• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 #include <asm/io.h>
29 
30 #define KVM_CMA_CHUNK_ORDER	18
31 
32 /*
33  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
34  * should be power of 2.
35  */
36 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
37 /*
38  * By default we reserve 5% of memory for hash pagetable allocation.
39  */
40 static unsigned long kvm_cma_resv_ratio = 5;
41 
42 static struct cma *kvm_cma;
43 
early_parse_kvm_cma_resv(char * p)44 static int __init early_parse_kvm_cma_resv(char *p)
45 {
46 	pr_debug("%s(%s)\n", __func__, p);
47 	if (!p)
48 		return -EINVAL;
49 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
50 }
51 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
52 
kvm_alloc_hpt(unsigned long nr_pages)53 struct page *kvm_alloc_hpt(unsigned long nr_pages)
54 {
55 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
56 
57 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
58 }
59 EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
60 
kvm_release_hpt(struct page * page,unsigned long nr_pages)61 void kvm_release_hpt(struct page *page, unsigned long nr_pages)
62 {
63 	cma_release(kvm_cma, page, nr_pages);
64 }
65 EXPORT_SYMBOL_GPL(kvm_release_hpt);
66 
67 /**
68  * kvm_cma_reserve() - reserve area for kvm hash pagetable
69  *
70  * This function reserves memory from early allocator. It should be
71  * called by arch specific code once the memblock allocator
72  * has been activated and all other subsystems have already allocated/reserved
73  * memory.
74  */
kvm_cma_reserve(void)75 void __init kvm_cma_reserve(void)
76 {
77 	unsigned long align_size;
78 	struct memblock_region *reg;
79 	phys_addr_t selected_size = 0;
80 
81 	/*
82 	 * We need CMA reservation only when we are in HV mode
83 	 */
84 	if (!cpu_has_feature(CPU_FTR_HVMODE))
85 		return;
86 	/*
87 	 * We cannot use memblock_phys_mem_size() here, because
88 	 * memblock_analyze() has not been called yet.
89 	 */
90 	for_each_memblock(memory, reg)
91 		selected_size += memblock_region_memory_end_pfn(reg) -
92 				 memblock_region_memory_base_pfn(reg);
93 
94 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
95 	if (selected_size) {
96 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
97 			 (unsigned long)selected_size / SZ_1M);
98 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
99 		cma_declare_contiguous(0, selected_size, 0, align_size,
100 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
101 	}
102 }
103 
104 /*
105  * Real-mode H_CONFER implementation.
106  * We check if we are the only vcpu out of this virtual core
107  * still running in the guest and not ceded.  If so, we pop up
108  * to the virtual-mode implementation; if not, just return to
109  * the guest.
110  */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)111 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
112 			    unsigned int yield_count)
113 {
114 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
115 	int ptid = local_paca->kvm_hstate.ptid;
116 	int threads_running;
117 	int threads_ceded;
118 	int threads_conferring;
119 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
120 	int rv = H_SUCCESS; /* => don't yield */
121 
122 	set_bit(ptid, &vc->conferring_threads);
123 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
124 		threads_running = VCORE_ENTRY_MAP(vc);
125 		threads_ceded = vc->napping_threads;
126 		threads_conferring = vc->conferring_threads;
127 		if ((threads_ceded | threads_conferring) == threads_running) {
128 			rv = H_TOO_HARD; /* => do yield */
129 			break;
130 		}
131 	}
132 	clear_bit(ptid, &vc->conferring_threads);
133 	return rv;
134 }
135 
136 /*
137  * When running HV mode KVM we need to block certain operations while KVM VMs
138  * exist in the system. We use a counter of VMs to track this.
139  *
140  * One of the operations we need to block is onlining of secondaries, so we
141  * protect hv_vm_count with get/put_online_cpus().
142  */
143 static atomic_t hv_vm_count;
144 
kvm_hv_vm_activated(void)145 void kvm_hv_vm_activated(void)
146 {
147 	get_online_cpus();
148 	atomic_inc(&hv_vm_count);
149 	put_online_cpus();
150 }
151 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
152 
kvm_hv_vm_deactivated(void)153 void kvm_hv_vm_deactivated(void)
154 {
155 	get_online_cpus();
156 	atomic_dec(&hv_vm_count);
157 	put_online_cpus();
158 }
159 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
160 
kvm_hv_mode_active(void)161 bool kvm_hv_mode_active(void)
162 {
163 	return atomic_read(&hv_vm_count) != 0;
164 }
165 
166 extern int hcall_real_table[], hcall_real_table_end[];
167 
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)168 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
169 {
170 	cmd /= 4;
171 	if (cmd < hcall_real_table_end - hcall_real_table &&
172 	    hcall_real_table[cmd])
173 		return 1;
174 
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
178 
kvmppc_hwrng_present(void)179 int kvmppc_hwrng_present(void)
180 {
181 	return powernv_hwrng_present();
182 }
183 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
184 
kvmppc_h_random(struct kvm_vcpu * vcpu)185 long kvmppc_h_random(struct kvm_vcpu *vcpu)
186 {
187 	if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
188 		return H_SUCCESS;
189 
190 	return H_HARDWARE;
191 }
192 
rm_writeb(unsigned long paddr,u8 val)193 static inline void rm_writeb(unsigned long paddr, u8 val)
194 {
195 	__asm__ __volatile__("stbcix %0,0,%1"
196 		: : "r" (val), "r" (paddr) : "memory");
197 }
198 
199 /*
200  * Send an interrupt or message to another CPU.
201  * This can only be called in real mode.
202  * The caller needs to include any barrier needed to order writes
203  * to memory vs. the IPI/message.
204  */
kvmhv_rm_send_ipi(int cpu)205 void kvmhv_rm_send_ipi(int cpu)
206 {
207 	unsigned long xics_phys;
208 
209 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
210 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
211 	    cpu_first_thread_sibling(cpu) ==
212 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
213 		unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
214 		msg |= cpu_thread_in_core(cpu);
215 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
216 		return;
217 	}
218 
219 	/* Else poke the target with an IPI */
220 	xics_phys = paca[cpu].kvm_hstate.xics_phys;
221 	rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
222 }
223 
224 /*
225  * The following functions are called from the assembly code
226  * in book3s_hv_rmhandlers.S.
227  */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)228 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
229 {
230 	int cpu = vc->pcpu;
231 
232 	/* Order setting of exit map vs. msgsnd/IPI */
233 	smp_mb();
234 	for (; active; active >>= 1, ++cpu)
235 		if (active & 1)
236 			kvmhv_rm_send_ipi(cpu);
237 }
238 
kvmhv_commence_exit(int trap)239 void kvmhv_commence_exit(int trap)
240 {
241 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
242 	int ptid = local_paca->kvm_hstate.ptid;
243 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
244 	int me, ee, i;
245 
246 	/* Set our bit in the threads-exiting-guest map in the 0xff00
247 	   bits of vcore->entry_exit_map */
248 	me = 0x100 << ptid;
249 	do {
250 		ee = vc->entry_exit_map;
251 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
252 
253 	/* Are we the first here? */
254 	if ((ee >> 8) != 0)
255 		return;
256 
257 	/*
258 	 * Trigger the other threads in this vcore to exit the guest.
259 	 * If this is a hypervisor decrementer interrupt then they
260 	 * will be already on their way out of the guest.
261 	 */
262 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
263 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
264 
265 	/*
266 	 * If we are doing dynamic micro-threading, interrupt the other
267 	 * subcores to pull them out of their guests too.
268 	 */
269 	if (!sip)
270 		return;
271 
272 	for (i = 0; i < MAX_SUBCORES; ++i) {
273 		vc = sip->master_vcs[i];
274 		if (!vc)
275 			break;
276 		do {
277 			ee = vc->entry_exit_map;
278 			/* Already asked to exit? */
279 			if ((ee >> 8) != 0)
280 				break;
281 		} while (cmpxchg(&vc->entry_exit_map, ee,
282 				 ee | VCORE_EXIT_REQ) != ee);
283 		if ((ee >> 8) == 0)
284 			kvmhv_interrupt_vcore(vc, ee);
285 	}
286 }
287 
288 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
289 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
290 
291 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)292 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
293 					 u32 xisr)
294 {
295 	int i;
296 
297 	/*
298 	 * We access the mapped array here without a lock.  That
299 	 * is safe because we never reduce the number of entries
300 	 * in the array and we never change the v_hwirq field of
301 	 * an entry once it is set.
302 	 *
303 	 * We have also carefully ordered the stores in the writer
304 	 * and the loads here in the reader, so that if we find a matching
305 	 * hwirq here, the associated GSI and irq_desc fields are valid.
306 	 */
307 	for (i = 0; i < pimap->n_mapped; i++)  {
308 		if (xisr == pimap->mapped[i].r_hwirq) {
309 			/*
310 			 * Order subsequent reads in the caller to serialize
311 			 * with the writer.
312 			 */
313 			smp_rmb();
314 			return &pimap->mapped[i];
315 		}
316 	}
317 	return NULL;
318 }
319 
320 /*
321  * If we have an interrupt that's not an IPI, check if we have a
322  * passthrough adapter and if so, check if this external interrupt
323  * is for the adapter.
324  * We will attempt to deliver the IRQ directly to the target VCPU's
325  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
326  *
327  * If the delivery fails or if this is not for a passthrough adapter,
328  * return to the host to handle this interrupt. We earlier
329  * saved a copy of the XIRR in the PACA, it will be picked up by
330  * the host ICP driver.
331  */
kvmppc_check_passthru(u32 xisr,__be32 xirr)332 static int kvmppc_check_passthru(u32 xisr, __be32 xirr)
333 {
334 	struct kvmppc_passthru_irqmap *pimap;
335 	struct kvmppc_irq_map *irq_map;
336 	struct kvm_vcpu *vcpu;
337 
338 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
339 	if (!vcpu)
340 		return 1;
341 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
342 	if (!pimap)
343 		return 1;
344 	irq_map = get_irqmap(pimap, xisr);
345 	if (!irq_map)
346 		return 1;
347 
348 	/* We're handling this interrupt, generic code doesn't need to */
349 	local_paca->kvm_hstate.saved_xirr = 0;
350 
351 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap);
352 }
353 
354 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr)355 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr)
356 {
357 	return 1;
358 }
359 #endif
360 
361 /*
362  * Determine what sort of external interrupt is pending (if any).
363  * Returns:
364  *	0 if no interrupt is pending
365  *	1 if an interrupt is pending that needs to be handled by the host
366  *	2 Passthrough that needs completion in the host
367  *	-1 if there was a guest wakeup IPI (which has now been cleared)
368  *	-2 if there is PCI passthrough external interrupt that was handled
369  */
370 
kvmppc_read_intr(void)371 long kvmppc_read_intr(void)
372 {
373 	unsigned long xics_phys;
374 	u32 h_xirr;
375 	__be32 xirr;
376 	u32 xisr;
377 	u8 host_ipi;
378 
379 	/* see if a host IPI is pending */
380 	host_ipi = local_paca->kvm_hstate.host_ipi;
381 	if (host_ipi)
382 		return 1;
383 
384 	/* Now read the interrupt from the ICP */
385 	xics_phys = local_paca->kvm_hstate.xics_phys;
386 	if (unlikely(!xics_phys))
387 		return 1;
388 
389 	/*
390 	 * Save XIRR for later. Since we get control in reverse endian
391 	 * on LE systems, save it byte reversed and fetch it back in
392 	 * host endian. Note that xirr is the value read from the
393 	 * XIRR register, while h_xirr is the host endian version.
394 	 */
395 	xirr = _lwzcix(xics_phys + XICS_XIRR);
396 	h_xirr = be32_to_cpu(xirr);
397 	local_paca->kvm_hstate.saved_xirr = h_xirr;
398 	xisr = h_xirr & 0xffffff;
399 	/*
400 	 * Ensure that the store/load complete to guarantee all side
401 	 * effects of loading from XIRR has completed
402 	 */
403 	smp_mb();
404 
405 	/* if nothing pending in the ICP */
406 	if (!xisr)
407 		return 0;
408 
409 	/* We found something in the ICP...
410 	 *
411 	 * If it is an IPI, clear the MFRR and EOI it.
412 	 */
413 	if (xisr == XICS_IPI) {
414 		_stbcix(xics_phys + XICS_MFRR, 0xff);
415 		_stwcix(xics_phys + XICS_XIRR, xirr);
416 		/*
417 		 * Need to ensure side effects of above stores
418 		 * complete before proceeding.
419 		 */
420 		smp_mb();
421 
422 		/*
423 		 * We need to re-check host IPI now in case it got set in the
424 		 * meantime. If it's clear, we bounce the interrupt to the
425 		 * guest
426 		 */
427 		host_ipi = local_paca->kvm_hstate.host_ipi;
428 		if (unlikely(host_ipi != 0)) {
429 			/* We raced with the host,
430 			 * we need to resend that IPI, bummer
431 			 */
432 			_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
433 			/* Let side effects complete */
434 			smp_mb();
435 			return 1;
436 		}
437 
438 		/* OK, it's an IPI for us */
439 		local_paca->kvm_hstate.saved_xirr = 0;
440 		return -1;
441 	}
442 
443 	return kvmppc_check_passthru(xisr, xirr);
444 }
445