1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard),unsigned int log)137 static int udp_lib_lport_inuse(struct net *net, __u16 num,
138 const struct udp_hslot *hslot,
139 unsigned long *bitmap,
140 struct sock *sk,
141 int (*saddr_comp)(const struct sock *sk1,
142 const struct sock *sk2,
143 bool match_wildcard),
144 unsigned int log)
145 {
146 struct sock *sk2;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 rcu_access_pointer(sk->sk_reuseport_cb) ||
158 !uid_eq(uid, sock_i_uid(sk2))) &&
159 saddr_comp(sk, sk2, true)) {
160 if (!bitmap)
161 return 1;
162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 }
164 }
165 return 0;
166 }
167
168 /*
169 * Note: we still hold spinlock of primary hash chain, so no other writer
170 * can insert/delete a socket with local_port == num
171 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard))172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 struct udp_hslot *hslot2,
174 struct sock *sk,
175 int (*saddr_comp)(const struct sock *sk1,
176 const struct sock *sk2,
177 bool match_wildcard))
178 {
179 struct sock *sk2;
180 kuid_t uid = sock_i_uid(sk);
181 int res = 0;
182
183 spin_lock(&hslot2->lock);
184 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 if (net_eq(sock_net(sk2), net) &&
186 sk2 != sk &&
187 (udp_sk(sk2)->udp_port_hash == num) &&
188 (!sk2->sk_reuse || !sk->sk_reuse) &&
189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 (!sk2->sk_reuseport || !sk->sk_reuseport ||
192 rcu_access_pointer(sk->sk_reuseport_cb) ||
193 !uid_eq(uid, sock_i_uid(sk2))) &&
194 saddr_comp(sk, sk2, true)) {
195 res = 1;
196 break;
197 }
198 }
199 spin_unlock(&hslot2->lock);
200 return res;
201 }
202
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot,int (* saddr_same)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard))203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
204 int (*saddr_same)(const struct sock *sk1,
205 const struct sock *sk2,
206 bool match_wildcard))
207 {
208 struct net *net = sock_net(sk);
209 kuid_t uid = sock_i_uid(sk);
210 struct sock *sk2;
211
212 sk_for_each(sk2, &hslot->head) {
213 if (net_eq(sock_net(sk2), net) &&
214 sk2 != sk &&
215 sk2->sk_family == sk->sk_family &&
216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 (*saddr_same)(sk, sk2, false)) {
221 return reuseport_add_sock(sk, sk2);
222 }
223 }
224
225 return reuseport_alloc(sk);
226 }
227
228 /**
229 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
230 *
231 * @sk: socket struct in question
232 * @snum: port number to look up
233 * @saddr_comp: AF-dependent comparison of bound local IP addresses
234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235 * with NULL address
236 */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard),unsigned int hash2_nulladdr)237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 int (*saddr_comp)(const struct sock *sk1,
239 const struct sock *sk2,
240 bool match_wildcard),
241 unsigned int hash2_nulladdr)
242 {
243 struct udp_hslot *hslot, *hslot2;
244 struct udp_table *udptable = sk->sk_prot->h.udp_table;
245 int error = 1;
246 struct net *net = sock_net(sk);
247
248 if (!snum) {
249 int low, high, remaining;
250 unsigned int rand;
251 unsigned short first, last;
252 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
253
254 inet_get_local_port_range(net, &low, &high);
255 remaining = (high - low) + 1;
256
257 rand = prandom_u32();
258 first = reciprocal_scale(rand, remaining) + low;
259 /*
260 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 */
262 rand = (rand | 1) * (udptable->mask + 1);
263 last = first + udptable->mask + 1;
264 do {
265 hslot = udp_hashslot(udptable, net, first);
266 bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 spin_lock_bh(&hslot->lock);
268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 saddr_comp, udptable->log);
270
271 snum = first;
272 /*
273 * Iterate on all possible values of snum for this hash.
274 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 * give us randomization and full range coverage.
276 */
277 do {
278 if (low <= snum && snum <= high &&
279 !test_bit(snum >> udptable->log, bitmap) &&
280 !inet_is_local_reserved_port(net, snum))
281 goto found;
282 snum += rand;
283 } while (snum != first);
284 spin_unlock_bh(&hslot->lock);
285 } while (++first != last);
286 goto fail;
287 } else {
288 hslot = udp_hashslot(udptable, net, snum);
289 spin_lock_bh(&hslot->lock);
290 if (hslot->count > 10) {
291 int exist;
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
296
297 hslot2 = udp_hashslot2(udptable, slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
300
301 exist = udp_lib_lport_inuse2(net, snum, hslot2,
302 sk, saddr_comp);
303 if (!exist && (hash2_nulladdr != slot2)) {
304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 sk, saddr_comp);
307 }
308 if (exist)
309 goto fail_unlock;
310 else
311 goto found;
312 }
313 scan_primary_hash:
314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
315 saddr_comp, 0))
316 goto fail_unlock;
317 }
318 found:
319 inet_sk(sk)->inet_num = snum;
320 udp_sk(sk)->udp_port_hash = snum;
321 udp_sk(sk)->udp_portaddr_hash ^= snum;
322 if (sk_unhashed(sk)) {
323 if (sk->sk_reuseport &&
324 udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
325 inet_sk(sk)->inet_num = 0;
326 udp_sk(sk)->udp_port_hash = 0;
327 udp_sk(sk)->udp_portaddr_hash ^= snum;
328 goto fail_unlock;
329 }
330
331 sk_add_node_rcu(sk, &hslot->head);
332 hslot->count++;
333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334
335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 spin_lock(&hslot2->lock);
337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 sk->sk_family == AF_INET6)
339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 &hslot2->head);
341 else
342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 hslot2->count++;
345 spin_unlock(&hslot2->lock);
346 }
347 sock_set_flag(sk, SOCK_RCU_FREE);
348 error = 0;
349 fail_unlock:
350 spin_unlock_bh(&hslot->lock);
351 fail:
352 return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355
356 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
357 * match_wildcard == false: addresses must be exactly the same, i.e.
358 * 0.0.0.0 only equals to 0.0.0.0
359 */
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2,bool match_wildcard)360 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
361 bool match_wildcard)
362 {
363 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
364
365 if (!ipv6_only_sock(sk2)) {
366 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
367 return 1;
368 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
369 return match_wildcard;
370 }
371 return 0;
372 }
373
udp4_portaddr_hash(const struct net * net,__be32 saddr,unsigned int port)374 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
375 unsigned int port)
376 {
377 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
378 }
379
udp_v4_get_port(struct sock * sk,unsigned short snum)380 int udp_v4_get_port(struct sock *sk, unsigned short snum)
381 {
382 unsigned int hash2_nulladdr =
383 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
384 unsigned int hash2_partial =
385 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
386
387 /* precompute partial secondary hash */
388 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
389 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
390 }
391
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif)392 static int compute_score(struct sock *sk, struct net *net,
393 __be32 saddr, __be16 sport,
394 __be32 daddr, unsigned short hnum, int dif)
395 {
396 int score;
397 struct inet_sock *inet;
398
399 if (!net_eq(sock_net(sk), net) ||
400 udp_sk(sk)->udp_port_hash != hnum ||
401 ipv6_only_sock(sk))
402 return -1;
403
404 score = (sk->sk_family == PF_INET) ? 2 : 1;
405 inet = inet_sk(sk);
406
407 if (inet->inet_rcv_saddr) {
408 if (inet->inet_rcv_saddr != daddr)
409 return -1;
410 score += 4;
411 }
412
413 if (inet->inet_daddr) {
414 if (inet->inet_daddr != saddr)
415 return -1;
416 score += 4;
417 }
418
419 if (inet->inet_dport) {
420 if (inet->inet_dport != sport)
421 return -1;
422 score += 4;
423 }
424
425 if (sk->sk_bound_dev_if) {
426 if (sk->sk_bound_dev_if != dif)
427 return -1;
428 score += 4;
429 }
430 if (sk->sk_incoming_cpu == raw_smp_processor_id())
431 score++;
432 return score;
433 }
434
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)435 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
436 const __u16 lport, const __be32 faddr,
437 const __be16 fport)
438 {
439 static u32 udp_ehash_secret __read_mostly;
440
441 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
442
443 return __inet_ehashfn(laddr, lport, faddr, fport,
444 udp_ehash_secret + net_hash_mix(net));
445 }
446
447 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,struct sk_buff * skb)448 static struct sock *udp4_lib_lookup2(struct net *net,
449 __be32 saddr, __be16 sport,
450 __be32 daddr, unsigned int hnum, int dif,
451 struct udp_hslot *hslot2,
452 struct sk_buff *skb)
453 {
454 struct sock *sk, *result;
455 int score, badness, matches = 0, reuseport = 0;
456 u32 hash = 0;
457
458 result = NULL;
459 badness = 0;
460 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
461 score = compute_score(sk, net, saddr, sport,
462 daddr, hnum, dif);
463 if (score > badness) {
464 reuseport = sk->sk_reuseport;
465 if (reuseport) {
466 hash = udp_ehashfn(net, daddr, hnum,
467 saddr, sport);
468 result = reuseport_select_sock(sk, hash, skb,
469 sizeof(struct udphdr));
470 if (result)
471 return result;
472 matches = 1;
473 }
474 badness = score;
475 result = sk;
476 } else if (score == badness && reuseport) {
477 matches++;
478 if (reciprocal_scale(hash, matches) == 0)
479 result = sk;
480 hash = next_pseudo_random32(hash);
481 }
482 }
483 return result;
484 }
485
486 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
487 * harder than this. -DaveM
488 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable,struct sk_buff * skb)489 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
490 __be16 sport, __be32 daddr, __be16 dport,
491 int dif, struct udp_table *udptable, struct sk_buff *skb)
492 {
493 struct sock *sk, *result;
494 unsigned short hnum = ntohs(dport);
495 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
496 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
497 int score, badness, matches = 0, reuseport = 0;
498 u32 hash = 0;
499
500 if (hslot->count > 10) {
501 hash2 = udp4_portaddr_hash(net, daddr, hnum);
502 slot2 = hash2 & udptable->mask;
503 hslot2 = &udptable->hash2[slot2];
504 if (hslot->count < hslot2->count)
505 goto begin;
506
507 result = udp4_lib_lookup2(net, saddr, sport,
508 daddr, hnum, dif,
509 hslot2, skb);
510 if (!result) {
511 unsigned int old_slot2 = slot2;
512 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
513 slot2 = hash2 & udptable->mask;
514 /* avoid searching the same slot again. */
515 if (unlikely(slot2 == old_slot2))
516 return result;
517
518 hslot2 = &udptable->hash2[slot2];
519 if (hslot->count < hslot2->count)
520 goto begin;
521
522 result = udp4_lib_lookup2(net, saddr, sport,
523 daddr, hnum, dif,
524 hslot2, skb);
525 }
526 return result;
527 }
528 begin:
529 result = NULL;
530 badness = 0;
531 sk_for_each_rcu(sk, &hslot->head) {
532 score = compute_score(sk, net, saddr, sport,
533 daddr, hnum, dif);
534 if (score > badness) {
535 reuseport = sk->sk_reuseport;
536 if (reuseport) {
537 hash = udp_ehashfn(net, daddr, hnum,
538 saddr, sport);
539 result = reuseport_select_sock(sk, hash, skb,
540 sizeof(struct udphdr));
541 if (result)
542 return result;
543 matches = 1;
544 }
545 result = sk;
546 badness = score;
547 } else if (score == badness && reuseport) {
548 matches++;
549 if (reciprocal_scale(hash, matches) == 0)
550 result = sk;
551 hash = next_pseudo_random32(hash);
552 }
553 }
554 return result;
555 }
556 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
557
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)558 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
559 __be16 sport, __be16 dport,
560 struct udp_table *udptable)
561 {
562 const struct iphdr *iph = ip_hdr(skb);
563
564 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
565 iph->daddr, dport, inet_iif(skb),
566 udptable, skb);
567 }
568
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)569 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
570 __be16 sport, __be16 dport)
571 {
572 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
573 }
574 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
575
576 /* Must be called under rcu_read_lock().
577 * Does increment socket refcount.
578 */
579 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
580 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)581 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
582 __be32 daddr, __be16 dport, int dif)
583 {
584 struct sock *sk;
585
586 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
587 dif, &udp_table, NULL);
588 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
589 sk = NULL;
590 return sk;
591 }
592 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
593 #endif
594
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,unsigned short hnum)595 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
596 __be16 loc_port, __be32 loc_addr,
597 __be16 rmt_port, __be32 rmt_addr,
598 int dif, unsigned short hnum)
599 {
600 struct inet_sock *inet = inet_sk(sk);
601
602 if (!net_eq(sock_net(sk), net) ||
603 udp_sk(sk)->udp_port_hash != hnum ||
604 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
605 (inet->inet_dport != rmt_port && inet->inet_dport) ||
606 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
607 ipv6_only_sock(sk) ||
608 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
609 return false;
610 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
611 return false;
612 return true;
613 }
614
615 /*
616 * This routine is called by the ICMP module when it gets some
617 * sort of error condition. If err < 0 then the socket should
618 * be closed and the error returned to the user. If err > 0
619 * it's just the icmp type << 8 | icmp code.
620 * Header points to the ip header of the error packet. We move
621 * on past this. Then (as it used to claim before adjustment)
622 * header points to the first 8 bytes of the udp header. We need
623 * to find the appropriate port.
624 */
625
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)626 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
627 {
628 struct inet_sock *inet;
629 const struct iphdr *iph = (const struct iphdr *)skb->data;
630 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
631 const int type = icmp_hdr(skb)->type;
632 const int code = icmp_hdr(skb)->code;
633 struct sock *sk;
634 int harderr;
635 int err;
636 struct net *net = dev_net(skb->dev);
637
638 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
639 iph->saddr, uh->source, skb->dev->ifindex, udptable,
640 NULL);
641 if (!sk) {
642 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
643 return; /* No socket for error */
644 }
645
646 err = 0;
647 harderr = 0;
648 inet = inet_sk(sk);
649
650 switch (type) {
651 default:
652 case ICMP_TIME_EXCEEDED:
653 err = EHOSTUNREACH;
654 break;
655 case ICMP_SOURCE_QUENCH:
656 goto out;
657 case ICMP_PARAMETERPROB:
658 err = EPROTO;
659 harderr = 1;
660 break;
661 case ICMP_DEST_UNREACH:
662 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
663 ipv4_sk_update_pmtu(skb, sk, info);
664 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
665 err = EMSGSIZE;
666 harderr = 1;
667 break;
668 }
669 goto out;
670 }
671 err = EHOSTUNREACH;
672 if (code <= NR_ICMP_UNREACH) {
673 harderr = icmp_err_convert[code].fatal;
674 err = icmp_err_convert[code].errno;
675 }
676 break;
677 case ICMP_REDIRECT:
678 ipv4_sk_redirect(skb, sk);
679 goto out;
680 }
681
682 /*
683 * RFC1122: OK. Passes ICMP errors back to application, as per
684 * 4.1.3.3.
685 */
686 if (!inet->recverr) {
687 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
688 goto out;
689 } else
690 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
691
692 sk->sk_err = err;
693 sk->sk_error_report(sk);
694 out:
695 return;
696 }
697
udp_err(struct sk_buff * skb,u32 info)698 void udp_err(struct sk_buff *skb, u32 info)
699 {
700 __udp4_lib_err(skb, info, &udp_table);
701 }
702
703 /*
704 * Throw away all pending data and cancel the corking. Socket is locked.
705 */
udp_flush_pending_frames(struct sock * sk)706 void udp_flush_pending_frames(struct sock *sk)
707 {
708 struct udp_sock *up = udp_sk(sk);
709
710 if (up->pending) {
711 up->len = 0;
712 up->pending = 0;
713 ip_flush_pending_frames(sk);
714 }
715 }
716 EXPORT_SYMBOL(udp_flush_pending_frames);
717
718 /**
719 * udp4_hwcsum - handle outgoing HW checksumming
720 * @skb: sk_buff containing the filled-in UDP header
721 * (checksum field must be zeroed out)
722 * @src: source IP address
723 * @dst: destination IP address
724 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)725 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
726 {
727 struct udphdr *uh = udp_hdr(skb);
728 int offset = skb_transport_offset(skb);
729 int len = skb->len - offset;
730 int hlen = len;
731 __wsum csum = 0;
732
733 if (!skb_has_frag_list(skb)) {
734 /*
735 * Only one fragment on the socket.
736 */
737 skb->csum_start = skb_transport_header(skb) - skb->head;
738 skb->csum_offset = offsetof(struct udphdr, check);
739 uh->check = ~csum_tcpudp_magic(src, dst, len,
740 IPPROTO_UDP, 0);
741 } else {
742 struct sk_buff *frags;
743
744 /*
745 * HW-checksum won't work as there are two or more
746 * fragments on the socket so that all csums of sk_buffs
747 * should be together
748 */
749 skb_walk_frags(skb, frags) {
750 csum = csum_add(csum, frags->csum);
751 hlen -= frags->len;
752 }
753
754 csum = skb_checksum(skb, offset, hlen, csum);
755 skb->ip_summed = CHECKSUM_NONE;
756
757 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
758 if (uh->check == 0)
759 uh->check = CSUM_MANGLED_0;
760 }
761 }
762 EXPORT_SYMBOL_GPL(udp4_hwcsum);
763
764 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
765 * for the simple case like when setting the checksum for a UDP tunnel.
766 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)767 void udp_set_csum(bool nocheck, struct sk_buff *skb,
768 __be32 saddr, __be32 daddr, int len)
769 {
770 struct udphdr *uh = udp_hdr(skb);
771
772 if (nocheck) {
773 uh->check = 0;
774 } else if (skb_is_gso(skb)) {
775 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
776 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
777 uh->check = 0;
778 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
779 if (uh->check == 0)
780 uh->check = CSUM_MANGLED_0;
781 } else {
782 skb->ip_summed = CHECKSUM_PARTIAL;
783 skb->csum_start = skb_transport_header(skb) - skb->head;
784 skb->csum_offset = offsetof(struct udphdr, check);
785 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
786 }
787 }
788 EXPORT_SYMBOL(udp_set_csum);
789
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)790 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
791 {
792 struct sock *sk = skb->sk;
793 struct inet_sock *inet = inet_sk(sk);
794 struct udphdr *uh;
795 int err = 0;
796 int is_udplite = IS_UDPLITE(sk);
797 int offset = skb_transport_offset(skb);
798 int len = skb->len - offset;
799 __wsum csum = 0;
800
801 /*
802 * Create a UDP header
803 */
804 uh = udp_hdr(skb);
805 uh->source = inet->inet_sport;
806 uh->dest = fl4->fl4_dport;
807 uh->len = htons(len);
808 uh->check = 0;
809
810 if (is_udplite) /* UDP-Lite */
811 csum = udplite_csum(skb);
812
813 else if (sk->sk_no_check_tx && !skb_is_gso(skb)) { /* UDP csum off */
814
815 skb->ip_summed = CHECKSUM_NONE;
816 goto send;
817
818 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
819
820 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
821 goto send;
822
823 } else
824 csum = udp_csum(skb);
825
826 /* add protocol-dependent pseudo-header */
827 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
828 sk->sk_protocol, csum);
829 if (uh->check == 0)
830 uh->check = CSUM_MANGLED_0;
831
832 send:
833 err = ip_send_skb(sock_net(sk), skb);
834 if (err) {
835 if (err == -ENOBUFS && !inet->recverr) {
836 UDP_INC_STATS(sock_net(sk),
837 UDP_MIB_SNDBUFERRORS, is_udplite);
838 err = 0;
839 }
840 } else
841 UDP_INC_STATS(sock_net(sk),
842 UDP_MIB_OUTDATAGRAMS, is_udplite);
843 return err;
844 }
845
846 /*
847 * Push out all pending data as one UDP datagram. Socket is locked.
848 */
udp_push_pending_frames(struct sock * sk)849 int udp_push_pending_frames(struct sock *sk)
850 {
851 struct udp_sock *up = udp_sk(sk);
852 struct inet_sock *inet = inet_sk(sk);
853 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
854 struct sk_buff *skb;
855 int err = 0;
856
857 skb = ip_finish_skb(sk, fl4);
858 if (!skb)
859 goto out;
860
861 err = udp_send_skb(skb, fl4);
862
863 out:
864 up->len = 0;
865 up->pending = 0;
866 return err;
867 }
868 EXPORT_SYMBOL(udp_push_pending_frames);
869
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)870 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
871 {
872 struct inet_sock *inet = inet_sk(sk);
873 struct udp_sock *up = udp_sk(sk);
874 struct flowi4 fl4_stack;
875 struct flowi4 *fl4;
876 int ulen = len;
877 struct ipcm_cookie ipc;
878 struct rtable *rt = NULL;
879 int free = 0;
880 int connected = 0;
881 __be32 daddr, faddr, saddr;
882 __be16 dport;
883 u8 tos;
884 int err, is_udplite = IS_UDPLITE(sk);
885 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
886 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
887 struct sk_buff *skb;
888 struct ip_options_data opt_copy;
889
890 if (len > 0xFFFF)
891 return -EMSGSIZE;
892
893 /*
894 * Check the flags.
895 */
896
897 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
898 return -EOPNOTSUPP;
899
900 ipc.opt = NULL;
901 ipc.tx_flags = 0;
902 ipc.ttl = 0;
903 ipc.tos = -1;
904
905 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
906
907 fl4 = &inet->cork.fl.u.ip4;
908 if (up->pending) {
909 /*
910 * There are pending frames.
911 * The socket lock must be held while it's corked.
912 */
913 lock_sock(sk);
914 if (likely(up->pending)) {
915 if (unlikely(up->pending != AF_INET)) {
916 release_sock(sk);
917 return -EINVAL;
918 }
919 goto do_append_data;
920 }
921 release_sock(sk);
922 }
923 ulen += sizeof(struct udphdr);
924
925 /*
926 * Get and verify the address.
927 */
928 if (msg->msg_name) {
929 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
930 if (msg->msg_namelen < sizeof(*usin))
931 return -EINVAL;
932 if (usin->sin_family != AF_INET) {
933 if (usin->sin_family != AF_UNSPEC)
934 return -EAFNOSUPPORT;
935 }
936
937 daddr = usin->sin_addr.s_addr;
938 dport = usin->sin_port;
939 if (dport == 0)
940 return -EINVAL;
941 } else {
942 if (sk->sk_state != TCP_ESTABLISHED)
943 return -EDESTADDRREQ;
944 daddr = inet->inet_daddr;
945 dport = inet->inet_dport;
946 /* Open fast path for connected socket.
947 Route will not be used, if at least one option is set.
948 */
949 connected = 1;
950 }
951
952 ipc.sockc.tsflags = sk->sk_tsflags;
953 ipc.addr = inet->inet_saddr;
954 ipc.oif = sk->sk_bound_dev_if;
955
956 if (msg->msg_controllen) {
957 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
958 if (unlikely(err)) {
959 kfree(ipc.opt);
960 return err;
961 }
962 if (ipc.opt)
963 free = 1;
964 connected = 0;
965 }
966 if (!ipc.opt) {
967 struct ip_options_rcu *inet_opt;
968
969 rcu_read_lock();
970 inet_opt = rcu_dereference(inet->inet_opt);
971 if (inet_opt) {
972 memcpy(&opt_copy, inet_opt,
973 sizeof(*inet_opt) + inet_opt->opt.optlen);
974 ipc.opt = &opt_copy.opt;
975 }
976 rcu_read_unlock();
977 }
978
979 saddr = ipc.addr;
980 ipc.addr = faddr = daddr;
981
982 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
983
984 if (ipc.opt && ipc.opt->opt.srr) {
985 if (!daddr)
986 return -EINVAL;
987 faddr = ipc.opt->opt.faddr;
988 connected = 0;
989 }
990 tos = get_rttos(&ipc, inet);
991 if (sock_flag(sk, SOCK_LOCALROUTE) ||
992 (msg->msg_flags & MSG_DONTROUTE) ||
993 (ipc.opt && ipc.opt->opt.is_strictroute)) {
994 tos |= RTO_ONLINK;
995 connected = 0;
996 }
997
998 if (ipv4_is_multicast(daddr)) {
999 if (!ipc.oif)
1000 ipc.oif = inet->mc_index;
1001 if (!saddr)
1002 saddr = inet->mc_addr;
1003 connected = 0;
1004 } else if (!ipc.oif)
1005 ipc.oif = inet->uc_index;
1006
1007 if (connected)
1008 rt = (struct rtable *)sk_dst_check(sk, 0);
1009
1010 if (!rt) {
1011 struct net *net = sock_net(sk);
1012 __u8 flow_flags = inet_sk_flowi_flags(sk);
1013
1014 fl4 = &fl4_stack;
1015
1016 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1017 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1018 flow_flags,
1019 faddr, saddr, dport, inet->inet_sport,
1020 sk->sk_uid);
1021
1022 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1023 rt = ip_route_output_flow(net, fl4, sk);
1024 if (IS_ERR(rt)) {
1025 err = PTR_ERR(rt);
1026 rt = NULL;
1027 if (err == -ENETUNREACH)
1028 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1029 goto out;
1030 }
1031
1032 err = -EACCES;
1033 if ((rt->rt_flags & RTCF_BROADCAST) &&
1034 !sock_flag(sk, SOCK_BROADCAST))
1035 goto out;
1036 if (connected)
1037 sk_dst_set(sk, dst_clone(&rt->dst));
1038 }
1039
1040 if (msg->msg_flags&MSG_CONFIRM)
1041 goto do_confirm;
1042 back_from_confirm:
1043
1044 saddr = fl4->saddr;
1045 if (!ipc.addr)
1046 daddr = ipc.addr = fl4->daddr;
1047
1048 /* Lockless fast path for the non-corking case. */
1049 if (!corkreq) {
1050 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1051 sizeof(struct udphdr), &ipc, &rt,
1052 msg->msg_flags);
1053 err = PTR_ERR(skb);
1054 if (!IS_ERR_OR_NULL(skb))
1055 err = udp_send_skb(skb, fl4);
1056 goto out;
1057 }
1058
1059 lock_sock(sk);
1060 if (unlikely(up->pending)) {
1061 /* The socket is already corked while preparing it. */
1062 /* ... which is an evident application bug. --ANK */
1063 release_sock(sk);
1064
1065 net_dbg_ratelimited("cork app bug 2\n");
1066 err = -EINVAL;
1067 goto out;
1068 }
1069 /*
1070 * Now cork the socket to pend data.
1071 */
1072 fl4 = &inet->cork.fl.u.ip4;
1073 fl4->daddr = daddr;
1074 fl4->saddr = saddr;
1075 fl4->fl4_dport = dport;
1076 fl4->fl4_sport = inet->inet_sport;
1077 up->pending = AF_INET;
1078
1079 do_append_data:
1080 up->len += ulen;
1081 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1082 sizeof(struct udphdr), &ipc, &rt,
1083 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1084 if (err)
1085 udp_flush_pending_frames(sk);
1086 else if (!corkreq)
1087 err = udp_push_pending_frames(sk);
1088 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1089 up->pending = 0;
1090 release_sock(sk);
1091
1092 out:
1093 ip_rt_put(rt);
1094 if (free)
1095 kfree(ipc.opt);
1096 if (!err)
1097 return len;
1098 /*
1099 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1100 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1101 * we don't have a good statistic (IpOutDiscards but it can be too many
1102 * things). We could add another new stat but at least for now that
1103 * seems like overkill.
1104 */
1105 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1106 UDP_INC_STATS(sock_net(sk),
1107 UDP_MIB_SNDBUFERRORS, is_udplite);
1108 }
1109 return err;
1110
1111 do_confirm:
1112 dst_confirm(&rt->dst);
1113 if (!(msg->msg_flags&MSG_PROBE) || len)
1114 goto back_from_confirm;
1115 err = 0;
1116 goto out;
1117 }
1118 EXPORT_SYMBOL(udp_sendmsg);
1119
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1120 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1121 size_t size, int flags)
1122 {
1123 struct inet_sock *inet = inet_sk(sk);
1124 struct udp_sock *up = udp_sk(sk);
1125 int ret;
1126
1127 if (flags & MSG_SENDPAGE_NOTLAST)
1128 flags |= MSG_MORE;
1129
1130 if (!up->pending) {
1131 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1132
1133 /* Call udp_sendmsg to specify destination address which
1134 * sendpage interface can't pass.
1135 * This will succeed only when the socket is connected.
1136 */
1137 ret = udp_sendmsg(sk, &msg, 0);
1138 if (ret < 0)
1139 return ret;
1140 }
1141
1142 lock_sock(sk);
1143
1144 if (unlikely(!up->pending)) {
1145 release_sock(sk);
1146
1147 net_dbg_ratelimited("udp cork app bug 3\n");
1148 return -EINVAL;
1149 }
1150
1151 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1152 page, offset, size, flags);
1153 if (ret == -EOPNOTSUPP) {
1154 release_sock(sk);
1155 return sock_no_sendpage(sk->sk_socket, page, offset,
1156 size, flags);
1157 }
1158 if (ret < 0) {
1159 udp_flush_pending_frames(sk);
1160 goto out;
1161 }
1162
1163 up->len += size;
1164 if (!(up->corkflag || (flags&MSG_MORE)))
1165 ret = udp_push_pending_frames(sk);
1166 if (!ret)
1167 ret = size;
1168 out:
1169 release_sock(sk);
1170 return ret;
1171 }
1172
1173 /**
1174 * first_packet_length - return length of first packet in receive queue
1175 * @sk: socket
1176 *
1177 * Drops all bad checksum frames, until a valid one is found.
1178 * Returns the length of found skb, or -1 if none is found.
1179 */
first_packet_length(struct sock * sk)1180 static int first_packet_length(struct sock *sk)
1181 {
1182 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1183 struct sk_buff *skb;
1184 int res;
1185
1186 __skb_queue_head_init(&list_kill);
1187
1188 spin_lock_bh(&rcvq->lock);
1189 while ((skb = skb_peek(rcvq)) != NULL &&
1190 udp_lib_checksum_complete(skb)) {
1191 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1192 IS_UDPLITE(sk));
1193 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1194 IS_UDPLITE(sk));
1195 atomic_inc(&sk->sk_drops);
1196 __skb_unlink(skb, rcvq);
1197 __skb_queue_tail(&list_kill, skb);
1198 }
1199 res = skb ? skb->len : -1;
1200 spin_unlock_bh(&rcvq->lock);
1201
1202 if (!skb_queue_empty(&list_kill)) {
1203 bool slow = lock_sock_fast(sk);
1204
1205 __skb_queue_purge(&list_kill);
1206 sk_mem_reclaim_partial(sk);
1207 unlock_sock_fast(sk, slow);
1208 }
1209 return res;
1210 }
1211
1212 /*
1213 * IOCTL requests applicable to the UDP protocol
1214 */
1215
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1216 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1217 {
1218 switch (cmd) {
1219 case SIOCOUTQ:
1220 {
1221 int amount = sk_wmem_alloc_get(sk);
1222
1223 return put_user(amount, (int __user *)arg);
1224 }
1225
1226 case SIOCINQ:
1227 {
1228 int amount = max_t(int, 0, first_packet_length(sk));
1229
1230 return put_user(amount, (int __user *)arg);
1231 }
1232
1233 default:
1234 return -ENOIOCTLCMD;
1235 }
1236
1237 return 0;
1238 }
1239 EXPORT_SYMBOL(udp_ioctl);
1240
1241 /*
1242 * This should be easy, if there is something there we
1243 * return it, otherwise we block.
1244 */
1245
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1246 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1247 int flags, int *addr_len)
1248 {
1249 struct inet_sock *inet = inet_sk(sk);
1250 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1251 struct sk_buff *skb;
1252 unsigned int ulen, copied;
1253 int peeked, peeking, off;
1254 int err;
1255 int is_udplite = IS_UDPLITE(sk);
1256 bool checksum_valid = false;
1257 bool slow;
1258
1259 if (flags & MSG_ERRQUEUE)
1260 return ip_recv_error(sk, msg, len, addr_len);
1261
1262 try_again:
1263 peeking = off = sk_peek_offset(sk, flags);
1264 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1265 &peeked, &off, &err);
1266 if (!skb)
1267 return err;
1268
1269 ulen = skb->len;
1270 copied = len;
1271 if (copied > ulen - off)
1272 copied = ulen - off;
1273 else if (copied < ulen)
1274 msg->msg_flags |= MSG_TRUNC;
1275
1276 /*
1277 * If checksum is needed at all, try to do it while copying the
1278 * data. If the data is truncated, or if we only want a partial
1279 * coverage checksum (UDP-Lite), do it before the copy.
1280 */
1281
1282 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1283 checksum_valid = !udp_lib_checksum_complete(skb);
1284 if (!checksum_valid)
1285 goto csum_copy_err;
1286 }
1287
1288 if (checksum_valid || skb_csum_unnecessary(skb))
1289 err = skb_copy_datagram_msg(skb, off, msg, copied);
1290 else {
1291 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1292
1293 if (err == -EINVAL)
1294 goto csum_copy_err;
1295 }
1296
1297 if (unlikely(err)) {
1298 trace_kfree_skb(skb, udp_recvmsg);
1299 if (!peeked) {
1300 atomic_inc(&sk->sk_drops);
1301 UDP_INC_STATS(sock_net(sk),
1302 UDP_MIB_INERRORS, is_udplite);
1303 }
1304 skb_free_datagram_locked(sk, skb);
1305 return err;
1306 }
1307
1308 if (!peeked)
1309 UDP_INC_STATS(sock_net(sk),
1310 UDP_MIB_INDATAGRAMS, is_udplite);
1311
1312 sock_recv_ts_and_drops(msg, sk, skb);
1313
1314 /* Copy the address. */
1315 if (sin) {
1316 sin->sin_family = AF_INET;
1317 sin->sin_port = udp_hdr(skb)->source;
1318 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1319 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1320 *addr_len = sizeof(*sin);
1321 }
1322 if (inet->cmsg_flags)
1323 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr), off);
1324
1325 err = copied;
1326 if (flags & MSG_TRUNC)
1327 err = ulen;
1328
1329 __skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1330 return err;
1331
1332 csum_copy_err:
1333 slow = lock_sock_fast(sk);
1334 if (!skb_kill_datagram(sk, skb, flags)) {
1335 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1336 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1337 }
1338 unlock_sock_fast(sk, slow);
1339
1340 /* starting over for a new packet, but check if we need to yield */
1341 cond_resched();
1342 msg->msg_flags &= ~MSG_TRUNC;
1343 goto try_again;
1344 }
1345
__udp_disconnect(struct sock * sk,int flags)1346 int __udp_disconnect(struct sock *sk, int flags)
1347 {
1348 struct inet_sock *inet = inet_sk(sk);
1349 /*
1350 * 1003.1g - break association.
1351 */
1352
1353 sk->sk_state = TCP_CLOSE;
1354 inet->inet_daddr = 0;
1355 inet->inet_dport = 0;
1356 sock_rps_reset_rxhash(sk);
1357 sk->sk_bound_dev_if = 0;
1358 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1359 inet_reset_saddr(sk);
1360
1361 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1362 sk->sk_prot->unhash(sk);
1363 inet->inet_sport = 0;
1364 }
1365 sk_dst_reset(sk);
1366 return 0;
1367 }
1368 EXPORT_SYMBOL(__udp_disconnect);
1369
udp_disconnect(struct sock * sk,int flags)1370 int udp_disconnect(struct sock *sk, int flags)
1371 {
1372 lock_sock(sk);
1373 __udp_disconnect(sk, flags);
1374 release_sock(sk);
1375 return 0;
1376 }
1377 EXPORT_SYMBOL(udp_disconnect);
1378
udp_lib_unhash(struct sock * sk)1379 void udp_lib_unhash(struct sock *sk)
1380 {
1381 if (sk_hashed(sk)) {
1382 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1383 struct udp_hslot *hslot, *hslot2;
1384
1385 hslot = udp_hashslot(udptable, sock_net(sk),
1386 udp_sk(sk)->udp_port_hash);
1387 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1388
1389 spin_lock_bh(&hslot->lock);
1390 if (rcu_access_pointer(sk->sk_reuseport_cb))
1391 reuseport_detach_sock(sk);
1392 if (sk_del_node_init_rcu(sk)) {
1393 hslot->count--;
1394 inet_sk(sk)->inet_num = 0;
1395 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1396
1397 spin_lock(&hslot2->lock);
1398 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1399 hslot2->count--;
1400 spin_unlock(&hslot2->lock);
1401 }
1402 spin_unlock_bh(&hslot->lock);
1403 }
1404 }
1405 EXPORT_SYMBOL(udp_lib_unhash);
1406
1407 /*
1408 * inet_rcv_saddr was changed, we must rehash secondary hash
1409 */
udp_lib_rehash(struct sock * sk,u16 newhash)1410 void udp_lib_rehash(struct sock *sk, u16 newhash)
1411 {
1412 if (sk_hashed(sk)) {
1413 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1414 struct udp_hslot *hslot, *hslot2, *nhslot2;
1415
1416 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1417 nhslot2 = udp_hashslot2(udptable, newhash);
1418 udp_sk(sk)->udp_portaddr_hash = newhash;
1419
1420 if (hslot2 != nhslot2 ||
1421 rcu_access_pointer(sk->sk_reuseport_cb)) {
1422 hslot = udp_hashslot(udptable, sock_net(sk),
1423 udp_sk(sk)->udp_port_hash);
1424 /* we must lock primary chain too */
1425 spin_lock_bh(&hslot->lock);
1426 if (rcu_access_pointer(sk->sk_reuseport_cb))
1427 reuseport_detach_sock(sk);
1428
1429 if (hslot2 != nhslot2) {
1430 spin_lock(&hslot2->lock);
1431 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1432 hslot2->count--;
1433 spin_unlock(&hslot2->lock);
1434
1435 spin_lock(&nhslot2->lock);
1436 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1437 &nhslot2->head);
1438 nhslot2->count++;
1439 spin_unlock(&nhslot2->lock);
1440 }
1441
1442 spin_unlock_bh(&hslot->lock);
1443 }
1444 }
1445 }
1446 EXPORT_SYMBOL(udp_lib_rehash);
1447
udp_v4_rehash(struct sock * sk)1448 static void udp_v4_rehash(struct sock *sk)
1449 {
1450 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1451 inet_sk(sk)->inet_rcv_saddr,
1452 inet_sk(sk)->inet_num);
1453 udp_lib_rehash(sk, new_hash);
1454 }
1455
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1456 int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1457 {
1458 int rc;
1459
1460 if (inet_sk(sk)->inet_daddr) {
1461 sock_rps_save_rxhash(sk, skb);
1462 sk_mark_napi_id(sk, skb);
1463 sk_incoming_cpu_update(sk);
1464 }
1465
1466 rc = __sock_queue_rcv_skb(sk, skb);
1467 if (rc < 0) {
1468 int is_udplite = IS_UDPLITE(sk);
1469
1470 /* Note that an ENOMEM error is charged twice */
1471 if (rc == -ENOMEM)
1472 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1473 is_udplite);
1474 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1475 kfree_skb(skb);
1476 trace_udp_fail_queue_rcv_skb(rc, sk);
1477 return -1;
1478 }
1479
1480 return 0;
1481
1482 }
1483
1484 static struct static_key udp_encap_needed __read_mostly;
udp_encap_enable(void)1485 void udp_encap_enable(void)
1486 {
1487 if (!static_key_enabled(&udp_encap_needed))
1488 static_key_slow_inc(&udp_encap_needed);
1489 }
1490 EXPORT_SYMBOL(udp_encap_enable);
1491
1492 /* returns:
1493 * -1: error
1494 * 0: success
1495 * >0: "udp encap" protocol resubmission
1496 *
1497 * Note that in the success and error cases, the skb is assumed to
1498 * have either been requeued or freed.
1499 */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1500 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1501 {
1502 struct udp_sock *up = udp_sk(sk);
1503 int rc;
1504 int is_udplite = IS_UDPLITE(sk);
1505
1506 /*
1507 * Charge it to the socket, dropping if the queue is full.
1508 */
1509 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1510 goto drop;
1511 nf_reset(skb);
1512
1513 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1514 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1515
1516 /*
1517 * This is an encapsulation socket so pass the skb to
1518 * the socket's udp_encap_rcv() hook. Otherwise, just
1519 * fall through and pass this up the UDP socket.
1520 * up->encap_rcv() returns the following value:
1521 * =0 if skb was successfully passed to the encap
1522 * handler or was discarded by it.
1523 * >0 if skb should be passed on to UDP.
1524 * <0 if skb should be resubmitted as proto -N
1525 */
1526
1527 /* if we're overly short, let UDP handle it */
1528 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1529 if (encap_rcv) {
1530 int ret;
1531
1532 /* Verify checksum before giving to encap */
1533 if (udp_lib_checksum_complete(skb))
1534 goto csum_error;
1535
1536 ret = encap_rcv(sk, skb);
1537 if (ret <= 0) {
1538 __UDP_INC_STATS(sock_net(sk),
1539 UDP_MIB_INDATAGRAMS,
1540 is_udplite);
1541 return -ret;
1542 }
1543 }
1544
1545 /* FALLTHROUGH -- it's a UDP Packet */
1546 }
1547
1548 /*
1549 * UDP-Lite specific tests, ignored on UDP sockets
1550 */
1551 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1552
1553 /*
1554 * MIB statistics other than incrementing the error count are
1555 * disabled for the following two types of errors: these depend
1556 * on the application settings, not on the functioning of the
1557 * protocol stack as such.
1558 *
1559 * RFC 3828 here recommends (sec 3.3): "There should also be a
1560 * way ... to ... at least let the receiving application block
1561 * delivery of packets with coverage values less than a value
1562 * provided by the application."
1563 */
1564 if (up->pcrlen == 0) { /* full coverage was set */
1565 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1566 UDP_SKB_CB(skb)->cscov, skb->len);
1567 goto drop;
1568 }
1569 /* The next case involves violating the min. coverage requested
1570 * by the receiver. This is subtle: if receiver wants x and x is
1571 * greater than the buffersize/MTU then receiver will complain
1572 * that it wants x while sender emits packets of smaller size y.
1573 * Therefore the above ...()->partial_cov statement is essential.
1574 */
1575 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1576 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1577 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1578 goto drop;
1579 }
1580 }
1581
1582 if (rcu_access_pointer(sk->sk_filter) &&
1583 udp_lib_checksum_complete(skb))
1584 goto csum_error;
1585
1586 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1587 goto drop;
1588
1589 udp_csum_pull_header(skb);
1590 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1591 __UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1592 is_udplite);
1593 goto drop;
1594 }
1595
1596 rc = 0;
1597
1598 ipv4_pktinfo_prepare(sk, skb);
1599 bh_lock_sock(sk);
1600 if (!sock_owned_by_user(sk))
1601 rc = __udp_queue_rcv_skb(sk, skb);
1602 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1603 bh_unlock_sock(sk);
1604 goto drop;
1605 }
1606 bh_unlock_sock(sk);
1607
1608 return rc;
1609
1610 csum_error:
1611 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1612 drop:
1613 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1614 atomic_inc(&sk->sk_drops);
1615 kfree_skb(skb);
1616 return -1;
1617 }
1618
1619 /* For TCP sockets, sk_rx_dst is protected by socket lock
1620 * For UDP, we use xchg() to guard against concurrent changes.
1621 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)1622 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1623 {
1624 struct dst_entry *old;
1625
1626 dst_hold(dst);
1627 old = xchg(&sk->sk_rx_dst, dst);
1628 dst_release(old);
1629 }
1630
1631 /*
1632 * Multicasts and broadcasts go to each listener.
1633 *
1634 * Note: called only from the BH handler context.
1635 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)1636 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1637 struct udphdr *uh,
1638 __be32 saddr, __be32 daddr,
1639 struct udp_table *udptable,
1640 int proto)
1641 {
1642 struct sock *sk, *first = NULL;
1643 unsigned short hnum = ntohs(uh->dest);
1644 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1645 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1646 unsigned int offset = offsetof(typeof(*sk), sk_node);
1647 int dif = skb->dev->ifindex;
1648 struct hlist_node *node;
1649 struct sk_buff *nskb;
1650
1651 if (use_hash2) {
1652 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1653 udptable->mask;
1654 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1655 start_lookup:
1656 hslot = &udptable->hash2[hash2];
1657 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1658 }
1659
1660 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1661 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1662 uh->source, saddr, dif, hnum))
1663 continue;
1664
1665 if (!first) {
1666 first = sk;
1667 continue;
1668 }
1669 nskb = skb_clone(skb, GFP_ATOMIC);
1670
1671 if (unlikely(!nskb)) {
1672 atomic_inc(&sk->sk_drops);
1673 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1674 IS_UDPLITE(sk));
1675 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1676 IS_UDPLITE(sk));
1677 continue;
1678 }
1679 if (udp_queue_rcv_skb(sk, nskb) > 0)
1680 consume_skb(nskb);
1681 }
1682
1683 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1684 if (use_hash2 && hash2 != hash2_any) {
1685 hash2 = hash2_any;
1686 goto start_lookup;
1687 }
1688
1689 if (first) {
1690 if (udp_queue_rcv_skb(first, skb) > 0)
1691 consume_skb(skb);
1692 } else {
1693 kfree_skb(skb);
1694 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1695 proto == IPPROTO_UDPLITE);
1696 }
1697 return 0;
1698 }
1699
1700 /* Initialize UDP checksum. If exited with zero value (success),
1701 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1702 * Otherwise, csum completion requires chacksumming packet body,
1703 * including udp header and folding it to skb->csum.
1704 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1705 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1706 int proto)
1707 {
1708 int err;
1709
1710 UDP_SKB_CB(skb)->partial_cov = 0;
1711 UDP_SKB_CB(skb)->cscov = skb->len;
1712
1713 if (proto == IPPROTO_UDPLITE) {
1714 err = udplite_checksum_init(skb, uh);
1715 if (err)
1716 return err;
1717
1718 if (UDP_SKB_CB(skb)->partial_cov) {
1719 skb->csum = inet_compute_pseudo(skb, proto);
1720 return 0;
1721 }
1722 }
1723
1724 /* Note, we are only interested in != 0 or == 0, thus the
1725 * force to int.
1726 */
1727 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1728 inet_compute_pseudo);
1729 }
1730
1731 /*
1732 * All we need to do is get the socket, and then do a checksum.
1733 */
1734
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1735 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1736 int proto)
1737 {
1738 struct sock *sk;
1739 struct udphdr *uh;
1740 unsigned short ulen;
1741 struct rtable *rt = skb_rtable(skb);
1742 __be32 saddr, daddr;
1743 struct net *net = dev_net(skb->dev);
1744
1745 /*
1746 * Validate the packet.
1747 */
1748 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1749 goto drop; /* No space for header. */
1750
1751 uh = udp_hdr(skb);
1752 ulen = ntohs(uh->len);
1753 saddr = ip_hdr(skb)->saddr;
1754 daddr = ip_hdr(skb)->daddr;
1755
1756 if (ulen > skb->len)
1757 goto short_packet;
1758
1759 if (proto == IPPROTO_UDP) {
1760 /* UDP validates ulen. */
1761 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1762 goto short_packet;
1763 uh = udp_hdr(skb);
1764 }
1765
1766 if (udp4_csum_init(skb, uh, proto))
1767 goto csum_error;
1768
1769 sk = skb_steal_sock(skb);
1770 if (sk) {
1771 struct dst_entry *dst = skb_dst(skb);
1772 int ret;
1773
1774 if (unlikely(sk->sk_rx_dst != dst))
1775 udp_sk_rx_dst_set(sk, dst);
1776
1777 ret = udp_queue_rcv_skb(sk, skb);
1778 sock_put(sk);
1779 /* a return value > 0 means to resubmit the input, but
1780 * it wants the return to be -protocol, or 0
1781 */
1782 if (ret > 0)
1783 return -ret;
1784 return 0;
1785 }
1786
1787 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1788 return __udp4_lib_mcast_deliver(net, skb, uh,
1789 saddr, daddr, udptable, proto);
1790
1791 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1792 if (sk) {
1793 int ret;
1794
1795 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1796 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1797 inet_compute_pseudo);
1798
1799 ret = udp_queue_rcv_skb(sk, skb);
1800
1801 /* a return value > 0 means to resubmit the input, but
1802 * it wants the return to be -protocol, or 0
1803 */
1804 if (ret > 0)
1805 return -ret;
1806 return 0;
1807 }
1808
1809 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1810 goto drop;
1811 nf_reset(skb);
1812
1813 /* No socket. Drop packet silently, if checksum is wrong */
1814 if (udp_lib_checksum_complete(skb))
1815 goto csum_error;
1816
1817 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1818 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1819
1820 /*
1821 * Hmm. We got an UDP packet to a port to which we
1822 * don't wanna listen. Ignore it.
1823 */
1824 kfree_skb(skb);
1825 return 0;
1826
1827 short_packet:
1828 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1829 proto == IPPROTO_UDPLITE ? "Lite" : "",
1830 &saddr, ntohs(uh->source),
1831 ulen, skb->len,
1832 &daddr, ntohs(uh->dest));
1833 goto drop;
1834
1835 csum_error:
1836 /*
1837 * RFC1122: OK. Discards the bad packet silently (as far as
1838 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1839 */
1840 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1841 proto == IPPROTO_UDPLITE ? "Lite" : "",
1842 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1843 ulen);
1844 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1845 drop:
1846 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1847 kfree_skb(skb);
1848 return 0;
1849 }
1850
1851 /* We can only early demux multicast if there is a single matching socket.
1852 * If more than one socket found returns NULL
1853 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)1854 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1855 __be16 loc_port, __be32 loc_addr,
1856 __be16 rmt_port, __be32 rmt_addr,
1857 int dif)
1858 {
1859 struct sock *sk, *result;
1860 unsigned short hnum = ntohs(loc_port);
1861 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1862 struct udp_hslot *hslot = &udp_table.hash[slot];
1863
1864 /* Do not bother scanning a too big list */
1865 if (hslot->count > 10)
1866 return NULL;
1867
1868 result = NULL;
1869 sk_for_each_rcu(sk, &hslot->head) {
1870 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1871 rmt_port, rmt_addr, dif, hnum)) {
1872 if (result)
1873 return NULL;
1874 result = sk;
1875 }
1876 }
1877
1878 return result;
1879 }
1880
1881 /* For unicast we should only early demux connected sockets or we can
1882 * break forwarding setups. The chains here can be long so only check
1883 * if the first socket is an exact match and if not move on.
1884 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)1885 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1886 __be16 loc_port, __be32 loc_addr,
1887 __be16 rmt_port, __be32 rmt_addr,
1888 int dif)
1889 {
1890 unsigned short hnum = ntohs(loc_port);
1891 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1892 unsigned int slot2 = hash2 & udp_table.mask;
1893 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1894 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1895 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1896 struct sock *sk;
1897
1898 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1899 if (INET_MATCH(sk, net, acookie, rmt_addr,
1900 loc_addr, ports, dif))
1901 return sk;
1902 /* Only check first socket in chain */
1903 break;
1904 }
1905 return NULL;
1906 }
1907
udp_v4_early_demux(struct sk_buff * skb)1908 void udp_v4_early_demux(struct sk_buff *skb)
1909 {
1910 struct net *net = dev_net(skb->dev);
1911 const struct iphdr *iph;
1912 const struct udphdr *uh;
1913 struct sock *sk = NULL;
1914 struct dst_entry *dst;
1915 int dif = skb->dev->ifindex;
1916 int ours;
1917
1918 /* validate the packet */
1919 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1920 return;
1921
1922 iph = ip_hdr(skb);
1923 uh = udp_hdr(skb);
1924
1925 if (skb->pkt_type == PACKET_BROADCAST ||
1926 skb->pkt_type == PACKET_MULTICAST) {
1927 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1928
1929 if (!in_dev)
1930 return;
1931
1932 /* we are supposed to accept bcast packets */
1933 if (skb->pkt_type == PACKET_MULTICAST) {
1934 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1935 iph->protocol);
1936 if (!ours)
1937 return;
1938 }
1939
1940 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1941 uh->source, iph->saddr, dif);
1942 } else if (skb->pkt_type == PACKET_HOST) {
1943 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1944 uh->source, iph->saddr, dif);
1945 }
1946
1947 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1948 return;
1949
1950 skb->sk = sk;
1951 skb->destructor = sock_efree;
1952 dst = READ_ONCE(sk->sk_rx_dst);
1953
1954 if (dst)
1955 dst = dst_check(dst, 0);
1956 if (dst) {
1957 /* DST_NOCACHE can not be used without taking a reference */
1958 if (dst->flags & DST_NOCACHE) {
1959 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1960 skb_dst_set(skb, dst);
1961 } else {
1962 skb_dst_set_noref(skb, dst);
1963 }
1964 }
1965 }
1966
udp_rcv(struct sk_buff * skb)1967 int udp_rcv(struct sk_buff *skb)
1968 {
1969 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1970 }
1971
udp_destroy_sock(struct sock * sk)1972 void udp_destroy_sock(struct sock *sk)
1973 {
1974 struct udp_sock *up = udp_sk(sk);
1975 bool slow = lock_sock_fast(sk);
1976 udp_flush_pending_frames(sk);
1977 unlock_sock_fast(sk, slow);
1978 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1979 void (*encap_destroy)(struct sock *sk);
1980 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1981 if (encap_destroy)
1982 encap_destroy(sk);
1983 }
1984 }
1985
1986 /*
1987 * Socket option code for UDP
1988 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1989 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1990 char __user *optval, unsigned int optlen,
1991 int (*push_pending_frames)(struct sock *))
1992 {
1993 struct udp_sock *up = udp_sk(sk);
1994 int val, valbool;
1995 int err = 0;
1996 int is_udplite = IS_UDPLITE(sk);
1997
1998 if (optlen < sizeof(int))
1999 return -EINVAL;
2000
2001 if (get_user(val, (int __user *)optval))
2002 return -EFAULT;
2003
2004 valbool = val ? 1 : 0;
2005
2006 switch (optname) {
2007 case UDP_CORK:
2008 if (val != 0) {
2009 up->corkflag = 1;
2010 } else {
2011 up->corkflag = 0;
2012 lock_sock(sk);
2013 push_pending_frames(sk);
2014 release_sock(sk);
2015 }
2016 break;
2017
2018 case UDP_ENCAP:
2019 switch (val) {
2020 case 0:
2021 case UDP_ENCAP_ESPINUDP:
2022 case UDP_ENCAP_ESPINUDP_NON_IKE:
2023 up->encap_rcv = xfrm4_udp_encap_rcv;
2024 /* FALLTHROUGH */
2025 case UDP_ENCAP_L2TPINUDP:
2026 up->encap_type = val;
2027 udp_encap_enable();
2028 break;
2029 default:
2030 err = -ENOPROTOOPT;
2031 break;
2032 }
2033 break;
2034
2035 case UDP_NO_CHECK6_TX:
2036 up->no_check6_tx = valbool;
2037 break;
2038
2039 case UDP_NO_CHECK6_RX:
2040 up->no_check6_rx = valbool;
2041 break;
2042
2043 /*
2044 * UDP-Lite's partial checksum coverage (RFC 3828).
2045 */
2046 /* The sender sets actual checksum coverage length via this option.
2047 * The case coverage > packet length is handled by send module. */
2048 case UDPLITE_SEND_CSCOV:
2049 if (!is_udplite) /* Disable the option on UDP sockets */
2050 return -ENOPROTOOPT;
2051 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2052 val = 8;
2053 else if (val > USHRT_MAX)
2054 val = USHRT_MAX;
2055 up->pcslen = val;
2056 up->pcflag |= UDPLITE_SEND_CC;
2057 break;
2058
2059 /* The receiver specifies a minimum checksum coverage value. To make
2060 * sense, this should be set to at least 8 (as done below). If zero is
2061 * used, this again means full checksum coverage. */
2062 case UDPLITE_RECV_CSCOV:
2063 if (!is_udplite) /* Disable the option on UDP sockets */
2064 return -ENOPROTOOPT;
2065 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2066 val = 8;
2067 else if (val > USHRT_MAX)
2068 val = USHRT_MAX;
2069 up->pcrlen = val;
2070 up->pcflag |= UDPLITE_RECV_CC;
2071 break;
2072
2073 default:
2074 err = -ENOPROTOOPT;
2075 break;
2076 }
2077
2078 return err;
2079 }
2080 EXPORT_SYMBOL(udp_lib_setsockopt);
2081
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2082 int udp_setsockopt(struct sock *sk, int level, int optname,
2083 char __user *optval, unsigned int optlen)
2084 {
2085 if (level == SOL_UDP || level == SOL_UDPLITE)
2086 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2087 udp_push_pending_frames);
2088 return ip_setsockopt(sk, level, optname, optval, optlen);
2089 }
2090
2091 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2092 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2093 char __user *optval, unsigned int optlen)
2094 {
2095 if (level == SOL_UDP || level == SOL_UDPLITE)
2096 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2097 udp_push_pending_frames);
2098 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2099 }
2100 #endif
2101
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2102 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2103 char __user *optval, int __user *optlen)
2104 {
2105 struct udp_sock *up = udp_sk(sk);
2106 int val, len;
2107
2108 if (get_user(len, optlen))
2109 return -EFAULT;
2110
2111 len = min_t(unsigned int, len, sizeof(int));
2112
2113 if (len < 0)
2114 return -EINVAL;
2115
2116 switch (optname) {
2117 case UDP_CORK:
2118 val = up->corkflag;
2119 break;
2120
2121 case UDP_ENCAP:
2122 val = up->encap_type;
2123 break;
2124
2125 case UDP_NO_CHECK6_TX:
2126 val = up->no_check6_tx;
2127 break;
2128
2129 case UDP_NO_CHECK6_RX:
2130 val = up->no_check6_rx;
2131 break;
2132
2133 /* The following two cannot be changed on UDP sockets, the return is
2134 * always 0 (which corresponds to the full checksum coverage of UDP). */
2135 case UDPLITE_SEND_CSCOV:
2136 val = up->pcslen;
2137 break;
2138
2139 case UDPLITE_RECV_CSCOV:
2140 val = up->pcrlen;
2141 break;
2142
2143 default:
2144 return -ENOPROTOOPT;
2145 }
2146
2147 if (put_user(len, optlen))
2148 return -EFAULT;
2149 if (copy_to_user(optval, &val, len))
2150 return -EFAULT;
2151 return 0;
2152 }
2153 EXPORT_SYMBOL(udp_lib_getsockopt);
2154
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2155 int udp_getsockopt(struct sock *sk, int level, int optname,
2156 char __user *optval, int __user *optlen)
2157 {
2158 if (level == SOL_UDP || level == SOL_UDPLITE)
2159 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2160 return ip_getsockopt(sk, level, optname, optval, optlen);
2161 }
2162
2163 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2164 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2165 char __user *optval, int __user *optlen)
2166 {
2167 if (level == SOL_UDP || level == SOL_UDPLITE)
2168 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2169 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2170 }
2171 #endif
2172 /**
2173 * udp_poll - wait for a UDP event.
2174 * @file - file struct
2175 * @sock - socket
2176 * @wait - poll table
2177 *
2178 * This is same as datagram poll, except for the special case of
2179 * blocking sockets. If application is using a blocking fd
2180 * and a packet with checksum error is in the queue;
2181 * then it could get return from select indicating data available
2182 * but then block when reading it. Add special case code
2183 * to work around these arguably broken applications.
2184 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2185 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2186 {
2187 unsigned int mask = datagram_poll(file, sock, wait);
2188 struct sock *sk = sock->sk;
2189
2190 sock_rps_record_flow(sk);
2191
2192 /* Check for false positives due to checksum errors */
2193 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2194 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2195 mask &= ~(POLLIN | POLLRDNORM);
2196
2197 return mask;
2198
2199 }
2200 EXPORT_SYMBOL(udp_poll);
2201
udp_abort(struct sock * sk,int err)2202 int udp_abort(struct sock *sk, int err)
2203 {
2204 lock_sock(sk);
2205
2206 sk->sk_err = err;
2207 sk->sk_error_report(sk);
2208 __udp_disconnect(sk, 0);
2209
2210 release_sock(sk);
2211
2212 return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(udp_abort);
2215
2216 struct proto udp_prot = {
2217 .name = "UDP",
2218 .owner = THIS_MODULE,
2219 .close = udp_lib_close,
2220 .connect = ip4_datagram_connect,
2221 .disconnect = udp_disconnect,
2222 .ioctl = udp_ioctl,
2223 .destroy = udp_destroy_sock,
2224 .setsockopt = udp_setsockopt,
2225 .getsockopt = udp_getsockopt,
2226 .sendmsg = udp_sendmsg,
2227 .recvmsg = udp_recvmsg,
2228 .sendpage = udp_sendpage,
2229 .backlog_rcv = __udp_queue_rcv_skb,
2230 .release_cb = ip4_datagram_release_cb,
2231 .hash = udp_lib_hash,
2232 .unhash = udp_lib_unhash,
2233 .rehash = udp_v4_rehash,
2234 .get_port = udp_v4_get_port,
2235 .memory_allocated = &udp_memory_allocated,
2236 .sysctl_mem = sysctl_udp_mem,
2237 .sysctl_wmem = &sysctl_udp_wmem_min,
2238 .sysctl_rmem = &sysctl_udp_rmem_min,
2239 .obj_size = sizeof(struct udp_sock),
2240 .h.udp_table = &udp_table,
2241 #ifdef CONFIG_COMPAT
2242 .compat_setsockopt = compat_udp_setsockopt,
2243 .compat_getsockopt = compat_udp_getsockopt,
2244 #endif
2245 .diag_destroy = udp_abort,
2246 };
2247 EXPORT_SYMBOL(udp_prot);
2248
2249 /* ------------------------------------------------------------------------ */
2250 #ifdef CONFIG_PROC_FS
2251
udp_get_first(struct seq_file * seq,int start)2252 static struct sock *udp_get_first(struct seq_file *seq, int start)
2253 {
2254 struct sock *sk;
2255 struct udp_iter_state *state = seq->private;
2256 struct net *net = seq_file_net(seq);
2257
2258 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2259 ++state->bucket) {
2260 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2261
2262 if (hlist_empty(&hslot->head))
2263 continue;
2264
2265 spin_lock_bh(&hslot->lock);
2266 sk_for_each(sk, &hslot->head) {
2267 if (!net_eq(sock_net(sk), net))
2268 continue;
2269 if (sk->sk_family == state->family)
2270 goto found;
2271 }
2272 spin_unlock_bh(&hslot->lock);
2273 }
2274 sk = NULL;
2275 found:
2276 return sk;
2277 }
2278
udp_get_next(struct seq_file * seq,struct sock * sk)2279 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2280 {
2281 struct udp_iter_state *state = seq->private;
2282 struct net *net = seq_file_net(seq);
2283
2284 do {
2285 sk = sk_next(sk);
2286 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2287
2288 if (!sk) {
2289 if (state->bucket <= state->udp_table->mask)
2290 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291 return udp_get_first(seq, state->bucket + 1);
2292 }
2293 return sk;
2294 }
2295
udp_get_idx(struct seq_file * seq,loff_t pos)2296 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2297 {
2298 struct sock *sk = udp_get_first(seq, 0);
2299
2300 if (sk)
2301 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2302 --pos;
2303 return pos ? NULL : sk;
2304 }
2305
udp_seq_start(struct seq_file * seq,loff_t * pos)2306 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2307 {
2308 struct udp_iter_state *state = seq->private;
2309 state->bucket = MAX_UDP_PORTS;
2310
2311 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2312 }
2313
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2314 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2315 {
2316 struct sock *sk;
2317
2318 if (v == SEQ_START_TOKEN)
2319 sk = udp_get_idx(seq, 0);
2320 else
2321 sk = udp_get_next(seq, v);
2322
2323 ++*pos;
2324 return sk;
2325 }
2326
udp_seq_stop(struct seq_file * seq,void * v)2327 static void udp_seq_stop(struct seq_file *seq, void *v)
2328 {
2329 struct udp_iter_state *state = seq->private;
2330
2331 if (state->bucket <= state->udp_table->mask)
2332 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2333 }
2334
udp_seq_open(struct inode * inode,struct file * file)2335 int udp_seq_open(struct inode *inode, struct file *file)
2336 {
2337 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2338 struct udp_iter_state *s;
2339 int err;
2340
2341 err = seq_open_net(inode, file, &afinfo->seq_ops,
2342 sizeof(struct udp_iter_state));
2343 if (err < 0)
2344 return err;
2345
2346 s = ((struct seq_file *)file->private_data)->private;
2347 s->family = afinfo->family;
2348 s->udp_table = afinfo->udp_table;
2349 return err;
2350 }
2351 EXPORT_SYMBOL(udp_seq_open);
2352
2353 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2354 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2355 {
2356 struct proc_dir_entry *p;
2357 int rc = 0;
2358
2359 afinfo->seq_ops.start = udp_seq_start;
2360 afinfo->seq_ops.next = udp_seq_next;
2361 afinfo->seq_ops.stop = udp_seq_stop;
2362
2363 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2364 afinfo->seq_fops, afinfo);
2365 if (!p)
2366 rc = -ENOMEM;
2367 return rc;
2368 }
2369 EXPORT_SYMBOL(udp_proc_register);
2370
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2371 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2372 {
2373 remove_proc_entry(afinfo->name, net->proc_net);
2374 }
2375 EXPORT_SYMBOL(udp_proc_unregister);
2376
2377 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2378 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2379 int bucket)
2380 {
2381 struct inet_sock *inet = inet_sk(sp);
2382 __be32 dest = inet->inet_daddr;
2383 __be32 src = inet->inet_rcv_saddr;
2384 __u16 destp = ntohs(inet->inet_dport);
2385 __u16 srcp = ntohs(inet->inet_sport);
2386
2387 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2388 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2389 bucket, src, srcp, dest, destp, sp->sk_state,
2390 sk_wmem_alloc_get(sp),
2391 sk_rmem_alloc_get(sp),
2392 0, 0L, 0,
2393 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2394 0, sock_i_ino(sp),
2395 atomic_read(&sp->sk_refcnt), sp,
2396 atomic_read(&sp->sk_drops));
2397 }
2398
udp4_seq_show(struct seq_file * seq,void * v)2399 int udp4_seq_show(struct seq_file *seq, void *v)
2400 {
2401 seq_setwidth(seq, 127);
2402 if (v == SEQ_START_TOKEN)
2403 seq_puts(seq, " sl local_address rem_address st tx_queue "
2404 "rx_queue tr tm->when retrnsmt uid timeout "
2405 "inode ref pointer drops");
2406 else {
2407 struct udp_iter_state *state = seq->private;
2408
2409 udp4_format_sock(v, seq, state->bucket);
2410 }
2411 seq_pad(seq, '\n');
2412 return 0;
2413 }
2414
2415 static const struct file_operations udp_afinfo_seq_fops = {
2416 .owner = THIS_MODULE,
2417 .open = udp_seq_open,
2418 .read = seq_read,
2419 .llseek = seq_lseek,
2420 .release = seq_release_net
2421 };
2422
2423 /* ------------------------------------------------------------------------ */
2424 static struct udp_seq_afinfo udp4_seq_afinfo = {
2425 .name = "udp",
2426 .family = AF_INET,
2427 .udp_table = &udp_table,
2428 .seq_fops = &udp_afinfo_seq_fops,
2429 .seq_ops = {
2430 .show = udp4_seq_show,
2431 },
2432 };
2433
udp4_proc_init_net(struct net * net)2434 static int __net_init udp4_proc_init_net(struct net *net)
2435 {
2436 return udp_proc_register(net, &udp4_seq_afinfo);
2437 }
2438
udp4_proc_exit_net(struct net * net)2439 static void __net_exit udp4_proc_exit_net(struct net *net)
2440 {
2441 udp_proc_unregister(net, &udp4_seq_afinfo);
2442 }
2443
2444 static struct pernet_operations udp4_net_ops = {
2445 .init = udp4_proc_init_net,
2446 .exit = udp4_proc_exit_net,
2447 };
2448
udp4_proc_init(void)2449 int __init udp4_proc_init(void)
2450 {
2451 return register_pernet_subsys(&udp4_net_ops);
2452 }
2453
udp4_proc_exit(void)2454 void udp4_proc_exit(void)
2455 {
2456 unregister_pernet_subsys(&udp4_net_ops);
2457 }
2458 #endif /* CONFIG_PROC_FS */
2459
2460 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2461 static int __init set_uhash_entries(char *str)
2462 {
2463 ssize_t ret;
2464
2465 if (!str)
2466 return 0;
2467
2468 ret = kstrtoul(str, 0, &uhash_entries);
2469 if (ret)
2470 return 0;
2471
2472 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2473 uhash_entries = UDP_HTABLE_SIZE_MIN;
2474 return 1;
2475 }
2476 __setup("uhash_entries=", set_uhash_entries);
2477
udp_table_init(struct udp_table * table,const char * name)2478 void __init udp_table_init(struct udp_table *table, const char *name)
2479 {
2480 unsigned int i;
2481
2482 table->hash = alloc_large_system_hash(name,
2483 2 * sizeof(struct udp_hslot),
2484 uhash_entries,
2485 21, /* one slot per 2 MB */
2486 0,
2487 &table->log,
2488 &table->mask,
2489 UDP_HTABLE_SIZE_MIN,
2490 64 * 1024);
2491
2492 table->hash2 = table->hash + (table->mask + 1);
2493 for (i = 0; i <= table->mask; i++) {
2494 INIT_HLIST_HEAD(&table->hash[i].head);
2495 table->hash[i].count = 0;
2496 spin_lock_init(&table->hash[i].lock);
2497 }
2498 for (i = 0; i <= table->mask; i++) {
2499 INIT_HLIST_HEAD(&table->hash2[i].head);
2500 table->hash2[i].count = 0;
2501 spin_lock_init(&table->hash2[i].lock);
2502 }
2503 }
2504
udp_flow_hashrnd(void)2505 u32 udp_flow_hashrnd(void)
2506 {
2507 static u32 hashrnd __read_mostly;
2508
2509 net_get_random_once(&hashrnd, sizeof(hashrnd));
2510
2511 return hashrnd;
2512 }
2513 EXPORT_SYMBOL(udp_flow_hashrnd);
2514
udp_init(void)2515 void __init udp_init(void)
2516 {
2517 unsigned long limit;
2518
2519 udp_table_init(&udp_table, "UDP");
2520 limit = nr_free_buffer_pages() / 8;
2521 limit = max(limit, 128UL);
2522 sysctl_udp_mem[0] = limit / 4 * 3;
2523 sysctl_udp_mem[1] = limit;
2524 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2525
2526 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2527 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2528 }
2529