• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <asm/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45 
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50 
51 
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54 	return !!(v->arch.pending_exceptions) ||
55 	       v->requests;
56 }
57 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60 	return 1;
61 }
62 
63 /*
64  * Common checks before entering the guest world.  Call with interrupts
65  * disabled.
66  *
67  * returns:
68  *
69  * == 1 if we're ready to go into guest state
70  * <= 0 if we need to go back to the host with return value
71  */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74 	int r;
75 
76 	WARN_ON(irqs_disabled());
77 	hard_irq_disable();
78 
79 	while (true) {
80 		if (need_resched()) {
81 			local_irq_enable();
82 			cond_resched();
83 			hard_irq_disable();
84 			continue;
85 		}
86 
87 		if (signal_pending(current)) {
88 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89 			vcpu->run->exit_reason = KVM_EXIT_INTR;
90 			r = -EINTR;
91 			break;
92 		}
93 
94 		vcpu->mode = IN_GUEST_MODE;
95 
96 		/*
97 		 * Reading vcpu->requests must happen after setting vcpu->mode,
98 		 * so we don't miss a request because the requester sees
99 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100 		 * before next entering the guest (and thus doesn't IPI).
101 		 * This also orders the write to mode from any reads
102 		 * to the page tables done while the VCPU is running.
103 		 * Please see the comment in kvm_flush_remote_tlbs.
104 		 */
105 		smp_mb();
106 
107 		if (vcpu->requests) {
108 			/* Make sure we process requests preemptable */
109 			local_irq_enable();
110 			trace_kvm_check_requests(vcpu);
111 			r = kvmppc_core_check_requests(vcpu);
112 			hard_irq_disable();
113 			if (r > 0)
114 				continue;
115 			break;
116 		}
117 
118 		if (kvmppc_core_prepare_to_enter(vcpu)) {
119 			/* interrupts got enabled in between, so we
120 			   are back at square 1 */
121 			continue;
122 		}
123 
124 		guest_enter_irqoff();
125 		return 1;
126 	}
127 
128 	/* return to host */
129 	local_irq_enable();
130 	return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133 
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138 	int i;
139 
140 	shared->sprg0 = swab64(shared->sprg0);
141 	shared->sprg1 = swab64(shared->sprg1);
142 	shared->sprg2 = swab64(shared->sprg2);
143 	shared->sprg3 = swab64(shared->sprg3);
144 	shared->srr0 = swab64(shared->srr0);
145 	shared->srr1 = swab64(shared->srr1);
146 	shared->dar = swab64(shared->dar);
147 	shared->msr = swab64(shared->msr);
148 	shared->dsisr = swab32(shared->dsisr);
149 	shared->int_pending = swab32(shared->int_pending);
150 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151 		shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154 
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157 	int nr = kvmppc_get_gpr(vcpu, 11);
158 	int r;
159 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163 	unsigned long r2 = 0;
164 
165 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166 		/* 32 bit mode */
167 		param1 &= 0xffffffff;
168 		param2 &= 0xffffffff;
169 		param3 &= 0xffffffff;
170 		param4 &= 0xffffffff;
171 	}
172 
173 	switch (nr) {
174 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175 	{
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177 		/* Book3S can be little endian, find it out here */
178 		int shared_big_endian = true;
179 		if (vcpu->arch.intr_msr & MSR_LE)
180 			shared_big_endian = false;
181 		if (shared_big_endian != vcpu->arch.shared_big_endian)
182 			kvmppc_swab_shared(vcpu);
183 		vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185 
186 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187 			/*
188 			 * Older versions of the Linux magic page code had
189 			 * a bug where they would map their trampoline code
190 			 * NX. If that's the case, remove !PR NX capability.
191 			 */
192 			vcpu->arch.disable_kernel_nx = true;
193 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194 		}
195 
196 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198 
199 #ifdef CONFIG_PPC_64K_PAGES
200 		/*
201 		 * Make sure our 4k magic page is in the same window of a 64k
202 		 * page within the guest and within the host's page.
203 		 */
204 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
205 		    ((ulong)vcpu->arch.shared & 0xf000)) {
206 			void *old_shared = vcpu->arch.shared;
207 			ulong shared = (ulong)vcpu->arch.shared;
208 			void *new_shared;
209 
210 			shared &= PAGE_MASK;
211 			shared |= vcpu->arch.magic_page_pa & 0xf000;
212 			new_shared = (void*)shared;
213 			memcpy(new_shared, old_shared, 0x1000);
214 			vcpu->arch.shared = new_shared;
215 		}
216 #endif
217 
218 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219 
220 		r = EV_SUCCESS;
221 		break;
222 	}
223 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224 		r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228 
229 		/* Second return value is in r4 */
230 		break;
231 	case EV_HCALL_TOKEN(EV_IDLE):
232 		r = EV_SUCCESS;
233 		kvm_vcpu_block(vcpu);
234 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235 		break;
236 	default:
237 		r = EV_UNIMPLEMENTED;
238 		break;
239 	}
240 
241 	kvmppc_set_gpr(vcpu, 4, r2);
242 
243 	return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246 
kvmppc_sanity_check(struct kvm_vcpu * vcpu)247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249 	int r = false;
250 
251 	/* We have to know what CPU to virtualize */
252 	if (!vcpu->arch.pvr)
253 		goto out;
254 
255 	/* PAPR only works with book3s_64 */
256 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257 		goto out;
258 
259 	/* HV KVM can only do PAPR mode for now */
260 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261 		goto out;
262 
263 #ifdef CONFIG_KVM_BOOKE_HV
264 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
265 		goto out;
266 #endif
267 
268 	r = true;
269 
270 out:
271 	vcpu->arch.sane = r;
272 	return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275 
kvmppc_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu)276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278 	enum emulation_result er;
279 	int r;
280 
281 	er = kvmppc_emulate_loadstore(vcpu);
282 	switch (er) {
283 	case EMULATE_DONE:
284 		/* Future optimization: only reload non-volatiles if they were
285 		 * actually modified. */
286 		r = RESUME_GUEST_NV;
287 		break;
288 	case EMULATE_AGAIN:
289 		r = RESUME_GUEST;
290 		break;
291 	case EMULATE_DO_MMIO:
292 		run->exit_reason = KVM_EXIT_MMIO;
293 		/* We must reload nonvolatiles because "update" load/store
294 		 * instructions modify register state. */
295 		/* Future optimization: only reload non-volatiles if they were
296 		 * actually modified. */
297 		r = RESUME_HOST_NV;
298 		break;
299 	case EMULATE_FAIL:
300 	{
301 		u32 last_inst;
302 
303 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304 		/* XXX Deliver Program interrupt to guest. */
305 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306 		r = RESUME_HOST;
307 		break;
308 	}
309 	default:
310 		WARN_ON(1);
311 		r = RESUME_GUEST;
312 	}
313 
314 	return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317 
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319 	      bool data)
320 {
321 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322 	struct kvmppc_pte pte;
323 	int r;
324 
325 	vcpu->stat.st++;
326 
327 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328 			 XLATE_WRITE, &pte);
329 	if (r < 0)
330 		return r;
331 
332 	*eaddr = pte.raddr;
333 
334 	if (!pte.may_write)
335 		return -EPERM;
336 
337 	/* Magic page override */
338 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341 		void *magic = vcpu->arch.shared;
342 		magic += pte.eaddr & 0xfff;
343 		memcpy(magic, ptr, size);
344 		return EMULATE_DONE;
345 	}
346 
347 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348 		return EMULATE_DO_MMIO;
349 
350 	return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353 
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355 		      bool data)
356 {
357 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358 	struct kvmppc_pte pte;
359 	int rc;
360 
361 	vcpu->stat.ld++;
362 
363 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364 			  XLATE_READ, &pte);
365 	if (rc)
366 		return rc;
367 
368 	*eaddr = pte.raddr;
369 
370 	if (!pte.may_read)
371 		return -EPERM;
372 
373 	if (!data && !pte.may_execute)
374 		return -ENOEXEC;
375 
376 	/* Magic page override */
377 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380 		void *magic = vcpu->arch.shared;
381 		magic += pte.eaddr & 0xfff;
382 		memcpy(ptr, magic, size);
383 		return EMULATE_DONE;
384 	}
385 
386 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387 		return EMULATE_DO_MMIO;
388 
389 	return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392 
kvm_arch_hardware_enable(void)393 int kvm_arch_hardware_enable(void)
394 {
395 	return 0;
396 }
397 
kvm_arch_hardware_setup(void)398 int kvm_arch_hardware_setup(void)
399 {
400 	return 0;
401 }
402 
kvm_arch_check_processor_compat(void * rtn)403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405 	*(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410 	struct kvmppc_ops *kvm_ops = NULL;
411 	/*
412 	 * if we have both HV and PR enabled, default is HV
413 	 */
414 	if (type == 0) {
415 		if (kvmppc_hv_ops)
416 			kvm_ops = kvmppc_hv_ops;
417 		else
418 			kvm_ops = kvmppc_pr_ops;
419 		if (!kvm_ops)
420 			goto err_out;
421 	} else	if (type == KVM_VM_PPC_HV) {
422 		if (!kvmppc_hv_ops)
423 			goto err_out;
424 		kvm_ops = kvmppc_hv_ops;
425 	} else if (type == KVM_VM_PPC_PR) {
426 		if (!kvmppc_pr_ops)
427 			goto err_out;
428 		kvm_ops = kvmppc_pr_ops;
429 	} else
430 		goto err_out;
431 
432 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433 		return -ENOENT;
434 
435 	kvm->arch.kvm_ops = kvm_ops;
436 	return kvmppc_core_init_vm(kvm);
437 err_out:
438 	return -EINVAL;
439 }
440 
kvm_arch_has_vcpu_debugfs(void)441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443 	return false;
444 }
445 
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448 	return 0;
449 }
450 
kvm_arch_destroy_vm(struct kvm * kvm)451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453 	unsigned int i;
454 	struct kvm_vcpu *vcpu;
455 
456 #ifdef CONFIG_KVM_XICS
457 	/*
458 	 * We call kick_all_cpus_sync() to ensure that all
459 	 * CPUs have executed any pending IPIs before we
460 	 * continue and free VCPUs structures below.
461 	 */
462 	if (is_kvmppc_hv_enabled(kvm))
463 		kick_all_cpus_sync();
464 #endif
465 
466 	kvm_for_each_vcpu(i, vcpu, kvm)
467 		kvm_arch_vcpu_free(vcpu);
468 
469 	mutex_lock(&kvm->lock);
470 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471 		kvm->vcpus[i] = NULL;
472 
473 	atomic_set(&kvm->online_vcpus, 0);
474 
475 	kvmppc_core_destroy_vm(kvm);
476 
477 	mutex_unlock(&kvm->lock);
478 
479 	/* drop the module reference */
480 	module_put(kvm->arch.kvm_ops->owner);
481 }
482 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485 	int r;
486 	/* Assume we're using HV mode when the HV module is loaded */
487 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488 
489 	if (kvm) {
490 		/*
491 		 * Hooray - we know which VM type we're running on. Depend on
492 		 * that rather than the guess above.
493 		 */
494 		hv_enabled = is_kvmppc_hv_enabled(kvm);
495 	}
496 
497 	switch (ext) {
498 #ifdef CONFIG_BOOKE
499 	case KVM_CAP_PPC_BOOKE_SREGS:
500 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
501 	case KVM_CAP_PPC_EPR:
502 #else
503 	case KVM_CAP_PPC_SEGSTATE:
504 	case KVM_CAP_PPC_HIOR:
505 	case KVM_CAP_PPC_PAPR:
506 #endif
507 	case KVM_CAP_PPC_UNSET_IRQ:
508 	case KVM_CAP_PPC_IRQ_LEVEL:
509 	case KVM_CAP_ENABLE_CAP:
510 	case KVM_CAP_ENABLE_CAP_VM:
511 	case KVM_CAP_ONE_REG:
512 	case KVM_CAP_IOEVENTFD:
513 	case KVM_CAP_DEVICE_CTRL:
514 		r = 1;
515 		break;
516 	case KVM_CAP_PPC_PAIRED_SINGLES:
517 	case KVM_CAP_PPC_OSI:
518 	case KVM_CAP_PPC_GET_PVINFO:
519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
520 	case KVM_CAP_SW_TLB:
521 #endif
522 		/* We support this only for PR */
523 		r = !hv_enabled;
524 		break;
525 #ifdef CONFIG_KVM_MMIO
526 	case KVM_CAP_COALESCED_MMIO:
527 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
528 		break;
529 #endif
530 #ifdef CONFIG_KVM_MPIC
531 	case KVM_CAP_IRQ_MPIC:
532 		r = 1;
533 		break;
534 #endif
535 
536 #ifdef CONFIG_PPC_BOOK3S_64
537 	case KVM_CAP_SPAPR_TCE:
538 	case KVM_CAP_SPAPR_TCE_64:
539 	case KVM_CAP_PPC_ALLOC_HTAB:
540 	case KVM_CAP_PPC_RTAS:
541 	case KVM_CAP_PPC_FIXUP_HCALL:
542 	case KVM_CAP_PPC_ENABLE_HCALL:
543 #ifdef CONFIG_KVM_XICS
544 	case KVM_CAP_IRQ_XICS:
545 #endif
546 		r = 1;
547 		break;
548 #endif /* CONFIG_PPC_BOOK3S_64 */
549 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
550 	case KVM_CAP_PPC_SMT:
551 		if (hv_enabled)
552 			r = threads_per_subcore;
553 		else
554 			r = 0;
555 		break;
556 	case KVM_CAP_PPC_RMA:
557 		r = 0;
558 		break;
559 	case KVM_CAP_PPC_HWRNG:
560 		r = kvmppc_hwrng_present();
561 		break;
562 #endif
563 	case KVM_CAP_SYNC_MMU:
564 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
565 		r = hv_enabled;
566 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
567 		r = 1;
568 #else
569 		r = 0;
570 #endif
571 		break;
572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
573 	case KVM_CAP_PPC_HTAB_FD:
574 		r = hv_enabled;
575 		break;
576 #endif
577 	case KVM_CAP_NR_VCPUS:
578 		/*
579 		 * Recommending a number of CPUs is somewhat arbitrary; we
580 		 * return the number of present CPUs for -HV (since a host
581 		 * will have secondary threads "offline"), and for other KVM
582 		 * implementations just count online CPUs.
583 		 */
584 		if (hv_enabled)
585 			r = num_present_cpus();
586 		else
587 			r = num_online_cpus();
588 		break;
589 	case KVM_CAP_NR_MEMSLOTS:
590 		r = KVM_USER_MEM_SLOTS;
591 		break;
592 	case KVM_CAP_MAX_VCPUS:
593 		r = KVM_MAX_VCPUS;
594 		break;
595 #ifdef CONFIG_PPC_BOOK3S_64
596 	case KVM_CAP_PPC_GET_SMMU_INFO:
597 		r = 1;
598 		break;
599 	case KVM_CAP_SPAPR_MULTITCE:
600 		r = 1;
601 		break;
602 #endif
603 	case KVM_CAP_PPC_HTM:
604 		r = cpu_has_feature(CPU_FTR_TM_COMP) && hv_enabled;
605 		break;
606 	default:
607 		r = 0;
608 		break;
609 	}
610 	return r;
611 
612 }
613 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)614 long kvm_arch_dev_ioctl(struct file *filp,
615                         unsigned int ioctl, unsigned long arg)
616 {
617 	return -EINVAL;
618 }
619 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)620 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
621 			   struct kvm_memory_slot *dont)
622 {
623 	kvmppc_core_free_memslot(kvm, free, dont);
624 }
625 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)626 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
627 			    unsigned long npages)
628 {
629 	return kvmppc_core_create_memslot(kvm, slot, npages);
630 }
631 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)632 int kvm_arch_prepare_memory_region(struct kvm *kvm,
633 				   struct kvm_memory_slot *memslot,
634 				   const struct kvm_userspace_memory_region *mem,
635 				   enum kvm_mr_change change)
636 {
637 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
638 }
639 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)640 void kvm_arch_commit_memory_region(struct kvm *kvm,
641 				   const struct kvm_userspace_memory_region *mem,
642 				   const struct kvm_memory_slot *old,
643 				   const struct kvm_memory_slot *new,
644 				   enum kvm_mr_change change)
645 {
646 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
647 }
648 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)649 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
650 				   struct kvm_memory_slot *slot)
651 {
652 	kvmppc_core_flush_memslot(kvm, slot);
653 }
654 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)655 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
656 {
657 	struct kvm_vcpu *vcpu;
658 	vcpu = kvmppc_core_vcpu_create(kvm, id);
659 	if (!IS_ERR(vcpu)) {
660 		vcpu->arch.wqp = &vcpu->wq;
661 		kvmppc_create_vcpu_debugfs(vcpu, id);
662 	}
663 	return vcpu;
664 }
665 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)666 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
667 {
668 }
669 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)670 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
671 {
672 	/* Make sure we're not using the vcpu anymore */
673 	hrtimer_cancel(&vcpu->arch.dec_timer);
674 
675 	kvmppc_remove_vcpu_debugfs(vcpu);
676 
677 	switch (vcpu->arch.irq_type) {
678 	case KVMPPC_IRQ_MPIC:
679 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
680 		break;
681 	case KVMPPC_IRQ_XICS:
682 		kvmppc_xics_free_icp(vcpu);
683 		break;
684 	}
685 
686 	kvmppc_core_vcpu_free(vcpu);
687 }
688 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)689 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
690 {
691 	kvm_arch_vcpu_free(vcpu);
692 }
693 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)694 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
695 {
696 	return kvmppc_core_pending_dec(vcpu);
697 }
698 
kvmppc_decrementer_wakeup(struct hrtimer * timer)699 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
700 {
701 	struct kvm_vcpu *vcpu;
702 
703 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
704 	kvmppc_decrementer_func(vcpu);
705 
706 	return HRTIMER_NORESTART;
707 }
708 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)709 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
710 {
711 	int ret;
712 
713 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
714 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
715 	vcpu->arch.dec_expires = ~(u64)0;
716 
717 #ifdef CONFIG_KVM_EXIT_TIMING
718 	mutex_init(&vcpu->arch.exit_timing_lock);
719 #endif
720 	ret = kvmppc_subarch_vcpu_init(vcpu);
721 	return ret;
722 }
723 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)724 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
725 {
726 	kvmppc_mmu_destroy(vcpu);
727 	kvmppc_subarch_vcpu_uninit(vcpu);
728 }
729 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)730 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
731 {
732 #ifdef CONFIG_BOOKE
733 	/*
734 	 * vrsave (formerly usprg0) isn't used by Linux, but may
735 	 * be used by the guest.
736 	 *
737 	 * On non-booke this is associated with Altivec and
738 	 * is handled by code in book3s.c.
739 	 */
740 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
741 #endif
742 	kvmppc_core_vcpu_load(vcpu, cpu);
743 }
744 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)745 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
746 {
747 	kvmppc_core_vcpu_put(vcpu);
748 #ifdef CONFIG_BOOKE
749 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
750 #endif
751 }
752 
753 /*
754  * irq_bypass_add_producer and irq_bypass_del_producer are only
755  * useful if the architecture supports PCI passthrough.
756  * irq_bypass_stop and irq_bypass_start are not needed and so
757  * kvm_ops are not defined for them.
758  */
kvm_arch_has_irq_bypass(void)759 bool kvm_arch_has_irq_bypass(void)
760 {
761 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
762 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
763 }
764 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)765 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
766 				     struct irq_bypass_producer *prod)
767 {
768 	struct kvm_kernel_irqfd *irqfd =
769 		container_of(cons, struct kvm_kernel_irqfd, consumer);
770 	struct kvm *kvm = irqfd->kvm;
771 
772 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
773 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
774 
775 	return 0;
776 }
777 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)778 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
779 				      struct irq_bypass_producer *prod)
780 {
781 	struct kvm_kernel_irqfd *irqfd =
782 		container_of(cons, struct kvm_kernel_irqfd, consumer);
783 	struct kvm *kvm = irqfd->kvm;
784 
785 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
786 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
787 }
788 
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)789 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
790                                       struct kvm_run *run)
791 {
792 	u64 uninitialized_var(gpr);
793 
794 	if (run->mmio.len > sizeof(gpr)) {
795 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
796 		return;
797 	}
798 
799 	if (!vcpu->arch.mmio_host_swabbed) {
800 		switch (run->mmio.len) {
801 		case 8: gpr = *(u64 *)run->mmio.data; break;
802 		case 4: gpr = *(u32 *)run->mmio.data; break;
803 		case 2: gpr = *(u16 *)run->mmio.data; break;
804 		case 1: gpr = *(u8 *)run->mmio.data; break;
805 		}
806 	} else {
807 		switch (run->mmio.len) {
808 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
809 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
810 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
811 		case 1: gpr = *(u8 *)run->mmio.data; break;
812 		}
813 	}
814 
815 	if (vcpu->arch.mmio_sign_extend) {
816 		switch (run->mmio.len) {
817 #ifdef CONFIG_PPC64
818 		case 4:
819 			gpr = (s64)(s32)gpr;
820 			break;
821 #endif
822 		case 2:
823 			gpr = (s64)(s16)gpr;
824 			break;
825 		case 1:
826 			gpr = (s64)(s8)gpr;
827 			break;
828 		}
829 	}
830 
831 	kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
832 
833 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
834 	case KVM_MMIO_REG_GPR:
835 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
836 		break;
837 	case KVM_MMIO_REG_FPR:
838 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
839 		break;
840 #ifdef CONFIG_PPC_BOOK3S
841 	case KVM_MMIO_REG_QPR:
842 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
843 		break;
844 	case KVM_MMIO_REG_FQPR:
845 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
846 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
847 		break;
848 #endif
849 	default:
850 		BUG();
851 	}
852 }
853 
__kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)854 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
855 				unsigned int rt, unsigned int bytes,
856 				int is_default_endian, int sign_extend)
857 {
858 	int idx, ret;
859 	bool host_swabbed;
860 
861 	/* Pity C doesn't have a logical XOR operator */
862 	if (kvmppc_need_byteswap(vcpu)) {
863 		host_swabbed = is_default_endian;
864 	} else {
865 		host_swabbed = !is_default_endian;
866 	}
867 
868 	if (bytes > sizeof(run->mmio.data)) {
869 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
870 		       run->mmio.len);
871 	}
872 
873 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
874 	run->mmio.len = bytes;
875 	run->mmio.is_write = 0;
876 
877 	vcpu->arch.io_gpr = rt;
878 	vcpu->arch.mmio_host_swabbed = host_swabbed;
879 	vcpu->mmio_needed = 1;
880 	vcpu->mmio_is_write = 0;
881 	vcpu->arch.mmio_sign_extend = sign_extend;
882 
883 	idx = srcu_read_lock(&vcpu->kvm->srcu);
884 
885 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
886 			      bytes, &run->mmio.data);
887 
888 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
889 
890 	if (!ret) {
891 		kvmppc_complete_mmio_load(vcpu, run);
892 		vcpu->mmio_needed = 0;
893 		return EMULATE_DONE;
894 	}
895 
896 	return EMULATE_DO_MMIO;
897 }
898 
kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)899 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
900 		       unsigned int rt, unsigned int bytes,
901 		       int is_default_endian)
902 {
903 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
904 }
905 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
906 
907 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)908 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
909 			unsigned int rt, unsigned int bytes,
910 			int is_default_endian)
911 {
912 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
913 }
914 
kvmppc_handle_store(struct kvm_run * run,struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)915 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
916 			u64 val, unsigned int bytes, int is_default_endian)
917 {
918 	void *data = run->mmio.data;
919 	int idx, ret;
920 	bool host_swabbed;
921 
922 	/* Pity C doesn't have a logical XOR operator */
923 	if (kvmppc_need_byteswap(vcpu)) {
924 		host_swabbed = is_default_endian;
925 	} else {
926 		host_swabbed = !is_default_endian;
927 	}
928 
929 	if (bytes > sizeof(run->mmio.data)) {
930 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
931 		       run->mmio.len);
932 	}
933 
934 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
935 	run->mmio.len = bytes;
936 	run->mmio.is_write = 1;
937 	vcpu->mmio_needed = 1;
938 	vcpu->mmio_is_write = 1;
939 
940 	/* Store the value at the lowest bytes in 'data'. */
941 	if (!host_swabbed) {
942 		switch (bytes) {
943 		case 8: *(u64 *)data = val; break;
944 		case 4: *(u32 *)data = val; break;
945 		case 2: *(u16 *)data = val; break;
946 		case 1: *(u8  *)data = val; break;
947 		}
948 	} else {
949 		switch (bytes) {
950 		case 8: *(u64 *)data = swab64(val); break;
951 		case 4: *(u32 *)data = swab32(val); break;
952 		case 2: *(u16 *)data = swab16(val); break;
953 		case 1: *(u8  *)data = val; break;
954 		}
955 	}
956 
957 	idx = srcu_read_lock(&vcpu->kvm->srcu);
958 
959 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
960 			       bytes, &run->mmio.data);
961 
962 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
963 
964 	if (!ret) {
965 		vcpu->mmio_needed = 0;
966 		return EMULATE_DONE;
967 	}
968 
969 	return EMULATE_DO_MMIO;
970 }
971 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
972 
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)973 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
974 {
975 	int r = 0;
976 	union kvmppc_one_reg val;
977 	int size;
978 
979 	size = one_reg_size(reg->id);
980 	if (size > sizeof(val))
981 		return -EINVAL;
982 
983 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
984 	if (r == -EINVAL) {
985 		r = 0;
986 		switch (reg->id) {
987 #ifdef CONFIG_ALTIVEC
988 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
989 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
990 				r = -ENXIO;
991 				break;
992 			}
993 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
994 			break;
995 		case KVM_REG_PPC_VSCR:
996 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
997 				r = -ENXIO;
998 				break;
999 			}
1000 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1001 			break;
1002 		case KVM_REG_PPC_VRSAVE:
1003 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1004 			break;
1005 #endif /* CONFIG_ALTIVEC */
1006 		default:
1007 			r = -EINVAL;
1008 			break;
1009 		}
1010 	}
1011 
1012 	if (r)
1013 		return r;
1014 
1015 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1016 		r = -EFAULT;
1017 
1018 	return r;
1019 }
1020 
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1021 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1022 {
1023 	int r;
1024 	union kvmppc_one_reg val;
1025 	int size;
1026 
1027 	size = one_reg_size(reg->id);
1028 	if (size > sizeof(val))
1029 		return -EINVAL;
1030 
1031 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1032 		return -EFAULT;
1033 
1034 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1035 	if (r == -EINVAL) {
1036 		r = 0;
1037 		switch (reg->id) {
1038 #ifdef CONFIG_ALTIVEC
1039 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1040 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1041 				r = -ENXIO;
1042 				break;
1043 			}
1044 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1045 			break;
1046 		case KVM_REG_PPC_VSCR:
1047 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1048 				r = -ENXIO;
1049 				break;
1050 			}
1051 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1052 			break;
1053 		case KVM_REG_PPC_VRSAVE:
1054 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1055 				r = -ENXIO;
1056 				break;
1057 			}
1058 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1059 			break;
1060 #endif /* CONFIG_ALTIVEC */
1061 		default:
1062 			r = -EINVAL;
1063 			break;
1064 		}
1065 	}
1066 
1067 	return r;
1068 }
1069 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)1070 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1071 {
1072 	int r;
1073 	sigset_t sigsaved;
1074 
1075 	if (vcpu->sigset_active)
1076 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1077 
1078 	if (vcpu->mmio_needed) {
1079 		if (!vcpu->mmio_is_write)
1080 			kvmppc_complete_mmio_load(vcpu, run);
1081 		vcpu->mmio_needed = 0;
1082 	} else if (vcpu->arch.osi_needed) {
1083 		u64 *gprs = run->osi.gprs;
1084 		int i;
1085 
1086 		for (i = 0; i < 32; i++)
1087 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1088 		vcpu->arch.osi_needed = 0;
1089 	} else if (vcpu->arch.hcall_needed) {
1090 		int i;
1091 
1092 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1093 		for (i = 0; i < 9; ++i)
1094 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1095 		vcpu->arch.hcall_needed = 0;
1096 #ifdef CONFIG_BOOKE
1097 	} else if (vcpu->arch.epr_needed) {
1098 		kvmppc_set_epr(vcpu, run->epr.epr);
1099 		vcpu->arch.epr_needed = 0;
1100 #endif
1101 	}
1102 
1103 	r = kvmppc_vcpu_run(run, vcpu);
1104 
1105 	if (vcpu->sigset_active)
1106 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1107 
1108 	return r;
1109 }
1110 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1111 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1112 {
1113 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1114 		kvmppc_core_dequeue_external(vcpu);
1115 		return 0;
1116 	}
1117 
1118 	kvmppc_core_queue_external(vcpu, irq);
1119 
1120 	kvm_vcpu_kick(vcpu);
1121 
1122 	return 0;
1123 }
1124 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1125 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1126 				     struct kvm_enable_cap *cap)
1127 {
1128 	int r;
1129 
1130 	if (cap->flags)
1131 		return -EINVAL;
1132 
1133 	switch (cap->cap) {
1134 	case KVM_CAP_PPC_OSI:
1135 		r = 0;
1136 		vcpu->arch.osi_enabled = true;
1137 		break;
1138 	case KVM_CAP_PPC_PAPR:
1139 		r = 0;
1140 		vcpu->arch.papr_enabled = true;
1141 		break;
1142 	case KVM_CAP_PPC_EPR:
1143 		r = 0;
1144 		if (cap->args[0])
1145 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1146 		else
1147 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1148 		break;
1149 #ifdef CONFIG_BOOKE
1150 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1151 		r = 0;
1152 		vcpu->arch.watchdog_enabled = true;
1153 		break;
1154 #endif
1155 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1156 	case KVM_CAP_SW_TLB: {
1157 		struct kvm_config_tlb cfg;
1158 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1159 
1160 		r = -EFAULT;
1161 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1162 			break;
1163 
1164 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1165 		break;
1166 	}
1167 #endif
1168 #ifdef CONFIG_KVM_MPIC
1169 	case KVM_CAP_IRQ_MPIC: {
1170 		struct fd f;
1171 		struct kvm_device *dev;
1172 
1173 		r = -EBADF;
1174 		f = fdget(cap->args[0]);
1175 		if (!f.file)
1176 			break;
1177 
1178 		r = -EPERM;
1179 		dev = kvm_device_from_filp(f.file);
1180 		if (dev)
1181 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1182 
1183 		fdput(f);
1184 		break;
1185 	}
1186 #endif
1187 #ifdef CONFIG_KVM_XICS
1188 	case KVM_CAP_IRQ_XICS: {
1189 		struct fd f;
1190 		struct kvm_device *dev;
1191 
1192 		r = -EBADF;
1193 		f = fdget(cap->args[0]);
1194 		if (!f.file)
1195 			break;
1196 
1197 		r = -EPERM;
1198 		dev = kvm_device_from_filp(f.file);
1199 		if (dev)
1200 			r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1201 
1202 		fdput(f);
1203 		break;
1204 	}
1205 #endif /* CONFIG_KVM_XICS */
1206 	default:
1207 		r = -EINVAL;
1208 		break;
1209 	}
1210 
1211 	if (!r)
1212 		r = kvmppc_sanity_check(vcpu);
1213 
1214 	return r;
1215 }
1216 
kvm_arch_intc_initialized(struct kvm * kvm)1217 bool kvm_arch_intc_initialized(struct kvm *kvm)
1218 {
1219 #ifdef CONFIG_KVM_MPIC
1220 	if (kvm->arch.mpic)
1221 		return true;
1222 #endif
1223 #ifdef CONFIG_KVM_XICS
1224 	if (kvm->arch.xics)
1225 		return true;
1226 #endif
1227 	return false;
1228 }
1229 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1230 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1231                                     struct kvm_mp_state *mp_state)
1232 {
1233 	return -EINVAL;
1234 }
1235 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1236 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1237                                     struct kvm_mp_state *mp_state)
1238 {
1239 	return -EINVAL;
1240 }
1241 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1242 long kvm_arch_vcpu_ioctl(struct file *filp,
1243                          unsigned int ioctl, unsigned long arg)
1244 {
1245 	struct kvm_vcpu *vcpu = filp->private_data;
1246 	void __user *argp = (void __user *)arg;
1247 	long r;
1248 
1249 	switch (ioctl) {
1250 	case KVM_INTERRUPT: {
1251 		struct kvm_interrupt irq;
1252 		r = -EFAULT;
1253 		if (copy_from_user(&irq, argp, sizeof(irq)))
1254 			goto out;
1255 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1256 		goto out;
1257 	}
1258 
1259 	case KVM_ENABLE_CAP:
1260 	{
1261 		struct kvm_enable_cap cap;
1262 		r = -EFAULT;
1263 		if (copy_from_user(&cap, argp, sizeof(cap)))
1264 			goto out;
1265 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1266 		break;
1267 	}
1268 
1269 	case KVM_SET_ONE_REG:
1270 	case KVM_GET_ONE_REG:
1271 	{
1272 		struct kvm_one_reg reg;
1273 		r = -EFAULT;
1274 		if (copy_from_user(&reg, argp, sizeof(reg)))
1275 			goto out;
1276 		if (ioctl == KVM_SET_ONE_REG)
1277 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1278 		else
1279 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1280 		break;
1281 	}
1282 
1283 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1284 	case KVM_DIRTY_TLB: {
1285 		struct kvm_dirty_tlb dirty;
1286 		r = -EFAULT;
1287 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1288 			goto out;
1289 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1290 		break;
1291 	}
1292 #endif
1293 	default:
1294 		r = -EINVAL;
1295 	}
1296 
1297 out:
1298 	return r;
1299 }
1300 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)1301 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1302 {
1303 	return VM_FAULT_SIGBUS;
1304 }
1305 
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)1306 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1307 {
1308 	u32 inst_nop = 0x60000000;
1309 #ifdef CONFIG_KVM_BOOKE_HV
1310 	u32 inst_sc1 = 0x44000022;
1311 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1312 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1313 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1314 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1315 #else
1316 	u32 inst_lis = 0x3c000000;
1317 	u32 inst_ori = 0x60000000;
1318 	u32 inst_sc = 0x44000002;
1319 	u32 inst_imm_mask = 0xffff;
1320 
1321 	/*
1322 	 * The hypercall to get into KVM from within guest context is as
1323 	 * follows:
1324 	 *
1325 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1326 	 *    ori r0, KVM_SC_MAGIC_R0@l
1327 	 *    sc
1328 	 *    nop
1329 	 */
1330 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1331 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1332 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1333 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1334 #endif
1335 
1336 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1337 
1338 	return 0;
1339 }
1340 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)1341 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1342 			  bool line_status)
1343 {
1344 	if (!irqchip_in_kernel(kvm))
1345 		return -ENXIO;
1346 
1347 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1348 					irq_event->irq, irq_event->level,
1349 					line_status);
1350 	return 0;
1351 }
1352 
1353 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)1354 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1355 				   struct kvm_enable_cap *cap)
1356 {
1357 	int r;
1358 
1359 	if (cap->flags)
1360 		return -EINVAL;
1361 
1362 	switch (cap->cap) {
1363 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1364 	case KVM_CAP_PPC_ENABLE_HCALL: {
1365 		unsigned long hcall = cap->args[0];
1366 
1367 		r = -EINVAL;
1368 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1369 		    cap->args[1] > 1)
1370 			break;
1371 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1372 			break;
1373 		if (cap->args[1])
1374 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1375 		else
1376 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1377 		r = 0;
1378 		break;
1379 	}
1380 #endif
1381 	default:
1382 		r = -EINVAL;
1383 		break;
1384 	}
1385 
1386 	return r;
1387 }
1388 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1389 long kvm_arch_vm_ioctl(struct file *filp,
1390                        unsigned int ioctl, unsigned long arg)
1391 {
1392 	struct kvm *kvm __maybe_unused = filp->private_data;
1393 	void __user *argp = (void __user *)arg;
1394 	long r;
1395 
1396 	switch (ioctl) {
1397 	case KVM_PPC_GET_PVINFO: {
1398 		struct kvm_ppc_pvinfo pvinfo;
1399 		memset(&pvinfo, 0, sizeof(pvinfo));
1400 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1401 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1402 			r = -EFAULT;
1403 			goto out;
1404 		}
1405 
1406 		break;
1407 	}
1408 	case KVM_ENABLE_CAP:
1409 	{
1410 		struct kvm_enable_cap cap;
1411 		r = -EFAULT;
1412 		if (copy_from_user(&cap, argp, sizeof(cap)))
1413 			goto out;
1414 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1415 		break;
1416 	}
1417 #ifdef CONFIG_PPC_BOOK3S_64
1418 	case KVM_CREATE_SPAPR_TCE_64: {
1419 		struct kvm_create_spapr_tce_64 create_tce_64;
1420 
1421 		r = -EFAULT;
1422 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1423 			goto out;
1424 		if (create_tce_64.flags) {
1425 			r = -EINVAL;
1426 			goto out;
1427 		}
1428 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1429 		goto out;
1430 	}
1431 	case KVM_CREATE_SPAPR_TCE: {
1432 		struct kvm_create_spapr_tce create_tce;
1433 		struct kvm_create_spapr_tce_64 create_tce_64;
1434 
1435 		r = -EFAULT;
1436 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1437 			goto out;
1438 
1439 		create_tce_64.liobn = create_tce.liobn;
1440 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1441 		create_tce_64.offset = 0;
1442 		create_tce_64.size = create_tce.window_size >>
1443 				IOMMU_PAGE_SHIFT_4K;
1444 		create_tce_64.flags = 0;
1445 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1446 		goto out;
1447 	}
1448 	case KVM_PPC_GET_SMMU_INFO: {
1449 		struct kvm_ppc_smmu_info info;
1450 		struct kvm *kvm = filp->private_data;
1451 
1452 		memset(&info, 0, sizeof(info));
1453 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1454 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1455 			r = -EFAULT;
1456 		break;
1457 	}
1458 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1459 		struct kvm *kvm = filp->private_data;
1460 
1461 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1462 		break;
1463 	}
1464 	default: {
1465 		struct kvm *kvm = filp->private_data;
1466 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1467 	}
1468 #else /* CONFIG_PPC_BOOK3S_64 */
1469 	default:
1470 		r = -ENOTTY;
1471 #endif
1472 	}
1473 out:
1474 	return r;
1475 }
1476 
1477 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1478 static unsigned long nr_lpids;
1479 
kvmppc_alloc_lpid(void)1480 long kvmppc_alloc_lpid(void)
1481 {
1482 	long lpid;
1483 
1484 	do {
1485 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1486 		if (lpid >= nr_lpids) {
1487 			pr_err("%s: No LPIDs free\n", __func__);
1488 			return -ENOMEM;
1489 		}
1490 	} while (test_and_set_bit(lpid, lpid_inuse));
1491 
1492 	return lpid;
1493 }
1494 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1495 
kvmppc_claim_lpid(long lpid)1496 void kvmppc_claim_lpid(long lpid)
1497 {
1498 	set_bit(lpid, lpid_inuse);
1499 }
1500 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1501 
kvmppc_free_lpid(long lpid)1502 void kvmppc_free_lpid(long lpid)
1503 {
1504 	clear_bit(lpid, lpid_inuse);
1505 }
1506 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1507 
kvmppc_init_lpid(unsigned long nr_lpids_param)1508 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1509 {
1510 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1511 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1512 }
1513 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1514 
kvm_arch_init(void * opaque)1515 int kvm_arch_init(void *opaque)
1516 {
1517 	return 0;
1518 }
1519 
1520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1521