1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 #include <asm/io.h>
29
30 #define KVM_CMA_CHUNK_ORDER 18
31
32 /*
33 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
34 * should be power of 2.
35 */
36 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
37 /*
38 * By default we reserve 5% of memory for hash pagetable allocation.
39 */
40 static unsigned long kvm_cma_resv_ratio = 5;
41
42 static struct cma *kvm_cma;
43
early_parse_kvm_cma_resv(char * p)44 static int __init early_parse_kvm_cma_resv(char *p)
45 {
46 pr_debug("%s(%s)\n", __func__, p);
47 if (!p)
48 return -EINVAL;
49 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
50 }
51 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
52
kvm_alloc_hpt(unsigned long nr_pages)53 struct page *kvm_alloc_hpt(unsigned long nr_pages)
54 {
55 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
56
57 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
58 }
59 EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
60
kvm_release_hpt(struct page * page,unsigned long nr_pages)61 void kvm_release_hpt(struct page *page, unsigned long nr_pages)
62 {
63 cma_release(kvm_cma, page, nr_pages);
64 }
65 EXPORT_SYMBOL_GPL(kvm_release_hpt);
66
67 /**
68 * kvm_cma_reserve() - reserve area for kvm hash pagetable
69 *
70 * This function reserves memory from early allocator. It should be
71 * called by arch specific code once the memblock allocator
72 * has been activated and all other subsystems have already allocated/reserved
73 * memory.
74 */
kvm_cma_reserve(void)75 void __init kvm_cma_reserve(void)
76 {
77 unsigned long align_size;
78 struct memblock_region *reg;
79 phys_addr_t selected_size = 0;
80
81 /*
82 * We need CMA reservation only when we are in HV mode
83 */
84 if (!cpu_has_feature(CPU_FTR_HVMODE))
85 return;
86 /*
87 * We cannot use memblock_phys_mem_size() here, because
88 * memblock_analyze() has not been called yet.
89 */
90 for_each_memblock(memory, reg)
91 selected_size += memblock_region_memory_end_pfn(reg) -
92 memblock_region_memory_base_pfn(reg);
93
94 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
95 if (selected_size) {
96 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
97 (unsigned long)selected_size / SZ_1M);
98 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
99 cma_declare_contiguous(0, selected_size, 0, align_size,
100 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
101 }
102 }
103
104 /*
105 * Real-mode H_CONFER implementation.
106 * We check if we are the only vcpu out of this virtual core
107 * still running in the guest and not ceded. If so, we pop up
108 * to the virtual-mode implementation; if not, just return to
109 * the guest.
110 */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)111 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
112 unsigned int yield_count)
113 {
114 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
115 int ptid = local_paca->kvm_hstate.ptid;
116 int threads_running;
117 int threads_ceded;
118 int threads_conferring;
119 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
120 int rv = H_SUCCESS; /* => don't yield */
121
122 set_bit(ptid, &vc->conferring_threads);
123 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
124 threads_running = VCORE_ENTRY_MAP(vc);
125 threads_ceded = vc->napping_threads;
126 threads_conferring = vc->conferring_threads;
127 if ((threads_ceded | threads_conferring) == threads_running) {
128 rv = H_TOO_HARD; /* => do yield */
129 break;
130 }
131 }
132 clear_bit(ptid, &vc->conferring_threads);
133 return rv;
134 }
135
136 /*
137 * When running HV mode KVM we need to block certain operations while KVM VMs
138 * exist in the system. We use a counter of VMs to track this.
139 *
140 * One of the operations we need to block is onlining of secondaries, so we
141 * protect hv_vm_count with get/put_online_cpus().
142 */
143 static atomic_t hv_vm_count;
144
kvm_hv_vm_activated(void)145 void kvm_hv_vm_activated(void)
146 {
147 get_online_cpus();
148 atomic_inc(&hv_vm_count);
149 put_online_cpus();
150 }
151 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
152
kvm_hv_vm_deactivated(void)153 void kvm_hv_vm_deactivated(void)
154 {
155 get_online_cpus();
156 atomic_dec(&hv_vm_count);
157 put_online_cpus();
158 }
159 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
160
kvm_hv_mode_active(void)161 bool kvm_hv_mode_active(void)
162 {
163 return atomic_read(&hv_vm_count) != 0;
164 }
165
166 extern int hcall_real_table[], hcall_real_table_end[];
167
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)168 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
169 {
170 cmd /= 4;
171 if (cmd < hcall_real_table_end - hcall_real_table &&
172 hcall_real_table[cmd])
173 return 1;
174
175 return 0;
176 }
177 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
178
kvmppc_hwrng_present(void)179 int kvmppc_hwrng_present(void)
180 {
181 return powernv_hwrng_present();
182 }
183 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
184
kvmppc_h_random(struct kvm_vcpu * vcpu)185 long kvmppc_h_random(struct kvm_vcpu *vcpu)
186 {
187 if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
188 return H_SUCCESS;
189
190 return H_HARDWARE;
191 }
192
rm_writeb(unsigned long paddr,u8 val)193 static inline void rm_writeb(unsigned long paddr, u8 val)
194 {
195 __asm__ __volatile__("stbcix %0,0,%1"
196 : : "r" (val), "r" (paddr) : "memory");
197 }
198
199 /*
200 * Send an interrupt or message to another CPU.
201 * This can only be called in real mode.
202 * The caller needs to include any barrier needed to order writes
203 * to memory vs. the IPI/message.
204 */
kvmhv_rm_send_ipi(int cpu)205 void kvmhv_rm_send_ipi(int cpu)
206 {
207 unsigned long xics_phys;
208
209 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
210 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
211 cpu_first_thread_sibling(cpu) ==
212 cpu_first_thread_sibling(raw_smp_processor_id())) {
213 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
214 msg |= cpu_thread_in_core(cpu);
215 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
216 return;
217 }
218
219 /* Else poke the target with an IPI */
220 xics_phys = paca[cpu].kvm_hstate.xics_phys;
221 rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
222 }
223
224 /*
225 * The following functions are called from the assembly code
226 * in book3s_hv_rmhandlers.S.
227 */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)228 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
229 {
230 int cpu = vc->pcpu;
231
232 /* Order setting of exit map vs. msgsnd/IPI */
233 smp_mb();
234 for (; active; active >>= 1, ++cpu)
235 if (active & 1)
236 kvmhv_rm_send_ipi(cpu);
237 }
238
kvmhv_commence_exit(int trap)239 void kvmhv_commence_exit(int trap)
240 {
241 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
242 int ptid = local_paca->kvm_hstate.ptid;
243 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
244 int me, ee, i;
245
246 /* Set our bit in the threads-exiting-guest map in the 0xff00
247 bits of vcore->entry_exit_map */
248 me = 0x100 << ptid;
249 do {
250 ee = vc->entry_exit_map;
251 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
252
253 /* Are we the first here? */
254 if ((ee >> 8) != 0)
255 return;
256
257 /*
258 * Trigger the other threads in this vcore to exit the guest.
259 * If this is a hypervisor decrementer interrupt then they
260 * will be already on their way out of the guest.
261 */
262 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
263 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
264
265 /*
266 * If we are doing dynamic micro-threading, interrupt the other
267 * subcores to pull them out of their guests too.
268 */
269 if (!sip)
270 return;
271
272 for (i = 0; i < MAX_SUBCORES; ++i) {
273 vc = sip->master_vcs[i];
274 if (!vc)
275 break;
276 do {
277 ee = vc->entry_exit_map;
278 /* Already asked to exit? */
279 if ((ee >> 8) != 0)
280 break;
281 } while (cmpxchg(&vc->entry_exit_map, ee,
282 ee | VCORE_EXIT_REQ) != ee);
283 if ((ee >> 8) == 0)
284 kvmhv_interrupt_vcore(vc, ee);
285 }
286 }
287
288 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
289 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
290
291 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)292 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
293 u32 xisr)
294 {
295 int i;
296
297 /*
298 * We access the mapped array here without a lock. That
299 * is safe because we never reduce the number of entries
300 * in the array and we never change the v_hwirq field of
301 * an entry once it is set.
302 *
303 * We have also carefully ordered the stores in the writer
304 * and the loads here in the reader, so that if we find a matching
305 * hwirq here, the associated GSI and irq_desc fields are valid.
306 */
307 for (i = 0; i < pimap->n_mapped; i++) {
308 if (xisr == pimap->mapped[i].r_hwirq) {
309 /*
310 * Order subsequent reads in the caller to serialize
311 * with the writer.
312 */
313 smp_rmb();
314 return &pimap->mapped[i];
315 }
316 }
317 return NULL;
318 }
319
320 /*
321 * If we have an interrupt that's not an IPI, check if we have a
322 * passthrough adapter and if so, check if this external interrupt
323 * is for the adapter.
324 * We will attempt to deliver the IRQ directly to the target VCPU's
325 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
326 *
327 * If the delivery fails or if this is not for a passthrough adapter,
328 * return to the host to handle this interrupt. We earlier
329 * saved a copy of the XIRR in the PACA, it will be picked up by
330 * the host ICP driver.
331 */
kvmppc_check_passthru(u32 xisr,__be32 xirr)332 static int kvmppc_check_passthru(u32 xisr, __be32 xirr)
333 {
334 struct kvmppc_passthru_irqmap *pimap;
335 struct kvmppc_irq_map *irq_map;
336 struct kvm_vcpu *vcpu;
337
338 vcpu = local_paca->kvm_hstate.kvm_vcpu;
339 if (!vcpu)
340 return 1;
341 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
342 if (!pimap)
343 return 1;
344 irq_map = get_irqmap(pimap, xisr);
345 if (!irq_map)
346 return 1;
347
348 /* We're handling this interrupt, generic code doesn't need to */
349 local_paca->kvm_hstate.saved_xirr = 0;
350
351 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap);
352 }
353
354 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr)355 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr)
356 {
357 return 1;
358 }
359 #endif
360
361 /*
362 * Determine what sort of external interrupt is pending (if any).
363 * Returns:
364 * 0 if no interrupt is pending
365 * 1 if an interrupt is pending that needs to be handled by the host
366 * 2 Passthrough that needs completion in the host
367 * -1 if there was a guest wakeup IPI (which has now been cleared)
368 * -2 if there is PCI passthrough external interrupt that was handled
369 */
370
kvmppc_read_intr(void)371 long kvmppc_read_intr(void)
372 {
373 unsigned long xics_phys;
374 u32 h_xirr;
375 __be32 xirr;
376 u32 xisr;
377 u8 host_ipi;
378
379 /* see if a host IPI is pending */
380 host_ipi = local_paca->kvm_hstate.host_ipi;
381 if (host_ipi)
382 return 1;
383
384 /* Now read the interrupt from the ICP */
385 xics_phys = local_paca->kvm_hstate.xics_phys;
386 if (unlikely(!xics_phys))
387 return 1;
388
389 /*
390 * Save XIRR for later. Since we get control in reverse endian
391 * on LE systems, save it byte reversed and fetch it back in
392 * host endian. Note that xirr is the value read from the
393 * XIRR register, while h_xirr is the host endian version.
394 */
395 xirr = _lwzcix(xics_phys + XICS_XIRR);
396 h_xirr = be32_to_cpu(xirr);
397 local_paca->kvm_hstate.saved_xirr = h_xirr;
398 xisr = h_xirr & 0xffffff;
399 /*
400 * Ensure that the store/load complete to guarantee all side
401 * effects of loading from XIRR has completed
402 */
403 smp_mb();
404
405 /* if nothing pending in the ICP */
406 if (!xisr)
407 return 0;
408
409 /* We found something in the ICP...
410 *
411 * If it is an IPI, clear the MFRR and EOI it.
412 */
413 if (xisr == XICS_IPI) {
414 _stbcix(xics_phys + XICS_MFRR, 0xff);
415 _stwcix(xics_phys + XICS_XIRR, xirr);
416 /*
417 * Need to ensure side effects of above stores
418 * complete before proceeding.
419 */
420 smp_mb();
421
422 /*
423 * We need to re-check host IPI now in case it got set in the
424 * meantime. If it's clear, we bounce the interrupt to the
425 * guest
426 */
427 host_ipi = local_paca->kvm_hstate.host_ipi;
428 if (unlikely(host_ipi != 0)) {
429 /* We raced with the host,
430 * we need to resend that IPI, bummer
431 */
432 _stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
433 /* Let side effects complete */
434 smp_mb();
435 return 1;
436 }
437
438 /* OK, it's an IPI for us */
439 local_paca->kvm_hstate.saved_xirr = 0;
440 return -1;
441 }
442
443 return kvmppc_check_passthru(xisr, xirr);
444 }
445