• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26 
get_swap_bio(gfp_t gfp_flags,struct page * page,bio_end_io_t end_io)27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 				struct page *page, bio_end_io_t end_io)
29 {
30 	struct bio *bio;
31 
32 	bio = bio_alloc(gfp_flags, 1);
33 	if (bio) {
34 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 		bio->bi_end_io = end_io;
37 
38 		bio_add_page(bio, page, PAGE_SIZE, 0);
39 		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40 	}
41 	return bio;
42 }
43 
end_swap_bio_write(struct bio * bio)44 void end_swap_bio_write(struct bio *bio)
45 {
46 	struct page *page = bio->bi_io_vec[0].bv_page;
47 
48 	if (bio->bi_error) {
49 		SetPageError(page);
50 		/*
51 		 * We failed to write the page out to swap-space.
52 		 * Re-dirty the page in order to avoid it being reclaimed.
53 		 * Also print a dire warning that things will go BAD (tm)
54 		 * very quickly.
55 		 *
56 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57 		 */
58 		set_page_dirty(page);
59 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60 			 imajor(bio->bi_bdev->bd_inode),
61 			 iminor(bio->bi_bdev->bd_inode),
62 			 (unsigned long long)bio->bi_iter.bi_sector);
63 		ClearPageReclaim(page);
64 	}
65 	end_page_writeback(page);
66 	bio_put(bio);
67 }
68 
swap_slot_free_notify(struct page * page)69 static void swap_slot_free_notify(struct page *page)
70 {
71 	struct swap_info_struct *sis;
72 	struct gendisk *disk;
73 
74 	/*
75 	 * There is no guarantee that the page is in swap cache - the software
76 	 * suspend code (at least) uses end_swap_bio_read() against a non-
77 	 * swapcache page.  So we must check PG_swapcache before proceeding with
78 	 * this optimization.
79 	 */
80 	if (unlikely(!PageSwapCache(page)))
81 		return;
82 
83 	sis = page_swap_info(page);
84 	if (!(sis->flags & SWP_BLKDEV))
85 		return;
86 
87 	/*
88 	 * The swap subsystem performs lazy swap slot freeing,
89 	 * expecting that the page will be swapped out again.
90 	 * So we can avoid an unnecessary write if the page
91 	 * isn't redirtied.
92 	 * This is good for real swap storage because we can
93 	 * reduce unnecessary I/O and enhance wear-leveling
94 	 * if an SSD is used as the as swap device.
95 	 * But if in-memory swap device (eg zram) is used,
96 	 * this causes a duplicated copy between uncompressed
97 	 * data in VM-owned memory and compressed data in
98 	 * zram-owned memory.  So let's free zram-owned memory
99 	 * and make the VM-owned decompressed page *dirty*,
100 	 * so the page should be swapped out somewhere again if
101 	 * we again wish to reclaim it.
102 	 */
103 	disk = sis->bdev->bd_disk;
104 	if (disk->fops->swap_slot_free_notify) {
105 		swp_entry_t entry;
106 		unsigned long offset;
107 
108 		entry.val = page_private(page);
109 		offset = swp_offset(entry);
110 
111 		SetPageDirty(page);
112 		disk->fops->swap_slot_free_notify(sis->bdev,
113 				offset);
114 	}
115 }
116 
end_swap_bio_read(struct bio * bio)117 static void end_swap_bio_read(struct bio *bio)
118 {
119 	struct page *page = bio->bi_io_vec[0].bv_page;
120 
121 	if (bio->bi_error) {
122 		SetPageError(page);
123 		ClearPageUptodate(page);
124 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125 			 imajor(bio->bi_bdev->bd_inode),
126 			 iminor(bio->bi_bdev->bd_inode),
127 			 (unsigned long long)bio->bi_iter.bi_sector);
128 		goto out;
129 	}
130 
131 	SetPageUptodate(page);
132 	swap_slot_free_notify(page);
133 out:
134 	unlock_page(page);
135 	bio_put(bio);
136 }
137 
generic_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)138 int generic_swapfile_activate(struct swap_info_struct *sis,
139 				struct file *swap_file,
140 				sector_t *span)
141 {
142 	struct address_space *mapping = swap_file->f_mapping;
143 	struct inode *inode = mapping->host;
144 	unsigned blocks_per_page;
145 	unsigned long page_no;
146 	unsigned blkbits;
147 	sector_t probe_block;
148 	sector_t last_block;
149 	sector_t lowest_block = -1;
150 	sector_t highest_block = 0;
151 	int nr_extents = 0;
152 	int ret;
153 
154 	blkbits = inode->i_blkbits;
155 	blocks_per_page = PAGE_SIZE >> blkbits;
156 
157 	/*
158 	 * Map all the blocks into the extent list.  This code doesn't try
159 	 * to be very smart.
160 	 */
161 	probe_block = 0;
162 	page_no = 0;
163 	last_block = i_size_read(inode) >> blkbits;
164 	while ((probe_block + blocks_per_page) <= last_block &&
165 			page_no < sis->max) {
166 		unsigned block_in_page;
167 		sector_t first_block;
168 
169 		cond_resched();
170 
171 		first_block = bmap(inode, probe_block);
172 		if (first_block == 0)
173 			goto bad_bmap;
174 
175 		/*
176 		 * It must be PAGE_SIZE aligned on-disk
177 		 */
178 		if (first_block & (blocks_per_page - 1)) {
179 			probe_block++;
180 			goto reprobe;
181 		}
182 
183 		for (block_in_page = 1; block_in_page < blocks_per_page;
184 					block_in_page++) {
185 			sector_t block;
186 
187 			block = bmap(inode, probe_block + block_in_page);
188 			if (block == 0)
189 				goto bad_bmap;
190 			if (block != first_block + block_in_page) {
191 				/* Discontiguity */
192 				probe_block++;
193 				goto reprobe;
194 			}
195 		}
196 
197 		first_block >>= (PAGE_SHIFT - blkbits);
198 		if (page_no) {	/* exclude the header page */
199 			if (first_block < lowest_block)
200 				lowest_block = first_block;
201 			if (first_block > highest_block)
202 				highest_block = first_block;
203 		}
204 
205 		/*
206 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
207 		 */
208 		ret = add_swap_extent(sis, page_no, 1, first_block);
209 		if (ret < 0)
210 			goto out;
211 		nr_extents += ret;
212 		page_no++;
213 		probe_block += blocks_per_page;
214 reprobe:
215 		continue;
216 	}
217 	ret = nr_extents;
218 	*span = 1 + highest_block - lowest_block;
219 	if (page_no == 0)
220 		page_no = 1;	/* force Empty message */
221 	sis->max = page_no;
222 	sis->pages = page_no - 1;
223 	sis->highest_bit = page_no - 1;
224 out:
225 	return ret;
226 bad_bmap:
227 	pr_err("swapon: swapfile has holes\n");
228 	ret = -EINVAL;
229 	goto out;
230 }
231 
232 /*
233  * We may have stale swap cache pages in memory: notice
234  * them here and get rid of the unnecessary final write.
235  */
swap_writepage(struct page * page,struct writeback_control * wbc)236 int swap_writepage(struct page *page, struct writeback_control *wbc)
237 {
238 	int ret = 0;
239 
240 	if (try_to_free_swap(page)) {
241 		unlock_page(page);
242 		goto out;
243 	}
244 	if (frontswap_store(page) == 0) {
245 		set_page_writeback(page);
246 		unlock_page(page);
247 		end_page_writeback(page);
248 		goto out;
249 	}
250 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
251 out:
252 	return ret;
253 }
254 
swap_page_sector(struct page * page)255 static sector_t swap_page_sector(struct page *page)
256 {
257 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
258 }
259 
__swap_writepage(struct page * page,struct writeback_control * wbc,bio_end_io_t end_write_func)260 int __swap_writepage(struct page *page, struct writeback_control *wbc,
261 		bio_end_io_t end_write_func)
262 {
263 	struct bio *bio;
264 	int ret;
265 	struct swap_info_struct *sis = page_swap_info(page);
266 
267 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
268 	if (sis->flags & SWP_FILE) {
269 		struct kiocb kiocb;
270 		struct file *swap_file = sis->swap_file;
271 		struct address_space *mapping = swap_file->f_mapping;
272 		struct bio_vec bv = {
273 			.bv_page = page,
274 			.bv_len  = PAGE_SIZE,
275 			.bv_offset = 0
276 		};
277 		struct iov_iter from;
278 
279 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
280 		init_sync_kiocb(&kiocb, swap_file);
281 		kiocb.ki_pos = page_file_offset(page);
282 
283 		set_page_writeback(page);
284 		unlock_page(page);
285 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
286 		if (ret == PAGE_SIZE) {
287 			count_vm_event(PSWPOUT);
288 			ret = 0;
289 		} else {
290 			/*
291 			 * In the case of swap-over-nfs, this can be a
292 			 * temporary failure if the system has limited
293 			 * memory for allocating transmit buffers.
294 			 * Mark the page dirty and avoid
295 			 * rotate_reclaimable_page but rate-limit the
296 			 * messages but do not flag PageError like
297 			 * the normal direct-to-bio case as it could
298 			 * be temporary.
299 			 */
300 			set_page_dirty(page);
301 			ClearPageReclaim(page);
302 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
303 					   page_file_offset(page));
304 		}
305 		end_page_writeback(page);
306 		return ret;
307 	}
308 
309 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
310 	if (!ret) {
311 		count_vm_event(PSWPOUT);
312 		return 0;
313 	}
314 
315 	ret = 0;
316 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
317 	if (bio == NULL) {
318 		set_page_dirty(page);
319 		unlock_page(page);
320 		ret = -ENOMEM;
321 		goto out;
322 	}
323 	if (wbc->sync_mode == WB_SYNC_ALL)
324 		bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC);
325 	else
326 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
327 	count_vm_event(PSWPOUT);
328 	set_page_writeback(page);
329 	unlock_page(page);
330 	submit_bio(bio);
331 out:
332 	return ret;
333 }
334 
swap_readpage(struct page * page)335 int swap_readpage(struct page *page)
336 {
337 	struct bio *bio;
338 	int ret = 0;
339 	struct swap_info_struct *sis = page_swap_info(page);
340 
341 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
342 	VM_BUG_ON_PAGE(!PageLocked(page), page);
343 	VM_BUG_ON_PAGE(PageUptodate(page), page);
344 	if (frontswap_load(page) == 0) {
345 		SetPageUptodate(page);
346 		unlock_page(page);
347 		goto out;
348 	}
349 
350 	if (sis->flags & SWP_FILE) {
351 		struct file *swap_file = sis->swap_file;
352 		struct address_space *mapping = swap_file->f_mapping;
353 
354 		ret = mapping->a_ops->readpage(swap_file, page);
355 		if (!ret)
356 			count_vm_event(PSWPIN);
357 		return ret;
358 	}
359 
360 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
361 	if (!ret) {
362 		if (trylock_page(page)) {
363 			swap_slot_free_notify(page);
364 			unlock_page(page);
365 		}
366 
367 		count_vm_event(PSWPIN);
368 		return 0;
369 	}
370 
371 	ret = 0;
372 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
373 	if (bio == NULL) {
374 		unlock_page(page);
375 		ret = -ENOMEM;
376 		goto out;
377 	}
378 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
379 	count_vm_event(PSWPIN);
380 	submit_bio(bio);
381 out:
382 	return ret;
383 }
384 
swap_set_page_dirty(struct page * page)385 int swap_set_page_dirty(struct page *page)
386 {
387 	struct swap_info_struct *sis = page_swap_info(page);
388 
389 	if (sis->flags & SWP_FILE) {
390 		struct address_space *mapping = sis->swap_file->f_mapping;
391 
392 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
393 		return mapping->a_ops->set_page_dirty(page);
394 	} else {
395 		return __set_page_dirty_no_writeback(page);
396 	}
397 }
398