• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu.  Ugh! */
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27 
xstate_required_size(u64 xstate_bv,bool compacted)28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30 	int feature_bit = 0;
31 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32 
33 	xstate_bv &= XFEATURE_MASK_EXTEND;
34 	while (xstate_bv) {
35 		if (xstate_bv & 0x1) {
36 		        u32 eax, ebx, ecx, edx, offset;
37 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38 			offset = compacted ? ret : ebx;
39 			ret = max(ret, offset + eax);
40 		}
41 
42 		xstate_bv >>= 1;
43 		feature_bit++;
44 	}
45 
46 	return ret;
47 }
48 
kvm_mpx_supported(void)49 bool kvm_mpx_supported(void)
50 {
51 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52 		 && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55 
kvm_supported_xcr0(void)56 u64 kvm_supported_xcr0(void)
57 {
58 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59 
60 	if (!kvm_mpx_supported())
61 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62 
63 	return xcr0;
64 }
65 
66 #define F(x) bit(X86_FEATURE_##x)
67 
kvm_update_cpuid(struct kvm_vcpu * vcpu)68 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 {
70 	struct kvm_cpuid_entry2 *best;
71 	struct kvm_lapic *apic = vcpu->arch.apic;
72 
73 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
74 	if (!best)
75 		return 0;
76 
77 	/* Update OSXSAVE bit */
78 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
79 		best->ecx &= ~F(OSXSAVE);
80 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81 			best->ecx |= F(OSXSAVE);
82 	}
83 
84 	if (apic) {
85 		if (best->ecx & F(TSC_DEADLINE_TIMER))
86 			apic->lapic_timer.timer_mode_mask = 3 << 17;
87 		else
88 			apic->lapic_timer.timer_mode_mask = 1 << 17;
89 	}
90 
91 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 	if (best) {
93 		/* Update OSPKE bit */
94 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
95 			best->ecx &= ~F(OSPKE);
96 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
97 				best->ecx |= F(OSPKE);
98 		}
99 	}
100 
101 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
102 	if (!best) {
103 		vcpu->arch.guest_supported_xcr0 = 0;
104 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
105 	} else {
106 		vcpu->arch.guest_supported_xcr0 =
107 			(best->eax | ((u64)best->edx << 32)) &
108 			kvm_supported_xcr0();
109 		vcpu->arch.guest_xstate_size = best->ebx =
110 			xstate_required_size(vcpu->arch.xcr0, false);
111 	}
112 
113 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
114 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
115 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
116 
117 	if (use_eager_fpu())
118 		kvm_x86_ops->fpu_activate(vcpu);
119 
120 	/*
121 	 * The existing code assumes virtual address is 48-bit in the canonical
122 	 * address checks; exit if it is ever changed.
123 	 */
124 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
126 		((best->eax & 0xff00) >> 8) != 0)
127 		return -EINVAL;
128 
129 	/* Update physical-address width */
130 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
131 
132 	kvm_pmu_refresh(vcpu);
133 	return 0;
134 }
135 
is_efer_nx(void)136 static int is_efer_nx(void)
137 {
138 	unsigned long long efer = 0;
139 
140 	rdmsrl_safe(MSR_EFER, &efer);
141 	return efer & EFER_NX;
142 }
143 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)144 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
145 {
146 	int i;
147 	struct kvm_cpuid_entry2 *e, *entry;
148 
149 	entry = NULL;
150 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
151 		e = &vcpu->arch.cpuid_entries[i];
152 		if (e->function == 0x80000001) {
153 			entry = e;
154 			break;
155 		}
156 	}
157 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
158 		entry->edx &= ~F(NX);
159 		printk(KERN_INFO "kvm: guest NX capability removed\n");
160 	}
161 }
162 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)163 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
164 {
165 	struct kvm_cpuid_entry2 *best;
166 
167 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
168 	if (!best || best->eax < 0x80000008)
169 		goto not_found;
170 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
171 	if (best)
172 		return best->eax & 0xff;
173 not_found:
174 	return 36;
175 }
176 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
177 
178 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)179 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
180 			     struct kvm_cpuid *cpuid,
181 			     struct kvm_cpuid_entry __user *entries)
182 {
183 	int r, i;
184 	struct kvm_cpuid_entry *cpuid_entries = NULL;
185 
186 	r = -E2BIG;
187 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
188 		goto out;
189 	r = -ENOMEM;
190 	if (cpuid->nent) {
191 		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
192 					cpuid->nent);
193 		if (!cpuid_entries)
194 			goto out;
195 		r = -EFAULT;
196 		if (copy_from_user(cpuid_entries, entries,
197 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
198 			goto out;
199 	}
200 	for (i = 0; i < cpuid->nent; i++) {
201 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
202 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
203 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
204 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
205 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
206 		vcpu->arch.cpuid_entries[i].index = 0;
207 		vcpu->arch.cpuid_entries[i].flags = 0;
208 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
209 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
210 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
211 	}
212 	vcpu->arch.cpuid_nent = cpuid->nent;
213 	cpuid_fix_nx_cap(vcpu);
214 	kvm_apic_set_version(vcpu);
215 	kvm_x86_ops->cpuid_update(vcpu);
216 	r = kvm_update_cpuid(vcpu);
217 
218 out:
219 	vfree(cpuid_entries);
220 	return r;
221 }
222 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)223 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
224 			      struct kvm_cpuid2 *cpuid,
225 			      struct kvm_cpuid_entry2 __user *entries)
226 {
227 	int r;
228 
229 	r = -E2BIG;
230 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
231 		goto out;
232 	r = -EFAULT;
233 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
234 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
235 		goto out;
236 	vcpu->arch.cpuid_nent = cpuid->nent;
237 	kvm_apic_set_version(vcpu);
238 	kvm_x86_ops->cpuid_update(vcpu);
239 	r = kvm_update_cpuid(vcpu);
240 out:
241 	return r;
242 }
243 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)244 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
245 			      struct kvm_cpuid2 *cpuid,
246 			      struct kvm_cpuid_entry2 __user *entries)
247 {
248 	int r;
249 
250 	r = -E2BIG;
251 	if (cpuid->nent < vcpu->arch.cpuid_nent)
252 		goto out;
253 	r = -EFAULT;
254 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
255 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
256 		goto out;
257 	return 0;
258 
259 out:
260 	cpuid->nent = vcpu->arch.cpuid_nent;
261 	return r;
262 }
263 
cpuid_mask(u32 * word,int wordnum)264 static void cpuid_mask(u32 *word, int wordnum)
265 {
266 	*word &= boot_cpu_data.x86_capability[wordnum];
267 }
268 
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)269 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
270 			   u32 index)
271 {
272 	entry->function = function;
273 	entry->index = index;
274 	cpuid_count(entry->function, entry->index,
275 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
276 	entry->flags = 0;
277 }
278 
__do_cpuid_ent_emulated(struct kvm_cpuid_entry2 * entry,u32 func,u32 index,int * nent,int maxnent)279 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
280 				   u32 func, u32 index, int *nent, int maxnent)
281 {
282 	switch (func) {
283 	case 0:
284 		entry->eax = 1;		/* only one leaf currently */
285 		++*nent;
286 		break;
287 	case 1:
288 		entry->ecx = F(MOVBE);
289 		++*nent;
290 		break;
291 	default:
292 		break;
293 	}
294 
295 	entry->function = func;
296 	entry->index = index;
297 
298 	return 0;
299 }
300 
__do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)301 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
302 				 u32 index, int *nent, int maxnent)
303 {
304 	int r;
305 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
306 #ifdef CONFIG_X86_64
307 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
308 				? F(GBPAGES) : 0;
309 	unsigned f_lm = F(LM);
310 #else
311 	unsigned f_gbpages = 0;
312 	unsigned f_lm = 0;
313 #endif
314 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
315 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
316 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
317 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
318 
319 	/* cpuid 1.edx */
320 	const u32 kvm_cpuid_1_edx_x86_features =
321 		F(FPU) | F(VME) | F(DE) | F(PSE) |
322 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
323 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
324 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
325 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
326 		0 /* Reserved, DS, ACPI */ | F(MMX) |
327 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
328 		0 /* HTT, TM, Reserved, PBE */;
329 	/* cpuid 0x80000001.edx */
330 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
331 		F(FPU) | F(VME) | F(DE) | F(PSE) |
332 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
333 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
334 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
335 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
336 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
337 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
338 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
339 	/* cpuid 1.ecx */
340 	const u32 kvm_cpuid_1_ecx_x86_features =
341 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
342 		 * but *not* advertised to guests via CPUID ! */
343 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
344 		0 /* DS-CPL, VMX, SMX, EST */ |
345 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
346 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
347 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
348 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
349 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
350 		F(F16C) | F(RDRAND);
351 	/* cpuid 0x80000001.ecx */
352 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
353 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
354 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
355 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
356 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
357 
358 	/* cpuid 0x80000008.ebx */
359 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
360 		F(IBPB) | F(IBRS);
361 
362 	/* cpuid 0xC0000001.edx */
363 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
364 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
365 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
366 		F(PMM) | F(PMM_EN);
367 
368 	/* cpuid 7.0.ebx */
369 	const u32 kvm_cpuid_7_0_ebx_x86_features =
370 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
371 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
372 		F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
373 		F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
374 		F(AVX512BW) | F(AVX512VL);
375 
376 	/* cpuid 0xD.1.eax */
377 	const u32 kvm_cpuid_D_1_eax_x86_features =
378 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
379 
380 	/* cpuid 7.0.ecx*/
381 	const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
382 
383 	/* cpuid 7.0.edx*/
384 	const u32 kvm_cpuid_7_0_edx_x86_features =
385 		F(SPEC_CTRL) | F(ARCH_CAPABILITIES);
386 
387 	/* all calls to cpuid_count() should be made on the same cpu */
388 	get_cpu();
389 
390 	r = -E2BIG;
391 
392 	if (*nent >= maxnent)
393 		goto out;
394 
395 	do_cpuid_1_ent(entry, function, index);
396 	++*nent;
397 
398 	switch (function) {
399 	case 0:
400 		entry->eax = min(entry->eax, (u32)0xd);
401 		break;
402 	case 1:
403 		entry->edx &= kvm_cpuid_1_edx_x86_features;
404 		cpuid_mask(&entry->edx, CPUID_1_EDX);
405 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
406 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
407 		/* we support x2apic emulation even if host does not support
408 		 * it since we emulate x2apic in software */
409 		entry->ecx |= F(X2APIC);
410 		break;
411 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
412 	 * may return different values. This forces us to get_cpu() before
413 	 * issuing the first command, and also to emulate this annoying behavior
414 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
415 	case 2: {
416 		int t, times = entry->eax & 0xff;
417 
418 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
419 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
420 		for (t = 1; t < times; ++t) {
421 			if (*nent >= maxnent)
422 				goto out;
423 
424 			do_cpuid_1_ent(&entry[t], function, 0);
425 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
426 			++*nent;
427 		}
428 		break;
429 	}
430 	/* function 4 has additional index. */
431 	case 4: {
432 		int i, cache_type;
433 
434 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 		/* read more entries until cache_type is zero */
436 		for (i = 1; ; ++i) {
437 			if (*nent >= maxnent)
438 				goto out;
439 
440 			cache_type = entry[i - 1].eax & 0x1f;
441 			if (!cache_type)
442 				break;
443 			do_cpuid_1_ent(&entry[i], function, i);
444 			entry[i].flags |=
445 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
446 			++*nent;
447 		}
448 		break;
449 	}
450 	case 6: /* Thermal management */
451 		entry->eax = 0x4; /* allow ARAT */
452 		entry->ebx = 0;
453 		entry->ecx = 0;
454 		entry->edx = 0;
455 		break;
456 	case 7: {
457 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
458 		/* Mask ebx against host capability word 9 */
459 		if (index == 0) {
460 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
461 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
462 			// TSC_ADJUST is emulated
463 			entry->ebx |= F(TSC_ADJUST);
464 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
465 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
466 			/* PKU is not yet implemented for shadow paging. */
467 			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
468 				entry->ecx &= ~F(PKU);
469 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
470 			cpuid_mask(&entry->edx, CPUID_7_EDX);
471 		} else {
472 			entry->ebx = 0;
473 			entry->ecx = 0;
474 			entry->edx = 0;
475 		}
476 		entry->eax = 0;
477 		break;
478 	}
479 	case 9:
480 		break;
481 	case 0xa: { /* Architectural Performance Monitoring */
482 		struct x86_pmu_capability cap;
483 		union cpuid10_eax eax;
484 		union cpuid10_edx edx;
485 
486 		perf_get_x86_pmu_capability(&cap);
487 
488 		/*
489 		 * Only support guest architectural pmu on a host
490 		 * with architectural pmu.
491 		 */
492 		if (!cap.version)
493 			memset(&cap, 0, sizeof(cap));
494 
495 		eax.split.version_id = min(cap.version, 2);
496 		eax.split.num_counters = cap.num_counters_gp;
497 		eax.split.bit_width = cap.bit_width_gp;
498 		eax.split.mask_length = cap.events_mask_len;
499 
500 		edx.split.num_counters_fixed = cap.num_counters_fixed;
501 		edx.split.bit_width_fixed = cap.bit_width_fixed;
502 		edx.split.reserved = 0;
503 
504 		entry->eax = eax.full;
505 		entry->ebx = cap.events_mask;
506 		entry->ecx = 0;
507 		entry->edx = edx.full;
508 		break;
509 	}
510 	/* function 0xb has additional index. */
511 	case 0xb: {
512 		int i, level_type;
513 
514 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
515 		/* read more entries until level_type is zero */
516 		for (i = 1; ; ++i) {
517 			if (*nent >= maxnent)
518 				goto out;
519 
520 			level_type = entry[i - 1].ecx & 0xff00;
521 			if (!level_type)
522 				break;
523 			do_cpuid_1_ent(&entry[i], function, i);
524 			entry[i].flags |=
525 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526 			++*nent;
527 		}
528 		break;
529 	}
530 	case 0xd: {
531 		int idx, i;
532 		u64 supported = kvm_supported_xcr0();
533 
534 		entry->eax &= supported;
535 		entry->ebx = xstate_required_size(supported, false);
536 		entry->ecx = entry->ebx;
537 		entry->edx &= supported >> 32;
538 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
539 		if (!supported)
540 			break;
541 
542 		for (idx = 1, i = 1; idx < 64; ++idx) {
543 			u64 mask = ((u64)1 << idx);
544 			if (*nent >= maxnent)
545 				goto out;
546 
547 			do_cpuid_1_ent(&entry[i], function, idx);
548 			if (idx == 1) {
549 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
550 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
551 				entry[i].ebx = 0;
552 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
553 					entry[i].ebx =
554 						xstate_required_size(supported,
555 								     true);
556 			} else {
557 				if (entry[i].eax == 0 || !(supported & mask))
558 					continue;
559 				if (WARN_ON_ONCE(entry[i].ecx & 1))
560 					continue;
561 			}
562 			entry[i].ecx = 0;
563 			entry[i].edx = 0;
564 			entry[i].flags |=
565 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
566 			++*nent;
567 			++i;
568 		}
569 		break;
570 	}
571 	case KVM_CPUID_SIGNATURE: {
572 		static const char signature[12] = "KVMKVMKVM\0\0";
573 		const u32 *sigptr = (const u32 *)signature;
574 		entry->eax = KVM_CPUID_FEATURES;
575 		entry->ebx = sigptr[0];
576 		entry->ecx = sigptr[1];
577 		entry->edx = sigptr[2];
578 		break;
579 	}
580 	case KVM_CPUID_FEATURES:
581 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
582 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
583 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
584 			     (1 << KVM_FEATURE_ASYNC_PF) |
585 			     (1 << KVM_FEATURE_PV_EOI) |
586 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
587 			     (1 << KVM_FEATURE_PV_UNHALT);
588 
589 		if (sched_info_on())
590 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
591 
592 		entry->ebx = 0;
593 		entry->ecx = 0;
594 		entry->edx = 0;
595 		break;
596 	case 0x80000000:
597 		entry->eax = min(entry->eax, 0x8000001a);
598 		break;
599 	case 0x80000001:
600 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
601 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
602 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
603 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
604 		break;
605 	case 0x80000007: /* Advanced power management */
606 		/* invariant TSC is CPUID.80000007H:EDX[8] */
607 		entry->edx &= (1 << 8);
608 		/* mask against host */
609 		entry->edx &= boot_cpu_data.x86_power;
610 		entry->eax = entry->ebx = entry->ecx = 0;
611 		break;
612 	case 0x80000008: {
613 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
614 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
615 		unsigned phys_as = entry->eax & 0xff;
616 
617 		if (!g_phys_as)
618 			g_phys_as = phys_as;
619 		entry->eax = g_phys_as | (virt_as << 8);
620 		entry->edx = 0;
621 		/* IBRS and IBPB aren't necessarily present in hardware cpuid */
622 		if (boot_cpu_has(X86_FEATURE_IBPB))
623 			entry->ebx |= F(IBPB);
624 		if (boot_cpu_has(X86_FEATURE_IBRS))
625 			entry->ebx |= F(IBRS);
626 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
627 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
628 		break;
629 	}
630 	case 0x80000019:
631 		entry->ecx = entry->edx = 0;
632 		break;
633 	case 0x8000001a:
634 		break;
635 	case 0x8000001d:
636 		break;
637 	/*Add support for Centaur's CPUID instruction*/
638 	case 0xC0000000:
639 		/*Just support up to 0xC0000004 now*/
640 		entry->eax = min(entry->eax, 0xC0000004);
641 		break;
642 	case 0xC0000001:
643 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
644 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
645 		break;
646 	case 3: /* Processor serial number */
647 	case 5: /* MONITOR/MWAIT */
648 	case 0xC0000002:
649 	case 0xC0000003:
650 	case 0xC0000004:
651 	default:
652 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
653 		break;
654 	}
655 
656 	kvm_x86_ops->set_supported_cpuid(function, entry);
657 
658 	r = 0;
659 
660 out:
661 	put_cpu();
662 
663 	return r;
664 }
665 
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 func,u32 idx,int * nent,int maxnent,unsigned int type)666 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
667 			u32 idx, int *nent, int maxnent, unsigned int type)
668 {
669 	if (type == KVM_GET_EMULATED_CPUID)
670 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
671 
672 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
673 }
674 
675 #undef F
676 
677 struct kvm_cpuid_param {
678 	u32 func;
679 	u32 idx;
680 	bool has_leaf_count;
681 	bool (*qualifier)(const struct kvm_cpuid_param *param);
682 };
683 
is_centaur_cpu(const struct kvm_cpuid_param * param)684 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
685 {
686 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
687 }
688 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)689 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
690 				 __u32 num_entries, unsigned int ioctl_type)
691 {
692 	int i;
693 	__u32 pad[3];
694 
695 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
696 		return false;
697 
698 	/*
699 	 * We want to make sure that ->padding is being passed clean from
700 	 * userspace in case we want to use it for something in the future.
701 	 *
702 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
703 	 * have to give ourselves satisfied only with the emulated side. /me
704 	 * sheds a tear.
705 	 */
706 	for (i = 0; i < num_entries; i++) {
707 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
708 			return true;
709 
710 		if (pad[0] || pad[1] || pad[2])
711 			return true;
712 	}
713 	return false;
714 }
715 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)716 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
717 			    struct kvm_cpuid_entry2 __user *entries,
718 			    unsigned int type)
719 {
720 	struct kvm_cpuid_entry2 *cpuid_entries;
721 	int limit, nent = 0, r = -E2BIG, i;
722 	u32 func;
723 	static const struct kvm_cpuid_param param[] = {
724 		{ .func = 0, .has_leaf_count = true },
725 		{ .func = 0x80000000, .has_leaf_count = true },
726 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
727 		{ .func = KVM_CPUID_SIGNATURE },
728 		{ .func = KVM_CPUID_FEATURES },
729 	};
730 
731 	if (cpuid->nent < 1)
732 		goto out;
733 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
734 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
735 
736 	if (sanity_check_entries(entries, cpuid->nent, type))
737 		return -EINVAL;
738 
739 	r = -ENOMEM;
740 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
741 	if (!cpuid_entries)
742 		goto out;
743 
744 	r = 0;
745 	for (i = 0; i < ARRAY_SIZE(param); i++) {
746 		const struct kvm_cpuid_param *ent = &param[i];
747 
748 		if (ent->qualifier && !ent->qualifier(ent))
749 			continue;
750 
751 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
752 				&nent, cpuid->nent, type);
753 
754 		if (r)
755 			goto out_free;
756 
757 		if (!ent->has_leaf_count)
758 			continue;
759 
760 		limit = cpuid_entries[nent - 1].eax;
761 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
762 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
763 				     &nent, cpuid->nent, type);
764 
765 		if (r)
766 			goto out_free;
767 	}
768 
769 	r = -EFAULT;
770 	if (copy_to_user(entries, cpuid_entries,
771 			 nent * sizeof(struct kvm_cpuid_entry2)))
772 		goto out_free;
773 	cpuid->nent = nent;
774 	r = 0;
775 
776 out_free:
777 	vfree(cpuid_entries);
778 out:
779 	return r;
780 }
781 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)782 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
783 {
784 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
785 	struct kvm_cpuid_entry2 *ej;
786 	int j = i;
787 	int nent = vcpu->arch.cpuid_nent;
788 
789 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
790 	/* when no next entry is found, the current entry[i] is reselected */
791 	do {
792 		j = (j + 1) % nent;
793 		ej = &vcpu->arch.cpuid_entries[j];
794 	} while (ej->function != e->function);
795 
796 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
797 
798 	return j;
799 }
800 
801 /* find an entry with matching function, matching index (if needed), and that
802  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)803 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
804 	u32 function, u32 index)
805 {
806 	if (e->function != function)
807 		return 0;
808 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
809 		return 0;
810 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
811 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
812 		return 0;
813 	return 1;
814 }
815 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)816 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
817 					      u32 function, u32 index)
818 {
819 	int i;
820 	struct kvm_cpuid_entry2 *best = NULL;
821 
822 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
823 		struct kvm_cpuid_entry2 *e;
824 
825 		e = &vcpu->arch.cpuid_entries[i];
826 		if (is_matching_cpuid_entry(e, function, index)) {
827 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
828 				move_to_next_stateful_cpuid_entry(vcpu, i);
829 			best = e;
830 			break;
831 		}
832 	}
833 	return best;
834 }
835 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
836 
837 /*
838  * If no match is found, check whether we exceed the vCPU's limit
839  * and return the content of the highest valid _standard_ leaf instead.
840  * This is to satisfy the CPUID specification.
841  */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)842 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
843                                                   u32 function, u32 index)
844 {
845 	struct kvm_cpuid_entry2 *maxlevel;
846 
847 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
848 	if (!maxlevel || maxlevel->eax >= function)
849 		return NULL;
850 	if (function & 0x80000000) {
851 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
852 		if (!maxlevel)
853 			return NULL;
854 	}
855 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
856 }
857 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)858 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
859 {
860 	u32 function = *eax, index = *ecx;
861 	struct kvm_cpuid_entry2 *best;
862 
863 	best = kvm_find_cpuid_entry(vcpu, function, index);
864 
865 	if (!best)
866 		best = check_cpuid_limit(vcpu, function, index);
867 
868 	if (best) {
869 		*eax = best->eax;
870 		*ebx = best->ebx;
871 		*ecx = best->ecx;
872 		*edx = best->edx;
873 	} else
874 		*eax = *ebx = *ecx = *edx = 0;
875 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
876 }
877 EXPORT_SYMBOL_GPL(kvm_cpuid);
878 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)879 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
880 {
881 	u32 function, eax, ebx, ecx, edx;
882 
883 	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
884 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
885 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
886 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
887 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
888 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
889 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
890 	kvm_x86_ops->skip_emulated_instruction(vcpu);
891 }
892 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
893