1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu. Ugh! */
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
xstate_required_size(u64 xstate_bv,bool compacted)28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30 int feature_bit = 0;
31 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32
33 xstate_bv &= XFEATURE_MASK_EXTEND;
34 while (xstate_bv) {
35 if (xstate_bv & 0x1) {
36 u32 eax, ebx, ecx, edx, offset;
37 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38 offset = compacted ? ret : ebx;
39 ret = max(ret, offset + eax);
40 }
41
42 xstate_bv >>= 1;
43 feature_bit++;
44 }
45
46 return ret;
47 }
48
kvm_mpx_supported(void)49 bool kvm_mpx_supported(void)
50 {
51 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52 && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55
kvm_supported_xcr0(void)56 u64 kvm_supported_xcr0(void)
57 {
58 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59
60 if (!kvm_mpx_supported())
61 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62
63 return xcr0;
64 }
65
66 #define F(x) bit(X86_FEATURE_##x)
67
kvm_update_cpuid(struct kvm_vcpu * vcpu)68 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 {
70 struct kvm_cpuid_entry2 *best;
71 struct kvm_lapic *apic = vcpu->arch.apic;
72
73 best = kvm_find_cpuid_entry(vcpu, 1, 0);
74 if (!best)
75 return 0;
76
77 /* Update OSXSAVE bit */
78 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
79 best->ecx &= ~F(OSXSAVE);
80 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81 best->ecx |= F(OSXSAVE);
82 }
83
84 if (apic) {
85 if (best->ecx & F(TSC_DEADLINE_TIMER))
86 apic->lapic_timer.timer_mode_mask = 3 << 17;
87 else
88 apic->lapic_timer.timer_mode_mask = 1 << 17;
89 }
90
91 best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 if (best) {
93 /* Update OSPKE bit */
94 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
95 best->ecx &= ~F(OSPKE);
96 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
97 best->ecx |= F(OSPKE);
98 }
99 }
100
101 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
102 if (!best) {
103 vcpu->arch.guest_supported_xcr0 = 0;
104 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
105 } else {
106 vcpu->arch.guest_supported_xcr0 =
107 (best->eax | ((u64)best->edx << 32)) &
108 kvm_supported_xcr0();
109 vcpu->arch.guest_xstate_size = best->ebx =
110 xstate_required_size(vcpu->arch.xcr0, false);
111 }
112
113 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
114 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
115 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
116
117 if (use_eager_fpu())
118 kvm_x86_ops->fpu_activate(vcpu);
119
120 /*
121 * The existing code assumes virtual address is 48-bit in the canonical
122 * address checks; exit if it is ever changed.
123 */
124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 if (best && ((best->eax & 0xff00) >> 8) != 48 &&
126 ((best->eax & 0xff00) >> 8) != 0)
127 return -EINVAL;
128
129 /* Update physical-address width */
130 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
131
132 kvm_pmu_refresh(vcpu);
133 return 0;
134 }
135
is_efer_nx(void)136 static int is_efer_nx(void)
137 {
138 unsigned long long efer = 0;
139
140 rdmsrl_safe(MSR_EFER, &efer);
141 return efer & EFER_NX;
142 }
143
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)144 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
145 {
146 int i;
147 struct kvm_cpuid_entry2 *e, *entry;
148
149 entry = NULL;
150 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
151 e = &vcpu->arch.cpuid_entries[i];
152 if (e->function == 0x80000001) {
153 entry = e;
154 break;
155 }
156 }
157 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
158 entry->edx &= ~F(NX);
159 printk(KERN_INFO "kvm: guest NX capability removed\n");
160 }
161 }
162
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)163 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
164 {
165 struct kvm_cpuid_entry2 *best;
166
167 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
168 if (!best || best->eax < 0x80000008)
169 goto not_found;
170 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
171 if (best)
172 return best->eax & 0xff;
173 not_found:
174 return 36;
175 }
176 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
177
178 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)179 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
180 struct kvm_cpuid *cpuid,
181 struct kvm_cpuid_entry __user *entries)
182 {
183 int r, i;
184 struct kvm_cpuid_entry *cpuid_entries = NULL;
185
186 r = -E2BIG;
187 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
188 goto out;
189 r = -ENOMEM;
190 if (cpuid->nent) {
191 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
192 cpuid->nent);
193 if (!cpuid_entries)
194 goto out;
195 r = -EFAULT;
196 if (copy_from_user(cpuid_entries, entries,
197 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
198 goto out;
199 }
200 for (i = 0; i < cpuid->nent; i++) {
201 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
202 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
203 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
204 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
205 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
206 vcpu->arch.cpuid_entries[i].index = 0;
207 vcpu->arch.cpuid_entries[i].flags = 0;
208 vcpu->arch.cpuid_entries[i].padding[0] = 0;
209 vcpu->arch.cpuid_entries[i].padding[1] = 0;
210 vcpu->arch.cpuid_entries[i].padding[2] = 0;
211 }
212 vcpu->arch.cpuid_nent = cpuid->nent;
213 cpuid_fix_nx_cap(vcpu);
214 kvm_apic_set_version(vcpu);
215 kvm_x86_ops->cpuid_update(vcpu);
216 r = kvm_update_cpuid(vcpu);
217
218 out:
219 vfree(cpuid_entries);
220 return r;
221 }
222
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)223 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
224 struct kvm_cpuid2 *cpuid,
225 struct kvm_cpuid_entry2 __user *entries)
226 {
227 int r;
228
229 r = -E2BIG;
230 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
231 goto out;
232 r = -EFAULT;
233 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
234 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
235 goto out;
236 vcpu->arch.cpuid_nent = cpuid->nent;
237 kvm_apic_set_version(vcpu);
238 kvm_x86_ops->cpuid_update(vcpu);
239 r = kvm_update_cpuid(vcpu);
240 out:
241 return r;
242 }
243
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)244 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
245 struct kvm_cpuid2 *cpuid,
246 struct kvm_cpuid_entry2 __user *entries)
247 {
248 int r;
249
250 r = -E2BIG;
251 if (cpuid->nent < vcpu->arch.cpuid_nent)
252 goto out;
253 r = -EFAULT;
254 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
255 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
256 goto out;
257 return 0;
258
259 out:
260 cpuid->nent = vcpu->arch.cpuid_nent;
261 return r;
262 }
263
cpuid_mask(u32 * word,int wordnum)264 static void cpuid_mask(u32 *word, int wordnum)
265 {
266 *word &= boot_cpu_data.x86_capability[wordnum];
267 }
268
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)269 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
270 u32 index)
271 {
272 entry->function = function;
273 entry->index = index;
274 cpuid_count(entry->function, entry->index,
275 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
276 entry->flags = 0;
277 }
278
__do_cpuid_ent_emulated(struct kvm_cpuid_entry2 * entry,u32 func,u32 index,int * nent,int maxnent)279 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
280 u32 func, u32 index, int *nent, int maxnent)
281 {
282 switch (func) {
283 case 0:
284 entry->eax = 1; /* only one leaf currently */
285 ++*nent;
286 break;
287 case 1:
288 entry->ecx = F(MOVBE);
289 ++*nent;
290 break;
291 default:
292 break;
293 }
294
295 entry->function = func;
296 entry->index = index;
297
298 return 0;
299 }
300
__do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)301 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
302 u32 index, int *nent, int maxnent)
303 {
304 int r;
305 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
306 #ifdef CONFIG_X86_64
307 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
308 ? F(GBPAGES) : 0;
309 unsigned f_lm = F(LM);
310 #else
311 unsigned f_gbpages = 0;
312 unsigned f_lm = 0;
313 #endif
314 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
315 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
316 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
317 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
318
319 /* cpuid 1.edx */
320 const u32 kvm_cpuid_1_edx_x86_features =
321 F(FPU) | F(VME) | F(DE) | F(PSE) |
322 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
323 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
324 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
325 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
326 0 /* Reserved, DS, ACPI */ | F(MMX) |
327 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
328 0 /* HTT, TM, Reserved, PBE */;
329 /* cpuid 0x80000001.edx */
330 const u32 kvm_cpuid_8000_0001_edx_x86_features =
331 F(FPU) | F(VME) | F(DE) | F(PSE) |
332 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
333 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
334 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
335 F(PAT) | F(PSE36) | 0 /* Reserved */ |
336 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
337 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
338 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
339 /* cpuid 1.ecx */
340 const u32 kvm_cpuid_1_ecx_x86_features =
341 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
342 * but *not* advertised to guests via CPUID ! */
343 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
344 0 /* DS-CPL, VMX, SMX, EST */ |
345 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
346 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
347 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
348 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
349 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
350 F(F16C) | F(RDRAND);
351 /* cpuid 0x80000001.ecx */
352 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
353 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
354 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
355 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
356 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
357
358 /* cpuid 0x80000008.ebx */
359 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
360 F(IBPB) | F(IBRS);
361
362 /* cpuid 0xC0000001.edx */
363 const u32 kvm_cpuid_C000_0001_edx_x86_features =
364 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
365 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
366 F(PMM) | F(PMM_EN);
367
368 /* cpuid 7.0.ebx */
369 const u32 kvm_cpuid_7_0_ebx_x86_features =
370 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
371 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
372 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
373 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
374 F(AVX512BW) | F(AVX512VL);
375
376 /* cpuid 0xD.1.eax */
377 const u32 kvm_cpuid_D_1_eax_x86_features =
378 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
379
380 /* cpuid 7.0.ecx*/
381 const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
382
383 /* cpuid 7.0.edx*/
384 const u32 kvm_cpuid_7_0_edx_x86_features =
385 F(SPEC_CTRL) | F(ARCH_CAPABILITIES);
386
387 /* all calls to cpuid_count() should be made on the same cpu */
388 get_cpu();
389
390 r = -E2BIG;
391
392 if (*nent >= maxnent)
393 goto out;
394
395 do_cpuid_1_ent(entry, function, index);
396 ++*nent;
397
398 switch (function) {
399 case 0:
400 entry->eax = min(entry->eax, (u32)0xd);
401 break;
402 case 1:
403 entry->edx &= kvm_cpuid_1_edx_x86_features;
404 cpuid_mask(&entry->edx, CPUID_1_EDX);
405 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
406 cpuid_mask(&entry->ecx, CPUID_1_ECX);
407 /* we support x2apic emulation even if host does not support
408 * it since we emulate x2apic in software */
409 entry->ecx |= F(X2APIC);
410 break;
411 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
412 * may return different values. This forces us to get_cpu() before
413 * issuing the first command, and also to emulate this annoying behavior
414 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
415 case 2: {
416 int t, times = entry->eax & 0xff;
417
418 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
419 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
420 for (t = 1; t < times; ++t) {
421 if (*nent >= maxnent)
422 goto out;
423
424 do_cpuid_1_ent(&entry[t], function, 0);
425 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
426 ++*nent;
427 }
428 break;
429 }
430 /* function 4 has additional index. */
431 case 4: {
432 int i, cache_type;
433
434 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 /* read more entries until cache_type is zero */
436 for (i = 1; ; ++i) {
437 if (*nent >= maxnent)
438 goto out;
439
440 cache_type = entry[i - 1].eax & 0x1f;
441 if (!cache_type)
442 break;
443 do_cpuid_1_ent(&entry[i], function, i);
444 entry[i].flags |=
445 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
446 ++*nent;
447 }
448 break;
449 }
450 case 6: /* Thermal management */
451 entry->eax = 0x4; /* allow ARAT */
452 entry->ebx = 0;
453 entry->ecx = 0;
454 entry->edx = 0;
455 break;
456 case 7: {
457 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
458 /* Mask ebx against host capability word 9 */
459 if (index == 0) {
460 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
461 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
462 // TSC_ADJUST is emulated
463 entry->ebx |= F(TSC_ADJUST);
464 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
465 cpuid_mask(&entry->ecx, CPUID_7_ECX);
466 /* PKU is not yet implemented for shadow paging. */
467 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
468 entry->ecx &= ~F(PKU);
469 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
470 cpuid_mask(&entry->edx, CPUID_7_EDX);
471 } else {
472 entry->ebx = 0;
473 entry->ecx = 0;
474 entry->edx = 0;
475 }
476 entry->eax = 0;
477 break;
478 }
479 case 9:
480 break;
481 case 0xa: { /* Architectural Performance Monitoring */
482 struct x86_pmu_capability cap;
483 union cpuid10_eax eax;
484 union cpuid10_edx edx;
485
486 perf_get_x86_pmu_capability(&cap);
487
488 /*
489 * Only support guest architectural pmu on a host
490 * with architectural pmu.
491 */
492 if (!cap.version)
493 memset(&cap, 0, sizeof(cap));
494
495 eax.split.version_id = min(cap.version, 2);
496 eax.split.num_counters = cap.num_counters_gp;
497 eax.split.bit_width = cap.bit_width_gp;
498 eax.split.mask_length = cap.events_mask_len;
499
500 edx.split.num_counters_fixed = cap.num_counters_fixed;
501 edx.split.bit_width_fixed = cap.bit_width_fixed;
502 edx.split.reserved = 0;
503
504 entry->eax = eax.full;
505 entry->ebx = cap.events_mask;
506 entry->ecx = 0;
507 entry->edx = edx.full;
508 break;
509 }
510 /* function 0xb has additional index. */
511 case 0xb: {
512 int i, level_type;
513
514 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
515 /* read more entries until level_type is zero */
516 for (i = 1; ; ++i) {
517 if (*nent >= maxnent)
518 goto out;
519
520 level_type = entry[i - 1].ecx & 0xff00;
521 if (!level_type)
522 break;
523 do_cpuid_1_ent(&entry[i], function, i);
524 entry[i].flags |=
525 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526 ++*nent;
527 }
528 break;
529 }
530 case 0xd: {
531 int idx, i;
532 u64 supported = kvm_supported_xcr0();
533
534 entry->eax &= supported;
535 entry->ebx = xstate_required_size(supported, false);
536 entry->ecx = entry->ebx;
537 entry->edx &= supported >> 32;
538 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
539 if (!supported)
540 break;
541
542 for (idx = 1, i = 1; idx < 64; ++idx) {
543 u64 mask = ((u64)1 << idx);
544 if (*nent >= maxnent)
545 goto out;
546
547 do_cpuid_1_ent(&entry[i], function, idx);
548 if (idx == 1) {
549 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
550 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
551 entry[i].ebx = 0;
552 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
553 entry[i].ebx =
554 xstate_required_size(supported,
555 true);
556 } else {
557 if (entry[i].eax == 0 || !(supported & mask))
558 continue;
559 if (WARN_ON_ONCE(entry[i].ecx & 1))
560 continue;
561 }
562 entry[i].ecx = 0;
563 entry[i].edx = 0;
564 entry[i].flags |=
565 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
566 ++*nent;
567 ++i;
568 }
569 break;
570 }
571 case KVM_CPUID_SIGNATURE: {
572 static const char signature[12] = "KVMKVMKVM\0\0";
573 const u32 *sigptr = (const u32 *)signature;
574 entry->eax = KVM_CPUID_FEATURES;
575 entry->ebx = sigptr[0];
576 entry->ecx = sigptr[1];
577 entry->edx = sigptr[2];
578 break;
579 }
580 case KVM_CPUID_FEATURES:
581 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
582 (1 << KVM_FEATURE_NOP_IO_DELAY) |
583 (1 << KVM_FEATURE_CLOCKSOURCE2) |
584 (1 << KVM_FEATURE_ASYNC_PF) |
585 (1 << KVM_FEATURE_PV_EOI) |
586 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
587 (1 << KVM_FEATURE_PV_UNHALT);
588
589 if (sched_info_on())
590 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
591
592 entry->ebx = 0;
593 entry->ecx = 0;
594 entry->edx = 0;
595 break;
596 case 0x80000000:
597 entry->eax = min(entry->eax, 0x8000001a);
598 break;
599 case 0x80000001:
600 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
601 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
602 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
603 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
604 break;
605 case 0x80000007: /* Advanced power management */
606 /* invariant TSC is CPUID.80000007H:EDX[8] */
607 entry->edx &= (1 << 8);
608 /* mask against host */
609 entry->edx &= boot_cpu_data.x86_power;
610 entry->eax = entry->ebx = entry->ecx = 0;
611 break;
612 case 0x80000008: {
613 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
614 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
615 unsigned phys_as = entry->eax & 0xff;
616
617 if (!g_phys_as)
618 g_phys_as = phys_as;
619 entry->eax = g_phys_as | (virt_as << 8);
620 entry->edx = 0;
621 /* IBRS and IBPB aren't necessarily present in hardware cpuid */
622 if (boot_cpu_has(X86_FEATURE_IBPB))
623 entry->ebx |= F(IBPB);
624 if (boot_cpu_has(X86_FEATURE_IBRS))
625 entry->ebx |= F(IBRS);
626 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
627 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
628 break;
629 }
630 case 0x80000019:
631 entry->ecx = entry->edx = 0;
632 break;
633 case 0x8000001a:
634 break;
635 case 0x8000001d:
636 break;
637 /*Add support for Centaur's CPUID instruction*/
638 case 0xC0000000:
639 /*Just support up to 0xC0000004 now*/
640 entry->eax = min(entry->eax, 0xC0000004);
641 break;
642 case 0xC0000001:
643 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
644 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
645 break;
646 case 3: /* Processor serial number */
647 case 5: /* MONITOR/MWAIT */
648 case 0xC0000002:
649 case 0xC0000003:
650 case 0xC0000004:
651 default:
652 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
653 break;
654 }
655
656 kvm_x86_ops->set_supported_cpuid(function, entry);
657
658 r = 0;
659
660 out:
661 put_cpu();
662
663 return r;
664 }
665
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 func,u32 idx,int * nent,int maxnent,unsigned int type)666 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
667 u32 idx, int *nent, int maxnent, unsigned int type)
668 {
669 if (type == KVM_GET_EMULATED_CPUID)
670 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
671
672 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
673 }
674
675 #undef F
676
677 struct kvm_cpuid_param {
678 u32 func;
679 u32 idx;
680 bool has_leaf_count;
681 bool (*qualifier)(const struct kvm_cpuid_param *param);
682 };
683
is_centaur_cpu(const struct kvm_cpuid_param * param)684 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
685 {
686 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
687 }
688
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)689 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
690 __u32 num_entries, unsigned int ioctl_type)
691 {
692 int i;
693 __u32 pad[3];
694
695 if (ioctl_type != KVM_GET_EMULATED_CPUID)
696 return false;
697
698 /*
699 * We want to make sure that ->padding is being passed clean from
700 * userspace in case we want to use it for something in the future.
701 *
702 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
703 * have to give ourselves satisfied only with the emulated side. /me
704 * sheds a tear.
705 */
706 for (i = 0; i < num_entries; i++) {
707 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
708 return true;
709
710 if (pad[0] || pad[1] || pad[2])
711 return true;
712 }
713 return false;
714 }
715
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)716 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
717 struct kvm_cpuid_entry2 __user *entries,
718 unsigned int type)
719 {
720 struct kvm_cpuid_entry2 *cpuid_entries;
721 int limit, nent = 0, r = -E2BIG, i;
722 u32 func;
723 static const struct kvm_cpuid_param param[] = {
724 { .func = 0, .has_leaf_count = true },
725 { .func = 0x80000000, .has_leaf_count = true },
726 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
727 { .func = KVM_CPUID_SIGNATURE },
728 { .func = KVM_CPUID_FEATURES },
729 };
730
731 if (cpuid->nent < 1)
732 goto out;
733 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
734 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
735
736 if (sanity_check_entries(entries, cpuid->nent, type))
737 return -EINVAL;
738
739 r = -ENOMEM;
740 cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
741 if (!cpuid_entries)
742 goto out;
743
744 r = 0;
745 for (i = 0; i < ARRAY_SIZE(param); i++) {
746 const struct kvm_cpuid_param *ent = ¶m[i];
747
748 if (ent->qualifier && !ent->qualifier(ent))
749 continue;
750
751 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
752 &nent, cpuid->nent, type);
753
754 if (r)
755 goto out_free;
756
757 if (!ent->has_leaf_count)
758 continue;
759
760 limit = cpuid_entries[nent - 1].eax;
761 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
762 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
763 &nent, cpuid->nent, type);
764
765 if (r)
766 goto out_free;
767 }
768
769 r = -EFAULT;
770 if (copy_to_user(entries, cpuid_entries,
771 nent * sizeof(struct kvm_cpuid_entry2)))
772 goto out_free;
773 cpuid->nent = nent;
774 r = 0;
775
776 out_free:
777 vfree(cpuid_entries);
778 out:
779 return r;
780 }
781
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)782 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
783 {
784 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
785 struct kvm_cpuid_entry2 *ej;
786 int j = i;
787 int nent = vcpu->arch.cpuid_nent;
788
789 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
790 /* when no next entry is found, the current entry[i] is reselected */
791 do {
792 j = (j + 1) % nent;
793 ej = &vcpu->arch.cpuid_entries[j];
794 } while (ej->function != e->function);
795
796 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
797
798 return j;
799 }
800
801 /* find an entry with matching function, matching index (if needed), and that
802 * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)803 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
804 u32 function, u32 index)
805 {
806 if (e->function != function)
807 return 0;
808 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
809 return 0;
810 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
811 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
812 return 0;
813 return 1;
814 }
815
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)816 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
817 u32 function, u32 index)
818 {
819 int i;
820 struct kvm_cpuid_entry2 *best = NULL;
821
822 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
823 struct kvm_cpuid_entry2 *e;
824
825 e = &vcpu->arch.cpuid_entries[i];
826 if (is_matching_cpuid_entry(e, function, index)) {
827 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
828 move_to_next_stateful_cpuid_entry(vcpu, i);
829 best = e;
830 break;
831 }
832 }
833 return best;
834 }
835 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
836
837 /*
838 * If no match is found, check whether we exceed the vCPU's limit
839 * and return the content of the highest valid _standard_ leaf instead.
840 * This is to satisfy the CPUID specification.
841 */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)842 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
843 u32 function, u32 index)
844 {
845 struct kvm_cpuid_entry2 *maxlevel;
846
847 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
848 if (!maxlevel || maxlevel->eax >= function)
849 return NULL;
850 if (function & 0x80000000) {
851 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
852 if (!maxlevel)
853 return NULL;
854 }
855 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
856 }
857
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)858 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
859 {
860 u32 function = *eax, index = *ecx;
861 struct kvm_cpuid_entry2 *best;
862
863 best = kvm_find_cpuid_entry(vcpu, function, index);
864
865 if (!best)
866 best = check_cpuid_limit(vcpu, function, index);
867
868 if (best) {
869 *eax = best->eax;
870 *ebx = best->ebx;
871 *ecx = best->ecx;
872 *edx = best->edx;
873 } else
874 *eax = *ebx = *ecx = *edx = 0;
875 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
876 }
877 EXPORT_SYMBOL_GPL(kvm_cpuid);
878
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)879 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
880 {
881 u32 function, eax, ebx, ecx, edx;
882
883 function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
884 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
885 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
886 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
887 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
888 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
889 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
890 kvm_x86_ops->skip_emulated_instruction(vcpu);
891 }
892 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
893