• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26 
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/uaccess.h>
40 
41 #include <asm/page.h>
42 #include <asm/cmpxchg.h>
43 #include <asm/io.h>
44 #include <asm/vmx.h>
45 #include <asm/kvm_page_track.h>
46 
47 /*
48  * When setting this variable to true it enables Two-Dimensional-Paging
49  * where the hardware walks 2 page tables:
50  * 1. the guest-virtual to guest-physical
51  * 2. while doing 1. it walks guest-physical to host-physical
52  * If the hardware supports that we don't need to do shadow paging.
53  */
54 bool tdp_enabled = false;
55 
56 enum {
57 	AUDIT_PRE_PAGE_FAULT,
58 	AUDIT_POST_PAGE_FAULT,
59 	AUDIT_PRE_PTE_WRITE,
60 	AUDIT_POST_PTE_WRITE,
61 	AUDIT_PRE_SYNC,
62 	AUDIT_POST_SYNC
63 };
64 
65 #undef MMU_DEBUG
66 
67 #ifdef MMU_DEBUG
68 static bool dbg = 0;
69 module_param(dbg, bool, 0644);
70 
71 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
72 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
73 #define MMU_WARN_ON(x) WARN_ON(x)
74 #else
75 #define pgprintk(x...) do { } while (0)
76 #define rmap_printk(x...) do { } while (0)
77 #define MMU_WARN_ON(x) do { } while (0)
78 #endif
79 
80 #define PTE_PREFETCH_NUM		8
81 
82 #define PT_FIRST_AVAIL_BITS_SHIFT 10
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
84 
85 #define PT64_LEVEL_BITS 9
86 
87 #define PT64_LEVEL_SHIFT(level) \
88 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
89 
90 #define PT64_INDEX(address, level)\
91 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92 
93 
94 #define PT32_LEVEL_BITS 10
95 
96 #define PT32_LEVEL_SHIFT(level) \
97 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
98 
99 #define PT32_LVL_OFFSET_MASK(level) \
100 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
101 						* PT32_LEVEL_BITS))) - 1))
102 
103 #define PT32_INDEX(address, level)\
104 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105 
106 
107 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
108 #define PT64_DIR_BASE_ADDR_MASK \
109 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
110 #define PT64_LVL_ADDR_MASK(level) \
111 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 						* PT64_LEVEL_BITS))) - 1))
113 #define PT64_LVL_OFFSET_MASK(level) \
114 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 						* PT64_LEVEL_BITS))) - 1))
116 
117 #define PT32_BASE_ADDR_MASK PAGE_MASK
118 #define PT32_DIR_BASE_ADDR_MASK \
119 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
120 #define PT32_LVL_ADDR_MASK(level) \
121 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 					    * PT32_LEVEL_BITS))) - 1))
123 
124 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
125 			| shadow_x_mask | shadow_nx_mask)
126 
127 #define ACC_EXEC_MASK    1
128 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
129 #define ACC_USER_MASK    PT_USER_MASK
130 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
131 
132 #include <trace/events/kvm.h>
133 
134 #define CREATE_TRACE_POINTS
135 #include "mmutrace.h"
136 
137 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
138 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
139 
140 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
141 
142 /* make pte_list_desc fit well in cache line */
143 #define PTE_LIST_EXT 3
144 
145 struct pte_list_desc {
146 	u64 *sptes[PTE_LIST_EXT];
147 	struct pte_list_desc *more;
148 };
149 
150 struct kvm_shadow_walk_iterator {
151 	u64 addr;
152 	hpa_t shadow_addr;
153 	u64 *sptep;
154 	int level;
155 	unsigned index;
156 };
157 
158 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
159 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
160 	     shadow_walk_okay(&(_walker));			\
161 	     shadow_walk_next(&(_walker)))
162 
163 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
164 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
165 	     shadow_walk_okay(&(_walker)) &&				\
166 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
167 	     __shadow_walk_next(&(_walker), spte))
168 
169 static struct kmem_cache *pte_list_desc_cache;
170 static struct kmem_cache *mmu_page_header_cache;
171 static struct percpu_counter kvm_total_used_mmu_pages;
172 
173 static u64 __read_mostly shadow_nx_mask;
174 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
175 static u64 __read_mostly shadow_user_mask;
176 static u64 __read_mostly shadow_accessed_mask;
177 static u64 __read_mostly shadow_dirty_mask;
178 static u64 __read_mostly shadow_mmio_mask;
179 static u64 __read_mostly shadow_present_mask;
180 
181 static void mmu_spte_set(u64 *sptep, u64 spte);
182 static void mmu_free_roots(struct kvm_vcpu *vcpu);
183 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)184 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
185 {
186 	shadow_mmio_mask = mmio_mask;
187 }
188 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
189 
190 /*
191  * the low bit of the generation number is always presumed to be zero.
192  * This disables mmio caching during memslot updates.  The concept is
193  * similar to a seqcount but instead of retrying the access we just punt
194  * and ignore the cache.
195  *
196  * spte bits 3-11 are used as bits 1-9 of the generation number,
197  * the bits 52-61 are used as bits 10-19 of the generation number.
198  */
199 #define MMIO_SPTE_GEN_LOW_SHIFT		2
200 #define MMIO_SPTE_GEN_HIGH_SHIFT	52
201 
202 #define MMIO_GEN_SHIFT			20
203 #define MMIO_GEN_LOW_SHIFT		10
204 #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
205 #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
206 
generation_mmio_spte_mask(unsigned int gen)207 static u64 generation_mmio_spte_mask(unsigned int gen)
208 {
209 	u64 mask;
210 
211 	WARN_ON(gen & ~MMIO_GEN_MASK);
212 
213 	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
214 	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
215 	return mask;
216 }
217 
get_mmio_spte_generation(u64 spte)218 static unsigned int get_mmio_spte_generation(u64 spte)
219 {
220 	unsigned int gen;
221 
222 	spte &= ~shadow_mmio_mask;
223 
224 	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
225 	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
226 	return gen;
227 }
228 
kvm_current_mmio_generation(struct kvm_vcpu * vcpu)229 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
230 {
231 	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
232 }
233 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned access)234 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
235 			   unsigned access)
236 {
237 	unsigned int gen = kvm_current_mmio_generation(vcpu);
238 	u64 mask = generation_mmio_spte_mask(gen);
239 
240 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
241 	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
242 
243 	trace_mark_mmio_spte(sptep, gfn, access, gen);
244 	mmu_spte_set(sptep, mask);
245 }
246 
is_mmio_spte(u64 spte)247 static bool is_mmio_spte(u64 spte)
248 {
249 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
250 }
251 
get_mmio_spte_gfn(u64 spte)252 static gfn_t get_mmio_spte_gfn(u64 spte)
253 {
254 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
255 	return (spte & ~mask) >> PAGE_SHIFT;
256 }
257 
get_mmio_spte_access(u64 spte)258 static unsigned get_mmio_spte_access(u64 spte)
259 {
260 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
261 	return (spte & ~mask) & ~PAGE_MASK;
262 }
263 
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned access)264 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
265 			  kvm_pfn_t pfn, unsigned access)
266 {
267 	if (unlikely(is_noslot_pfn(pfn))) {
268 		mark_mmio_spte(vcpu, sptep, gfn, access);
269 		return true;
270 	}
271 
272 	return false;
273 }
274 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)275 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
276 {
277 	unsigned int kvm_gen, spte_gen;
278 
279 	kvm_gen = kvm_current_mmio_generation(vcpu);
280 	spte_gen = get_mmio_spte_generation(spte);
281 
282 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
283 	return likely(kvm_gen == spte_gen);
284 }
285 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask,u64 p_mask)286 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
287 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
288 {
289 	shadow_user_mask = user_mask;
290 	shadow_accessed_mask = accessed_mask;
291 	shadow_dirty_mask = dirty_mask;
292 	shadow_nx_mask = nx_mask;
293 	shadow_x_mask = x_mask;
294 	shadow_present_mask = p_mask;
295 }
296 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
297 
is_cpuid_PSE36(void)298 static int is_cpuid_PSE36(void)
299 {
300 	return 1;
301 }
302 
is_nx(struct kvm_vcpu * vcpu)303 static int is_nx(struct kvm_vcpu *vcpu)
304 {
305 	return vcpu->arch.efer & EFER_NX;
306 }
307 
is_shadow_present_pte(u64 pte)308 static int is_shadow_present_pte(u64 pte)
309 {
310 	return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
311 }
312 
is_large_pte(u64 pte)313 static int is_large_pte(u64 pte)
314 {
315 	return pte & PT_PAGE_SIZE_MASK;
316 }
317 
is_last_spte(u64 pte,int level)318 static int is_last_spte(u64 pte, int level)
319 {
320 	if (level == PT_PAGE_TABLE_LEVEL)
321 		return 1;
322 	if (is_large_pte(pte))
323 		return 1;
324 	return 0;
325 }
326 
spte_to_pfn(u64 pte)327 static kvm_pfn_t spte_to_pfn(u64 pte)
328 {
329 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
330 }
331 
pse36_gfn_delta(u32 gpte)332 static gfn_t pse36_gfn_delta(u32 gpte)
333 {
334 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
335 
336 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
337 }
338 
339 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)340 static void __set_spte(u64 *sptep, u64 spte)
341 {
342 	WRITE_ONCE(*sptep, spte);
343 }
344 
__update_clear_spte_fast(u64 * sptep,u64 spte)345 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
346 {
347 	WRITE_ONCE(*sptep, spte);
348 }
349 
__update_clear_spte_slow(u64 * sptep,u64 spte)350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
351 {
352 	return xchg(sptep, spte);
353 }
354 
__get_spte_lockless(u64 * sptep)355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 	return ACCESS_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 	struct {
362 		u32 spte_low;
363 		u32 spte_high;
364 	};
365 	u64 spte;
366 };
367 
count_spte_clear(u64 * sptep,u64 spte)368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
371 
372 	if (is_shadow_present_pte(spte))
373 		return;
374 
375 	/* Ensure the spte is completely set before we increase the count */
376 	smp_wmb();
377 	sp->clear_spte_count++;
378 }
379 
__set_spte(u64 * sptep,u64 spte)380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 	union split_spte *ssptep, sspte;
383 
384 	ssptep = (union split_spte *)sptep;
385 	sspte = (union split_spte)spte;
386 
387 	ssptep->spte_high = sspte.spte_high;
388 
389 	/*
390 	 * If we map the spte from nonpresent to present, We should store
391 	 * the high bits firstly, then set present bit, so cpu can not
392 	 * fetch this spte while we are setting the spte.
393 	 */
394 	smp_wmb();
395 
396 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398 
__update_clear_spte_fast(u64 * sptep,u64 spte)399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 	union split_spte *ssptep, sspte;
402 
403 	ssptep = (union split_spte *)sptep;
404 	sspte = (union split_spte)spte;
405 
406 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 
408 	/*
409 	 * If we map the spte from present to nonpresent, we should clear
410 	 * present bit firstly to avoid vcpu fetch the old high bits.
411 	 */
412 	smp_wmb();
413 
414 	ssptep->spte_high = sspte.spte_high;
415 	count_spte_clear(sptep, spte);
416 }
417 
__update_clear_spte_slow(u64 * sptep,u64 spte)418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 	union split_spte *ssptep, sspte, orig;
421 
422 	ssptep = (union split_spte *)sptep;
423 	sspte = (union split_spte)spte;
424 
425 	/* xchg acts as a barrier before the setting of the high bits */
426 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 	orig.spte_high = ssptep->spte_high;
428 	ssptep->spte_high = sspte.spte_high;
429 	count_spte_clear(sptep, spte);
430 
431 	return orig.spte;
432 }
433 
434 /*
435  * The idea using the light way get the spte on x86_32 guest is from
436  * gup_get_pte(arch/x86/mm/gup.c).
437  *
438  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
439  * coalesces them and we are running out of the MMU lock.  Therefore
440  * we need to protect against in-progress updates of the spte.
441  *
442  * Reading the spte while an update is in progress may get the old value
443  * for the high part of the spte.  The race is fine for a present->non-present
444  * change (because the high part of the spte is ignored for non-present spte),
445  * but for a present->present change we must reread the spte.
446  *
447  * All such changes are done in two steps (present->non-present and
448  * non-present->present), hence it is enough to count the number of
449  * present->non-present updates: if it changed while reading the spte,
450  * we might have hit the race.  This is done using clear_spte_count.
451  */
__get_spte_lockless(u64 * sptep)452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
455 	union split_spte spte, *orig = (union split_spte *)sptep;
456 	int count;
457 
458 retry:
459 	count = sp->clear_spte_count;
460 	smp_rmb();
461 
462 	spte.spte_low = orig->spte_low;
463 	smp_rmb();
464 
465 	spte.spte_high = orig->spte_high;
466 	smp_rmb();
467 
468 	if (unlikely(spte.spte_low != orig->spte_low ||
469 	      count != sp->clear_spte_count))
470 		goto retry;
471 
472 	return spte.spte;
473 }
474 #endif
475 
spte_is_locklessly_modifiable(u64 spte)476 static bool spte_is_locklessly_modifiable(u64 spte)
477 {
478 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
479 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
480 }
481 
spte_has_volatile_bits(u64 spte)482 static bool spte_has_volatile_bits(u64 spte)
483 {
484 	/*
485 	 * Always atomically update spte if it can be updated
486 	 * out of mmu-lock, it can ensure dirty bit is not lost,
487 	 * also, it can help us to get a stable is_writable_pte()
488 	 * to ensure tlb flush is not missed.
489 	 */
490 	if (spte_is_locklessly_modifiable(spte))
491 		return true;
492 
493 	if (!shadow_accessed_mask)
494 		return false;
495 
496 	if (!is_shadow_present_pte(spte))
497 		return false;
498 
499 	if ((spte & shadow_accessed_mask) &&
500 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
501 		return false;
502 
503 	return true;
504 }
505 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)506 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
507 {
508 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
509 }
510 
spte_is_bit_changed(u64 old_spte,u64 new_spte,u64 bit_mask)511 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
512 {
513 	return (old_spte & bit_mask) != (new_spte & bit_mask);
514 }
515 
516 /* Rules for using mmu_spte_set:
517  * Set the sptep from nonpresent to present.
518  * Note: the sptep being assigned *must* be either not present
519  * or in a state where the hardware will not attempt to update
520  * the spte.
521  */
mmu_spte_set(u64 * sptep,u64 new_spte)522 static void mmu_spte_set(u64 *sptep, u64 new_spte)
523 {
524 	WARN_ON(is_shadow_present_pte(*sptep));
525 	__set_spte(sptep, new_spte);
526 }
527 
528 /* Rules for using mmu_spte_update:
529  * Update the state bits, it means the mapped pfn is not changed.
530  *
531  * Whenever we overwrite a writable spte with a read-only one we
532  * should flush remote TLBs. Otherwise rmap_write_protect
533  * will find a read-only spte, even though the writable spte
534  * might be cached on a CPU's TLB, the return value indicates this
535  * case.
536  */
mmu_spte_update(u64 * sptep,u64 new_spte)537 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
538 {
539 	u64 old_spte = *sptep;
540 	bool ret = false;
541 
542 	WARN_ON(!is_shadow_present_pte(new_spte));
543 
544 	if (!is_shadow_present_pte(old_spte)) {
545 		mmu_spte_set(sptep, new_spte);
546 		return ret;
547 	}
548 
549 	if (!spte_has_volatile_bits(old_spte))
550 		__update_clear_spte_fast(sptep, new_spte);
551 	else
552 		old_spte = __update_clear_spte_slow(sptep, new_spte);
553 
554 	/*
555 	 * For the spte updated out of mmu-lock is safe, since
556 	 * we always atomically update it, see the comments in
557 	 * spte_has_volatile_bits().
558 	 */
559 	if (spte_is_locklessly_modifiable(old_spte) &&
560 	      !is_writable_pte(new_spte))
561 		ret = true;
562 
563 	if (!shadow_accessed_mask) {
564 		/*
565 		 * We don't set page dirty when dropping non-writable spte.
566 		 * So do it now if the new spte is becoming non-writable.
567 		 */
568 		if (ret)
569 			kvm_set_pfn_dirty(spte_to_pfn(old_spte));
570 		return ret;
571 	}
572 
573 	/*
574 	 * Flush TLB when accessed/dirty bits are changed in the page tables,
575 	 * to guarantee consistency between TLB and page tables.
576 	 */
577 	if (spte_is_bit_changed(old_spte, new_spte,
578                                 shadow_accessed_mask | shadow_dirty_mask))
579 		ret = true;
580 
581 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
582 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
583 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
584 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
585 
586 	return ret;
587 }
588 
589 /*
590  * Rules for using mmu_spte_clear_track_bits:
591  * It sets the sptep from present to nonpresent, and track the
592  * state bits, it is used to clear the last level sptep.
593  */
mmu_spte_clear_track_bits(u64 * sptep)594 static int mmu_spte_clear_track_bits(u64 *sptep)
595 {
596 	kvm_pfn_t pfn;
597 	u64 old_spte = *sptep;
598 
599 	if (!spte_has_volatile_bits(old_spte))
600 		__update_clear_spte_fast(sptep, 0ull);
601 	else
602 		old_spte = __update_clear_spte_slow(sptep, 0ull);
603 
604 	if (!is_shadow_present_pte(old_spte))
605 		return 0;
606 
607 	pfn = spte_to_pfn(old_spte);
608 
609 	/*
610 	 * KVM does not hold the refcount of the page used by
611 	 * kvm mmu, before reclaiming the page, we should
612 	 * unmap it from mmu first.
613 	 */
614 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
615 
616 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
617 		kvm_set_pfn_accessed(pfn);
618 	if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
619 					    PT_WRITABLE_MASK))
620 		kvm_set_pfn_dirty(pfn);
621 	return 1;
622 }
623 
624 /*
625  * Rules for using mmu_spte_clear_no_track:
626  * Directly clear spte without caring the state bits of sptep,
627  * it is used to set the upper level spte.
628  */
mmu_spte_clear_no_track(u64 * sptep)629 static void mmu_spte_clear_no_track(u64 *sptep)
630 {
631 	__update_clear_spte_fast(sptep, 0ull);
632 }
633 
mmu_spte_get_lockless(u64 * sptep)634 static u64 mmu_spte_get_lockless(u64 *sptep)
635 {
636 	return __get_spte_lockless(sptep);
637 }
638 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)639 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
640 {
641 	/*
642 	 * Prevent page table teardown by making any free-er wait during
643 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
644 	 */
645 	local_irq_disable();
646 
647 	/*
648 	 * Make sure a following spte read is not reordered ahead of the write
649 	 * to vcpu->mode.
650 	 */
651 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
652 }
653 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)654 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
655 {
656 	/*
657 	 * Make sure the write to vcpu->mode is not reordered in front of
658 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
659 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
660 	 */
661 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
662 	local_irq_enable();
663 }
664 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)665 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
666 				  struct kmem_cache *base_cache, int min)
667 {
668 	void *obj;
669 
670 	if (cache->nobjs >= min)
671 		return 0;
672 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
673 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
674 		if (!obj)
675 			return -ENOMEM;
676 		cache->objects[cache->nobjs++] = obj;
677 	}
678 	return 0;
679 }
680 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)681 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
682 {
683 	return cache->nobjs;
684 }
685 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)686 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
687 				  struct kmem_cache *cache)
688 {
689 	while (mc->nobjs)
690 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
691 }
692 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)693 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
694 				       int min)
695 {
696 	void *page;
697 
698 	if (cache->nobjs >= min)
699 		return 0;
700 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
701 		page = (void *)__get_free_page(GFP_KERNEL);
702 		if (!page)
703 			return -ENOMEM;
704 		cache->objects[cache->nobjs++] = page;
705 	}
706 	return 0;
707 }
708 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)709 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
710 {
711 	while (mc->nobjs)
712 		free_page((unsigned long)mc->objects[--mc->nobjs]);
713 }
714 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)715 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
716 {
717 	int r;
718 
719 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
720 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
721 	if (r)
722 		goto out;
723 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
724 	if (r)
725 		goto out;
726 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
727 				   mmu_page_header_cache, 4);
728 out:
729 	return r;
730 }
731 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)732 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
733 {
734 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 				pte_list_desc_cache);
736 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
737 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
738 				mmu_page_header_cache);
739 }
740 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)741 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
742 {
743 	void *p;
744 
745 	BUG_ON(!mc->nobjs);
746 	p = mc->objects[--mc->nobjs];
747 	return p;
748 }
749 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)750 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
751 {
752 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
753 }
754 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)755 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
756 {
757 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
758 }
759 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)760 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
761 {
762 	if (!sp->role.direct)
763 		return sp->gfns[index];
764 
765 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
766 }
767 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)768 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
769 {
770 	if (sp->role.direct)
771 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
772 	else
773 		sp->gfns[index] = gfn;
774 }
775 
776 /*
777  * Return the pointer to the large page information for a given gfn,
778  * handling slots that are not large page aligned.
779  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781 					      struct kvm_memory_slot *slot,
782 					      int level)
783 {
784 	unsigned long idx;
785 
786 	idx = gfn_to_index(gfn, slot->base_gfn, level);
787 	return &slot->arch.lpage_info[level - 2][idx];
788 }
789 
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)790 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
791 					    gfn_t gfn, int count)
792 {
793 	struct kvm_lpage_info *linfo;
794 	int i;
795 
796 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
797 		linfo = lpage_info_slot(gfn, slot, i);
798 		linfo->disallow_lpage += count;
799 		WARN_ON(linfo->disallow_lpage < 0);
800 	}
801 }
802 
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)803 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
804 {
805 	update_gfn_disallow_lpage_count(slot, gfn, 1);
806 }
807 
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)808 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
809 {
810 	update_gfn_disallow_lpage_count(slot, gfn, -1);
811 }
812 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)813 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
814 {
815 	struct kvm_memslots *slots;
816 	struct kvm_memory_slot *slot;
817 	gfn_t gfn;
818 
819 	kvm->arch.indirect_shadow_pages++;
820 	gfn = sp->gfn;
821 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
822 	slot = __gfn_to_memslot(slots, gfn);
823 
824 	/* the non-leaf shadow pages are keeping readonly. */
825 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
826 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
827 						    KVM_PAGE_TRACK_WRITE);
828 
829 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
830 }
831 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)832 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
833 {
834 	struct kvm_memslots *slots;
835 	struct kvm_memory_slot *slot;
836 	gfn_t gfn;
837 
838 	kvm->arch.indirect_shadow_pages--;
839 	gfn = sp->gfn;
840 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
841 	slot = __gfn_to_memslot(slots, gfn);
842 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
843 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
844 						       KVM_PAGE_TRACK_WRITE);
845 
846 	kvm_mmu_gfn_allow_lpage(slot, gfn);
847 }
848 
__mmu_gfn_lpage_is_disallowed(gfn_t gfn,int level,struct kvm_memory_slot * slot)849 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
850 					  struct kvm_memory_slot *slot)
851 {
852 	struct kvm_lpage_info *linfo;
853 
854 	if (slot) {
855 		linfo = lpage_info_slot(gfn, slot, level);
856 		return !!linfo->disallow_lpage;
857 	}
858 
859 	return true;
860 }
861 
mmu_gfn_lpage_is_disallowed(struct kvm_vcpu * vcpu,gfn_t gfn,int level)862 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
863 					int level)
864 {
865 	struct kvm_memory_slot *slot;
866 
867 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
868 	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
869 }
870 
host_mapping_level(struct kvm * kvm,gfn_t gfn)871 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
872 {
873 	unsigned long page_size;
874 	int i, ret = 0;
875 
876 	page_size = kvm_host_page_size(kvm, gfn);
877 
878 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
879 		if (page_size >= KVM_HPAGE_SIZE(i))
880 			ret = i;
881 		else
882 			break;
883 	}
884 
885 	return ret;
886 }
887 
memslot_valid_for_gpte(struct kvm_memory_slot * slot,bool no_dirty_log)888 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
889 					  bool no_dirty_log)
890 {
891 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
892 		return false;
893 	if (no_dirty_log && slot->dirty_bitmap)
894 		return false;
895 
896 	return true;
897 }
898 
899 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)900 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
901 			    bool no_dirty_log)
902 {
903 	struct kvm_memory_slot *slot;
904 
905 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
906 	if (!memslot_valid_for_gpte(slot, no_dirty_log))
907 		slot = NULL;
908 
909 	return slot;
910 }
911 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn,bool * force_pt_level)912 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
913 			 bool *force_pt_level)
914 {
915 	int host_level, level, max_level;
916 	struct kvm_memory_slot *slot;
917 
918 	if (unlikely(*force_pt_level))
919 		return PT_PAGE_TABLE_LEVEL;
920 
921 	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
922 	*force_pt_level = !memslot_valid_for_gpte(slot, true);
923 	if (unlikely(*force_pt_level))
924 		return PT_PAGE_TABLE_LEVEL;
925 
926 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
927 
928 	if (host_level == PT_PAGE_TABLE_LEVEL)
929 		return host_level;
930 
931 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
932 
933 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
934 		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
935 			break;
936 
937 	return level - 1;
938 }
939 
940 /*
941  * About rmap_head encoding:
942  *
943  * If the bit zero of rmap_head->val is clear, then it points to the only spte
944  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
945  * pte_list_desc containing more mappings.
946  */
947 
948 /*
949  * Returns the number of pointers in the rmap chain, not counting the new one.
950  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)951 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
952 			struct kvm_rmap_head *rmap_head)
953 {
954 	struct pte_list_desc *desc;
955 	int i, count = 0;
956 
957 	if (!rmap_head->val) {
958 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
959 		rmap_head->val = (unsigned long)spte;
960 	} else if (!(rmap_head->val & 1)) {
961 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
962 		desc = mmu_alloc_pte_list_desc(vcpu);
963 		desc->sptes[0] = (u64 *)rmap_head->val;
964 		desc->sptes[1] = spte;
965 		rmap_head->val = (unsigned long)desc | 1;
966 		++count;
967 	} else {
968 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
969 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
971 			desc = desc->more;
972 			count += PTE_LIST_EXT;
973 		}
974 		if (desc->sptes[PTE_LIST_EXT-1]) {
975 			desc->more = mmu_alloc_pte_list_desc(vcpu);
976 			desc = desc->more;
977 		}
978 		for (i = 0; desc->sptes[i]; ++i)
979 			++count;
980 		desc->sptes[i] = spte;
981 	}
982 	return count;
983 }
984 
985 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)986 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
987 			   struct pte_list_desc *desc, int i,
988 			   struct pte_list_desc *prev_desc)
989 {
990 	int j;
991 
992 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
993 		;
994 	desc->sptes[i] = desc->sptes[j];
995 	desc->sptes[j] = NULL;
996 	if (j != 0)
997 		return;
998 	if (!prev_desc && !desc->more)
999 		rmap_head->val = (unsigned long)desc->sptes[0];
1000 	else
1001 		if (prev_desc)
1002 			prev_desc->more = desc->more;
1003 		else
1004 			rmap_head->val = (unsigned long)desc->more | 1;
1005 	mmu_free_pte_list_desc(desc);
1006 }
1007 
pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)1008 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1009 {
1010 	struct pte_list_desc *desc;
1011 	struct pte_list_desc *prev_desc;
1012 	int i;
1013 
1014 	if (!rmap_head->val) {
1015 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1016 		BUG();
1017 	} else if (!(rmap_head->val & 1)) {
1018 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1019 		if ((u64 *)rmap_head->val != spte) {
1020 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1021 			BUG();
1022 		}
1023 		rmap_head->val = 0;
1024 	} else {
1025 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1026 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1027 		prev_desc = NULL;
1028 		while (desc) {
1029 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1030 				if (desc->sptes[i] == spte) {
1031 					pte_list_desc_remove_entry(rmap_head,
1032 							desc, i, prev_desc);
1033 					return;
1034 				}
1035 			}
1036 			prev_desc = desc;
1037 			desc = desc->more;
1038 		}
1039 		pr_err("pte_list_remove: %p many->many\n", spte);
1040 		BUG();
1041 	}
1042 }
1043 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1044 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1045 					   struct kvm_memory_slot *slot)
1046 {
1047 	unsigned long idx;
1048 
1049 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1050 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 }
1052 
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)1053 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1054 					 struct kvm_mmu_page *sp)
1055 {
1056 	struct kvm_memslots *slots;
1057 	struct kvm_memory_slot *slot;
1058 
1059 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1060 	slot = __gfn_to_memslot(slots, gfn);
1061 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1062 }
1063 
rmap_can_add(struct kvm_vcpu * vcpu)1064 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065 {
1066 	struct kvm_mmu_memory_cache *cache;
1067 
1068 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1069 	return mmu_memory_cache_free_objects(cache);
1070 }
1071 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1072 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1073 {
1074 	struct kvm_mmu_page *sp;
1075 	struct kvm_rmap_head *rmap_head;
1076 
1077 	sp = page_header(__pa(spte));
1078 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1079 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1080 	return pte_list_add(vcpu, spte, rmap_head);
1081 }
1082 
rmap_remove(struct kvm * kvm,u64 * spte)1083 static void rmap_remove(struct kvm *kvm, u64 *spte)
1084 {
1085 	struct kvm_mmu_page *sp;
1086 	gfn_t gfn;
1087 	struct kvm_rmap_head *rmap_head;
1088 
1089 	sp = page_header(__pa(spte));
1090 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1091 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1092 	pte_list_remove(spte, rmap_head);
1093 }
1094 
1095 /*
1096  * Used by the following functions to iterate through the sptes linked by a
1097  * rmap.  All fields are private and not assumed to be used outside.
1098  */
1099 struct rmap_iterator {
1100 	/* private fields */
1101 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1102 	int pos;			/* index of the sptep */
1103 };
1104 
1105 /*
1106  * Iteration must be started by this function.  This should also be used after
1107  * removing/dropping sptes from the rmap link because in such cases the
1108  * information in the itererator may not be valid.
1109  *
1110  * Returns sptep if found, NULL otherwise.
1111  */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1112 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1113 			   struct rmap_iterator *iter)
1114 {
1115 	u64 *sptep;
1116 
1117 	if (!rmap_head->val)
1118 		return NULL;
1119 
1120 	if (!(rmap_head->val & 1)) {
1121 		iter->desc = NULL;
1122 		sptep = (u64 *)rmap_head->val;
1123 		goto out;
1124 	}
1125 
1126 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1127 	iter->pos = 0;
1128 	sptep = iter->desc->sptes[iter->pos];
1129 out:
1130 	BUG_ON(!is_shadow_present_pte(*sptep));
1131 	return sptep;
1132 }
1133 
1134 /*
1135  * Must be used with a valid iterator: e.g. after rmap_get_first().
1136  *
1137  * Returns sptep if found, NULL otherwise.
1138  */
rmap_get_next(struct rmap_iterator * iter)1139 static u64 *rmap_get_next(struct rmap_iterator *iter)
1140 {
1141 	u64 *sptep;
1142 
1143 	if (iter->desc) {
1144 		if (iter->pos < PTE_LIST_EXT - 1) {
1145 			++iter->pos;
1146 			sptep = iter->desc->sptes[iter->pos];
1147 			if (sptep)
1148 				goto out;
1149 		}
1150 
1151 		iter->desc = iter->desc->more;
1152 
1153 		if (iter->desc) {
1154 			iter->pos = 0;
1155 			/* desc->sptes[0] cannot be NULL */
1156 			sptep = iter->desc->sptes[iter->pos];
1157 			goto out;
1158 		}
1159 	}
1160 
1161 	return NULL;
1162 out:
1163 	BUG_ON(!is_shadow_present_pte(*sptep));
1164 	return sptep;
1165 }
1166 
1167 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1168 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1169 	     _spte_; _spte_ = rmap_get_next(_iter_))
1170 
drop_spte(struct kvm * kvm,u64 * sptep)1171 static void drop_spte(struct kvm *kvm, u64 *sptep)
1172 {
1173 	if (mmu_spte_clear_track_bits(sptep))
1174 		rmap_remove(kvm, sptep);
1175 }
1176 
1177 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1178 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1179 {
1180 	if (is_large_pte(*sptep)) {
1181 		WARN_ON(page_header(__pa(sptep))->role.level ==
1182 			PT_PAGE_TABLE_LEVEL);
1183 		drop_spte(kvm, sptep);
1184 		--kvm->stat.lpages;
1185 		return true;
1186 	}
1187 
1188 	return false;
1189 }
1190 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1191 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1192 {
1193 	if (__drop_large_spte(vcpu->kvm, sptep))
1194 		kvm_flush_remote_tlbs(vcpu->kvm);
1195 }
1196 
1197 /*
1198  * Write-protect on the specified @sptep, @pt_protect indicates whether
1199  * spte write-protection is caused by protecting shadow page table.
1200  *
1201  * Note: write protection is difference between dirty logging and spte
1202  * protection:
1203  * - for dirty logging, the spte can be set to writable at anytime if
1204  *   its dirty bitmap is properly set.
1205  * - for spte protection, the spte can be writable only after unsync-ing
1206  *   shadow page.
1207  *
1208  * Return true if tlb need be flushed.
1209  */
spte_write_protect(u64 * sptep,bool pt_protect)1210 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1211 {
1212 	u64 spte = *sptep;
1213 
1214 	if (!is_writable_pte(spte) &&
1215 	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1216 		return false;
1217 
1218 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1219 
1220 	if (pt_protect)
1221 		spte &= ~SPTE_MMU_WRITEABLE;
1222 	spte = spte & ~PT_WRITABLE_MASK;
1223 
1224 	return mmu_spte_update(sptep, spte);
1225 }
1226 
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1227 static bool __rmap_write_protect(struct kvm *kvm,
1228 				 struct kvm_rmap_head *rmap_head,
1229 				 bool pt_protect)
1230 {
1231 	u64 *sptep;
1232 	struct rmap_iterator iter;
1233 	bool flush = false;
1234 
1235 	for_each_rmap_spte(rmap_head, &iter, sptep)
1236 		flush |= spte_write_protect(sptep, pt_protect);
1237 
1238 	return flush;
1239 }
1240 
spte_clear_dirty(u64 * sptep)1241 static bool spte_clear_dirty(u64 *sptep)
1242 {
1243 	u64 spte = *sptep;
1244 
1245 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1246 
1247 	spte &= ~shadow_dirty_mask;
1248 
1249 	return mmu_spte_update(sptep, spte);
1250 }
1251 
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1252 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1253 {
1254 	u64 *sptep;
1255 	struct rmap_iterator iter;
1256 	bool flush = false;
1257 
1258 	for_each_rmap_spte(rmap_head, &iter, sptep)
1259 		flush |= spte_clear_dirty(sptep);
1260 
1261 	return flush;
1262 }
1263 
spte_set_dirty(u64 * sptep)1264 static bool spte_set_dirty(u64 *sptep)
1265 {
1266 	u64 spte = *sptep;
1267 
1268 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1269 
1270 	spte |= shadow_dirty_mask;
1271 
1272 	return mmu_spte_update(sptep, spte);
1273 }
1274 
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1275 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1276 {
1277 	u64 *sptep;
1278 	struct rmap_iterator iter;
1279 	bool flush = false;
1280 
1281 	for_each_rmap_spte(rmap_head, &iter, sptep)
1282 		flush |= spte_set_dirty(sptep);
1283 
1284 	return flush;
1285 }
1286 
1287 /**
1288  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1289  * @kvm: kvm instance
1290  * @slot: slot to protect
1291  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1292  * @mask: indicates which pages we should protect
1293  *
1294  * Used when we do not need to care about huge page mappings: e.g. during dirty
1295  * logging we do not have any such mappings.
1296  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1297 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1298 				     struct kvm_memory_slot *slot,
1299 				     gfn_t gfn_offset, unsigned long mask)
1300 {
1301 	struct kvm_rmap_head *rmap_head;
1302 
1303 	while (mask) {
1304 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305 					  PT_PAGE_TABLE_LEVEL, slot);
1306 		__rmap_write_protect(kvm, rmap_head, false);
1307 
1308 		/* clear the first set bit */
1309 		mask &= mask - 1;
1310 	}
1311 }
1312 
1313 /**
1314  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1315  * @kvm: kvm instance
1316  * @slot: slot to clear D-bit
1317  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1318  * @mask: indicates which pages we should clear D-bit
1319  *
1320  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1321  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1322 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1323 				     struct kvm_memory_slot *slot,
1324 				     gfn_t gfn_offset, unsigned long mask)
1325 {
1326 	struct kvm_rmap_head *rmap_head;
1327 
1328 	while (mask) {
1329 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1330 					  PT_PAGE_TABLE_LEVEL, slot);
1331 		__rmap_clear_dirty(kvm, rmap_head);
1332 
1333 		/* clear the first set bit */
1334 		mask &= mask - 1;
1335 	}
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1338 
1339 /**
1340  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1341  * PT level pages.
1342  *
1343  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1344  * enable dirty logging for them.
1345  *
1346  * Used when we do not need to care about huge page mappings: e.g. during dirty
1347  * logging we do not have any such mappings.
1348  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1349 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1350 				struct kvm_memory_slot *slot,
1351 				gfn_t gfn_offset, unsigned long mask)
1352 {
1353 	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1354 		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1355 				mask);
1356 	else
1357 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1358 }
1359 
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1360 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1361 				    struct kvm_memory_slot *slot, u64 gfn)
1362 {
1363 	struct kvm_rmap_head *rmap_head;
1364 	int i;
1365 	bool write_protected = false;
1366 
1367 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1368 		rmap_head = __gfn_to_rmap(gfn, i, slot);
1369 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1370 	}
1371 
1372 	return write_protected;
1373 }
1374 
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1375 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1376 {
1377 	struct kvm_memory_slot *slot;
1378 
1379 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1380 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1381 }
1382 
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1383 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1384 {
1385 	u64 *sptep;
1386 	struct rmap_iterator iter;
1387 	bool flush = false;
1388 
1389 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1390 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1391 
1392 		drop_spte(kvm, sptep);
1393 		flush = true;
1394 	}
1395 
1396 	return flush;
1397 }
1398 
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1399 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1400 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1401 			   unsigned long data)
1402 {
1403 	return kvm_zap_rmapp(kvm, rmap_head);
1404 }
1405 
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1406 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1407 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1408 			     unsigned long data)
1409 {
1410 	u64 *sptep;
1411 	struct rmap_iterator iter;
1412 	int need_flush = 0;
1413 	u64 new_spte;
1414 	pte_t *ptep = (pte_t *)data;
1415 	kvm_pfn_t new_pfn;
1416 
1417 	WARN_ON(pte_huge(*ptep));
1418 	new_pfn = pte_pfn(*ptep);
1419 
1420 restart:
1421 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1422 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1423 			     sptep, *sptep, gfn, level);
1424 
1425 		need_flush = 1;
1426 
1427 		if (pte_write(*ptep)) {
1428 			drop_spte(kvm, sptep);
1429 			goto restart;
1430 		} else {
1431 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1432 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1433 
1434 			new_spte &= ~PT_WRITABLE_MASK;
1435 			new_spte &= ~SPTE_HOST_WRITEABLE;
1436 			new_spte &= ~shadow_accessed_mask;
1437 
1438 			mmu_spte_clear_track_bits(sptep);
1439 			mmu_spte_set(sptep, new_spte);
1440 		}
1441 	}
1442 
1443 	if (need_flush)
1444 		kvm_flush_remote_tlbs(kvm);
1445 
1446 	return 0;
1447 }
1448 
1449 struct slot_rmap_walk_iterator {
1450 	/* input fields. */
1451 	struct kvm_memory_slot *slot;
1452 	gfn_t start_gfn;
1453 	gfn_t end_gfn;
1454 	int start_level;
1455 	int end_level;
1456 
1457 	/* output fields. */
1458 	gfn_t gfn;
1459 	struct kvm_rmap_head *rmap;
1460 	int level;
1461 
1462 	/* private field. */
1463 	struct kvm_rmap_head *end_rmap;
1464 };
1465 
1466 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1467 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1468 {
1469 	iterator->level = level;
1470 	iterator->gfn = iterator->start_gfn;
1471 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1472 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1473 					   iterator->slot);
1474 }
1475 
1476 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1477 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1478 		    struct kvm_memory_slot *slot, int start_level,
1479 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1480 {
1481 	iterator->slot = slot;
1482 	iterator->start_level = start_level;
1483 	iterator->end_level = end_level;
1484 	iterator->start_gfn = start_gfn;
1485 	iterator->end_gfn = end_gfn;
1486 
1487 	rmap_walk_init_level(iterator, iterator->start_level);
1488 }
1489 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1490 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1491 {
1492 	return !!iterator->rmap;
1493 }
1494 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1495 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1496 {
1497 	if (++iterator->rmap <= iterator->end_rmap) {
1498 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1499 		return;
1500 	}
1501 
1502 	if (++iterator->level > iterator->end_level) {
1503 		iterator->rmap = NULL;
1504 		return;
1505 	}
1506 
1507 	rmap_walk_init_level(iterator, iterator->level);
1508 }
1509 
1510 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1511 	   _start_gfn, _end_gfn, _iter_)				\
1512 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1513 				 _end_level_, _start_gfn, _end_gfn);	\
1514 	     slot_rmap_walk_okay(_iter_);				\
1515 	     slot_rmap_walk_next(_iter_))
1516 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1517 static int kvm_handle_hva_range(struct kvm *kvm,
1518 				unsigned long start,
1519 				unsigned long end,
1520 				unsigned long data,
1521 				int (*handler)(struct kvm *kvm,
1522 					       struct kvm_rmap_head *rmap_head,
1523 					       struct kvm_memory_slot *slot,
1524 					       gfn_t gfn,
1525 					       int level,
1526 					       unsigned long data))
1527 {
1528 	struct kvm_memslots *slots;
1529 	struct kvm_memory_slot *memslot;
1530 	struct slot_rmap_walk_iterator iterator;
1531 	int ret = 0;
1532 	int i;
1533 
1534 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1535 		slots = __kvm_memslots(kvm, i);
1536 		kvm_for_each_memslot(memslot, slots) {
1537 			unsigned long hva_start, hva_end;
1538 			gfn_t gfn_start, gfn_end;
1539 
1540 			hva_start = max(start, memslot->userspace_addr);
1541 			hva_end = min(end, memslot->userspace_addr +
1542 				      (memslot->npages << PAGE_SHIFT));
1543 			if (hva_start >= hva_end)
1544 				continue;
1545 			/*
1546 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1547 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1548 			 */
1549 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1550 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1551 
1552 			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1553 						 PT_MAX_HUGEPAGE_LEVEL,
1554 						 gfn_start, gfn_end - 1,
1555 						 &iterator)
1556 				ret |= handler(kvm, iterator.rmap, memslot,
1557 					       iterator.gfn, iterator.level, data);
1558 		}
1559 	}
1560 
1561 	return ret;
1562 }
1563 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1564 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1565 			  unsigned long data,
1566 			  int (*handler)(struct kvm *kvm,
1567 					 struct kvm_rmap_head *rmap_head,
1568 					 struct kvm_memory_slot *slot,
1569 					 gfn_t gfn, int level,
1570 					 unsigned long data))
1571 {
1572 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1573 }
1574 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1575 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1576 {
1577 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1578 }
1579 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1580 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1581 {
1582 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1583 }
1584 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1585 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1586 {
1587 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1588 }
1589 
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1590 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1591 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1592 			 unsigned long data)
1593 {
1594 	u64 *sptep;
1595 	struct rmap_iterator uninitialized_var(iter);
1596 	int young = 0;
1597 
1598 	BUG_ON(!shadow_accessed_mask);
1599 
1600 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1601 		if (*sptep & shadow_accessed_mask) {
1602 			young = 1;
1603 			clear_bit((ffs(shadow_accessed_mask) - 1),
1604 				 (unsigned long *)sptep);
1605 		}
1606 	}
1607 
1608 	trace_kvm_age_page(gfn, level, slot, young);
1609 	return young;
1610 }
1611 
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1612 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1613 			      struct kvm_memory_slot *slot, gfn_t gfn,
1614 			      int level, unsigned long data)
1615 {
1616 	u64 *sptep;
1617 	struct rmap_iterator iter;
1618 	int young = 0;
1619 
1620 	/*
1621 	 * If there's no access bit in the secondary pte set by the
1622 	 * hardware it's up to gup-fast/gup to set the access bit in
1623 	 * the primary pte or in the page structure.
1624 	 */
1625 	if (!shadow_accessed_mask)
1626 		goto out;
1627 
1628 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1629 		if (*sptep & shadow_accessed_mask) {
1630 			young = 1;
1631 			break;
1632 		}
1633 	}
1634 out:
1635 	return young;
1636 }
1637 
1638 #define RMAP_RECYCLE_THRESHOLD 1000
1639 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1640 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1641 {
1642 	struct kvm_rmap_head *rmap_head;
1643 	struct kvm_mmu_page *sp;
1644 
1645 	sp = page_header(__pa(spte));
1646 
1647 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1648 
1649 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1650 	kvm_flush_remote_tlbs(vcpu->kvm);
1651 }
1652 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1653 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1654 {
1655 	/*
1656 	 * In case of absence of EPT Access and Dirty Bits supports,
1657 	 * emulate the accessed bit for EPT, by checking if this page has
1658 	 * an EPT mapping, and clearing it if it does. On the next access,
1659 	 * a new EPT mapping will be established.
1660 	 * This has some overhead, but not as much as the cost of swapping
1661 	 * out actively used pages or breaking up actively used hugepages.
1662 	 */
1663 	if (!shadow_accessed_mask) {
1664 		/*
1665 		 * We are holding the kvm->mmu_lock, and we are blowing up
1666 		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1667 		 * This is correct as long as we don't decouple the mmu_lock
1668 		 * protected regions (like invalidate_range_start|end does).
1669 		 */
1670 		kvm->mmu_notifier_seq++;
1671 		return kvm_handle_hva_range(kvm, start, end, 0,
1672 					    kvm_unmap_rmapp);
1673 	}
1674 
1675 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1676 }
1677 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1678 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1679 {
1680 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1681 }
1682 
1683 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1684 static int is_empty_shadow_page(u64 *spt)
1685 {
1686 	u64 *pos;
1687 	u64 *end;
1688 
1689 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1690 		if (is_shadow_present_pte(*pos)) {
1691 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1692 			       pos, *pos);
1693 			return 0;
1694 		}
1695 	return 1;
1696 }
1697 #endif
1698 
1699 /*
1700  * This value is the sum of all of the kvm instances's
1701  * kvm->arch.n_used_mmu_pages values.  We need a global,
1702  * aggregate version in order to make the slab shrinker
1703  * faster
1704  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1706 {
1707 	kvm->arch.n_used_mmu_pages += nr;
1708 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1709 }
1710 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1711 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1712 {
1713 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1714 	hlist_del(&sp->hash_link);
1715 	list_del(&sp->link);
1716 	free_page((unsigned long)sp->spt);
1717 	if (!sp->role.direct)
1718 		free_page((unsigned long)sp->gfns);
1719 	kmem_cache_free(mmu_page_header_cache, sp);
1720 }
1721 
kvm_page_table_hashfn(gfn_t gfn)1722 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1723 {
1724 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1725 }
1726 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1727 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1728 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1729 {
1730 	if (!parent_pte)
1731 		return;
1732 
1733 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1734 }
1735 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1736 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1737 				       u64 *parent_pte)
1738 {
1739 	pte_list_remove(parent_pte, &sp->parent_ptes);
1740 }
1741 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1742 static void drop_parent_pte(struct kvm_mmu_page *sp,
1743 			    u64 *parent_pte)
1744 {
1745 	mmu_page_remove_parent_pte(sp, parent_pte);
1746 	mmu_spte_clear_no_track(parent_pte);
1747 }
1748 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1749 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1750 {
1751 	struct kvm_mmu_page *sp;
1752 
1753 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1754 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1755 	if (!direct)
1756 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1757 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1758 
1759 	/*
1760 	 * The active_mmu_pages list is the FIFO list, do not move the
1761 	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1762 	 * this feature. See the comments in kvm_zap_obsolete_pages().
1763 	 */
1764 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1765 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1766 	return sp;
1767 }
1768 
1769 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1770 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1771 {
1772 	u64 *sptep;
1773 	struct rmap_iterator iter;
1774 
1775 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1776 		mark_unsync(sptep);
1777 	}
1778 }
1779 
mark_unsync(u64 * spte)1780 static void mark_unsync(u64 *spte)
1781 {
1782 	struct kvm_mmu_page *sp;
1783 	unsigned int index;
1784 
1785 	sp = page_header(__pa(spte));
1786 	index = spte - sp->spt;
1787 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1788 		return;
1789 	if (sp->unsync_children++)
1790 		return;
1791 	kvm_mmu_mark_parents_unsync(sp);
1792 }
1793 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1794 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1795 			       struct kvm_mmu_page *sp)
1796 {
1797 	return 0;
1798 }
1799 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1800 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1801 {
1802 }
1803 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1804 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1805 				 struct kvm_mmu_page *sp, u64 *spte,
1806 				 const void *pte)
1807 {
1808 	WARN_ON(1);
1809 }
1810 
1811 #define KVM_PAGE_ARRAY_NR 16
1812 
1813 struct kvm_mmu_pages {
1814 	struct mmu_page_and_offset {
1815 		struct kvm_mmu_page *sp;
1816 		unsigned int idx;
1817 	} page[KVM_PAGE_ARRAY_NR];
1818 	unsigned int nr;
1819 };
1820 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1821 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1822 			 int idx)
1823 {
1824 	int i;
1825 
1826 	if (sp->unsync)
1827 		for (i=0; i < pvec->nr; i++)
1828 			if (pvec->page[i].sp == sp)
1829 				return 0;
1830 
1831 	pvec->page[pvec->nr].sp = sp;
1832 	pvec->page[pvec->nr].idx = idx;
1833 	pvec->nr++;
1834 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1835 }
1836 
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1837 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1838 {
1839 	--sp->unsync_children;
1840 	WARN_ON((int)sp->unsync_children < 0);
1841 	__clear_bit(idx, sp->unsync_child_bitmap);
1842 }
1843 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1844 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1845 			   struct kvm_mmu_pages *pvec)
1846 {
1847 	int i, ret, nr_unsync_leaf = 0;
1848 
1849 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1850 		struct kvm_mmu_page *child;
1851 		u64 ent = sp->spt[i];
1852 
1853 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1854 			clear_unsync_child_bit(sp, i);
1855 			continue;
1856 		}
1857 
1858 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1859 
1860 		if (child->unsync_children) {
1861 			if (mmu_pages_add(pvec, child, i))
1862 				return -ENOSPC;
1863 
1864 			ret = __mmu_unsync_walk(child, pvec);
1865 			if (!ret) {
1866 				clear_unsync_child_bit(sp, i);
1867 				continue;
1868 			} else if (ret > 0) {
1869 				nr_unsync_leaf += ret;
1870 			} else
1871 				return ret;
1872 		} else if (child->unsync) {
1873 			nr_unsync_leaf++;
1874 			if (mmu_pages_add(pvec, child, i))
1875 				return -ENOSPC;
1876 		} else
1877 			clear_unsync_child_bit(sp, i);
1878 	}
1879 
1880 	return nr_unsync_leaf;
1881 }
1882 
1883 #define INVALID_INDEX (-1)
1884 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1885 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1886 			   struct kvm_mmu_pages *pvec)
1887 {
1888 	pvec->nr = 0;
1889 	if (!sp->unsync_children)
1890 		return 0;
1891 
1892 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1893 	return __mmu_unsync_walk(sp, pvec);
1894 }
1895 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1896 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1897 {
1898 	WARN_ON(!sp->unsync);
1899 	trace_kvm_mmu_sync_page(sp);
1900 	sp->unsync = 0;
1901 	--kvm->stat.mmu_unsync;
1902 }
1903 
1904 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1905 				    struct list_head *invalid_list);
1906 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1907 				    struct list_head *invalid_list);
1908 
1909 /*
1910  * NOTE: we should pay more attention on the zapped-obsolete page
1911  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1912  * since it has been deleted from active_mmu_pages but still can be found
1913  * at hast list.
1914  *
1915  * for_each_gfn_valid_sp() has skipped that kind of pages.
1916  */
1917 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
1918 	hlist_for_each_entry(_sp,					\
1919 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1920 		if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1921 			|| (_sp)->role.invalid) {} else
1922 
1923 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1924 	for_each_gfn_valid_sp(_kvm, _sp, _gfn)				\
1925 		if ((_sp)->role.direct) {} else
1926 
1927 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1928 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1929 			    struct list_head *invalid_list)
1930 {
1931 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1932 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1933 		return false;
1934 	}
1935 
1936 	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1937 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1938 		return false;
1939 	}
1940 
1941 	return true;
1942 }
1943 
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1944 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1945 				 struct list_head *invalid_list,
1946 				 bool remote_flush, bool local_flush)
1947 {
1948 	if (!list_empty(invalid_list)) {
1949 		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1950 		return;
1951 	}
1952 
1953 	if (remote_flush)
1954 		kvm_flush_remote_tlbs(vcpu->kvm);
1955 	else if (local_flush)
1956 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1957 }
1958 
1959 #ifdef CONFIG_KVM_MMU_AUDIT
1960 #include "mmu_audit.c"
1961 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1962 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1963 static void mmu_audit_disable(void) { }
1964 #endif
1965 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1966 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1967 {
1968 	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1969 }
1970 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1971 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1972 			 struct list_head *invalid_list)
1973 {
1974 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1975 	return __kvm_sync_page(vcpu, sp, invalid_list);
1976 }
1977 
1978 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)1979 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1980 			   struct list_head *invalid_list)
1981 {
1982 	struct kvm_mmu_page *s;
1983 	bool ret = false;
1984 
1985 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1986 		if (!s->unsync)
1987 			continue;
1988 
1989 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1990 		ret |= kvm_sync_page(vcpu, s, invalid_list);
1991 	}
1992 
1993 	return ret;
1994 }
1995 
1996 struct mmu_page_path {
1997 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1998 	unsigned int idx[PT64_ROOT_LEVEL];
1999 };
2000 
2001 #define for_each_sp(pvec, sp, parents, i)			\
2002 		for (i = mmu_pages_first(&pvec, &parents);	\
2003 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2004 			i = mmu_pages_next(&pvec, &parents, i))
2005 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2006 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2007 			  struct mmu_page_path *parents,
2008 			  int i)
2009 {
2010 	int n;
2011 
2012 	for (n = i+1; n < pvec->nr; n++) {
2013 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2014 		unsigned idx = pvec->page[n].idx;
2015 		int level = sp->role.level;
2016 
2017 		parents->idx[level-1] = idx;
2018 		if (level == PT_PAGE_TABLE_LEVEL)
2019 			break;
2020 
2021 		parents->parent[level-2] = sp;
2022 	}
2023 
2024 	return n;
2025 }
2026 
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2027 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2028 			   struct mmu_page_path *parents)
2029 {
2030 	struct kvm_mmu_page *sp;
2031 	int level;
2032 
2033 	if (pvec->nr == 0)
2034 		return 0;
2035 
2036 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2037 
2038 	sp = pvec->page[0].sp;
2039 	level = sp->role.level;
2040 	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2041 
2042 	parents->parent[level-2] = sp;
2043 
2044 	/* Also set up a sentinel.  Further entries in pvec are all
2045 	 * children of sp, so this element is never overwritten.
2046 	 */
2047 	parents->parent[level-1] = NULL;
2048 	return mmu_pages_next(pvec, parents, 0);
2049 }
2050 
mmu_pages_clear_parents(struct mmu_page_path * parents)2051 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2052 {
2053 	struct kvm_mmu_page *sp;
2054 	unsigned int level = 0;
2055 
2056 	do {
2057 		unsigned int idx = parents->idx[level];
2058 		sp = parents->parent[level];
2059 		if (!sp)
2060 			return;
2061 
2062 		WARN_ON(idx == INVALID_INDEX);
2063 		clear_unsync_child_bit(sp, idx);
2064 		level++;
2065 	} while (!sp->unsync_children);
2066 }
2067 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)2068 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2069 			      struct kvm_mmu_page *parent)
2070 {
2071 	int i;
2072 	struct kvm_mmu_page *sp;
2073 	struct mmu_page_path parents;
2074 	struct kvm_mmu_pages pages;
2075 	LIST_HEAD(invalid_list);
2076 	bool flush = false;
2077 
2078 	while (mmu_unsync_walk(parent, &pages)) {
2079 		bool protected = false;
2080 
2081 		for_each_sp(pages, sp, parents, i)
2082 			protected |= rmap_write_protect(vcpu, sp->gfn);
2083 
2084 		if (protected) {
2085 			kvm_flush_remote_tlbs(vcpu->kvm);
2086 			flush = false;
2087 		}
2088 
2089 		for_each_sp(pages, sp, parents, i) {
2090 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2091 			mmu_pages_clear_parents(&parents);
2092 		}
2093 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2094 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2095 			cond_resched_lock(&vcpu->kvm->mmu_lock);
2096 			flush = false;
2097 		}
2098 	}
2099 
2100 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2101 }
2102 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2103 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2104 {
2105 	atomic_set(&sp->write_flooding_count,  0);
2106 }
2107 
clear_sp_write_flooding_count(u64 * spte)2108 static void clear_sp_write_flooding_count(u64 *spte)
2109 {
2110 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2111 
2112 	__clear_sp_write_flooding_count(sp);
2113 }
2114 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access)2115 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2116 					     gfn_t gfn,
2117 					     gva_t gaddr,
2118 					     unsigned level,
2119 					     int direct,
2120 					     unsigned access)
2121 {
2122 	union kvm_mmu_page_role role;
2123 	unsigned quadrant;
2124 	struct kvm_mmu_page *sp;
2125 	bool need_sync = false;
2126 	bool flush = false;
2127 	LIST_HEAD(invalid_list);
2128 
2129 	role = vcpu->arch.mmu.base_role;
2130 	role.level = level;
2131 	role.direct = direct;
2132 	if (role.direct)
2133 		role.cr4_pae = 0;
2134 	role.access = access;
2135 	if (!vcpu->arch.mmu.direct_map
2136 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2137 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2138 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2139 		role.quadrant = quadrant;
2140 	}
2141 	for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2142 		if (!need_sync && sp->unsync)
2143 			need_sync = true;
2144 
2145 		if (sp->role.word != role.word)
2146 			continue;
2147 
2148 		if (sp->unsync) {
2149 			/* The page is good, but __kvm_sync_page might still end
2150 			 * up zapping it.  If so, break in order to rebuild it.
2151 			 */
2152 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2153 				break;
2154 
2155 			WARN_ON(!list_empty(&invalid_list));
2156 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2157 		}
2158 
2159 		if (sp->unsync_children)
2160 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2161 
2162 		__clear_sp_write_flooding_count(sp);
2163 		trace_kvm_mmu_get_page(sp, false);
2164 		return sp;
2165 	}
2166 
2167 	++vcpu->kvm->stat.mmu_cache_miss;
2168 
2169 	sp = kvm_mmu_alloc_page(vcpu, direct);
2170 
2171 	sp->gfn = gfn;
2172 	sp->role = role;
2173 	hlist_add_head(&sp->hash_link,
2174 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2175 	if (!direct) {
2176 		/*
2177 		 * we should do write protection before syncing pages
2178 		 * otherwise the content of the synced shadow page may
2179 		 * be inconsistent with guest page table.
2180 		 */
2181 		account_shadowed(vcpu->kvm, sp);
2182 		if (level == PT_PAGE_TABLE_LEVEL &&
2183 		      rmap_write_protect(vcpu, gfn))
2184 			kvm_flush_remote_tlbs(vcpu->kvm);
2185 
2186 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2187 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2188 	}
2189 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2190 	clear_page(sp->spt);
2191 	trace_kvm_mmu_get_page(sp, true);
2192 
2193 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2194 	return sp;
2195 }
2196 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2197 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2198 			     struct kvm_vcpu *vcpu, u64 addr)
2199 {
2200 	iterator->addr = addr;
2201 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2202 	iterator->level = vcpu->arch.mmu.shadow_root_level;
2203 
2204 	if (iterator->level == PT64_ROOT_LEVEL &&
2205 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2206 	    !vcpu->arch.mmu.direct_map)
2207 		--iterator->level;
2208 
2209 	if (iterator->level == PT32E_ROOT_LEVEL) {
2210 		iterator->shadow_addr
2211 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2212 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2213 		--iterator->level;
2214 		if (!iterator->shadow_addr)
2215 			iterator->level = 0;
2216 	}
2217 }
2218 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2219 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2220 {
2221 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2222 		return false;
2223 
2224 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2225 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2226 	return true;
2227 }
2228 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2229 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2230 			       u64 spte)
2231 {
2232 	if (is_last_spte(spte, iterator->level)) {
2233 		iterator->level = 0;
2234 		return;
2235 	}
2236 
2237 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2238 	--iterator->level;
2239 }
2240 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2241 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2242 {
2243 	return __shadow_walk_next(iterator, *iterator->sptep);
2244 }
2245 
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2246 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2247 			     struct kvm_mmu_page *sp)
2248 {
2249 	u64 spte;
2250 
2251 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2252 
2253 	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2254 	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2255 
2256 	mmu_spte_set(sptep, spte);
2257 
2258 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2259 
2260 	if (sp->unsync_children || sp->unsync)
2261 		mark_unsync(sptep);
2262 }
2263 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2264 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2265 				   unsigned direct_access)
2266 {
2267 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2268 		struct kvm_mmu_page *child;
2269 
2270 		/*
2271 		 * For the direct sp, if the guest pte's dirty bit
2272 		 * changed form clean to dirty, it will corrupt the
2273 		 * sp's access: allow writable in the read-only sp,
2274 		 * so we should update the spte at this point to get
2275 		 * a new sp with the correct access.
2276 		 */
2277 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2278 		if (child->role.access == direct_access)
2279 			return;
2280 
2281 		drop_parent_pte(child, sptep);
2282 		kvm_flush_remote_tlbs(vcpu->kvm);
2283 	}
2284 }
2285 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2286 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2287 			     u64 *spte)
2288 {
2289 	u64 pte;
2290 	struct kvm_mmu_page *child;
2291 
2292 	pte = *spte;
2293 	if (is_shadow_present_pte(pte)) {
2294 		if (is_last_spte(pte, sp->role.level)) {
2295 			drop_spte(kvm, spte);
2296 			if (is_large_pte(pte))
2297 				--kvm->stat.lpages;
2298 		} else {
2299 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2300 			drop_parent_pte(child, spte);
2301 		}
2302 		return true;
2303 	}
2304 
2305 	if (is_mmio_spte(pte))
2306 		mmu_spte_clear_no_track(spte);
2307 
2308 	return false;
2309 }
2310 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2311 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2312 					 struct kvm_mmu_page *sp)
2313 {
2314 	unsigned i;
2315 
2316 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2317 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2318 }
2319 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2320 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2321 {
2322 	u64 *sptep;
2323 	struct rmap_iterator iter;
2324 
2325 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2326 		drop_parent_pte(sp, sptep);
2327 }
2328 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2329 static int mmu_zap_unsync_children(struct kvm *kvm,
2330 				   struct kvm_mmu_page *parent,
2331 				   struct list_head *invalid_list)
2332 {
2333 	int i, zapped = 0;
2334 	struct mmu_page_path parents;
2335 	struct kvm_mmu_pages pages;
2336 
2337 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2338 		return 0;
2339 
2340 	while (mmu_unsync_walk(parent, &pages)) {
2341 		struct kvm_mmu_page *sp;
2342 
2343 		for_each_sp(pages, sp, parents, i) {
2344 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2345 			mmu_pages_clear_parents(&parents);
2346 			zapped++;
2347 		}
2348 	}
2349 
2350 	return zapped;
2351 }
2352 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2353 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2354 				    struct list_head *invalid_list)
2355 {
2356 	int ret;
2357 
2358 	trace_kvm_mmu_prepare_zap_page(sp);
2359 	++kvm->stat.mmu_shadow_zapped;
2360 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2361 	kvm_mmu_page_unlink_children(kvm, sp);
2362 	kvm_mmu_unlink_parents(kvm, sp);
2363 
2364 	if (!sp->role.invalid && !sp->role.direct)
2365 		unaccount_shadowed(kvm, sp);
2366 
2367 	if (sp->unsync)
2368 		kvm_unlink_unsync_page(kvm, sp);
2369 	if (!sp->root_count) {
2370 		/* Count self */
2371 		ret++;
2372 		list_move(&sp->link, invalid_list);
2373 		kvm_mod_used_mmu_pages(kvm, -1);
2374 	} else {
2375 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2376 
2377 		/*
2378 		 * The obsolete pages can not be used on any vcpus.
2379 		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2380 		 */
2381 		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2382 			kvm_reload_remote_mmus(kvm);
2383 	}
2384 
2385 	sp->role.invalid = 1;
2386 	return ret;
2387 }
2388 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2389 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2390 				    struct list_head *invalid_list)
2391 {
2392 	struct kvm_mmu_page *sp, *nsp;
2393 
2394 	if (list_empty(invalid_list))
2395 		return;
2396 
2397 	/*
2398 	 * We need to make sure everyone sees our modifications to
2399 	 * the page tables and see changes to vcpu->mode here. The barrier
2400 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2401 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2402 	 *
2403 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2404 	 * guest mode and/or lockless shadow page table walks.
2405 	 */
2406 	kvm_flush_remote_tlbs(kvm);
2407 
2408 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2409 		WARN_ON(!sp->role.invalid || sp->root_count);
2410 		kvm_mmu_free_page(sp);
2411 	}
2412 }
2413 
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2414 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2415 					struct list_head *invalid_list)
2416 {
2417 	struct kvm_mmu_page *sp;
2418 
2419 	if (list_empty(&kvm->arch.active_mmu_pages))
2420 		return false;
2421 
2422 	sp = list_last_entry(&kvm->arch.active_mmu_pages,
2423 			     struct kvm_mmu_page, link);
2424 	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2425 
2426 	return true;
2427 }
2428 
2429 /*
2430  * Changing the number of mmu pages allocated to the vm
2431  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2432  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2433 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2434 {
2435 	LIST_HEAD(invalid_list);
2436 
2437 	spin_lock(&kvm->mmu_lock);
2438 
2439 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2440 		/* Need to free some mmu pages to achieve the goal. */
2441 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2442 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2443 				break;
2444 
2445 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2446 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2447 	}
2448 
2449 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2450 
2451 	spin_unlock(&kvm->mmu_lock);
2452 }
2453 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2454 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2455 {
2456 	struct kvm_mmu_page *sp;
2457 	LIST_HEAD(invalid_list);
2458 	int r;
2459 
2460 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2461 	r = 0;
2462 	spin_lock(&kvm->mmu_lock);
2463 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2464 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2465 			 sp->role.word);
2466 		r = 1;
2467 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2468 	}
2469 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2470 	spin_unlock(&kvm->mmu_lock);
2471 
2472 	return r;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2475 
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2476 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2477 {
2478 	trace_kvm_mmu_unsync_page(sp);
2479 	++vcpu->kvm->stat.mmu_unsync;
2480 	sp->unsync = 1;
2481 
2482 	kvm_mmu_mark_parents_unsync(sp);
2483 }
2484 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2485 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2486 				   bool can_unsync)
2487 {
2488 	struct kvm_mmu_page *sp;
2489 
2490 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2491 		return true;
2492 
2493 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2494 		if (!can_unsync)
2495 			return true;
2496 
2497 		if (sp->unsync)
2498 			continue;
2499 
2500 		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2501 		kvm_unsync_page(vcpu, sp);
2502 	}
2503 
2504 	return false;
2505 }
2506 
kvm_is_mmio_pfn(kvm_pfn_t pfn)2507 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2508 {
2509 	if (pfn_valid(pfn))
2510 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2511 
2512 	return true;
2513 }
2514 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2515 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2516 		    unsigned pte_access, int level,
2517 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2518 		    bool can_unsync, bool host_writable)
2519 {
2520 	u64 spte = 0;
2521 	int ret = 0;
2522 
2523 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2524 		return 0;
2525 
2526 	/*
2527 	 * For the EPT case, shadow_present_mask is 0 if hardware
2528 	 * supports exec-only page table entries.  In that case,
2529 	 * ACC_USER_MASK and shadow_user_mask are used to represent
2530 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2531 	 */
2532 	spte |= shadow_present_mask;
2533 	if (!speculative)
2534 		spte |= shadow_accessed_mask;
2535 
2536 	if (pte_access & ACC_EXEC_MASK)
2537 		spte |= shadow_x_mask;
2538 	else
2539 		spte |= shadow_nx_mask;
2540 
2541 	if (pte_access & ACC_USER_MASK)
2542 		spte |= shadow_user_mask;
2543 
2544 	if (level > PT_PAGE_TABLE_LEVEL)
2545 		spte |= PT_PAGE_SIZE_MASK;
2546 	if (tdp_enabled)
2547 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2548 			kvm_is_mmio_pfn(pfn));
2549 
2550 	if (host_writable)
2551 		spte |= SPTE_HOST_WRITEABLE;
2552 	else
2553 		pte_access &= ~ACC_WRITE_MASK;
2554 
2555 	spte |= (u64)pfn << PAGE_SHIFT;
2556 
2557 	if (pte_access & ACC_WRITE_MASK) {
2558 
2559 		/*
2560 		 * Other vcpu creates new sp in the window between
2561 		 * mapping_level() and acquiring mmu-lock. We can
2562 		 * allow guest to retry the access, the mapping can
2563 		 * be fixed if guest refault.
2564 		 */
2565 		if (level > PT_PAGE_TABLE_LEVEL &&
2566 		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2567 			goto done;
2568 
2569 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2570 
2571 		/*
2572 		 * Optimization: for pte sync, if spte was writable the hash
2573 		 * lookup is unnecessary (and expensive). Write protection
2574 		 * is responsibility of mmu_get_page / kvm_sync_page.
2575 		 * Same reasoning can be applied to dirty page accounting.
2576 		 */
2577 		if (!can_unsync && is_writable_pte(*sptep))
2578 			goto set_pte;
2579 
2580 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2581 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2582 				 __func__, gfn);
2583 			ret = 1;
2584 			pte_access &= ~ACC_WRITE_MASK;
2585 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2586 		}
2587 	}
2588 
2589 	if (pte_access & ACC_WRITE_MASK) {
2590 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2591 		spte |= shadow_dirty_mask;
2592 	}
2593 
2594 set_pte:
2595 	if (mmu_spte_update(sptep, spte))
2596 		kvm_flush_remote_tlbs(vcpu->kvm);
2597 done:
2598 	return ret;
2599 }
2600 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2601 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2602 			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2603 			 bool speculative, bool host_writable)
2604 {
2605 	int was_rmapped = 0;
2606 	int rmap_count;
2607 	bool emulate = false;
2608 
2609 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2610 		 *sptep, write_fault, gfn);
2611 
2612 	if (is_shadow_present_pte(*sptep)) {
2613 		/*
2614 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2615 		 * the parent of the now unreachable PTE.
2616 		 */
2617 		if (level > PT_PAGE_TABLE_LEVEL &&
2618 		    !is_large_pte(*sptep)) {
2619 			struct kvm_mmu_page *child;
2620 			u64 pte = *sptep;
2621 
2622 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2623 			drop_parent_pte(child, sptep);
2624 			kvm_flush_remote_tlbs(vcpu->kvm);
2625 		} else if (pfn != spte_to_pfn(*sptep)) {
2626 			pgprintk("hfn old %llx new %llx\n",
2627 				 spte_to_pfn(*sptep), pfn);
2628 			drop_spte(vcpu->kvm, sptep);
2629 			kvm_flush_remote_tlbs(vcpu->kvm);
2630 		} else
2631 			was_rmapped = 1;
2632 	}
2633 
2634 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2635 	      true, host_writable)) {
2636 		if (write_fault)
2637 			emulate = true;
2638 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2639 	}
2640 
2641 	if (unlikely(is_mmio_spte(*sptep)))
2642 		emulate = true;
2643 
2644 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2645 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2646 		 is_large_pte(*sptep)? "2MB" : "4kB",
2647 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2648 		 *sptep, sptep);
2649 	if (!was_rmapped && is_large_pte(*sptep))
2650 		++vcpu->kvm->stat.lpages;
2651 
2652 	if (is_shadow_present_pte(*sptep)) {
2653 		if (!was_rmapped) {
2654 			rmap_count = rmap_add(vcpu, sptep, gfn);
2655 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2656 				rmap_recycle(vcpu, sptep, gfn);
2657 		}
2658 	}
2659 
2660 	kvm_release_pfn_clean(pfn);
2661 
2662 	return emulate;
2663 }
2664 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2665 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2666 				     bool no_dirty_log)
2667 {
2668 	struct kvm_memory_slot *slot;
2669 
2670 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2671 	if (!slot)
2672 		return KVM_PFN_ERR_FAULT;
2673 
2674 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2675 }
2676 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2677 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2678 				    struct kvm_mmu_page *sp,
2679 				    u64 *start, u64 *end)
2680 {
2681 	struct page *pages[PTE_PREFETCH_NUM];
2682 	struct kvm_memory_slot *slot;
2683 	unsigned access = sp->role.access;
2684 	int i, ret;
2685 	gfn_t gfn;
2686 
2687 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2688 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2689 	if (!slot)
2690 		return -1;
2691 
2692 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2693 	if (ret <= 0)
2694 		return -1;
2695 
2696 	for (i = 0; i < ret; i++, gfn++, start++)
2697 		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2698 			     page_to_pfn(pages[i]), true, true);
2699 
2700 	return 0;
2701 }
2702 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2703 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2704 				  struct kvm_mmu_page *sp, u64 *sptep)
2705 {
2706 	u64 *spte, *start = NULL;
2707 	int i;
2708 
2709 	WARN_ON(!sp->role.direct);
2710 
2711 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2712 	spte = sp->spt + i;
2713 
2714 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2715 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2716 			if (!start)
2717 				continue;
2718 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2719 				break;
2720 			start = NULL;
2721 		} else if (!start)
2722 			start = spte;
2723 	}
2724 }
2725 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2726 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2727 {
2728 	struct kvm_mmu_page *sp;
2729 
2730 	/*
2731 	 * Since it's no accessed bit on EPT, it's no way to
2732 	 * distinguish between actually accessed translations
2733 	 * and prefetched, so disable pte prefetch if EPT is
2734 	 * enabled.
2735 	 */
2736 	if (!shadow_accessed_mask)
2737 		return;
2738 
2739 	sp = page_header(__pa(sptep));
2740 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2741 		return;
2742 
2743 	__direct_pte_prefetch(vcpu, sp, sptep);
2744 }
2745 
__direct_map(struct kvm_vcpu * vcpu,int write,int map_writable,int level,gfn_t gfn,kvm_pfn_t pfn,bool prefault)2746 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2747 			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2748 {
2749 	struct kvm_shadow_walk_iterator iterator;
2750 	struct kvm_mmu_page *sp;
2751 	int emulate = 0;
2752 	gfn_t pseudo_gfn;
2753 
2754 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2755 		return 0;
2756 
2757 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2758 		if (iterator.level == level) {
2759 			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2760 					       write, level, gfn, pfn, prefault,
2761 					       map_writable);
2762 			direct_pte_prefetch(vcpu, iterator.sptep);
2763 			++vcpu->stat.pf_fixed;
2764 			break;
2765 		}
2766 
2767 		drop_large_spte(vcpu, iterator.sptep);
2768 		if (!is_shadow_present_pte(*iterator.sptep)) {
2769 			u64 base_addr = iterator.addr;
2770 
2771 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2772 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2773 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2774 					      iterator.level - 1, 1, ACC_ALL);
2775 
2776 			link_shadow_page(vcpu, iterator.sptep, sp);
2777 		}
2778 	}
2779 	return emulate;
2780 }
2781 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2782 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2783 {
2784 	siginfo_t info;
2785 
2786 	info.si_signo	= SIGBUS;
2787 	info.si_errno	= 0;
2788 	info.si_code	= BUS_MCEERR_AR;
2789 	info.si_addr	= (void __user *)address;
2790 	info.si_addr_lsb = PAGE_SHIFT;
2791 
2792 	send_sig_info(SIGBUS, &info, tsk);
2793 }
2794 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)2795 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2796 {
2797 	/*
2798 	 * Do not cache the mmio info caused by writing the readonly gfn
2799 	 * into the spte otherwise read access on readonly gfn also can
2800 	 * caused mmio page fault and treat it as mmio access.
2801 	 * Return 1 to tell kvm to emulate it.
2802 	 */
2803 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2804 		return 1;
2805 
2806 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2807 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2808 		return 0;
2809 	}
2810 
2811 	return -EFAULT;
2812 }
2813 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,kvm_pfn_t * pfnp,int * levelp)2814 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2815 					gfn_t *gfnp, kvm_pfn_t *pfnp,
2816 					int *levelp)
2817 {
2818 	kvm_pfn_t pfn = *pfnp;
2819 	gfn_t gfn = *gfnp;
2820 	int level = *levelp;
2821 
2822 	/*
2823 	 * Check if it's a transparent hugepage. If this would be an
2824 	 * hugetlbfs page, level wouldn't be set to
2825 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2826 	 * here.
2827 	 */
2828 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2829 	    level == PT_PAGE_TABLE_LEVEL &&
2830 	    PageTransCompoundMap(pfn_to_page(pfn)) &&
2831 	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2832 		unsigned long mask;
2833 		/*
2834 		 * mmu_notifier_retry was successful and we hold the
2835 		 * mmu_lock here, so the pmd can't become splitting
2836 		 * from under us, and in turn
2837 		 * __split_huge_page_refcount() can't run from under
2838 		 * us and we can safely transfer the refcount from
2839 		 * PG_tail to PG_head as we switch the pfn to tail to
2840 		 * head.
2841 		 */
2842 		*levelp = level = PT_DIRECTORY_LEVEL;
2843 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2844 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2845 		if (pfn & mask) {
2846 			gfn &= ~mask;
2847 			*gfnp = gfn;
2848 			kvm_release_pfn_clean(pfn);
2849 			pfn &= ~mask;
2850 			kvm_get_pfn(pfn);
2851 			*pfnp = pfn;
2852 		}
2853 	}
2854 }
2855 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned access,int * ret_val)2856 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2857 				kvm_pfn_t pfn, unsigned access, int *ret_val)
2858 {
2859 	/* The pfn is invalid, report the error! */
2860 	if (unlikely(is_error_pfn(pfn))) {
2861 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2862 		return true;
2863 	}
2864 
2865 	if (unlikely(is_noslot_pfn(pfn)))
2866 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2867 
2868 	return false;
2869 }
2870 
page_fault_can_be_fast(u32 error_code)2871 static bool page_fault_can_be_fast(u32 error_code)
2872 {
2873 	/*
2874 	 * Do not fix the mmio spte with invalid generation number which
2875 	 * need to be updated by slow page fault path.
2876 	 */
2877 	if (unlikely(error_code & PFERR_RSVD_MASK))
2878 		return false;
2879 
2880 	/*
2881 	 * #PF can be fast only if the shadow page table is present and it
2882 	 * is caused by write-protect, that means we just need change the
2883 	 * W bit of the spte which can be done out of mmu-lock.
2884 	 */
2885 	if (!(error_code & PFERR_PRESENT_MASK) ||
2886 	      !(error_code & PFERR_WRITE_MASK))
2887 		return false;
2888 
2889 	return true;
2890 }
2891 
2892 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 spte)2893 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2894 			u64 *sptep, u64 spte)
2895 {
2896 	gfn_t gfn;
2897 
2898 	WARN_ON(!sp->role.direct);
2899 
2900 	/*
2901 	 * The gfn of direct spte is stable since it is calculated
2902 	 * by sp->gfn.
2903 	 */
2904 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2905 
2906 	/*
2907 	 * Theoretically we could also set dirty bit (and flush TLB) here in
2908 	 * order to eliminate unnecessary PML logging. See comments in
2909 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
2910 	 * enabled, so we do not do this. This might result in the same GPA
2911 	 * to be logged in PML buffer again when the write really happens, and
2912 	 * eventually to be called by mark_page_dirty twice. But it's also no
2913 	 * harm. This also avoids the TLB flush needed after setting dirty bit
2914 	 * so non-PML cases won't be impacted.
2915 	 *
2916 	 * Compare with set_spte where instead shadow_dirty_mask is set.
2917 	 */
2918 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2919 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2920 
2921 	return true;
2922 }
2923 
2924 /*
2925  * Return value:
2926  * - true: let the vcpu to access on the same address again.
2927  * - false: let the real page fault path to fix it.
2928  */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)2929 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2930 			    u32 error_code)
2931 {
2932 	struct kvm_shadow_walk_iterator iterator;
2933 	struct kvm_mmu_page *sp;
2934 	bool ret = false;
2935 	u64 spte = 0ull;
2936 
2937 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2938 		return false;
2939 
2940 	if (!page_fault_can_be_fast(error_code))
2941 		return false;
2942 
2943 	walk_shadow_page_lockless_begin(vcpu);
2944 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2945 		if (!is_shadow_present_pte(spte) || iterator.level < level)
2946 			break;
2947 
2948 	/*
2949 	 * If the mapping has been changed, let the vcpu fault on the
2950 	 * same address again.
2951 	 */
2952 	if (!is_shadow_present_pte(spte)) {
2953 		ret = true;
2954 		goto exit;
2955 	}
2956 
2957 	sp = page_header(__pa(iterator.sptep));
2958 	if (!is_last_spte(spte, sp->role.level))
2959 		goto exit;
2960 
2961 	/*
2962 	 * Check if it is a spurious fault caused by TLB lazily flushed.
2963 	 *
2964 	 * Need not check the access of upper level table entries since
2965 	 * they are always ACC_ALL.
2966 	 */
2967 	 if (is_writable_pte(spte)) {
2968 		ret = true;
2969 		goto exit;
2970 	}
2971 
2972 	/*
2973 	 * Currently, to simplify the code, only the spte write-protected
2974 	 * by dirty-log can be fast fixed.
2975 	 */
2976 	if (!spte_is_locklessly_modifiable(spte))
2977 		goto exit;
2978 
2979 	/*
2980 	 * Do not fix write-permission on the large spte since we only dirty
2981 	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2982 	 * that means other pages are missed if its slot is dirty-logged.
2983 	 *
2984 	 * Instead, we let the slow page fault path create a normal spte to
2985 	 * fix the access.
2986 	 *
2987 	 * See the comments in kvm_arch_commit_memory_region().
2988 	 */
2989 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2990 		goto exit;
2991 
2992 	/*
2993 	 * Currently, fast page fault only works for direct mapping since
2994 	 * the gfn is not stable for indirect shadow page.
2995 	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2996 	 */
2997 	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2998 exit:
2999 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3000 			      spte, ret);
3001 	walk_shadow_page_lockless_end(vcpu);
3002 
3003 	return ret;
3004 }
3005 
3006 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3007 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3008 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3009 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)3010 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3011 			 gfn_t gfn, bool prefault)
3012 {
3013 	int r;
3014 	int level;
3015 	bool force_pt_level = false;
3016 	kvm_pfn_t pfn;
3017 	unsigned long mmu_seq;
3018 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3019 
3020 	level = mapping_level(vcpu, gfn, &force_pt_level);
3021 	if (likely(!force_pt_level)) {
3022 		/*
3023 		 * This path builds a PAE pagetable - so we can map
3024 		 * 2mb pages at maximum. Therefore check if the level
3025 		 * is larger than that.
3026 		 */
3027 		if (level > PT_DIRECTORY_LEVEL)
3028 			level = PT_DIRECTORY_LEVEL;
3029 
3030 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3031 	}
3032 
3033 	if (fast_page_fault(vcpu, v, level, error_code))
3034 		return 0;
3035 
3036 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3037 	smp_rmb();
3038 
3039 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3040 		return 0;
3041 
3042 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3043 		return r;
3044 
3045 	spin_lock(&vcpu->kvm->mmu_lock);
3046 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3047 		goto out_unlock;
3048 	make_mmu_pages_available(vcpu);
3049 	if (likely(!force_pt_level))
3050 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3051 	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3052 	spin_unlock(&vcpu->kvm->mmu_lock);
3053 
3054 	return r;
3055 
3056 out_unlock:
3057 	spin_unlock(&vcpu->kvm->mmu_lock);
3058 	kvm_release_pfn_clean(pfn);
3059 	return 0;
3060 }
3061 
3062 
mmu_free_roots(struct kvm_vcpu * vcpu)3063 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3064 {
3065 	int i;
3066 	struct kvm_mmu_page *sp;
3067 	LIST_HEAD(invalid_list);
3068 
3069 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3070 		return;
3071 
3072 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3073 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3074 	     vcpu->arch.mmu.direct_map)) {
3075 		hpa_t root = vcpu->arch.mmu.root_hpa;
3076 
3077 		spin_lock(&vcpu->kvm->mmu_lock);
3078 		sp = page_header(root);
3079 		--sp->root_count;
3080 		if (!sp->root_count && sp->role.invalid) {
3081 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3082 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3083 		}
3084 		spin_unlock(&vcpu->kvm->mmu_lock);
3085 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3086 		return;
3087 	}
3088 
3089 	spin_lock(&vcpu->kvm->mmu_lock);
3090 	for (i = 0; i < 4; ++i) {
3091 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3092 
3093 		if (root) {
3094 			root &= PT64_BASE_ADDR_MASK;
3095 			sp = page_header(root);
3096 			--sp->root_count;
3097 			if (!sp->root_count && sp->role.invalid)
3098 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3099 							 &invalid_list);
3100 		}
3101 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3102 	}
3103 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3104 	spin_unlock(&vcpu->kvm->mmu_lock);
3105 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3106 }
3107 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3108 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3109 {
3110 	int ret = 0;
3111 
3112 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3113 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3114 		ret = 1;
3115 	}
3116 
3117 	return ret;
3118 }
3119 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3120 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3121 {
3122 	struct kvm_mmu_page *sp;
3123 	unsigned i;
3124 
3125 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3126 		spin_lock(&vcpu->kvm->mmu_lock);
3127 		make_mmu_pages_available(vcpu);
3128 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3129 		++sp->root_count;
3130 		spin_unlock(&vcpu->kvm->mmu_lock);
3131 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3132 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3133 		for (i = 0; i < 4; ++i) {
3134 			hpa_t root = vcpu->arch.mmu.pae_root[i];
3135 
3136 			MMU_WARN_ON(VALID_PAGE(root));
3137 			spin_lock(&vcpu->kvm->mmu_lock);
3138 			make_mmu_pages_available(vcpu);
3139 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3140 					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3141 			root = __pa(sp->spt);
3142 			++sp->root_count;
3143 			spin_unlock(&vcpu->kvm->mmu_lock);
3144 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3145 		}
3146 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3147 	} else
3148 		BUG();
3149 
3150 	return 0;
3151 }
3152 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3153 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3154 {
3155 	struct kvm_mmu_page *sp;
3156 	u64 pdptr, pm_mask;
3157 	gfn_t root_gfn;
3158 	int i;
3159 
3160 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3161 
3162 	if (mmu_check_root(vcpu, root_gfn))
3163 		return 1;
3164 
3165 	/*
3166 	 * Do we shadow a long mode page table? If so we need to
3167 	 * write-protect the guests page table root.
3168 	 */
3169 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3170 		hpa_t root = vcpu->arch.mmu.root_hpa;
3171 
3172 		MMU_WARN_ON(VALID_PAGE(root));
3173 
3174 		spin_lock(&vcpu->kvm->mmu_lock);
3175 		make_mmu_pages_available(vcpu);
3176 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3177 				      0, ACC_ALL);
3178 		root = __pa(sp->spt);
3179 		++sp->root_count;
3180 		spin_unlock(&vcpu->kvm->mmu_lock);
3181 		vcpu->arch.mmu.root_hpa = root;
3182 		return 0;
3183 	}
3184 
3185 	/*
3186 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3187 	 * or a PAE 3-level page table. In either case we need to be aware that
3188 	 * the shadow page table may be a PAE or a long mode page table.
3189 	 */
3190 	pm_mask = PT_PRESENT_MASK;
3191 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3192 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3193 
3194 	for (i = 0; i < 4; ++i) {
3195 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3196 
3197 		MMU_WARN_ON(VALID_PAGE(root));
3198 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3199 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3200 			if (!(pdptr & PT_PRESENT_MASK)) {
3201 				vcpu->arch.mmu.pae_root[i] = 0;
3202 				continue;
3203 			}
3204 			root_gfn = pdptr >> PAGE_SHIFT;
3205 			if (mmu_check_root(vcpu, root_gfn))
3206 				return 1;
3207 		}
3208 		spin_lock(&vcpu->kvm->mmu_lock);
3209 		make_mmu_pages_available(vcpu);
3210 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3211 				      0, ACC_ALL);
3212 		root = __pa(sp->spt);
3213 		++sp->root_count;
3214 		spin_unlock(&vcpu->kvm->mmu_lock);
3215 
3216 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3217 	}
3218 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3219 
3220 	/*
3221 	 * If we shadow a 32 bit page table with a long mode page
3222 	 * table we enter this path.
3223 	 */
3224 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3225 		if (vcpu->arch.mmu.lm_root == NULL) {
3226 			/*
3227 			 * The additional page necessary for this is only
3228 			 * allocated on demand.
3229 			 */
3230 
3231 			u64 *lm_root;
3232 
3233 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3234 			if (lm_root == NULL)
3235 				return 1;
3236 
3237 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3238 
3239 			vcpu->arch.mmu.lm_root = lm_root;
3240 		}
3241 
3242 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3243 	}
3244 
3245 	return 0;
3246 }
3247 
mmu_alloc_roots(struct kvm_vcpu * vcpu)3248 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3249 {
3250 	if (vcpu->arch.mmu.direct_map)
3251 		return mmu_alloc_direct_roots(vcpu);
3252 	else
3253 		return mmu_alloc_shadow_roots(vcpu);
3254 }
3255 
mmu_sync_roots(struct kvm_vcpu * vcpu)3256 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3257 {
3258 	int i;
3259 	struct kvm_mmu_page *sp;
3260 
3261 	if (vcpu->arch.mmu.direct_map)
3262 		return;
3263 
3264 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3265 		return;
3266 
3267 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3268 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3269 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3270 		hpa_t root = vcpu->arch.mmu.root_hpa;
3271 		sp = page_header(root);
3272 		mmu_sync_children(vcpu, sp);
3273 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3274 		return;
3275 	}
3276 	for (i = 0; i < 4; ++i) {
3277 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3278 
3279 		if (root && VALID_PAGE(root)) {
3280 			root &= PT64_BASE_ADDR_MASK;
3281 			sp = page_header(root);
3282 			mmu_sync_children(vcpu, sp);
3283 		}
3284 	}
3285 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3286 }
3287 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3288 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3289 {
3290 	spin_lock(&vcpu->kvm->mmu_lock);
3291 	mmu_sync_roots(vcpu);
3292 	spin_unlock(&vcpu->kvm->mmu_lock);
3293 }
3294 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3295 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3296 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3297 				  u32 access, struct x86_exception *exception)
3298 {
3299 	if (exception)
3300 		exception->error_code = 0;
3301 	return vaddr;
3302 }
3303 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3304 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3305 					 u32 access,
3306 					 struct x86_exception *exception)
3307 {
3308 	if (exception)
3309 		exception->error_code = 0;
3310 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3311 }
3312 
3313 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3314 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3315 {
3316 	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3317 
3318 	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3319 		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3320 }
3321 
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)3322 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3323 {
3324 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3325 }
3326 
is_shadow_zero_bits_set(struct kvm_mmu * mmu,u64 spte,int level)3327 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3328 {
3329 	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3330 }
3331 
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3332 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3333 {
3334 	if (direct)
3335 		return vcpu_match_mmio_gpa(vcpu, addr);
3336 
3337 	return vcpu_match_mmio_gva(vcpu, addr);
3338 }
3339 
3340 /* return true if reserved bit is detected on spte. */
3341 static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3342 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3343 {
3344 	struct kvm_shadow_walk_iterator iterator;
3345 	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3346 	int root, leaf;
3347 	bool reserved = false;
3348 
3349 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3350 		goto exit;
3351 
3352 	walk_shadow_page_lockless_begin(vcpu);
3353 
3354 	for (shadow_walk_init(&iterator, vcpu, addr),
3355 		 leaf = root = iterator.level;
3356 	     shadow_walk_okay(&iterator);
3357 	     __shadow_walk_next(&iterator, spte)) {
3358 		spte = mmu_spte_get_lockless(iterator.sptep);
3359 
3360 		sptes[leaf - 1] = spte;
3361 		leaf--;
3362 
3363 		if (!is_shadow_present_pte(spte))
3364 			break;
3365 
3366 		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3367 						    iterator.level);
3368 	}
3369 
3370 	walk_shadow_page_lockless_end(vcpu);
3371 
3372 	if (reserved) {
3373 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3374 		       __func__, addr);
3375 		while (root > leaf) {
3376 			pr_err("------ spte 0x%llx level %d.\n",
3377 			       sptes[root - 1], root);
3378 			root--;
3379 		}
3380 	}
3381 exit:
3382 	*sptep = spte;
3383 	return reserved;
3384 }
3385 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3386 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3387 {
3388 	u64 spte;
3389 	bool reserved;
3390 
3391 	if (mmio_info_in_cache(vcpu, addr, direct))
3392 		return RET_MMIO_PF_EMULATE;
3393 
3394 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3395 	if (WARN_ON(reserved))
3396 		return RET_MMIO_PF_BUG;
3397 
3398 	if (is_mmio_spte(spte)) {
3399 		gfn_t gfn = get_mmio_spte_gfn(spte);
3400 		unsigned access = get_mmio_spte_access(spte);
3401 
3402 		if (!check_mmio_spte(vcpu, spte))
3403 			return RET_MMIO_PF_INVALID;
3404 
3405 		if (direct)
3406 			addr = 0;
3407 
3408 		trace_handle_mmio_page_fault(addr, gfn, access);
3409 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3410 		return RET_MMIO_PF_EMULATE;
3411 	}
3412 
3413 	/*
3414 	 * If the page table is zapped by other cpus, let CPU fault again on
3415 	 * the address.
3416 	 */
3417 	return RET_MMIO_PF_RETRY;
3418 }
3419 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3420 
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3421 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3422 					 u32 error_code, gfn_t gfn)
3423 {
3424 	if (unlikely(error_code & PFERR_RSVD_MASK))
3425 		return false;
3426 
3427 	if (!(error_code & PFERR_PRESENT_MASK) ||
3428 	      !(error_code & PFERR_WRITE_MASK))
3429 		return false;
3430 
3431 	/*
3432 	 * guest is writing the page which is write tracked which can
3433 	 * not be fixed by page fault handler.
3434 	 */
3435 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3436 		return true;
3437 
3438 	return false;
3439 }
3440 
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3441 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3442 {
3443 	struct kvm_shadow_walk_iterator iterator;
3444 	u64 spte;
3445 
3446 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3447 		return;
3448 
3449 	walk_shadow_page_lockless_begin(vcpu);
3450 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3451 		clear_sp_write_flooding_count(iterator.sptep);
3452 		if (!is_shadow_present_pte(spte))
3453 			break;
3454 	}
3455 	walk_shadow_page_lockless_end(vcpu);
3456 }
3457 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3458 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3459 				u32 error_code, bool prefault)
3460 {
3461 	gfn_t gfn = gva >> PAGE_SHIFT;
3462 	int r;
3463 
3464 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3465 
3466 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3467 		return 1;
3468 
3469 	r = mmu_topup_memory_caches(vcpu);
3470 	if (r)
3471 		return r;
3472 
3473 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3474 
3475 
3476 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3477 			     error_code, gfn, prefault);
3478 }
3479 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3480 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3481 {
3482 	struct kvm_arch_async_pf arch;
3483 
3484 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3485 	arch.gfn = gfn;
3486 	arch.direct_map = vcpu->arch.mmu.direct_map;
3487 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3488 
3489 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3490 }
3491 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)3492 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3493 {
3494 	if (unlikely(!lapic_in_kernel(vcpu) ||
3495 		     kvm_event_needs_reinjection(vcpu)))
3496 		return false;
3497 
3498 	if (is_guest_mode(vcpu))
3499 		return false;
3500 
3501 	return kvm_x86_ops->interrupt_allowed(vcpu);
3502 }
3503 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,kvm_pfn_t * pfn,bool write,bool * writable)3504 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3505 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3506 {
3507 	struct kvm_memory_slot *slot;
3508 	bool async;
3509 
3510 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3511 	async = false;
3512 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3513 	if (!async)
3514 		return false; /* *pfn has correct page already */
3515 
3516 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3517 		trace_kvm_try_async_get_page(gva, gfn);
3518 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3519 			trace_kvm_async_pf_doublefault(gva, gfn);
3520 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3521 			return true;
3522 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3523 			return true;
3524 	}
3525 
3526 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3527 	return false;
3528 }
3529 
3530 static bool
check_hugepage_cache_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int level)3531 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3532 {
3533 	int page_num = KVM_PAGES_PER_HPAGE(level);
3534 
3535 	gfn &= ~(page_num - 1);
3536 
3537 	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3538 }
3539 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3540 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3541 			  bool prefault)
3542 {
3543 	kvm_pfn_t pfn;
3544 	int r;
3545 	int level;
3546 	bool force_pt_level;
3547 	gfn_t gfn = gpa >> PAGE_SHIFT;
3548 	unsigned long mmu_seq;
3549 	int write = error_code & PFERR_WRITE_MASK;
3550 	bool map_writable;
3551 
3552 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3553 
3554 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3555 		return 1;
3556 
3557 	r = mmu_topup_memory_caches(vcpu);
3558 	if (r)
3559 		return r;
3560 
3561 	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3562 							   PT_DIRECTORY_LEVEL);
3563 	level = mapping_level(vcpu, gfn, &force_pt_level);
3564 	if (likely(!force_pt_level)) {
3565 		if (level > PT_DIRECTORY_LEVEL &&
3566 		    !check_hugepage_cache_consistency(vcpu, gfn, level))
3567 			level = PT_DIRECTORY_LEVEL;
3568 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3569 	}
3570 
3571 	if (fast_page_fault(vcpu, gpa, level, error_code))
3572 		return 0;
3573 
3574 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3575 	smp_rmb();
3576 
3577 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3578 		return 0;
3579 
3580 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3581 		return r;
3582 
3583 	spin_lock(&vcpu->kvm->mmu_lock);
3584 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3585 		goto out_unlock;
3586 	make_mmu_pages_available(vcpu);
3587 	if (likely(!force_pt_level))
3588 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3589 	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3590 	spin_unlock(&vcpu->kvm->mmu_lock);
3591 
3592 	return r;
3593 
3594 out_unlock:
3595 	spin_unlock(&vcpu->kvm->mmu_lock);
3596 	kvm_release_pfn_clean(pfn);
3597 	return 0;
3598 }
3599 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3600 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3601 				   struct kvm_mmu *context)
3602 {
3603 	context->page_fault = nonpaging_page_fault;
3604 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3605 	context->sync_page = nonpaging_sync_page;
3606 	context->invlpg = nonpaging_invlpg;
3607 	context->update_pte = nonpaging_update_pte;
3608 	context->root_level = 0;
3609 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3610 	context->root_hpa = INVALID_PAGE;
3611 	context->direct_map = true;
3612 	context->nx = false;
3613 }
3614 
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu)3615 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3616 {
3617 	mmu_free_roots(vcpu);
3618 }
3619 
get_cr3(struct kvm_vcpu * vcpu)3620 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3621 {
3622 	return kvm_read_cr3(vcpu);
3623 }
3624 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3625 static void inject_page_fault(struct kvm_vcpu *vcpu,
3626 			      struct x86_exception *fault)
3627 {
3628 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3629 }
3630 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3631 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3632 			   unsigned access, int *nr_present)
3633 {
3634 	if (unlikely(is_mmio_spte(*sptep))) {
3635 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3636 			mmu_spte_clear_no_track(sptep);
3637 			return true;
3638 		}
3639 
3640 		(*nr_present)++;
3641 		mark_mmio_spte(vcpu, sptep, gfn, access);
3642 		return true;
3643 	}
3644 
3645 	return false;
3646 }
3647 
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3648 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3649 				unsigned level, unsigned gpte)
3650 {
3651 	/*
3652 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3653 	 * If it is clear, there are no large pages at this level, so clear
3654 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3655 	 */
3656 	gpte &= level - mmu->last_nonleaf_level;
3657 
3658 	/*
3659 	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3660 	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3661 	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3662 	 */
3663 	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3664 
3665 	return gpte & PT_PAGE_SIZE_MASK;
3666 }
3667 
3668 #define PTTYPE_EPT 18 /* arbitrary */
3669 #define PTTYPE PTTYPE_EPT
3670 #include "paging_tmpl.h"
3671 #undef PTTYPE
3672 
3673 #define PTTYPE 64
3674 #include "paging_tmpl.h"
3675 #undef PTTYPE
3676 
3677 #define PTTYPE 32
3678 #include "paging_tmpl.h"
3679 #undef PTTYPE
3680 
3681 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)3682 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3683 			struct rsvd_bits_validate *rsvd_check,
3684 			int maxphyaddr, int level, bool nx, bool gbpages,
3685 			bool pse, bool amd)
3686 {
3687 	u64 exb_bit_rsvd = 0;
3688 	u64 gbpages_bit_rsvd = 0;
3689 	u64 nonleaf_bit8_rsvd = 0;
3690 
3691 	rsvd_check->bad_mt_xwr = 0;
3692 
3693 	if (!nx)
3694 		exb_bit_rsvd = rsvd_bits(63, 63);
3695 	if (!gbpages)
3696 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3697 
3698 	/*
3699 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3700 	 * leaf entries) on AMD CPUs only.
3701 	 */
3702 	if (amd)
3703 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3704 
3705 	switch (level) {
3706 	case PT32_ROOT_LEVEL:
3707 		/* no rsvd bits for 2 level 4K page table entries */
3708 		rsvd_check->rsvd_bits_mask[0][1] = 0;
3709 		rsvd_check->rsvd_bits_mask[0][0] = 0;
3710 		rsvd_check->rsvd_bits_mask[1][0] =
3711 			rsvd_check->rsvd_bits_mask[0][0];
3712 
3713 		if (!pse) {
3714 			rsvd_check->rsvd_bits_mask[1][1] = 0;
3715 			break;
3716 		}
3717 
3718 		if (is_cpuid_PSE36())
3719 			/* 36bits PSE 4MB page */
3720 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3721 		else
3722 			/* 32 bits PSE 4MB page */
3723 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3724 		break;
3725 	case PT32E_ROOT_LEVEL:
3726 		rsvd_check->rsvd_bits_mask[0][2] =
3727 			rsvd_bits(maxphyaddr, 63) |
3728 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3729 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3730 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3731 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3732 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3733 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3734 			rsvd_bits(maxphyaddr, 62) |
3735 			rsvd_bits(13, 20);		/* large page */
3736 		rsvd_check->rsvd_bits_mask[1][0] =
3737 			rsvd_check->rsvd_bits_mask[0][0];
3738 		break;
3739 	case PT64_ROOT_LEVEL:
3740 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3741 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3742 			rsvd_bits(maxphyaddr, 51);
3743 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3744 			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3745 			rsvd_bits(maxphyaddr, 51);
3746 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3747 			rsvd_bits(maxphyaddr, 51);
3748 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3749 			rsvd_bits(maxphyaddr, 51);
3750 		rsvd_check->rsvd_bits_mask[1][3] =
3751 			rsvd_check->rsvd_bits_mask[0][3];
3752 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3753 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3754 			rsvd_bits(13, 29);
3755 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3756 			rsvd_bits(maxphyaddr, 51) |
3757 			rsvd_bits(13, 20);		/* large page */
3758 		rsvd_check->rsvd_bits_mask[1][0] =
3759 			rsvd_check->rsvd_bits_mask[0][0];
3760 		break;
3761 	}
3762 }
3763 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3764 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3765 				  struct kvm_mmu *context)
3766 {
3767 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3768 				cpuid_maxphyaddr(vcpu), context->root_level,
3769 				context->nx, guest_cpuid_has_gbpages(vcpu),
3770 				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3771 }
3772 
3773 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)3774 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3775 			    int maxphyaddr, bool execonly)
3776 {
3777 	u64 bad_mt_xwr;
3778 
3779 	rsvd_check->rsvd_bits_mask[0][3] =
3780 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3781 	rsvd_check->rsvd_bits_mask[0][2] =
3782 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3783 	rsvd_check->rsvd_bits_mask[0][1] =
3784 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3785 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3786 
3787 	/* large page */
3788 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3789 	rsvd_check->rsvd_bits_mask[1][2] =
3790 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3791 	rsvd_check->rsvd_bits_mask[1][1] =
3792 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3793 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3794 
3795 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
3796 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
3797 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
3798 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
3799 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
3800 	if (!execonly) {
3801 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
3802 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3803 	}
3804 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3805 }
3806 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3807 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3808 		struct kvm_mmu *context, bool execonly)
3809 {
3810 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3811 				    cpuid_maxphyaddr(vcpu), execonly);
3812 }
3813 
3814 /*
3815  * the page table on host is the shadow page table for the page
3816  * table in guest or amd nested guest, its mmu features completely
3817  * follow the features in guest.
3818  */
3819 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3820 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3821 {
3822 	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3823 
3824 	/*
3825 	 * Passing "true" to the last argument is okay; it adds a check
3826 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3827 	 */
3828 	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3829 				boot_cpu_data.x86_phys_bits,
3830 				context->shadow_root_level, uses_nx,
3831 				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3832 				true);
3833 }
3834 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3835 
boot_cpu_is_amd(void)3836 static inline bool boot_cpu_is_amd(void)
3837 {
3838 	WARN_ON_ONCE(!tdp_enabled);
3839 	return shadow_x_mask == 0;
3840 }
3841 
3842 /*
3843  * the direct page table on host, use as much mmu features as
3844  * possible, however, kvm currently does not do execution-protection.
3845  */
3846 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3847 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3848 				struct kvm_mmu *context)
3849 {
3850 	if (boot_cpu_is_amd())
3851 		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3852 					boot_cpu_data.x86_phys_bits,
3853 					context->shadow_root_level, false,
3854 					boot_cpu_has(X86_FEATURE_GBPAGES),
3855 					true, true);
3856 	else
3857 		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3858 					    boot_cpu_data.x86_phys_bits,
3859 					    false);
3860 
3861 }
3862 
3863 /*
3864  * as the comments in reset_shadow_zero_bits_mask() except it
3865  * is the shadow page table for intel nested guest.
3866  */
3867 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3868 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3869 				struct kvm_mmu *context, bool execonly)
3870 {
3871 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3872 				    boot_cpu_data.x86_phys_bits, execonly);
3873 }
3874 
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)3875 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3876 				      struct kvm_mmu *mmu, bool ept)
3877 {
3878 	unsigned bit, byte, pfec;
3879 	u8 map;
3880 	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3881 
3882 	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3883 	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3884 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3885 		pfec = byte << 1;
3886 		map = 0;
3887 		wf = pfec & PFERR_WRITE_MASK;
3888 		uf = pfec & PFERR_USER_MASK;
3889 		ff = pfec & PFERR_FETCH_MASK;
3890 		/*
3891 		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3892 		 * subject to SMAP restrictions, and cleared otherwise. The
3893 		 * bit is only meaningful if the SMAP bit is set in CR4.
3894 		 */
3895 		smapf = !(pfec & PFERR_RSVD_MASK);
3896 		for (bit = 0; bit < 8; ++bit) {
3897 			x = bit & ACC_EXEC_MASK;
3898 			w = bit & ACC_WRITE_MASK;
3899 			u = bit & ACC_USER_MASK;
3900 
3901 			if (!ept) {
3902 				/* Not really needed: !nx will cause pte.nx to fault */
3903 				x |= !mmu->nx;
3904 				/* Allow supervisor writes if !cr0.wp */
3905 				w |= !is_write_protection(vcpu) && !uf;
3906 				/* Disallow supervisor fetches of user code if cr4.smep */
3907 				x &= !(cr4_smep && u && !uf);
3908 
3909 				/*
3910 				 * SMAP:kernel-mode data accesses from user-mode
3911 				 * mappings should fault. A fault is considered
3912 				 * as a SMAP violation if all of the following
3913 				 * conditions are ture:
3914 				 *   - X86_CR4_SMAP is set in CR4
3915 				 *   - An user page is accessed
3916 				 *   - Page fault in kernel mode
3917 				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
3918 				 *
3919 				 *   Here, we cover the first three conditions.
3920 				 *   The fourth is computed dynamically in
3921 				 *   permission_fault() and is in smapf.
3922 				 *
3923 				 *   Also, SMAP does not affect instruction
3924 				 *   fetches, add the !ff check here to make it
3925 				 *   clearer.
3926 				 */
3927 				smap = cr4_smap && u && !uf && !ff;
3928 			}
3929 
3930 			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3931 				(smapf && smap);
3932 			map |= fault << bit;
3933 		}
3934 		mmu->permissions[byte] = map;
3935 	}
3936 }
3937 
3938 /*
3939 * PKU is an additional mechanism by which the paging controls access to
3940 * user-mode addresses based on the value in the PKRU register.  Protection
3941 * key violations are reported through a bit in the page fault error code.
3942 * Unlike other bits of the error code, the PK bit is not known at the
3943 * call site of e.g. gva_to_gpa; it must be computed directly in
3944 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3945 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3946 *
3947 * In particular the following conditions come from the error code, the
3948 * page tables and the machine state:
3949 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3950 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3951 * - PK is always zero if U=0 in the page tables
3952 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3953 *
3954 * The PKRU bitmask caches the result of these four conditions.  The error
3955 * code (minus the P bit) and the page table's U bit form an index into the
3956 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3957 * with the two bits of the PKRU register corresponding to the protection key.
3958 * For the first three conditions above the bits will be 00, thus masking
3959 * away both AD and WD.  For all reads or if the last condition holds, WD
3960 * only will be masked away.
3961 */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)3962 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3963 				bool ept)
3964 {
3965 	unsigned bit;
3966 	bool wp;
3967 
3968 	if (ept) {
3969 		mmu->pkru_mask = 0;
3970 		return;
3971 	}
3972 
3973 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3974 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3975 		mmu->pkru_mask = 0;
3976 		return;
3977 	}
3978 
3979 	wp = is_write_protection(vcpu);
3980 
3981 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3982 		unsigned pfec, pkey_bits;
3983 		bool check_pkey, check_write, ff, uf, wf, pte_user;
3984 
3985 		pfec = bit << 1;
3986 		ff = pfec & PFERR_FETCH_MASK;
3987 		uf = pfec & PFERR_USER_MASK;
3988 		wf = pfec & PFERR_WRITE_MASK;
3989 
3990 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
3991 		pte_user = pfec & PFERR_RSVD_MASK;
3992 
3993 		/*
3994 		 * Only need to check the access which is not an
3995 		 * instruction fetch and is to a user page.
3996 		 */
3997 		check_pkey = (!ff && pte_user);
3998 		/*
3999 		 * write access is controlled by PKRU if it is a
4000 		 * user access or CR0.WP = 1.
4001 		 */
4002 		check_write = check_pkey && wf && (uf || wp);
4003 
4004 		/* PKRU.AD stops both read and write access. */
4005 		pkey_bits = !!check_pkey;
4006 		/* PKRU.WD stops write access. */
4007 		pkey_bits |= (!!check_write) << 1;
4008 
4009 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4010 	}
4011 }
4012 
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4013 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4014 {
4015 	unsigned root_level = mmu->root_level;
4016 
4017 	mmu->last_nonleaf_level = root_level;
4018 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4019 		mmu->last_nonleaf_level++;
4020 }
4021 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4022 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4023 					 struct kvm_mmu *context,
4024 					 int level)
4025 {
4026 	context->nx = is_nx(vcpu);
4027 	context->root_level = level;
4028 
4029 	reset_rsvds_bits_mask(vcpu, context);
4030 	update_permission_bitmask(vcpu, context, false);
4031 	update_pkru_bitmask(vcpu, context, false);
4032 	update_last_nonleaf_level(vcpu, context);
4033 
4034 	MMU_WARN_ON(!is_pae(vcpu));
4035 	context->page_fault = paging64_page_fault;
4036 	context->gva_to_gpa = paging64_gva_to_gpa;
4037 	context->sync_page = paging64_sync_page;
4038 	context->invlpg = paging64_invlpg;
4039 	context->update_pte = paging64_update_pte;
4040 	context->shadow_root_level = level;
4041 	context->root_hpa = INVALID_PAGE;
4042 	context->direct_map = false;
4043 }
4044 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4045 static void paging64_init_context(struct kvm_vcpu *vcpu,
4046 				  struct kvm_mmu *context)
4047 {
4048 	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4049 }
4050 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4051 static void paging32_init_context(struct kvm_vcpu *vcpu,
4052 				  struct kvm_mmu *context)
4053 {
4054 	context->nx = false;
4055 	context->root_level = PT32_ROOT_LEVEL;
4056 
4057 	reset_rsvds_bits_mask(vcpu, context);
4058 	update_permission_bitmask(vcpu, context, false);
4059 	update_pkru_bitmask(vcpu, context, false);
4060 	update_last_nonleaf_level(vcpu, context);
4061 
4062 	context->page_fault = paging32_page_fault;
4063 	context->gva_to_gpa = paging32_gva_to_gpa;
4064 	context->sync_page = paging32_sync_page;
4065 	context->invlpg = paging32_invlpg;
4066 	context->update_pte = paging32_update_pte;
4067 	context->shadow_root_level = PT32E_ROOT_LEVEL;
4068 	context->root_hpa = INVALID_PAGE;
4069 	context->direct_map = false;
4070 }
4071 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4072 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4073 				   struct kvm_mmu *context)
4074 {
4075 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4076 }
4077 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4078 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4079 {
4080 	struct kvm_mmu *context = &vcpu->arch.mmu;
4081 
4082 	context->base_role.word = 0;
4083 	context->base_role.smm = is_smm(vcpu);
4084 	context->page_fault = tdp_page_fault;
4085 	context->sync_page = nonpaging_sync_page;
4086 	context->invlpg = nonpaging_invlpg;
4087 	context->update_pte = nonpaging_update_pte;
4088 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4089 	context->root_hpa = INVALID_PAGE;
4090 	context->direct_map = true;
4091 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4092 	context->get_cr3 = get_cr3;
4093 	context->get_pdptr = kvm_pdptr_read;
4094 	context->inject_page_fault = kvm_inject_page_fault;
4095 
4096 	if (!is_paging(vcpu)) {
4097 		context->nx = false;
4098 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4099 		context->root_level = 0;
4100 	} else if (is_long_mode(vcpu)) {
4101 		context->nx = is_nx(vcpu);
4102 		context->root_level = PT64_ROOT_LEVEL;
4103 		reset_rsvds_bits_mask(vcpu, context);
4104 		context->gva_to_gpa = paging64_gva_to_gpa;
4105 	} else if (is_pae(vcpu)) {
4106 		context->nx = is_nx(vcpu);
4107 		context->root_level = PT32E_ROOT_LEVEL;
4108 		reset_rsvds_bits_mask(vcpu, context);
4109 		context->gva_to_gpa = paging64_gva_to_gpa;
4110 	} else {
4111 		context->nx = false;
4112 		context->root_level = PT32_ROOT_LEVEL;
4113 		reset_rsvds_bits_mask(vcpu, context);
4114 		context->gva_to_gpa = paging32_gva_to_gpa;
4115 	}
4116 
4117 	update_permission_bitmask(vcpu, context, false);
4118 	update_pkru_bitmask(vcpu, context, false);
4119 	update_last_nonleaf_level(vcpu, context);
4120 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4121 }
4122 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu)4123 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4124 {
4125 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4126 	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4127 	struct kvm_mmu *context = &vcpu->arch.mmu;
4128 
4129 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4130 
4131 	if (!is_paging(vcpu))
4132 		nonpaging_init_context(vcpu, context);
4133 	else if (is_long_mode(vcpu))
4134 		paging64_init_context(vcpu, context);
4135 	else if (is_pae(vcpu))
4136 		paging32E_init_context(vcpu, context);
4137 	else
4138 		paging32_init_context(vcpu, context);
4139 
4140 	context->base_role.nxe = is_nx(vcpu);
4141 	context->base_role.cr4_pae = !!is_pae(vcpu);
4142 	context->base_role.cr0_wp  = is_write_protection(vcpu);
4143 	context->base_role.smep_andnot_wp
4144 		= smep && !is_write_protection(vcpu);
4145 	context->base_role.smap_andnot_wp
4146 		= smap && !is_write_protection(vcpu);
4147 	context->base_role.smm = is_smm(vcpu);
4148 	reset_shadow_zero_bits_mask(vcpu, context);
4149 }
4150 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4151 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly)4152 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4153 {
4154 	struct kvm_mmu *context = &vcpu->arch.mmu;
4155 
4156 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4157 
4158 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4159 
4160 	context->nx = true;
4161 	context->page_fault = ept_page_fault;
4162 	context->gva_to_gpa = ept_gva_to_gpa;
4163 	context->sync_page = ept_sync_page;
4164 	context->invlpg = ept_invlpg;
4165 	context->update_pte = ept_update_pte;
4166 	context->root_level = context->shadow_root_level;
4167 	context->root_hpa = INVALID_PAGE;
4168 	context->direct_map = false;
4169 
4170 	update_permission_bitmask(vcpu, context, true);
4171 	update_pkru_bitmask(vcpu, context, true);
4172 	update_last_nonleaf_level(vcpu, context);
4173 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4174 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4175 }
4176 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4177 
init_kvm_softmmu(struct kvm_vcpu * vcpu)4178 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4179 {
4180 	struct kvm_mmu *context = &vcpu->arch.mmu;
4181 
4182 	kvm_init_shadow_mmu(vcpu);
4183 	context->set_cr3           = kvm_x86_ops->set_cr3;
4184 	context->get_cr3           = get_cr3;
4185 	context->get_pdptr         = kvm_pdptr_read;
4186 	context->inject_page_fault = kvm_inject_page_fault;
4187 }
4188 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4189 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4190 {
4191 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4192 
4193 	g_context->get_cr3           = get_cr3;
4194 	g_context->get_pdptr         = kvm_pdptr_read;
4195 	g_context->inject_page_fault = kvm_inject_page_fault;
4196 
4197 	/*
4198 	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4199 	 * L1's nested page tables (e.g. EPT12). The nested translation
4200 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4201 	 * L2's page tables as the first level of translation and L1's
4202 	 * nested page tables as the second level of translation. Basically
4203 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4204 	 */
4205 	if (!is_paging(vcpu)) {
4206 		g_context->nx = false;
4207 		g_context->root_level = 0;
4208 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4209 	} else if (is_long_mode(vcpu)) {
4210 		g_context->nx = is_nx(vcpu);
4211 		g_context->root_level = PT64_ROOT_LEVEL;
4212 		reset_rsvds_bits_mask(vcpu, g_context);
4213 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4214 	} else if (is_pae(vcpu)) {
4215 		g_context->nx = is_nx(vcpu);
4216 		g_context->root_level = PT32E_ROOT_LEVEL;
4217 		reset_rsvds_bits_mask(vcpu, g_context);
4218 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4219 	} else {
4220 		g_context->nx = false;
4221 		g_context->root_level = PT32_ROOT_LEVEL;
4222 		reset_rsvds_bits_mask(vcpu, g_context);
4223 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4224 	}
4225 
4226 	update_permission_bitmask(vcpu, g_context, false);
4227 	update_pkru_bitmask(vcpu, g_context, false);
4228 	update_last_nonleaf_level(vcpu, g_context);
4229 }
4230 
init_kvm_mmu(struct kvm_vcpu * vcpu)4231 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4232 {
4233 	if (mmu_is_nested(vcpu))
4234 		init_kvm_nested_mmu(vcpu);
4235 	else if (tdp_enabled)
4236 		init_kvm_tdp_mmu(vcpu);
4237 	else
4238 		init_kvm_softmmu(vcpu);
4239 }
4240 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)4241 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4242 {
4243 	kvm_mmu_unload(vcpu);
4244 	init_kvm_mmu(vcpu);
4245 }
4246 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4247 
kvm_mmu_load(struct kvm_vcpu * vcpu)4248 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4249 {
4250 	int r;
4251 
4252 	r = mmu_topup_memory_caches(vcpu);
4253 	if (r)
4254 		goto out;
4255 	r = mmu_alloc_roots(vcpu);
4256 	kvm_mmu_sync_roots(vcpu);
4257 	if (r)
4258 		goto out;
4259 	/* set_cr3() should ensure TLB has been flushed */
4260 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4261 out:
4262 	return r;
4263 }
4264 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4265 
kvm_mmu_unload(struct kvm_vcpu * vcpu)4266 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4267 {
4268 	mmu_free_roots(vcpu);
4269 	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4270 }
4271 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4272 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)4273 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4274 				  struct kvm_mmu_page *sp, u64 *spte,
4275 				  const void *new)
4276 {
4277 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4278 		++vcpu->kvm->stat.mmu_pde_zapped;
4279 		return;
4280         }
4281 
4282 	++vcpu->kvm->stat.mmu_pte_updated;
4283 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4284 }
4285 
need_remote_flush(u64 old,u64 new)4286 static bool need_remote_flush(u64 old, u64 new)
4287 {
4288 	if (!is_shadow_present_pte(old))
4289 		return false;
4290 	if (!is_shadow_present_pte(new))
4291 		return true;
4292 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4293 		return true;
4294 	old ^= shadow_nx_mask;
4295 	new ^= shadow_nx_mask;
4296 	return (old & ~new & PT64_PERM_MASK) != 0;
4297 }
4298 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)4299 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4300 				    const u8 *new, int *bytes)
4301 {
4302 	u64 gentry;
4303 	int r;
4304 
4305 	/*
4306 	 * Assume that the pte write on a page table of the same type
4307 	 * as the current vcpu paging mode since we update the sptes only
4308 	 * when they have the same mode.
4309 	 */
4310 	if (is_pae(vcpu) && *bytes == 4) {
4311 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4312 		*gpa &= ~(gpa_t)7;
4313 		*bytes = 8;
4314 		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4315 		if (r)
4316 			gentry = 0;
4317 		new = (const u8 *)&gentry;
4318 	}
4319 
4320 	switch (*bytes) {
4321 	case 4:
4322 		gentry = *(const u32 *)new;
4323 		break;
4324 	case 8:
4325 		gentry = *(const u64 *)new;
4326 		break;
4327 	default:
4328 		gentry = 0;
4329 		break;
4330 	}
4331 
4332 	return gentry;
4333 }
4334 
4335 /*
4336  * If we're seeing too many writes to a page, it may no longer be a page table,
4337  * or we may be forking, in which case it is better to unmap the page.
4338  */
detect_write_flooding(struct kvm_mmu_page * sp)4339 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4340 {
4341 	/*
4342 	 * Skip write-flooding detected for the sp whose level is 1, because
4343 	 * it can become unsync, then the guest page is not write-protected.
4344 	 */
4345 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4346 		return false;
4347 
4348 	atomic_inc(&sp->write_flooding_count);
4349 	return atomic_read(&sp->write_flooding_count) >= 3;
4350 }
4351 
4352 /*
4353  * Misaligned accesses are too much trouble to fix up; also, they usually
4354  * indicate a page is not used as a page table.
4355  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4356 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4357 				    int bytes)
4358 {
4359 	unsigned offset, pte_size, misaligned;
4360 
4361 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4362 		 gpa, bytes, sp->role.word);
4363 
4364 	offset = offset_in_page(gpa);
4365 	pte_size = sp->role.cr4_pae ? 8 : 4;
4366 
4367 	/*
4368 	 * Sometimes, the OS only writes the last one bytes to update status
4369 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4370 	 */
4371 	if (!(offset & (pte_size - 1)) && bytes == 1)
4372 		return false;
4373 
4374 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4375 	misaligned |= bytes < 4;
4376 
4377 	return misaligned;
4378 }
4379 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4380 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4381 {
4382 	unsigned page_offset, quadrant;
4383 	u64 *spte;
4384 	int level;
4385 
4386 	page_offset = offset_in_page(gpa);
4387 	level = sp->role.level;
4388 	*nspte = 1;
4389 	if (!sp->role.cr4_pae) {
4390 		page_offset <<= 1;	/* 32->64 */
4391 		/*
4392 		 * A 32-bit pde maps 4MB while the shadow pdes map
4393 		 * only 2MB.  So we need to double the offset again
4394 		 * and zap two pdes instead of one.
4395 		 */
4396 		if (level == PT32_ROOT_LEVEL) {
4397 			page_offset &= ~7; /* kill rounding error */
4398 			page_offset <<= 1;
4399 			*nspte = 2;
4400 		}
4401 		quadrant = page_offset >> PAGE_SHIFT;
4402 		page_offset &= ~PAGE_MASK;
4403 		if (quadrant != sp->role.quadrant)
4404 			return NULL;
4405 	}
4406 
4407 	spte = &sp->spt[page_offset / sizeof(*spte)];
4408 	return spte;
4409 }
4410 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)4411 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4412 			      const u8 *new, int bytes)
4413 {
4414 	gfn_t gfn = gpa >> PAGE_SHIFT;
4415 	struct kvm_mmu_page *sp;
4416 	LIST_HEAD(invalid_list);
4417 	u64 entry, gentry, *spte;
4418 	int npte;
4419 	bool remote_flush, local_flush;
4420 	union kvm_mmu_page_role mask = { };
4421 
4422 	mask.cr0_wp = 1;
4423 	mask.cr4_pae = 1;
4424 	mask.nxe = 1;
4425 	mask.smep_andnot_wp = 1;
4426 	mask.smap_andnot_wp = 1;
4427 	mask.smm = 1;
4428 
4429 	/*
4430 	 * If we don't have indirect shadow pages, it means no page is
4431 	 * write-protected, so we can exit simply.
4432 	 */
4433 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4434 		return;
4435 
4436 	remote_flush = local_flush = false;
4437 
4438 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4439 
4440 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4441 
4442 	/*
4443 	 * No need to care whether allocation memory is successful
4444 	 * or not since pte prefetch is skiped if it does not have
4445 	 * enough objects in the cache.
4446 	 */
4447 	mmu_topup_memory_caches(vcpu);
4448 
4449 	spin_lock(&vcpu->kvm->mmu_lock);
4450 	++vcpu->kvm->stat.mmu_pte_write;
4451 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4452 
4453 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4454 		if (detect_write_misaligned(sp, gpa, bytes) ||
4455 		      detect_write_flooding(sp)) {
4456 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4457 			++vcpu->kvm->stat.mmu_flooded;
4458 			continue;
4459 		}
4460 
4461 		spte = get_written_sptes(sp, gpa, &npte);
4462 		if (!spte)
4463 			continue;
4464 
4465 		local_flush = true;
4466 		while (npte--) {
4467 			entry = *spte;
4468 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4469 			if (gentry &&
4470 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4471 			      & mask.word) && rmap_can_add(vcpu))
4472 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4473 			if (need_remote_flush(entry, *spte))
4474 				remote_flush = true;
4475 			++spte;
4476 		}
4477 	}
4478 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4479 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4480 	spin_unlock(&vcpu->kvm->mmu_lock);
4481 }
4482 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)4483 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4484 {
4485 	gpa_t gpa;
4486 	int r;
4487 
4488 	if (vcpu->arch.mmu.direct_map)
4489 		return 0;
4490 
4491 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4492 
4493 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4494 
4495 	return r;
4496 }
4497 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4498 
make_mmu_pages_available(struct kvm_vcpu * vcpu)4499 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4500 {
4501 	LIST_HEAD(invalid_list);
4502 
4503 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4504 		return;
4505 
4506 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4507 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4508 			break;
4509 
4510 		++vcpu->kvm->stat.mmu_recycled;
4511 	}
4512 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4513 }
4514 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)4515 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4516 		       void *insn, int insn_len)
4517 {
4518 	int r, emulation_type = EMULTYPE_RETRY;
4519 	enum emulation_result er;
4520 	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4521 
4522 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
4523 		r = handle_mmio_page_fault(vcpu, cr2, direct);
4524 		if (r == RET_MMIO_PF_EMULATE) {
4525 			emulation_type = 0;
4526 			goto emulate;
4527 		}
4528 		if (r == RET_MMIO_PF_RETRY)
4529 			return 1;
4530 		if (r < 0)
4531 			return r;
4532 	}
4533 
4534 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4535 	if (r < 0)
4536 		return r;
4537 	if (!r)
4538 		return 1;
4539 
4540 	if (mmio_info_in_cache(vcpu, cr2, direct))
4541 		emulation_type = 0;
4542 emulate:
4543 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4544 
4545 	switch (er) {
4546 	case EMULATE_DONE:
4547 		return 1;
4548 	case EMULATE_USER_EXIT:
4549 		++vcpu->stat.mmio_exits;
4550 		/* fall through */
4551 	case EMULATE_FAIL:
4552 		return 0;
4553 	default:
4554 		BUG();
4555 	}
4556 }
4557 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4558 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)4559 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4560 {
4561 	vcpu->arch.mmu.invlpg(vcpu, gva);
4562 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4563 	++vcpu->stat.invlpg;
4564 }
4565 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4566 
kvm_enable_tdp(void)4567 void kvm_enable_tdp(void)
4568 {
4569 	tdp_enabled = true;
4570 }
4571 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4572 
kvm_disable_tdp(void)4573 void kvm_disable_tdp(void)
4574 {
4575 	tdp_enabled = false;
4576 }
4577 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4578 
free_mmu_pages(struct kvm_vcpu * vcpu)4579 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4580 {
4581 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4582 	if (vcpu->arch.mmu.lm_root != NULL)
4583 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4584 }
4585 
alloc_mmu_pages(struct kvm_vcpu * vcpu)4586 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4587 {
4588 	struct page *page;
4589 	int i;
4590 
4591 	/*
4592 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4593 	 * Therefore we need to allocate shadow page tables in the first
4594 	 * 4GB of memory, which happens to fit the DMA32 zone.
4595 	 */
4596 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4597 	if (!page)
4598 		return -ENOMEM;
4599 
4600 	vcpu->arch.mmu.pae_root = page_address(page);
4601 	for (i = 0; i < 4; ++i)
4602 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4603 
4604 	return 0;
4605 }
4606 
kvm_mmu_create(struct kvm_vcpu * vcpu)4607 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4608 {
4609 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4610 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4611 	vcpu->arch.mmu.translate_gpa = translate_gpa;
4612 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4613 
4614 	return alloc_mmu_pages(vcpu);
4615 }
4616 
kvm_mmu_setup(struct kvm_vcpu * vcpu)4617 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4618 {
4619 	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4620 
4621 	init_kvm_mmu(vcpu);
4622 }
4623 
kvm_mmu_init_vm(struct kvm * kvm)4624 void kvm_mmu_init_vm(struct kvm *kvm)
4625 {
4626 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4627 
4628 	node->track_write = kvm_mmu_pte_write;
4629 	kvm_page_track_register_notifier(kvm, node);
4630 }
4631 
kvm_mmu_uninit_vm(struct kvm * kvm)4632 void kvm_mmu_uninit_vm(struct kvm *kvm)
4633 {
4634 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4635 
4636 	kvm_page_track_unregister_notifier(kvm, node);
4637 }
4638 
4639 /* The return value indicates if tlb flush on all vcpus is needed. */
4640 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4641 
4642 /* The caller should hold mmu-lock before calling this function. */
4643 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)4644 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4645 			slot_level_handler fn, int start_level, int end_level,
4646 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4647 {
4648 	struct slot_rmap_walk_iterator iterator;
4649 	bool flush = false;
4650 
4651 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4652 			end_gfn, &iterator) {
4653 		if (iterator.rmap)
4654 			flush |= fn(kvm, iterator.rmap);
4655 
4656 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4657 			if (flush && lock_flush_tlb) {
4658 				kvm_flush_remote_tlbs(kvm);
4659 				flush = false;
4660 			}
4661 			cond_resched_lock(&kvm->mmu_lock);
4662 		}
4663 	}
4664 
4665 	if (flush && lock_flush_tlb) {
4666 		kvm_flush_remote_tlbs(kvm);
4667 		flush = false;
4668 	}
4669 
4670 	return flush;
4671 }
4672 
4673 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)4674 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4675 		  slot_level_handler fn, int start_level, int end_level,
4676 		  bool lock_flush_tlb)
4677 {
4678 	return slot_handle_level_range(kvm, memslot, fn, start_level,
4679 			end_level, memslot->base_gfn,
4680 			memslot->base_gfn + memslot->npages - 1,
4681 			lock_flush_tlb);
4682 }
4683 
4684 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)4685 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4686 		      slot_level_handler fn, bool lock_flush_tlb)
4687 {
4688 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4689 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4690 }
4691 
4692 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)4693 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4694 			slot_level_handler fn, bool lock_flush_tlb)
4695 {
4696 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4697 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4698 }
4699 
4700 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)4701 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4702 		 slot_level_handler fn, bool lock_flush_tlb)
4703 {
4704 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4705 				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4706 }
4707 
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)4708 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4709 {
4710 	struct kvm_memslots *slots;
4711 	struct kvm_memory_slot *memslot;
4712 	int i;
4713 
4714 	spin_lock(&kvm->mmu_lock);
4715 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4716 		slots = __kvm_memslots(kvm, i);
4717 		kvm_for_each_memslot(memslot, slots) {
4718 			gfn_t start, end;
4719 
4720 			start = max(gfn_start, memslot->base_gfn);
4721 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
4722 			if (start >= end)
4723 				continue;
4724 
4725 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4726 						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4727 						start, end - 1, true);
4728 		}
4729 	}
4730 
4731 	spin_unlock(&kvm->mmu_lock);
4732 }
4733 
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)4734 static bool slot_rmap_write_protect(struct kvm *kvm,
4735 				    struct kvm_rmap_head *rmap_head)
4736 {
4737 	return __rmap_write_protect(kvm, rmap_head, false);
4738 }
4739 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)4740 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4741 				      struct kvm_memory_slot *memslot)
4742 {
4743 	bool flush;
4744 
4745 	spin_lock(&kvm->mmu_lock);
4746 	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4747 				      false);
4748 	spin_unlock(&kvm->mmu_lock);
4749 
4750 	/*
4751 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4752 	 * which do tlb flush out of mmu-lock should be serialized by
4753 	 * kvm->slots_lock otherwise tlb flush would be missed.
4754 	 */
4755 	lockdep_assert_held(&kvm->slots_lock);
4756 
4757 	/*
4758 	 * We can flush all the TLBs out of the mmu lock without TLB
4759 	 * corruption since we just change the spte from writable to
4760 	 * readonly so that we only need to care the case of changing
4761 	 * spte from present to present (changing the spte from present
4762 	 * to nonpresent will flush all the TLBs immediately), in other
4763 	 * words, the only case we care is mmu_spte_update() where we
4764 	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4765 	 * instead of PT_WRITABLE_MASK, that means it does not depend
4766 	 * on PT_WRITABLE_MASK anymore.
4767 	 */
4768 	if (flush)
4769 		kvm_flush_remote_tlbs(kvm);
4770 }
4771 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)4772 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4773 					 struct kvm_rmap_head *rmap_head)
4774 {
4775 	u64 *sptep;
4776 	struct rmap_iterator iter;
4777 	int need_tlb_flush = 0;
4778 	kvm_pfn_t pfn;
4779 	struct kvm_mmu_page *sp;
4780 
4781 restart:
4782 	for_each_rmap_spte(rmap_head, &iter, sptep) {
4783 		sp = page_header(__pa(sptep));
4784 		pfn = spte_to_pfn(*sptep);
4785 
4786 		/*
4787 		 * We cannot do huge page mapping for indirect shadow pages,
4788 		 * which are found on the last rmap (level = 1) when not using
4789 		 * tdp; such shadow pages are synced with the page table in
4790 		 * the guest, and the guest page table is using 4K page size
4791 		 * mapping if the indirect sp has level = 1.
4792 		 */
4793 		if (sp->role.direct &&
4794 			!kvm_is_reserved_pfn(pfn) &&
4795 			PageTransCompoundMap(pfn_to_page(pfn))) {
4796 			drop_spte(kvm, sptep);
4797 			need_tlb_flush = 1;
4798 			goto restart;
4799 		}
4800 	}
4801 
4802 	return need_tlb_flush;
4803 }
4804 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)4805 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4806 				   const struct kvm_memory_slot *memslot)
4807 {
4808 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4809 	spin_lock(&kvm->mmu_lock);
4810 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4811 			 kvm_mmu_zap_collapsible_spte, true);
4812 	spin_unlock(&kvm->mmu_lock);
4813 }
4814 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)4815 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4816 				   struct kvm_memory_slot *memslot)
4817 {
4818 	bool flush;
4819 
4820 	spin_lock(&kvm->mmu_lock);
4821 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4822 	spin_unlock(&kvm->mmu_lock);
4823 
4824 	lockdep_assert_held(&kvm->slots_lock);
4825 
4826 	/*
4827 	 * It's also safe to flush TLBs out of mmu lock here as currently this
4828 	 * function is only used for dirty logging, in which case flushing TLB
4829 	 * out of mmu lock also guarantees no dirty pages will be lost in
4830 	 * dirty_bitmap.
4831 	 */
4832 	if (flush)
4833 		kvm_flush_remote_tlbs(kvm);
4834 }
4835 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4836 
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)4837 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4838 					struct kvm_memory_slot *memslot)
4839 {
4840 	bool flush;
4841 
4842 	spin_lock(&kvm->mmu_lock);
4843 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4844 					false);
4845 	spin_unlock(&kvm->mmu_lock);
4846 
4847 	/* see kvm_mmu_slot_remove_write_access */
4848 	lockdep_assert_held(&kvm->slots_lock);
4849 
4850 	if (flush)
4851 		kvm_flush_remote_tlbs(kvm);
4852 }
4853 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4854 
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)4855 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4856 			    struct kvm_memory_slot *memslot)
4857 {
4858 	bool flush;
4859 
4860 	spin_lock(&kvm->mmu_lock);
4861 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4862 	spin_unlock(&kvm->mmu_lock);
4863 
4864 	lockdep_assert_held(&kvm->slots_lock);
4865 
4866 	/* see kvm_mmu_slot_leaf_clear_dirty */
4867 	if (flush)
4868 		kvm_flush_remote_tlbs(kvm);
4869 }
4870 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4871 
4872 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)4873 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4874 {
4875 	struct kvm_mmu_page *sp, *node;
4876 	int batch = 0;
4877 
4878 restart:
4879 	list_for_each_entry_safe_reverse(sp, node,
4880 	      &kvm->arch.active_mmu_pages, link) {
4881 		int ret;
4882 
4883 		/*
4884 		 * No obsolete page exists before new created page since
4885 		 * active_mmu_pages is the FIFO list.
4886 		 */
4887 		if (!is_obsolete_sp(kvm, sp))
4888 			break;
4889 
4890 		/*
4891 		 * Since we are reversely walking the list and the invalid
4892 		 * list will be moved to the head, skip the invalid page
4893 		 * can help us to avoid the infinity list walking.
4894 		 */
4895 		if (sp->role.invalid)
4896 			continue;
4897 
4898 		/*
4899 		 * Need not flush tlb since we only zap the sp with invalid
4900 		 * generation number.
4901 		 */
4902 		if (batch >= BATCH_ZAP_PAGES &&
4903 		      cond_resched_lock(&kvm->mmu_lock)) {
4904 			batch = 0;
4905 			goto restart;
4906 		}
4907 
4908 		ret = kvm_mmu_prepare_zap_page(kvm, sp,
4909 				&kvm->arch.zapped_obsolete_pages);
4910 		batch += ret;
4911 
4912 		if (ret)
4913 			goto restart;
4914 	}
4915 
4916 	/*
4917 	 * Should flush tlb before free page tables since lockless-walking
4918 	 * may use the pages.
4919 	 */
4920 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4921 }
4922 
4923 /*
4924  * Fast invalidate all shadow pages and use lock-break technique
4925  * to zap obsolete pages.
4926  *
4927  * It's required when memslot is being deleted or VM is being
4928  * destroyed, in these cases, we should ensure that KVM MMU does
4929  * not use any resource of the being-deleted slot or all slots
4930  * after calling the function.
4931  */
kvm_mmu_invalidate_zap_all_pages(struct kvm * kvm)4932 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4933 {
4934 	spin_lock(&kvm->mmu_lock);
4935 	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4936 	kvm->arch.mmu_valid_gen++;
4937 
4938 	/*
4939 	 * Notify all vcpus to reload its shadow page table
4940 	 * and flush TLB. Then all vcpus will switch to new
4941 	 * shadow page table with the new mmu_valid_gen.
4942 	 *
4943 	 * Note: we should do this under the protection of
4944 	 * mmu-lock, otherwise, vcpu would purge shadow page
4945 	 * but miss tlb flush.
4946 	 */
4947 	kvm_reload_remote_mmus(kvm);
4948 
4949 	kvm_zap_obsolete_pages(kvm);
4950 	spin_unlock(&kvm->mmu_lock);
4951 }
4952 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)4953 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4954 {
4955 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4956 }
4957 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,struct kvm_memslots * slots)4958 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4959 {
4960 	/*
4961 	 * The very rare case: if the generation-number is round,
4962 	 * zap all shadow pages.
4963 	 */
4964 	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4965 		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4966 		kvm_mmu_invalidate_zap_all_pages(kvm);
4967 	}
4968 }
4969 
4970 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)4971 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4972 {
4973 	struct kvm *kvm;
4974 	int nr_to_scan = sc->nr_to_scan;
4975 	unsigned long freed = 0;
4976 
4977 	spin_lock(&kvm_lock);
4978 
4979 	list_for_each_entry(kvm, &vm_list, vm_list) {
4980 		int idx;
4981 		LIST_HEAD(invalid_list);
4982 
4983 		/*
4984 		 * Never scan more than sc->nr_to_scan VM instances.
4985 		 * Will not hit this condition practically since we do not try
4986 		 * to shrink more than one VM and it is very unlikely to see
4987 		 * !n_used_mmu_pages so many times.
4988 		 */
4989 		if (!nr_to_scan--)
4990 			break;
4991 		/*
4992 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4993 		 * here. We may skip a VM instance errorneosly, but we do not
4994 		 * want to shrink a VM that only started to populate its MMU
4995 		 * anyway.
4996 		 */
4997 		if (!kvm->arch.n_used_mmu_pages &&
4998 		      !kvm_has_zapped_obsolete_pages(kvm))
4999 			continue;
5000 
5001 		idx = srcu_read_lock(&kvm->srcu);
5002 		spin_lock(&kvm->mmu_lock);
5003 
5004 		if (kvm_has_zapped_obsolete_pages(kvm)) {
5005 			kvm_mmu_commit_zap_page(kvm,
5006 			      &kvm->arch.zapped_obsolete_pages);
5007 			goto unlock;
5008 		}
5009 
5010 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5011 			freed++;
5012 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
5013 
5014 unlock:
5015 		spin_unlock(&kvm->mmu_lock);
5016 		srcu_read_unlock(&kvm->srcu, idx);
5017 
5018 		/*
5019 		 * unfair on small ones
5020 		 * per-vm shrinkers cry out
5021 		 * sadness comes quickly
5022 		 */
5023 		list_move_tail(&kvm->vm_list, &vm_list);
5024 		break;
5025 	}
5026 
5027 	spin_unlock(&kvm_lock);
5028 	return freed;
5029 }
5030 
5031 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5032 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5033 {
5034 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5035 }
5036 
5037 static struct shrinker mmu_shrinker = {
5038 	.count_objects = mmu_shrink_count,
5039 	.scan_objects = mmu_shrink_scan,
5040 	.seeks = DEFAULT_SEEKS * 10,
5041 };
5042 
mmu_destroy_caches(void)5043 static void mmu_destroy_caches(void)
5044 {
5045 	if (pte_list_desc_cache)
5046 		kmem_cache_destroy(pte_list_desc_cache);
5047 	if (mmu_page_header_cache)
5048 		kmem_cache_destroy(mmu_page_header_cache);
5049 }
5050 
kvm_mmu_module_init(void)5051 int kvm_mmu_module_init(void)
5052 {
5053 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5054 					    sizeof(struct pte_list_desc),
5055 					    0, SLAB_ACCOUNT, NULL);
5056 	if (!pte_list_desc_cache)
5057 		goto nomem;
5058 
5059 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5060 						  sizeof(struct kvm_mmu_page),
5061 						  0, SLAB_ACCOUNT, NULL);
5062 	if (!mmu_page_header_cache)
5063 		goto nomem;
5064 
5065 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5066 		goto nomem;
5067 
5068 	register_shrinker(&mmu_shrinker);
5069 
5070 	return 0;
5071 
5072 nomem:
5073 	mmu_destroy_caches();
5074 	return -ENOMEM;
5075 }
5076 
5077 /*
5078  * Caculate mmu pages needed for kvm.
5079  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)5080 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5081 {
5082 	unsigned int nr_mmu_pages;
5083 	unsigned int  nr_pages = 0;
5084 	struct kvm_memslots *slots;
5085 	struct kvm_memory_slot *memslot;
5086 	int i;
5087 
5088 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5089 		slots = __kvm_memslots(kvm, i);
5090 
5091 		kvm_for_each_memslot(memslot, slots)
5092 			nr_pages += memslot->npages;
5093 	}
5094 
5095 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5096 	nr_mmu_pages = max(nr_mmu_pages,
5097 			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5098 
5099 	return nr_mmu_pages;
5100 }
5101 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)5102 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5103 {
5104 	kvm_mmu_unload(vcpu);
5105 	free_mmu_pages(vcpu);
5106 	mmu_free_memory_caches(vcpu);
5107 }
5108 
kvm_mmu_module_exit(void)5109 void kvm_mmu_module_exit(void)
5110 {
5111 	mmu_destroy_caches();
5112 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5113 	unregister_shrinker(&mmu_shrinker);
5114 	mmu_audit_disable();
5115 }
5116