558
559 return sget_userns(type, test, set, flags, user_ns, data);
560 }
561
562 EXPORT_SYMBOL(sget);
563
drop_super(struct super_block * sb)564 void drop_super(struct super_block *sb)
565 {
566 up_read(&sb->s_umount);
567 put_super(sb);
568 }
569
570 EXPORT_SYMBOL(drop_super);
571
572 /**
573 * iterate_supers - call function for all active superblocks
574 * @f: function to call
575 * @arg: argument to pass to it
576 *
577 * Scans the superblock list and calls given function, passing it
578 * locked superblock and given argument.
579 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)580 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
581 {
582 struct super_block *sb, *p = NULL;
583
584 spin_lock(&sb_lock);
585 list_for_each_entry(sb, &super_blocks, s_list) {
586 if (hlist_unhashed(&sb->s_instances))
587 continue;
588 sb->s_count++;
589 spin_unlock(&sb_lock);
590
591 down_read(&sb->s_umount);
592 if (sb->s_root && (sb->s_flags & MS_BORN))
593 f(sb, arg);
594 up_read(&sb->s_umount);
595
596 spin_lock(&sb_lock);
597 if (p)
598 __put_super(p);
599 p = sb;
600 }
601 if (p)
602 __put_super(p);
603 spin_unlock(&sb_lock);
604 }
605
606 /**
607 * iterate_supers_type - call function for superblocks of given type
608 * @type: fs type
609 * @f: function to call
610 * @arg: argument to pass to it
611 *
612 * Scans the superblock list and calls given function, passing it
613 * locked superblock and given argument.
614 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)615 void iterate_supers_type(struct file_system_type *type,
616 void (*f)(struct super_block *, void *), void *arg)
617 {
618 struct super_block *sb, *p = NULL;
619
620 spin_lock(&sb_lock);
621 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
622 sb->s_count++;
623 spin_unlock(&sb_lock);
624
625 down_read(&sb->s_umount);
626 if (sb->s_root && (sb->s_flags & MS_BORN))
627 f(sb, arg);
628 up_read(&sb->s_umount);
629
630 spin_lock(&sb_lock);
631 if (p)
632 __put_super(p);
633 p = sb;
634 }
635 if (p)
636 __put_super(p);
637 spin_unlock(&sb_lock);
638 }
639
640 EXPORT_SYMBOL(iterate_supers_type);
641
642 /**
643 * get_super - get the superblock of a device
644 * @bdev: device to get the superblock for
645 *
646 * Scans the superblock list and finds the superblock of the file system
647 * mounted on the device given. %NULL is returned if no match is found.
648 */
649
get_super(struct block_device * bdev)650 struct super_block *get_super(struct block_device *bdev)
651 {
652 struct super_block *sb;
653
654 if (!bdev)
655 return NULL;
656
657 spin_lock(&sb_lock);
658 rescan:
659 list_for_each_entry(sb, &super_blocks, s_list) {
660 if (hlist_unhashed(&sb->s_instances))
661 continue;
662 if (sb->s_bdev == bdev) {
663 sb->s_count++;
664 spin_unlock(&sb_lock);
665 down_read(&sb->s_umount);
666 /* still alive? */
667 if (sb->s_root && (sb->s_flags & MS_BORN))
668 return sb;
669 up_read(&sb->s_umount);
670 /* nope, got unmounted */
671 spin_lock(&sb_lock);
672 __put_super(sb);
673 goto rescan;
674 }
675 }
676 spin_unlock(&sb_lock);
677 return NULL;
678 }
679
680 EXPORT_SYMBOL(get_super);
681
682 /**
683 * get_super_thawed - get thawed superblock of a device
684 * @bdev: device to get the superblock for
685 *
686 * Scans the superblock list and finds the superblock of the file system
687 * mounted on the device. The superblock is returned once it is thawed
688 * (or immediately if it was not frozen). %NULL is returned if no match
689 * is found.
690 */
get_super_thawed(struct block_device * bdev)691 struct super_block *get_super_thawed(struct block_device *bdev)
692 {
693 while (1) {
694 struct super_block *s = get_super(bdev);
695 if (!s || s->s_writers.frozen == SB_UNFROZEN)
696 return s;
697 up_read(&s->s_umount);
698 wait_event(s->s_writers.wait_unfrozen,
699 s->s_writers.frozen == SB_UNFROZEN);
700 put_super(s);
701 }
702 }
703 EXPORT_SYMBOL(get_super_thawed);
704
705 /**
706 * get_active_super - get an active reference to the superblock of a device
707 * @bdev: device to get the superblock for
708 *
709 * Scans the superblock list and finds the superblock of the file system
710 * mounted on the device given. Returns the superblock with an active
711 * reference or %NULL if none was found.
712 */
get_active_super(struct block_device * bdev)713 struct super_block *get_active_super(struct block_device *bdev)
714 {
715 struct super_block *sb;
716
717 if (!bdev)
718 return NULL;
719
720 restart:
721 spin_lock(&sb_lock);
722 list_for_each_entry(sb, &super_blocks, s_list) {
723 if (hlist_unhashed(&sb->s_instances))
724 continue;
725 if (sb->s_bdev == bdev) {
726 if (!grab_super(sb))
727 goto restart;
728 up_write(&sb->s_umount);
729 return sb;
730 }
731 }
732 spin_unlock(&sb_lock);
733 return NULL;
734 }
735
user_get_super(dev_t dev)736 struct super_block *user_get_super(dev_t dev)
737 {
738 struct super_block *sb;
739
740 spin_lock(&sb_lock);
741 rescan:
742 list_for_each_entry(sb, &super_blocks, s_list) {
743 if (hlist_unhashed(&sb->s_instances))
744 continue;
745 if (sb->s_dev == dev) {
746 sb->s_count++;
747 spin_unlock(&sb_lock);
748 down_read(&sb->s_umount);
749 /* still alive? */
750 if (sb->s_root && (sb->s_flags & MS_BORN))
751 return sb;
752 up_read(&sb->s_umount);
753 /* nope, got unmounted */
754 spin_lock(&sb_lock);
755 __put_super(sb);
756 goto rescan;
757 }
758 }
759 spin_unlock(&sb_lock);
760 return NULL;
761 }
762
763 /**
764 * do_remount_sb2 - asks filesystem to change mount options.
765 * @mnt: mount we are looking at
766 * @sb: superblock in question
767 * @flags: numeric part of options
768 * @data: the rest of options
769 * @force: whether or not to force the change
770 *
771 * Alters the mount options of a mounted file system.
772 */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int flags,void * data,int force)773 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
774 {
775 int retval;
776 int remount_ro;
777
778 if (sb->s_writers.frozen != SB_UNFROZEN)
779 return -EBUSY;
780
781 #ifdef CONFIG_BLOCK
782 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
783 return -EACCES;
784 #endif
785
786 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
787
788 if (remount_ro) {
789 if (!hlist_empty(&sb->s_pins)) {
790 up_write(&sb->s_umount);
791 group_pin_kill(&sb->s_pins);
792 down_write(&sb->s_umount);
793 if (!sb->s_root)
794 return 0;
795 if (sb->s_writers.frozen != SB_UNFROZEN)
796 return -EBUSY;
797 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
798 }
799 }
800 shrink_dcache_sb(sb);
801
802 /* If we are remounting RDONLY and current sb is read/write,
803 make sure there are no rw files opened */
804 if (remount_ro) {
805 if (force) {
806 sb->s_readonly_remount = 1;
807 smp_wmb();
808 } else {
809 retval = sb_prepare_remount_readonly(sb);
810 if (retval)
811 return retval;
812 }
813 }
814
815 if (mnt && sb->s_op->remount_fs2) {
816 retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
817 if (retval) {
818 if (!force)
819 goto cancel_readonly;
820 /* If forced remount, go ahead despite any errors */
821 WARN(1, "forced remount of a %s fs returned %i\n",
822 sb->s_type->name, retval);
823 }
824 } else if (sb->s_op->remount_fs) {
825 retval = sb->s_op->remount_fs(sb, &flags, data);
826 if (retval) {
827 if (!force)
828 goto cancel_readonly;
829 /* If forced remount, go ahead despite any errors */
830 WARN(1, "forced remount of a %s fs returned %i\n",
831 sb->s_type->name, retval);
832 }
833 }
834 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
835 /* Needs to be ordered wrt mnt_is_readonly() */
836 smp_wmb();
837 sb->s_readonly_remount = 0;
838
839 /*
840 * Some filesystems modify their metadata via some other path than the
841 * bdev buffer cache (eg. use a private mapping, or directories in
842 * pagecache, etc). Also file data modifications go via their own
843 * mappings. So If we try to mount readonly then copy the filesystem
844 * from bdev, we could get stale data, so invalidate it to give a best
845 * effort at coherency.
846 */
847 if (remount_ro && sb->s_bdev)
848 invalidate_bdev(sb->s_bdev);
849 return 0;
850
851 cancel_readonly:
852 sb->s_readonly_remount = 0;
853 return retval;
854 }
855
do_remount_sb(struct super_block * sb,int flags,void * data,int force)856 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
857 {
858 return do_remount_sb2(NULL, sb, flags, data, force);
859 }
860
do_emergency_remount(struct work_struct * work)861 static void do_emergency_remount(struct work_struct *work)
862 {
863 struct super_block *sb, *p = NULL;
864
865 spin_lock(&sb_lock);
866 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
867 if (hlist_unhashed(&sb->s_instances))
868 continue;
869 sb->s_count++;
870 spin_unlock(&sb_lock);
871 down_write(&sb->s_umount);
872 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
873 !(sb->s_flags & MS_RDONLY)) {
874 /*
875 * What lock protects sb->s_flags??
876 */
877 do_remount_sb(sb, MS_RDONLY, NULL, 1);
878 }
879 up_write(&sb->s_umount);
880 spin_lock(&sb_lock);
881 if (p)
882 __put_super(p);
883 p = sb;
884 }
885 if (p)
886 __put_super(p);
887 spin_unlock(&sb_lock);
888 kfree(work);
889 printk("Emergency Remount complete\n");
890 }
891
emergency_remount(void)892 void emergency_remount(void)
893 {
894 struct work_struct *work;
895
896 work = kmalloc(sizeof(*work), GFP_ATOMIC);
897 if (work) {
898 INIT_WORK(work, do_emergency_remount);
899 schedule_work(work);
900 }
901 }
902
903 /*
904 * Unnamed block devices are dummy devices used by virtual
905 * filesystems which don't use real block-devices. -- jrs
906 */
907
908 static DEFINE_IDA(unnamed_dev_ida);
909 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
910 /* Many userspace utilities consider an FSID of 0 invalid.
911 * Always return at least 1 from get_anon_bdev.
912 */
913 static int unnamed_dev_start = 1;
914
get_anon_bdev(dev_t * p)915 int get_anon_bdev(dev_t *p)
916 {
917 int dev;
918 int error;
919
920 retry:
921 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
922 return -ENOMEM;
923 spin_lock(&unnamed_dev_lock);
924 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
925 if (!error)
926 unnamed_dev_start = dev + 1;
927 spin_unlock(&unnamed_dev_lock);
928 if (error == -EAGAIN)
929 /* We raced and lost with another CPU. */
930 goto retry;
931 else if (error)
932 return -EAGAIN;
933
934 if (dev >= (1 << MINORBITS)) {
935 spin_lock(&unnamed_dev_lock);
936 ida_remove(&unnamed_dev_ida, dev);
937 if (unnamed_dev_start > dev)
938 unnamed_dev_start = dev;
939 spin_unlock(&unnamed_dev_lock);
940 return -EMFILE;
941 }
942 *p = MKDEV(0, dev & MINORMASK);
943 return 0;
944 }
945 EXPORT_SYMBOL(get_anon_bdev);
946
free_anon_bdev(dev_t dev)947 void free_anon_bdev(dev_t dev)
948 {
949 int slot = MINOR(dev);
950 spin_lock(&unnamed_dev_lock);
951 ida_remove(&unnamed_dev_ida, slot);
952 if (slot < unnamed_dev_start)
953 unnamed_dev_start = slot;
954 spin_unlock(&unnamed_dev_lock);
955 }
956 EXPORT_SYMBOL(free_anon_bdev);
957
set_anon_super(struct super_block * s,void * data)958 int set_anon_super(struct super_block *s, void *data)
959 {
960 return get_anon_bdev(&s->s_dev);
961 }
962
963 EXPORT_SYMBOL(set_anon_super);
964
kill_anon_super(struct super_block * sb)965 void kill_anon_super(struct super_block *sb)
966 {
967 dev_t dev = sb->s_dev;
968 generic_shutdown_super(sb);
969 free_anon_bdev(dev);
970 }
971
972 EXPORT_SYMBOL(kill_anon_super);
973
kill_litter_super(struct super_block * sb)974 void kill_litter_super(struct super_block *sb)
975 {
976 if (sb->s_root)
977 d_genocide(sb->s_root);
978 kill_anon_super(sb);
979 }
980
981 EXPORT_SYMBOL(kill_litter_super);
982
ns_test_super(struct super_block * sb,void * data)983 static int ns_test_super(struct super_block *sb, void *data)
984 {
985 return sb->s_fs_info == data;
986 }
987
ns_set_super(struct super_block * sb,void * data)988 static int ns_set_super(struct super_block *sb, void *data)
989 {
990 sb->s_fs_info = data;
991 return set_anon_super(sb, NULL);
992 }
993
mount_ns(struct file_system_type * fs_type,int flags,void * data,void * ns,struct user_namespace * user_ns,int (* fill_super)(struct super_block *,void *,int))994 struct dentry *mount_ns(struct file_system_type *fs_type,
995 int flags, void *data, void *ns, struct user_namespace *user_ns,
996 int (*fill_super)(struct super_block *, void *, int))
997 {
998 struct super_block *sb;
999
1000 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1001 * over the namespace.
1002 */
1003 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1004 return ERR_PTR(-EPERM);
1005
1006 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1007 user_ns, ns);
1008 if (IS_ERR(sb))
1009 return ERR_CAST(sb);
1010
1011 if (!sb->s_root) {
1012 int err;
1013 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1014 if (err) {
1015 deactivate_locked_super(sb);
1016 return ERR_PTR(err);
1017 }
1018
1019 sb->s_flags |= MS_ACTIVE;
1020 }
1021
1022 return dget(sb->s_root);
1023 }
1024
1025 EXPORT_SYMBOL(mount_ns);
1026
1027 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)1028 static int set_bdev_super(struct super_block *s, void *data)
1029 {
1030 s->s_bdev = data;
1031 s->s_dev = s->s_bdev->bd_dev;
1032
1033 /*
1034 * We set the bdi here to the queue backing, file systems can
1035 * overwrite this in ->fill_super()
1036 */
1037 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1038 return 0;
1039 }
1040
test_bdev_super(struct super_block * s,void * data)1041 static int test_bdev_super(struct super_block *s, void *data)
1042 {
1043 return (void *)s->s_bdev == data;
1044 }
1045
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1046 struct dentry *mount_bdev(struct file_system_type *fs_type,
1047 int flags, const char *dev_name, void *data,
1048 int (*fill_super)(struct super_block *, void *, int))
1049 {
1050 struct block_device *bdev;
1051 struct super_block *s;
1052 fmode_t mode = FMODE_READ | FMODE_EXCL;
1053 int error = 0;
1054
1055 if (!(flags & MS_RDONLY))
1056 mode |= FMODE_WRITE;
1057
1058 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1059 if (IS_ERR(bdev))
1060 return ERR_CAST(bdev);
1061
1062 /*
1063 * once the super is inserted into the list by sget, s_umount
1064 * will protect the lockfs code from trying to start a snapshot
1065 * while we are mounting
1066 */
1067 mutex_lock(&bdev->bd_fsfreeze_mutex);
1068 if (bdev->bd_fsfreeze_count > 0) {
1069 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1070 error = -EBUSY;
1071 goto error_bdev;
1072 }
1073 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1074 bdev);
1075 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1076 if (IS_ERR(s))
1077 goto error_s;
1078
1079 if (s->s_root) {
1080 if ((flags ^ s->s_flags) & MS_RDONLY) {
1081 deactivate_locked_super(s);
1082 error = -EBUSY;
1083 goto error_bdev;
1084 }
1085
1086 /*
1087 * s_umount nests inside bd_mutex during
1088 * __invalidate_device(). blkdev_put() acquires
1089 * bd_mutex and can't be called under s_umount. Drop
1090 * s_umount temporarily. This is safe as we're
1091 * holding an active reference.
1092 */
1093 up_write(&s->s_umount);
1094 blkdev_put(bdev, mode);
1095 down_write(&s->s_umount);
1096 } else {
1097 s->s_mode = mode;
1098 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1099 sb_set_blocksize(s, block_size(bdev));
1100 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1101 if (error) {
1102 deactivate_locked_super(s);
1103 goto error;
1104 }
1105
1106 s->s_flags |= MS_ACTIVE;
1107 bdev->bd_super = s;
1108 }
1109
1110 return dget(s->s_root);
1111
1112 error_s:
1113 error = PTR_ERR(s);
1114 error_bdev:
1115 blkdev_put(bdev, mode);
1116 error:
1117 return ERR_PTR(error);
1118 }
1119 EXPORT_SYMBOL(mount_bdev);
1120
kill_block_super(struct super_block * sb)1121 void kill_block_super(struct super_block *sb)
1122 {
1123 struct block_device *bdev = sb->s_bdev;
1124 fmode_t mode = sb->s_mode;
1125
1126 bdev->bd_super = NULL;
1127 generic_shutdown_super(sb);
1128 sync_blockdev(bdev);
1129 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1130 blkdev_put(bdev, mode | FMODE_EXCL);
1131 }
1132
1133 EXPORT_SYMBOL(kill_block_super);
1134 #endif
1135
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1136 struct dentry *mount_nodev(struct file_system_type *fs_type,
1137 int flags, void *data,
1138 int (*fill_super)(struct super_block *, void *, int))
1139 {
1140 int error;
1141 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1142
1143 if (IS_ERR(s))
1144 return ERR_CAST(s);
1145
1146 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1147 if (error) {
1148 deactivate_locked_super(s);
1149 return ERR_PTR(error);
1150 }
1151 s->s_flags |= MS_ACTIVE;
1152 return dget(s->s_root);
1153 }
1154 EXPORT_SYMBOL(mount_nodev);
1155
compare_single(struct super_block * s,void * p)1156 static int compare_single(struct super_block *s, void *p)
1157 {
1158 return 1;
1159 }
1160
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1161 struct dentry *mount_single(struct file_system_type *fs_type,
1162 int flags, void *data,
1163 int (*fill_super)(struct super_block *, void *, int))
1164 {
1165 struct super_block *s;
1166 int error;
1167
1168 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1169 if (IS_ERR(s))
1170 return ERR_CAST(s);
1171 if (!s->s_root) {
1172 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1173 if (error) {
1174 deactivate_locked_super(s);
1175 return ERR_PTR(error);
1176 }
1177 s->s_flags |= MS_ACTIVE;
1178 } else {
1179 do_remount_sb(s, flags, data, 0);
1180 }
1181 return dget(s->s_root);
1182 }
1183 EXPORT_SYMBOL(mount_single);
1184
1185 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1186 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1187 {
1188 struct dentry *root;
1189 struct super_block *sb;
1190 char *secdata = NULL;
1191 int error = -ENOMEM;
1192
1193 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1194 secdata = alloc_secdata();
1195 if (!secdata)
1196 goto out;
1197
1198 error = security_sb_copy_data(data, secdata);
1199 if (error)
1200 goto out_free_secdata;
1201 }
1202
1203 if (type->mount2)
1204 root = type->mount2(mnt, type, flags, name, data);
1205 else
1206 root = type->mount(type, flags, name, data);
1207 if (IS_ERR(root)) {
1208 error = PTR_ERR(root);
1209 goto out_free_secdata;
1210 }
1211 sb = root->d_sb;
1212 BUG_ON(!sb);
1213 WARN_ON(!sb->s_bdi);
1214 sb->s_flags |= MS_BORN;
1215
1216 error = security_sb_kern_mount(sb, flags, secdata);
1217 if (error)
1218 goto out_sb;
1219
1220 /*
1221 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1222 * but s_maxbytes was an unsigned long long for many releases. Throw
1223 * this warning for a little while to try and catch filesystems that
1224 * violate this rule.
1225 */
1226 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1227 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1228
1229 up_write(&sb->s_umount);
1230 free_secdata(secdata);
1231 return root;
1232 out_sb:
1233 dput(root);
1234 deactivate_locked_super(sb);
1235 out_free_secdata:
1236 free_secdata(secdata);
1237 out:
1238 return ERR_PTR(error);
1239 }
1240
1241 /*
1242 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1243 * instead.
1244 */
__sb_end_write(struct super_block * sb,int level)1245 void __sb_end_write(struct super_block *sb, int level)
1246 {
1247 percpu_up_read(sb->s_writers.rw_sem + level-1);
1248 }
1249 EXPORT_SYMBOL(__sb_end_write);
1250
1251 /*
1252 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1253 * instead.
1254 */
__sb_start_write(struct super_block * sb,int level,bool wait)1255 int __sb_start_write(struct super_block *sb, int level, bool wait)
1256 {
1257 bool force_trylock = false;
1258 int ret = 1;
1259
1260 #ifdef CONFIG_LOCKDEP
1261 /*
1262 * We want lockdep to tell us about possible deadlocks with freezing
1263 * but it's it bit tricky to properly instrument it. Getting a freeze
1264 * protection works as getting a read lock but there are subtle
1265 * problems. XFS for example gets freeze protection on internal level
1266 * twice in some cases, which is OK only because we already hold a
1267 * freeze protection also on higher level. Due to these cases we have
1268 * to use wait == F (trylock mode) which must not fail.
1269 */
1270 if (wait) {
1271 int i;
1272
1273 for (i = 0; i < level - 1; i++)
1274 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1275 force_trylock = true;
1276 break;
1277 }
1278 }
1279 #endif
1280 if (wait && !force_trylock)
1281 percpu_down_read(sb->s_writers.rw_sem + level-1);
1282 else
1283 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1284
1285 WARN_ON(force_trylock && !ret);
1286 return ret;
1287 }
1288 EXPORT_SYMBOL(__sb_start_write);
1289
1290 /**
1291 * sb_wait_write - wait until all writers to given file system finish
1292 * @sb: the super for which we wait
1293 * @level: type of writers we wait for (normal vs page fault)
1294 *
1295 * This function waits until there are no writers of given type to given file
1296 * system.
1297 */
sb_wait_write(struct super_block * sb,int level)1298 static void sb_wait_write(struct super_block *sb, int level)
1299 {
1300 percpu_down_write(sb->s_writers.rw_sem + level-1);
1301 }
1302
1303 /*
1304 * We are going to return to userspace and forget about these locks, the
1305 * ownership goes to the caller of thaw_super() which does unlock().
1306 */
lockdep_sb_freeze_release(struct super_block * sb)1307 static void lockdep_sb_freeze_release(struct super_block *sb)
1308 {
1309 int level;
1310
1311 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1312 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1313 }
1314
1315 /*
1316 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1317 */
lockdep_sb_freeze_acquire(struct super_block * sb)1318 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1319 {
1320 int level;
1321
1322 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1323 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1324 }
1325
sb_freeze_unlock(struct super_block * sb)1326 static void sb_freeze_unlock(struct super_block *sb)
1327 {
1328 int level;
1329
1330 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1331 percpu_up_write(sb->s_writers.rw_sem + level);
1332 }
1333
1334 /**
1335 * freeze_super - lock the filesystem and force it into a consistent state
1336 * @sb: the super to lock
1337 *
1338 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1339 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1340 * -EBUSY.
1341 *
1342 * During this function, sb->s_writers.frozen goes through these values:
1343 *
1344 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1345 *
1346 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1347 * writes should be blocked, though page faults are still allowed. We wait for
1348 * all writes to complete and then proceed to the next stage.
1349 *
1350 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1351 * but internal fs threads can still modify the filesystem (although they
1352 * should not dirty new pages or inodes), writeback can run etc. After waiting
1353 * for all running page faults we sync the filesystem which will clean all
1354 * dirty pages and inodes (no new dirty pages or inodes can be created when
1355 * sync is running).
1356 *
1357 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1358 * modification are blocked (e.g. XFS preallocation truncation on inode
1359 * reclaim). This is usually implemented by blocking new transactions for
1360 * filesystems that have them and need this additional guard. After all
1361 * internal writers are finished we call ->freeze_fs() to finish filesystem
1362 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1363 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1364 *
1365 * sb->s_writers.frozen is protected by sb->s_umount.
1366 */
freeze_super(struct super_block * sb)1367 int freeze_super(struct super_block *sb)
1368 {
1369 int ret;
1370
1371 atomic_inc(&sb->s_active);
1372 down_write(&sb->s_umount);
1373 if (sb->s_writers.frozen != SB_UNFROZEN) {
1374 deactivate_locked_super(sb);
1375 return -EBUSY;
1376 }
1377
1378 if (!(sb->s_flags & MS_BORN)) {
1379 up_write(&sb->s_umount);
1380 return 0; /* sic - it's "nothing to do" */
1381 }
1382
1383 if (sb->s_flags & MS_RDONLY) {
1384 /* Nothing to do really... */
1385 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1386 up_write(&sb->s_umount);
1387 return 0;
1388 }
1389
1390 sb->s_writers.frozen = SB_FREEZE_WRITE;
1391 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1392 up_write(&sb->s_umount);
1393 sb_wait_write(sb, SB_FREEZE_WRITE);
1394 down_write(&sb->s_umount);
1395
1396 /* Now we go and block page faults... */
1397 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1398 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1399
1400 /* All writers are done so after syncing there won't be dirty data */
1401 sync_filesystem(sb);
1402
1403 /* Now wait for internal filesystem counter */
1404 sb->s_writers.frozen = SB_FREEZE_FS;
1405 sb_wait_write(sb, SB_FREEZE_FS);
1406
1407 if (sb->s_op->freeze_fs) {
1408 ret = sb->s_op->freeze_fs(sb);
1409 if (ret) {
1410 printk(KERN_ERR
1411 "VFS:Filesystem freeze failed\n");
1412 sb->s_writers.frozen = SB_UNFROZEN;
1413 sb_freeze_unlock(sb);
1414 wake_up(&sb->s_writers.wait_unfrozen);
1415 deactivate_locked_super(sb);
1416 return ret;
1417 }
1418 }
1419 /*
1420 * For debugging purposes so that fs can warn if it sees write activity
1421 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1422 */
1423 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1424 lockdep_sb_freeze_release(sb);
1425 up_write(&sb->s_umount);
1426 return 0;
1427 }
1428 EXPORT_SYMBOL(freeze_super);
1429
1430 /**
1431 * thaw_super -- unlock filesystem
1432 * @sb: the super to thaw
1433 *
1434 * Unlocks the filesystem and marks it writeable again after freeze_super().
1435 */
thaw_super(struct super_block * sb)1436 int thaw_super(struct super_block *sb)
1437 {
1438 int error;
1439
1440 down_write(&sb->s_umount);
1441 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1442 up_write(&sb->s_umount);
1443 return -EINVAL;
1444 }
1445
1446 if (sb->s_flags & MS_RDONLY) {
1447 sb->s_writers.frozen = SB_UNFROZEN;
1448 goto out;
1449 }
1450
1451 lockdep_sb_freeze_acquire(sb);
1452
1453 if (sb->s_op->unfreeze_fs) {
1454 error = sb->s_op->unfreeze_fs(sb);
1455 if (error) {
1456 printk(KERN_ERR
1457 "VFS:Filesystem thaw failed\n");
1458 lockdep_sb_freeze_release(sb);
1459 up_write(&sb->s_umount);
1460 return error;
1461 }
1462 }
1463
1464 sb->s_writers.frozen = SB_UNFROZEN;
1465 sb_freeze_unlock(sb);
1466 out:
1467 wake_up(&sb->s_writers.wait_unfrozen);
1468 deactivate_locked_super(sb);
1469 return 0;
1470 }
1471 EXPORT_SYMBOL(thaw_super);
1472