• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard),unsigned int log)137 static int udp_lib_lport_inuse(struct net *net, __u16 num,
138 			       const struct udp_hslot *hslot,
139 			       unsigned long *bitmap,
140 			       struct sock *sk,
141 			       int (*saddr_comp)(const struct sock *sk1,
142 						 const struct sock *sk2,
143 						 bool match_wildcard),
144 			       unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
158 		     !uid_eq(uid, sock_i_uid(sk2))) &&
159 		    saddr_comp(sk, sk2, true)) {
160 			if (!bitmap)
161 				return 1;
162 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 		}
164 	}
165 	return 0;
166 }
167 
168 /*
169  * Note: we still hold spinlock of primary hash chain, so no other writer
170  * can insert/delete a socket with local_port == num
171  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard))172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 				struct udp_hslot *hslot2,
174 				struct sock *sk,
175 				int (*saddr_comp)(const struct sock *sk1,
176 						  const struct sock *sk2,
177 						  bool match_wildcard))
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
192 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
193 		     !uid_eq(uid, sock_i_uid(sk2))) &&
194 		    saddr_comp(sk, sk2, true)) {
195 			res = 1;
196 			break;
197 		}
198 	}
199 	spin_unlock(&hslot2->lock);
200 	return res;
201 }
202 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot,int (* saddr_same)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard))203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
204 				  int (*saddr_same)(const struct sock *sk1,
205 						    const struct sock *sk2,
206 						    bool match_wildcard))
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    (*saddr_same)(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2);
222 		}
223 	}
224 
225 	return reuseport_alloc(sk);
226 }
227 
228 /**
229  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
230  *
231  *  @sk:          socket struct in question
232  *  @snum:        port number to look up
233  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2,bool match_wildcard),unsigned int hash2_nulladdr)237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     int (*saddr_comp)(const struct sock *sk1,
239 				       const struct sock *sk2,
240 				       bool match_wildcard),
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_hslot *hslot, *hslot2;
244 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
245 	int    error = 1;
246 	struct net *net = sock_net(sk);
247 
248 	if (!snum) {
249 		int low, high, remaining;
250 		unsigned int rand;
251 		unsigned short first, last;
252 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
253 
254 		inet_get_local_port_range(net, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = prandom_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    saddr_comp, udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
302 						     sk, saddr_comp);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk, saddr_comp);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
315 					saddr_comp, 0))
316 			goto fail_unlock;
317 	}
318 found:
319 	inet_sk(sk)->inet_num = snum;
320 	udp_sk(sk)->udp_port_hash = snum;
321 	udp_sk(sk)->udp_portaddr_hash ^= snum;
322 	if (sk_unhashed(sk)) {
323 		if (sk->sk_reuseport &&
324 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
325 			inet_sk(sk)->inet_num = 0;
326 			udp_sk(sk)->udp_port_hash = 0;
327 			udp_sk(sk)->udp_portaddr_hash ^= snum;
328 			goto fail_unlock;
329 		}
330 
331 		sk_add_node_rcu(sk, &hslot->head);
332 		hslot->count++;
333 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334 
335 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 		spin_lock(&hslot2->lock);
337 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 		    sk->sk_family == AF_INET6)
339 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		else
342 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		hslot2->count++;
345 		spin_unlock(&hslot2->lock);
346 	}
347 	sock_set_flag(sk, SOCK_RCU_FREE);
348 	error = 0;
349 fail_unlock:
350 	spin_unlock_bh(&hslot->lock);
351 fail:
352 	return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355 
356 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
357  * match_wildcard == false: addresses must be exactly the same, i.e.
358  *                          0.0.0.0 only equals to 0.0.0.0
359  */
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2,bool match_wildcard)360 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
361 			 bool match_wildcard)
362 {
363 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
364 
365 	if (!ipv6_only_sock(sk2)) {
366 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
367 			return 1;
368 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
369 			return match_wildcard;
370 	}
371 	return 0;
372 }
373 
udp4_portaddr_hash(const struct net * net,__be32 saddr,unsigned int port)374 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
375 			      unsigned int port)
376 {
377 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
378 }
379 
udp_v4_get_port(struct sock * sk,unsigned short snum)380 int udp_v4_get_port(struct sock *sk, unsigned short snum)
381 {
382 	unsigned int hash2_nulladdr =
383 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
384 	unsigned int hash2_partial =
385 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
386 
387 	/* precompute partial secondary hash */
388 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
389 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
390 }
391 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif)392 static int compute_score(struct sock *sk, struct net *net,
393 			 __be32 saddr, __be16 sport,
394 			 __be32 daddr, unsigned short hnum, int dif)
395 {
396 	int score;
397 	struct inet_sock *inet;
398 
399 	if (!net_eq(sock_net(sk), net) ||
400 	    udp_sk(sk)->udp_port_hash != hnum ||
401 	    ipv6_only_sock(sk))
402 		return -1;
403 
404 	score = (sk->sk_family == PF_INET) ? 2 : 1;
405 	inet = inet_sk(sk);
406 
407 	if (inet->inet_rcv_saddr) {
408 		if (inet->inet_rcv_saddr != daddr)
409 			return -1;
410 		score += 4;
411 	}
412 
413 	if (inet->inet_daddr) {
414 		if (inet->inet_daddr != saddr)
415 			return -1;
416 		score += 4;
417 	}
418 
419 	if (inet->inet_dport) {
420 		if (inet->inet_dport != sport)
421 			return -1;
422 		score += 4;
423 	}
424 
425 	if (sk->sk_bound_dev_if) {
426 		if (sk->sk_bound_dev_if != dif)
427 			return -1;
428 		score += 4;
429 	}
430 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
431 		score++;
432 	return score;
433 }
434 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)435 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
436 		       const __u16 lport, const __be32 faddr,
437 		       const __be16 fport)
438 {
439 	static u32 udp_ehash_secret __read_mostly;
440 
441 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
442 
443 	return __inet_ehashfn(laddr, lport, faddr, fport,
444 			      udp_ehash_secret + net_hash_mix(net));
445 }
446 
447 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,struct sk_buff * skb)448 static struct sock *udp4_lib_lookup2(struct net *net,
449 		__be32 saddr, __be16 sport,
450 		__be32 daddr, unsigned int hnum, int dif,
451 		struct udp_hslot *hslot2,
452 		struct sk_buff *skb)
453 {
454 	struct sock *sk, *result;
455 	int score, badness, matches = 0, reuseport = 0;
456 	u32 hash = 0;
457 
458 	result = NULL;
459 	badness = 0;
460 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
461 		score = compute_score(sk, net, saddr, sport,
462 				      daddr, hnum, dif);
463 		if (score > badness) {
464 			reuseport = sk->sk_reuseport;
465 			if (reuseport) {
466 				hash = udp_ehashfn(net, daddr, hnum,
467 						   saddr, sport);
468 				result = reuseport_select_sock(sk, hash, skb,
469 							sizeof(struct udphdr));
470 				if (result)
471 					return result;
472 				matches = 1;
473 			}
474 			badness = score;
475 			result = sk;
476 		} else if (score == badness && reuseport) {
477 			matches++;
478 			if (reciprocal_scale(hash, matches) == 0)
479 				result = sk;
480 			hash = next_pseudo_random32(hash);
481 		}
482 	}
483 	return result;
484 }
485 
486 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
487  * harder than this. -DaveM
488  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable,struct sk_buff * skb)489 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
490 		__be16 sport, __be32 daddr, __be16 dport,
491 		int dif, struct udp_table *udptable, struct sk_buff *skb)
492 {
493 	struct sock *sk, *result;
494 	unsigned short hnum = ntohs(dport);
495 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
496 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
497 	int score, badness, matches = 0, reuseport = 0;
498 	u32 hash = 0;
499 
500 	if (hslot->count > 10) {
501 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
502 		slot2 = hash2 & udptable->mask;
503 		hslot2 = &udptable->hash2[slot2];
504 		if (hslot->count < hslot2->count)
505 			goto begin;
506 
507 		result = udp4_lib_lookup2(net, saddr, sport,
508 					  daddr, hnum, dif,
509 					  hslot2, skb);
510 		if (!result) {
511 			unsigned int old_slot2 = slot2;
512 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
513 			slot2 = hash2 & udptable->mask;
514 			/* avoid searching the same slot again. */
515 			if (unlikely(slot2 == old_slot2))
516 				return result;
517 
518 			hslot2 = &udptable->hash2[slot2];
519 			if (hslot->count < hslot2->count)
520 				goto begin;
521 
522 			result = udp4_lib_lookup2(net, saddr, sport,
523 						  daddr, hnum, dif,
524 						  hslot2, skb);
525 		}
526 		return result;
527 	}
528 begin:
529 	result = NULL;
530 	badness = 0;
531 	sk_for_each_rcu(sk, &hslot->head) {
532 		score = compute_score(sk, net, saddr, sport,
533 				      daddr, hnum, dif);
534 		if (score > badness) {
535 			reuseport = sk->sk_reuseport;
536 			if (reuseport) {
537 				hash = udp_ehashfn(net, daddr, hnum,
538 						   saddr, sport);
539 				result = reuseport_select_sock(sk, hash, skb,
540 							sizeof(struct udphdr));
541 				if (result)
542 					return result;
543 				matches = 1;
544 			}
545 			result = sk;
546 			badness = score;
547 		} else if (score == badness && reuseport) {
548 			matches++;
549 			if (reciprocal_scale(hash, matches) == 0)
550 				result = sk;
551 			hash = next_pseudo_random32(hash);
552 		}
553 	}
554 	return result;
555 }
556 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
557 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)558 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
559 						 __be16 sport, __be16 dport,
560 						 struct udp_table *udptable)
561 {
562 	const struct iphdr *iph = ip_hdr(skb);
563 
564 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
565 				 iph->daddr, dport, inet_iif(skb),
566 				 udptable, skb);
567 }
568 
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)569 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
570 				 __be16 sport, __be16 dport)
571 {
572 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
573 }
574 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
575 
576 /* Must be called under rcu_read_lock().
577  * Does increment socket refcount.
578  */
579 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
580     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)581 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
582 			     __be32 daddr, __be16 dport, int dif)
583 {
584 	struct sock *sk;
585 
586 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
587 			       dif, &udp_table, NULL);
588 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
589 		sk = NULL;
590 	return sk;
591 }
592 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
593 #endif
594 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,unsigned short hnum)595 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
596 				       __be16 loc_port, __be32 loc_addr,
597 				       __be16 rmt_port, __be32 rmt_addr,
598 				       int dif, unsigned short hnum)
599 {
600 	struct inet_sock *inet = inet_sk(sk);
601 
602 	if (!net_eq(sock_net(sk), net) ||
603 	    udp_sk(sk)->udp_port_hash != hnum ||
604 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
605 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
606 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
607 	    ipv6_only_sock(sk) ||
608 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
609 		return false;
610 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
611 		return false;
612 	return true;
613 }
614 
615 /*
616  * This routine is called by the ICMP module when it gets some
617  * sort of error condition.  If err < 0 then the socket should
618  * be closed and the error returned to the user.  If err > 0
619  * it's just the icmp type << 8 | icmp code.
620  * Header points to the ip header of the error packet. We move
621  * on past this. Then (as it used to claim before adjustment)
622  * header points to the first 8 bytes of the udp header.  We need
623  * to find the appropriate port.
624  */
625 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)626 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
627 {
628 	struct inet_sock *inet;
629 	const struct iphdr *iph = (const struct iphdr *)skb->data;
630 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
631 	const int type = icmp_hdr(skb)->type;
632 	const int code = icmp_hdr(skb)->code;
633 	struct sock *sk;
634 	int harderr;
635 	int err;
636 	struct net *net = dev_net(skb->dev);
637 
638 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
639 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
640 			NULL);
641 	if (!sk) {
642 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
643 		return;	/* No socket for error */
644 	}
645 
646 	err = 0;
647 	harderr = 0;
648 	inet = inet_sk(sk);
649 
650 	switch (type) {
651 	default:
652 	case ICMP_TIME_EXCEEDED:
653 		err = EHOSTUNREACH;
654 		break;
655 	case ICMP_SOURCE_QUENCH:
656 		goto out;
657 	case ICMP_PARAMETERPROB:
658 		err = EPROTO;
659 		harderr = 1;
660 		break;
661 	case ICMP_DEST_UNREACH:
662 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
663 			ipv4_sk_update_pmtu(skb, sk, info);
664 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
665 				err = EMSGSIZE;
666 				harderr = 1;
667 				break;
668 			}
669 			goto out;
670 		}
671 		err = EHOSTUNREACH;
672 		if (code <= NR_ICMP_UNREACH) {
673 			harderr = icmp_err_convert[code].fatal;
674 			err = icmp_err_convert[code].errno;
675 		}
676 		break;
677 	case ICMP_REDIRECT:
678 		ipv4_sk_redirect(skb, sk);
679 		goto out;
680 	}
681 
682 	/*
683 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
684 	 *	4.1.3.3.
685 	 */
686 	if (!inet->recverr) {
687 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
688 			goto out;
689 	} else
690 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
691 
692 	sk->sk_err = err;
693 	sk->sk_error_report(sk);
694 out:
695 	return;
696 }
697 
udp_err(struct sk_buff * skb,u32 info)698 void udp_err(struct sk_buff *skb, u32 info)
699 {
700 	__udp4_lib_err(skb, info, &udp_table);
701 }
702 
703 /*
704  * Throw away all pending data and cancel the corking. Socket is locked.
705  */
udp_flush_pending_frames(struct sock * sk)706 void udp_flush_pending_frames(struct sock *sk)
707 {
708 	struct udp_sock *up = udp_sk(sk);
709 
710 	if (up->pending) {
711 		up->len = 0;
712 		up->pending = 0;
713 		ip_flush_pending_frames(sk);
714 	}
715 }
716 EXPORT_SYMBOL(udp_flush_pending_frames);
717 
718 /**
719  * 	udp4_hwcsum  -  handle outgoing HW checksumming
720  * 	@skb: 	sk_buff containing the filled-in UDP header
721  * 	        (checksum field must be zeroed out)
722  *	@src:	source IP address
723  *	@dst:	destination IP address
724  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)725 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
726 {
727 	struct udphdr *uh = udp_hdr(skb);
728 	int offset = skb_transport_offset(skb);
729 	int len = skb->len - offset;
730 	int hlen = len;
731 	__wsum csum = 0;
732 
733 	if (!skb_has_frag_list(skb)) {
734 		/*
735 		 * Only one fragment on the socket.
736 		 */
737 		skb->csum_start = skb_transport_header(skb) - skb->head;
738 		skb->csum_offset = offsetof(struct udphdr, check);
739 		uh->check = ~csum_tcpudp_magic(src, dst, len,
740 					       IPPROTO_UDP, 0);
741 	} else {
742 		struct sk_buff *frags;
743 
744 		/*
745 		 * HW-checksum won't work as there are two or more
746 		 * fragments on the socket so that all csums of sk_buffs
747 		 * should be together
748 		 */
749 		skb_walk_frags(skb, frags) {
750 			csum = csum_add(csum, frags->csum);
751 			hlen -= frags->len;
752 		}
753 
754 		csum = skb_checksum(skb, offset, hlen, csum);
755 		skb->ip_summed = CHECKSUM_NONE;
756 
757 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
758 		if (uh->check == 0)
759 			uh->check = CSUM_MANGLED_0;
760 	}
761 }
762 EXPORT_SYMBOL_GPL(udp4_hwcsum);
763 
764 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
765  * for the simple case like when setting the checksum for a UDP tunnel.
766  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)767 void udp_set_csum(bool nocheck, struct sk_buff *skb,
768 		  __be32 saddr, __be32 daddr, int len)
769 {
770 	struct udphdr *uh = udp_hdr(skb);
771 
772 	if (nocheck) {
773 		uh->check = 0;
774 	} else if (skb_is_gso(skb)) {
775 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
776 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
777 		uh->check = 0;
778 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
779 		if (uh->check == 0)
780 			uh->check = CSUM_MANGLED_0;
781 	} else {
782 		skb->ip_summed = CHECKSUM_PARTIAL;
783 		skb->csum_start = skb_transport_header(skb) - skb->head;
784 		skb->csum_offset = offsetof(struct udphdr, check);
785 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
786 	}
787 }
788 EXPORT_SYMBOL(udp_set_csum);
789 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)790 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
791 {
792 	struct sock *sk = skb->sk;
793 	struct inet_sock *inet = inet_sk(sk);
794 	struct udphdr *uh;
795 	int err = 0;
796 	int is_udplite = IS_UDPLITE(sk);
797 	int offset = skb_transport_offset(skb);
798 	int len = skb->len - offset;
799 	__wsum csum = 0;
800 
801 	/*
802 	 * Create a UDP header
803 	 */
804 	uh = udp_hdr(skb);
805 	uh->source = inet->inet_sport;
806 	uh->dest = fl4->fl4_dport;
807 	uh->len = htons(len);
808 	uh->check = 0;
809 
810 	if (is_udplite)  				 /*     UDP-Lite      */
811 		csum = udplite_csum(skb);
812 
813 	else if (sk->sk_no_check_tx && !skb_is_gso(skb)) {   /* UDP csum off */
814 
815 		skb->ip_summed = CHECKSUM_NONE;
816 		goto send;
817 
818 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
819 
820 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
821 		goto send;
822 
823 	} else
824 		csum = udp_csum(skb);
825 
826 	/* add protocol-dependent pseudo-header */
827 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
828 				      sk->sk_protocol, csum);
829 	if (uh->check == 0)
830 		uh->check = CSUM_MANGLED_0;
831 
832 send:
833 	err = ip_send_skb(sock_net(sk), skb);
834 	if (err) {
835 		if (err == -ENOBUFS && !inet->recverr) {
836 			UDP_INC_STATS(sock_net(sk),
837 				      UDP_MIB_SNDBUFERRORS, is_udplite);
838 			err = 0;
839 		}
840 	} else
841 		UDP_INC_STATS(sock_net(sk),
842 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
843 	return err;
844 }
845 
846 /*
847  * Push out all pending data as one UDP datagram. Socket is locked.
848  */
udp_push_pending_frames(struct sock * sk)849 int udp_push_pending_frames(struct sock *sk)
850 {
851 	struct udp_sock  *up = udp_sk(sk);
852 	struct inet_sock *inet = inet_sk(sk);
853 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
854 	struct sk_buff *skb;
855 	int err = 0;
856 
857 	skb = ip_finish_skb(sk, fl4);
858 	if (!skb)
859 		goto out;
860 
861 	err = udp_send_skb(skb, fl4);
862 
863 out:
864 	up->len = 0;
865 	up->pending = 0;
866 	return err;
867 }
868 EXPORT_SYMBOL(udp_push_pending_frames);
869 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)870 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
871 {
872 	struct inet_sock *inet = inet_sk(sk);
873 	struct udp_sock *up = udp_sk(sk);
874 	struct flowi4 fl4_stack;
875 	struct flowi4 *fl4;
876 	int ulen = len;
877 	struct ipcm_cookie ipc;
878 	struct rtable *rt = NULL;
879 	int free = 0;
880 	int connected = 0;
881 	__be32 daddr, faddr, saddr;
882 	__be16 dport;
883 	u8  tos;
884 	int err, is_udplite = IS_UDPLITE(sk);
885 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
886 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
887 	struct sk_buff *skb;
888 	struct ip_options_data opt_copy;
889 
890 	if (len > 0xFFFF)
891 		return -EMSGSIZE;
892 
893 	/*
894 	 *	Check the flags.
895 	 */
896 
897 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
898 		return -EOPNOTSUPP;
899 
900 	ipc.opt = NULL;
901 	ipc.tx_flags = 0;
902 	ipc.ttl = 0;
903 	ipc.tos = -1;
904 
905 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
906 
907 	fl4 = &inet->cork.fl.u.ip4;
908 	if (up->pending) {
909 		/*
910 		 * There are pending frames.
911 		 * The socket lock must be held while it's corked.
912 		 */
913 		lock_sock(sk);
914 		if (likely(up->pending)) {
915 			if (unlikely(up->pending != AF_INET)) {
916 				release_sock(sk);
917 				return -EINVAL;
918 			}
919 			goto do_append_data;
920 		}
921 		release_sock(sk);
922 	}
923 	ulen += sizeof(struct udphdr);
924 
925 	/*
926 	 *	Get and verify the address.
927 	 */
928 	if (msg->msg_name) {
929 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
930 		if (msg->msg_namelen < sizeof(*usin))
931 			return -EINVAL;
932 		if (usin->sin_family != AF_INET) {
933 			if (usin->sin_family != AF_UNSPEC)
934 				return -EAFNOSUPPORT;
935 		}
936 
937 		daddr = usin->sin_addr.s_addr;
938 		dport = usin->sin_port;
939 		if (dport == 0)
940 			return -EINVAL;
941 	} else {
942 		if (sk->sk_state != TCP_ESTABLISHED)
943 			return -EDESTADDRREQ;
944 		daddr = inet->inet_daddr;
945 		dport = inet->inet_dport;
946 		/* Open fast path for connected socket.
947 		   Route will not be used, if at least one option is set.
948 		 */
949 		connected = 1;
950 	}
951 
952 	ipc.sockc.tsflags = sk->sk_tsflags;
953 	ipc.addr = inet->inet_saddr;
954 	ipc.oif = sk->sk_bound_dev_if;
955 
956 	if (msg->msg_controllen) {
957 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
958 		if (unlikely(err)) {
959 			kfree(ipc.opt);
960 			return err;
961 		}
962 		if (ipc.opt)
963 			free = 1;
964 		connected = 0;
965 	}
966 	if (!ipc.opt) {
967 		struct ip_options_rcu *inet_opt;
968 
969 		rcu_read_lock();
970 		inet_opt = rcu_dereference(inet->inet_opt);
971 		if (inet_opt) {
972 			memcpy(&opt_copy, inet_opt,
973 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
974 			ipc.opt = &opt_copy.opt;
975 		}
976 		rcu_read_unlock();
977 	}
978 
979 	saddr = ipc.addr;
980 	ipc.addr = faddr = daddr;
981 
982 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
983 
984 	if (ipc.opt && ipc.opt->opt.srr) {
985 		if (!daddr)
986 			return -EINVAL;
987 		faddr = ipc.opt->opt.faddr;
988 		connected = 0;
989 	}
990 	tos = get_rttos(&ipc, inet);
991 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
992 	    (msg->msg_flags & MSG_DONTROUTE) ||
993 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
994 		tos |= RTO_ONLINK;
995 		connected = 0;
996 	}
997 
998 	if (ipv4_is_multicast(daddr)) {
999 		if (!ipc.oif)
1000 			ipc.oif = inet->mc_index;
1001 		if (!saddr)
1002 			saddr = inet->mc_addr;
1003 		connected = 0;
1004 	} else if (!ipc.oif)
1005 		ipc.oif = inet->uc_index;
1006 
1007 	if (connected)
1008 		rt = (struct rtable *)sk_dst_check(sk, 0);
1009 
1010 	if (!rt) {
1011 		struct net *net = sock_net(sk);
1012 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1013 
1014 		fl4 = &fl4_stack;
1015 
1016 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1017 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1018 				   flow_flags,
1019 				   faddr, saddr, dport, inet->inet_sport,
1020 				   sk->sk_uid);
1021 
1022 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1023 		rt = ip_route_output_flow(net, fl4, sk);
1024 		if (IS_ERR(rt)) {
1025 			err = PTR_ERR(rt);
1026 			rt = NULL;
1027 			if (err == -ENETUNREACH)
1028 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1029 			goto out;
1030 		}
1031 
1032 		err = -EACCES;
1033 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1034 		    !sock_flag(sk, SOCK_BROADCAST))
1035 			goto out;
1036 		if (connected)
1037 			sk_dst_set(sk, dst_clone(&rt->dst));
1038 	}
1039 
1040 	if (msg->msg_flags&MSG_CONFIRM)
1041 		goto do_confirm;
1042 back_from_confirm:
1043 
1044 	saddr = fl4->saddr;
1045 	if (!ipc.addr)
1046 		daddr = ipc.addr = fl4->daddr;
1047 
1048 	/* Lockless fast path for the non-corking case. */
1049 	if (!corkreq) {
1050 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1051 				  sizeof(struct udphdr), &ipc, &rt,
1052 				  msg->msg_flags);
1053 		err = PTR_ERR(skb);
1054 		if (!IS_ERR_OR_NULL(skb))
1055 			err = udp_send_skb(skb, fl4);
1056 		goto out;
1057 	}
1058 
1059 	lock_sock(sk);
1060 	if (unlikely(up->pending)) {
1061 		/* The socket is already corked while preparing it. */
1062 		/* ... which is an evident application bug. --ANK */
1063 		release_sock(sk);
1064 
1065 		net_dbg_ratelimited("cork app bug 2\n");
1066 		err = -EINVAL;
1067 		goto out;
1068 	}
1069 	/*
1070 	 *	Now cork the socket to pend data.
1071 	 */
1072 	fl4 = &inet->cork.fl.u.ip4;
1073 	fl4->daddr = daddr;
1074 	fl4->saddr = saddr;
1075 	fl4->fl4_dport = dport;
1076 	fl4->fl4_sport = inet->inet_sport;
1077 	up->pending = AF_INET;
1078 
1079 do_append_data:
1080 	up->len += ulen;
1081 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1082 			     sizeof(struct udphdr), &ipc, &rt,
1083 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1084 	if (err)
1085 		udp_flush_pending_frames(sk);
1086 	else if (!corkreq)
1087 		err = udp_push_pending_frames(sk);
1088 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1089 		up->pending = 0;
1090 	release_sock(sk);
1091 
1092 out:
1093 	ip_rt_put(rt);
1094 	if (free)
1095 		kfree(ipc.opt);
1096 	if (!err)
1097 		return len;
1098 	/*
1099 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1100 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1101 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1102 	 * things).  We could add another new stat but at least for now that
1103 	 * seems like overkill.
1104 	 */
1105 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1106 		UDP_INC_STATS(sock_net(sk),
1107 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1108 	}
1109 	return err;
1110 
1111 do_confirm:
1112 	dst_confirm(&rt->dst);
1113 	if (!(msg->msg_flags&MSG_PROBE) || len)
1114 		goto back_from_confirm;
1115 	err = 0;
1116 	goto out;
1117 }
1118 EXPORT_SYMBOL(udp_sendmsg);
1119 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1120 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1121 		 size_t size, int flags)
1122 {
1123 	struct inet_sock *inet = inet_sk(sk);
1124 	struct udp_sock *up = udp_sk(sk);
1125 	int ret;
1126 
1127 	if (flags & MSG_SENDPAGE_NOTLAST)
1128 		flags |= MSG_MORE;
1129 
1130 	if (!up->pending) {
1131 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1132 
1133 		/* Call udp_sendmsg to specify destination address which
1134 		 * sendpage interface can't pass.
1135 		 * This will succeed only when the socket is connected.
1136 		 */
1137 		ret = udp_sendmsg(sk, &msg, 0);
1138 		if (ret < 0)
1139 			return ret;
1140 	}
1141 
1142 	lock_sock(sk);
1143 
1144 	if (unlikely(!up->pending)) {
1145 		release_sock(sk);
1146 
1147 		net_dbg_ratelimited("udp cork app bug 3\n");
1148 		return -EINVAL;
1149 	}
1150 
1151 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1152 			     page, offset, size, flags);
1153 	if (ret == -EOPNOTSUPP) {
1154 		release_sock(sk);
1155 		return sock_no_sendpage(sk->sk_socket, page, offset,
1156 					size, flags);
1157 	}
1158 	if (ret < 0) {
1159 		udp_flush_pending_frames(sk);
1160 		goto out;
1161 	}
1162 
1163 	up->len += size;
1164 	if (!(up->corkflag || (flags&MSG_MORE)))
1165 		ret = udp_push_pending_frames(sk);
1166 	if (!ret)
1167 		ret = size;
1168 out:
1169 	release_sock(sk);
1170 	return ret;
1171 }
1172 
1173 /**
1174  *	first_packet_length	- return length of first packet in receive queue
1175  *	@sk: socket
1176  *
1177  *	Drops all bad checksum frames, until a valid one is found.
1178  *	Returns the length of found skb, or -1 if none is found.
1179  */
first_packet_length(struct sock * sk)1180 static int first_packet_length(struct sock *sk)
1181 {
1182 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1183 	struct sk_buff *skb;
1184 	int res;
1185 
1186 	__skb_queue_head_init(&list_kill);
1187 
1188 	spin_lock_bh(&rcvq->lock);
1189 	while ((skb = skb_peek(rcvq)) != NULL &&
1190 		udp_lib_checksum_complete(skb)) {
1191 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1192 				IS_UDPLITE(sk));
1193 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1194 				IS_UDPLITE(sk));
1195 		atomic_inc(&sk->sk_drops);
1196 		__skb_unlink(skb, rcvq);
1197 		__skb_queue_tail(&list_kill, skb);
1198 	}
1199 	res = skb ? skb->len : -1;
1200 	spin_unlock_bh(&rcvq->lock);
1201 
1202 	if (!skb_queue_empty(&list_kill)) {
1203 		bool slow = lock_sock_fast(sk);
1204 
1205 		__skb_queue_purge(&list_kill);
1206 		sk_mem_reclaim_partial(sk);
1207 		unlock_sock_fast(sk, slow);
1208 	}
1209 	return res;
1210 }
1211 
1212 /*
1213  *	IOCTL requests applicable to the UDP protocol
1214  */
1215 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1216 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1217 {
1218 	switch (cmd) {
1219 	case SIOCOUTQ:
1220 	{
1221 		int amount = sk_wmem_alloc_get(sk);
1222 
1223 		return put_user(amount, (int __user *)arg);
1224 	}
1225 
1226 	case SIOCINQ:
1227 	{
1228 		int amount = max_t(int, 0, first_packet_length(sk));
1229 
1230 		return put_user(amount, (int __user *)arg);
1231 	}
1232 
1233 	default:
1234 		return -ENOIOCTLCMD;
1235 	}
1236 
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL(udp_ioctl);
1240 
1241 /*
1242  * 	This should be easy, if there is something there we
1243  * 	return it, otherwise we block.
1244  */
1245 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1246 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1247 		int flags, int *addr_len)
1248 {
1249 	struct inet_sock *inet = inet_sk(sk);
1250 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1251 	struct sk_buff *skb;
1252 	unsigned int ulen, copied;
1253 	int peeked, peeking, off;
1254 	int err;
1255 	int is_udplite = IS_UDPLITE(sk);
1256 	bool checksum_valid = false;
1257 	bool slow;
1258 
1259 	if (flags & MSG_ERRQUEUE)
1260 		return ip_recv_error(sk, msg, len, addr_len);
1261 
1262 try_again:
1263 	peeking = off = sk_peek_offset(sk, flags);
1264 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1265 				  &peeked, &off, &err);
1266 	if (!skb)
1267 		return err;
1268 
1269 	ulen = skb->len;
1270 	copied = len;
1271 	if (copied > ulen - off)
1272 		copied = ulen - off;
1273 	else if (copied < ulen)
1274 		msg->msg_flags |= MSG_TRUNC;
1275 
1276 	/*
1277 	 * If checksum is needed at all, try to do it while copying the
1278 	 * data.  If the data is truncated, or if we only want a partial
1279 	 * coverage checksum (UDP-Lite), do it before the copy.
1280 	 */
1281 
1282 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1283 		checksum_valid = !udp_lib_checksum_complete(skb);
1284 		if (!checksum_valid)
1285 			goto csum_copy_err;
1286 	}
1287 
1288 	if (checksum_valid || skb_csum_unnecessary(skb))
1289 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1290 	else {
1291 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1292 
1293 		if (err == -EINVAL)
1294 			goto csum_copy_err;
1295 	}
1296 
1297 	if (unlikely(err)) {
1298 		trace_kfree_skb(skb, udp_recvmsg);
1299 		if (!peeked) {
1300 			atomic_inc(&sk->sk_drops);
1301 			UDP_INC_STATS(sock_net(sk),
1302 				      UDP_MIB_INERRORS, is_udplite);
1303 		}
1304 		skb_free_datagram_locked(sk, skb);
1305 		return err;
1306 	}
1307 
1308 	if (!peeked)
1309 		UDP_INC_STATS(sock_net(sk),
1310 			      UDP_MIB_INDATAGRAMS, is_udplite);
1311 
1312 	sock_recv_ts_and_drops(msg, sk, skb);
1313 
1314 	/* Copy the address. */
1315 	if (sin) {
1316 		sin->sin_family = AF_INET;
1317 		sin->sin_port = udp_hdr(skb)->source;
1318 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1319 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1320 		*addr_len = sizeof(*sin);
1321 	}
1322 	if (inet->cmsg_flags)
1323 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr), off);
1324 
1325 	err = copied;
1326 	if (flags & MSG_TRUNC)
1327 		err = ulen;
1328 
1329 	__skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1330 	return err;
1331 
1332 csum_copy_err:
1333 	slow = lock_sock_fast(sk);
1334 	if (!skb_kill_datagram(sk, skb, flags)) {
1335 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1336 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1337 	}
1338 	unlock_sock_fast(sk, slow);
1339 
1340 	/* starting over for a new packet, but check if we need to yield */
1341 	cond_resched();
1342 	msg->msg_flags &= ~MSG_TRUNC;
1343 	goto try_again;
1344 }
1345 
__udp_disconnect(struct sock * sk,int flags)1346 int __udp_disconnect(struct sock *sk, int flags)
1347 {
1348 	struct inet_sock *inet = inet_sk(sk);
1349 	/*
1350 	 *	1003.1g - break association.
1351 	 */
1352 
1353 	sk->sk_state = TCP_CLOSE;
1354 	inet->inet_daddr = 0;
1355 	inet->inet_dport = 0;
1356 	sock_rps_reset_rxhash(sk);
1357 	sk->sk_bound_dev_if = 0;
1358 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1359 		inet_reset_saddr(sk);
1360 
1361 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1362 		sk->sk_prot->unhash(sk);
1363 		inet->inet_sport = 0;
1364 	}
1365 	sk_dst_reset(sk);
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL(__udp_disconnect);
1369 
udp_disconnect(struct sock * sk,int flags)1370 int udp_disconnect(struct sock *sk, int flags)
1371 {
1372 	lock_sock(sk);
1373 	__udp_disconnect(sk, flags);
1374 	release_sock(sk);
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL(udp_disconnect);
1378 
udp_lib_unhash(struct sock * sk)1379 void udp_lib_unhash(struct sock *sk)
1380 {
1381 	if (sk_hashed(sk)) {
1382 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1383 		struct udp_hslot *hslot, *hslot2;
1384 
1385 		hslot  = udp_hashslot(udptable, sock_net(sk),
1386 				      udp_sk(sk)->udp_port_hash);
1387 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1388 
1389 		spin_lock_bh(&hslot->lock);
1390 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1391 			reuseport_detach_sock(sk);
1392 		if (sk_del_node_init_rcu(sk)) {
1393 			hslot->count--;
1394 			inet_sk(sk)->inet_num = 0;
1395 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1396 
1397 			spin_lock(&hslot2->lock);
1398 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1399 			hslot2->count--;
1400 			spin_unlock(&hslot2->lock);
1401 		}
1402 		spin_unlock_bh(&hslot->lock);
1403 	}
1404 }
1405 EXPORT_SYMBOL(udp_lib_unhash);
1406 
1407 /*
1408  * inet_rcv_saddr was changed, we must rehash secondary hash
1409  */
udp_lib_rehash(struct sock * sk,u16 newhash)1410 void udp_lib_rehash(struct sock *sk, u16 newhash)
1411 {
1412 	if (sk_hashed(sk)) {
1413 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1414 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1415 
1416 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1417 		nhslot2 = udp_hashslot2(udptable, newhash);
1418 		udp_sk(sk)->udp_portaddr_hash = newhash;
1419 
1420 		if (hslot2 != nhslot2 ||
1421 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1422 			hslot = udp_hashslot(udptable, sock_net(sk),
1423 					     udp_sk(sk)->udp_port_hash);
1424 			/* we must lock primary chain too */
1425 			spin_lock_bh(&hslot->lock);
1426 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1427 				reuseport_detach_sock(sk);
1428 
1429 			if (hslot2 != nhslot2) {
1430 				spin_lock(&hslot2->lock);
1431 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1432 				hslot2->count--;
1433 				spin_unlock(&hslot2->lock);
1434 
1435 				spin_lock(&nhslot2->lock);
1436 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1437 							 &nhslot2->head);
1438 				nhslot2->count++;
1439 				spin_unlock(&nhslot2->lock);
1440 			}
1441 
1442 			spin_unlock_bh(&hslot->lock);
1443 		}
1444 	}
1445 }
1446 EXPORT_SYMBOL(udp_lib_rehash);
1447 
udp_v4_rehash(struct sock * sk)1448 static void udp_v4_rehash(struct sock *sk)
1449 {
1450 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1451 					  inet_sk(sk)->inet_rcv_saddr,
1452 					  inet_sk(sk)->inet_num);
1453 	udp_lib_rehash(sk, new_hash);
1454 }
1455 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1456 int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1457 {
1458 	int rc;
1459 
1460 	if (inet_sk(sk)->inet_daddr) {
1461 		sock_rps_save_rxhash(sk, skb);
1462 		sk_mark_napi_id(sk, skb);
1463 		sk_incoming_cpu_update(sk);
1464 	}
1465 
1466 	rc = __sock_queue_rcv_skb(sk, skb);
1467 	if (rc < 0) {
1468 		int is_udplite = IS_UDPLITE(sk);
1469 
1470 		/* Note that an ENOMEM error is charged twice */
1471 		if (rc == -ENOMEM)
1472 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1473 					is_udplite);
1474 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1475 		kfree_skb(skb);
1476 		trace_udp_fail_queue_rcv_skb(rc, sk);
1477 		return -1;
1478 	}
1479 
1480 	return 0;
1481 
1482 }
1483 
1484 static struct static_key udp_encap_needed __read_mostly;
udp_encap_enable(void)1485 void udp_encap_enable(void)
1486 {
1487 	if (!static_key_enabled(&udp_encap_needed))
1488 		static_key_slow_inc(&udp_encap_needed);
1489 }
1490 EXPORT_SYMBOL(udp_encap_enable);
1491 
1492 /* returns:
1493  *  -1: error
1494  *   0: success
1495  *  >0: "udp encap" protocol resubmission
1496  *
1497  * Note that in the success and error cases, the skb is assumed to
1498  * have either been requeued or freed.
1499  */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1500 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1501 {
1502 	struct udp_sock *up = udp_sk(sk);
1503 	int rc;
1504 	int is_udplite = IS_UDPLITE(sk);
1505 
1506 	/*
1507 	 *	Charge it to the socket, dropping if the queue is full.
1508 	 */
1509 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1510 		goto drop;
1511 	nf_reset(skb);
1512 
1513 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1514 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1515 
1516 		/*
1517 		 * This is an encapsulation socket so pass the skb to
1518 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1519 		 * fall through and pass this up the UDP socket.
1520 		 * up->encap_rcv() returns the following value:
1521 		 * =0 if skb was successfully passed to the encap
1522 		 *    handler or was discarded by it.
1523 		 * >0 if skb should be passed on to UDP.
1524 		 * <0 if skb should be resubmitted as proto -N
1525 		 */
1526 
1527 		/* if we're overly short, let UDP handle it */
1528 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1529 		if (encap_rcv) {
1530 			int ret;
1531 
1532 			/* Verify checksum before giving to encap */
1533 			if (udp_lib_checksum_complete(skb))
1534 				goto csum_error;
1535 
1536 			ret = encap_rcv(sk, skb);
1537 			if (ret <= 0) {
1538 				__UDP_INC_STATS(sock_net(sk),
1539 						UDP_MIB_INDATAGRAMS,
1540 						is_udplite);
1541 				return -ret;
1542 			}
1543 		}
1544 
1545 		/* FALLTHROUGH -- it's a UDP Packet */
1546 	}
1547 
1548 	/*
1549 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1550 	 */
1551 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1552 
1553 		/*
1554 		 * MIB statistics other than incrementing the error count are
1555 		 * disabled for the following two types of errors: these depend
1556 		 * on the application settings, not on the functioning of the
1557 		 * protocol stack as such.
1558 		 *
1559 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1560 		 * way ... to ... at least let the receiving application block
1561 		 * delivery of packets with coverage values less than a value
1562 		 * provided by the application."
1563 		 */
1564 		if (up->pcrlen == 0) {          /* full coverage was set  */
1565 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1566 					    UDP_SKB_CB(skb)->cscov, skb->len);
1567 			goto drop;
1568 		}
1569 		/* The next case involves violating the min. coverage requested
1570 		 * by the receiver. This is subtle: if receiver wants x and x is
1571 		 * greater than the buffersize/MTU then receiver will complain
1572 		 * that it wants x while sender emits packets of smaller size y.
1573 		 * Therefore the above ...()->partial_cov statement is essential.
1574 		 */
1575 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1576 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1577 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1578 			goto drop;
1579 		}
1580 	}
1581 
1582 	if (rcu_access_pointer(sk->sk_filter) &&
1583 	    udp_lib_checksum_complete(skb))
1584 			goto csum_error;
1585 
1586 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1587 		goto drop;
1588 
1589 	udp_csum_pull_header(skb);
1590 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1591 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1592 				is_udplite);
1593 		goto drop;
1594 	}
1595 
1596 	rc = 0;
1597 
1598 	ipv4_pktinfo_prepare(sk, skb);
1599 	bh_lock_sock(sk);
1600 	if (!sock_owned_by_user(sk))
1601 		rc = __udp_queue_rcv_skb(sk, skb);
1602 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1603 		bh_unlock_sock(sk);
1604 		goto drop;
1605 	}
1606 	bh_unlock_sock(sk);
1607 
1608 	return rc;
1609 
1610 csum_error:
1611 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1612 drop:
1613 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1614 	atomic_inc(&sk->sk_drops);
1615 	kfree_skb(skb);
1616 	return -1;
1617 }
1618 
1619 /* For TCP sockets, sk_rx_dst is protected by socket lock
1620  * For UDP, we use xchg() to guard against concurrent changes.
1621  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)1622 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1623 {
1624 	struct dst_entry *old;
1625 
1626 	dst_hold(dst);
1627 	old = xchg(&sk->sk_rx_dst, dst);
1628 	dst_release(old);
1629 }
1630 
1631 /*
1632  *	Multicasts and broadcasts go to each listener.
1633  *
1634  *	Note: called only from the BH handler context.
1635  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)1636 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1637 				    struct udphdr  *uh,
1638 				    __be32 saddr, __be32 daddr,
1639 				    struct udp_table *udptable,
1640 				    int proto)
1641 {
1642 	struct sock *sk, *first = NULL;
1643 	unsigned short hnum = ntohs(uh->dest);
1644 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1645 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1646 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1647 	int dif = skb->dev->ifindex;
1648 	struct hlist_node *node;
1649 	struct sk_buff *nskb;
1650 
1651 	if (use_hash2) {
1652 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1653 			    udptable->mask;
1654 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1655 start_lookup:
1656 		hslot = &udptable->hash2[hash2];
1657 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1658 	}
1659 
1660 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1661 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1662 					 uh->source, saddr, dif, hnum))
1663 			continue;
1664 
1665 		if (!first) {
1666 			first = sk;
1667 			continue;
1668 		}
1669 		nskb = skb_clone(skb, GFP_ATOMIC);
1670 
1671 		if (unlikely(!nskb)) {
1672 			atomic_inc(&sk->sk_drops);
1673 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1674 					IS_UDPLITE(sk));
1675 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1676 					IS_UDPLITE(sk));
1677 			continue;
1678 		}
1679 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1680 			consume_skb(nskb);
1681 	}
1682 
1683 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1684 	if (use_hash2 && hash2 != hash2_any) {
1685 		hash2 = hash2_any;
1686 		goto start_lookup;
1687 	}
1688 
1689 	if (first) {
1690 		if (udp_queue_rcv_skb(first, skb) > 0)
1691 			consume_skb(skb);
1692 	} else {
1693 		kfree_skb(skb);
1694 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1695 				proto == IPPROTO_UDPLITE);
1696 	}
1697 	return 0;
1698 }
1699 
1700 /* Initialize UDP checksum. If exited with zero value (success),
1701  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1702  * Otherwise, csum completion requires chacksumming packet body,
1703  * including udp header and folding it to skb->csum.
1704  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1705 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1706 				 int proto)
1707 {
1708 	int err;
1709 
1710 	UDP_SKB_CB(skb)->partial_cov = 0;
1711 	UDP_SKB_CB(skb)->cscov = skb->len;
1712 
1713 	if (proto == IPPROTO_UDPLITE) {
1714 		err = udplite_checksum_init(skb, uh);
1715 		if (err)
1716 			return err;
1717 
1718 		if (UDP_SKB_CB(skb)->partial_cov) {
1719 			skb->csum = inet_compute_pseudo(skb, proto);
1720 			return 0;
1721 		}
1722 	}
1723 
1724 	/* Note, we are only interested in != 0 or == 0, thus the
1725 	 * force to int.
1726 	 */
1727 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1728 							 inet_compute_pseudo);
1729 }
1730 
1731 /*
1732  *	All we need to do is get the socket, and then do a checksum.
1733  */
1734 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1735 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1736 		   int proto)
1737 {
1738 	struct sock *sk;
1739 	struct udphdr *uh;
1740 	unsigned short ulen;
1741 	struct rtable *rt = skb_rtable(skb);
1742 	__be32 saddr, daddr;
1743 	struct net *net = dev_net(skb->dev);
1744 
1745 	/*
1746 	 *  Validate the packet.
1747 	 */
1748 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1749 		goto drop;		/* No space for header. */
1750 
1751 	uh   = udp_hdr(skb);
1752 	ulen = ntohs(uh->len);
1753 	saddr = ip_hdr(skb)->saddr;
1754 	daddr = ip_hdr(skb)->daddr;
1755 
1756 	if (ulen > skb->len)
1757 		goto short_packet;
1758 
1759 	if (proto == IPPROTO_UDP) {
1760 		/* UDP validates ulen. */
1761 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1762 			goto short_packet;
1763 		uh = udp_hdr(skb);
1764 	}
1765 
1766 	if (udp4_csum_init(skb, uh, proto))
1767 		goto csum_error;
1768 
1769 	sk = skb_steal_sock(skb);
1770 	if (sk) {
1771 		struct dst_entry *dst = skb_dst(skb);
1772 		int ret;
1773 
1774 		if (unlikely(sk->sk_rx_dst != dst))
1775 			udp_sk_rx_dst_set(sk, dst);
1776 
1777 		ret = udp_queue_rcv_skb(sk, skb);
1778 		sock_put(sk);
1779 		/* a return value > 0 means to resubmit the input, but
1780 		 * it wants the return to be -protocol, or 0
1781 		 */
1782 		if (ret > 0)
1783 			return -ret;
1784 		return 0;
1785 	}
1786 
1787 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1788 		return __udp4_lib_mcast_deliver(net, skb, uh,
1789 						saddr, daddr, udptable, proto);
1790 
1791 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1792 	if (sk) {
1793 		int ret;
1794 
1795 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1796 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1797 						 inet_compute_pseudo);
1798 
1799 		ret = udp_queue_rcv_skb(sk, skb);
1800 
1801 		/* a return value > 0 means to resubmit the input, but
1802 		 * it wants the return to be -protocol, or 0
1803 		 */
1804 		if (ret > 0)
1805 			return -ret;
1806 		return 0;
1807 	}
1808 
1809 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1810 		goto drop;
1811 	nf_reset(skb);
1812 
1813 	/* No socket. Drop packet silently, if checksum is wrong */
1814 	if (udp_lib_checksum_complete(skb))
1815 		goto csum_error;
1816 
1817 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1818 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1819 
1820 	/*
1821 	 * Hmm.  We got an UDP packet to a port to which we
1822 	 * don't wanna listen.  Ignore it.
1823 	 */
1824 	kfree_skb(skb);
1825 	return 0;
1826 
1827 short_packet:
1828 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1829 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1830 			    &saddr, ntohs(uh->source),
1831 			    ulen, skb->len,
1832 			    &daddr, ntohs(uh->dest));
1833 	goto drop;
1834 
1835 csum_error:
1836 	/*
1837 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1838 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1839 	 */
1840 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1841 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1842 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1843 			    ulen);
1844 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1845 drop:
1846 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1847 	kfree_skb(skb);
1848 	return 0;
1849 }
1850 
1851 /* We can only early demux multicast if there is a single matching socket.
1852  * If more than one socket found returns NULL
1853  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)1854 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1855 						  __be16 loc_port, __be32 loc_addr,
1856 						  __be16 rmt_port, __be32 rmt_addr,
1857 						  int dif)
1858 {
1859 	struct sock *sk, *result;
1860 	unsigned short hnum = ntohs(loc_port);
1861 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1862 	struct udp_hslot *hslot = &udp_table.hash[slot];
1863 
1864 	/* Do not bother scanning a too big list */
1865 	if (hslot->count > 10)
1866 		return NULL;
1867 
1868 	result = NULL;
1869 	sk_for_each_rcu(sk, &hslot->head) {
1870 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1871 					rmt_port, rmt_addr, dif, hnum)) {
1872 			if (result)
1873 				return NULL;
1874 			result = sk;
1875 		}
1876 	}
1877 
1878 	return result;
1879 }
1880 
1881 /* For unicast we should only early demux connected sockets or we can
1882  * break forwarding setups.  The chains here can be long so only check
1883  * if the first socket is an exact match and if not move on.
1884  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)1885 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1886 					    __be16 loc_port, __be32 loc_addr,
1887 					    __be16 rmt_port, __be32 rmt_addr,
1888 					    int dif)
1889 {
1890 	unsigned short hnum = ntohs(loc_port);
1891 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1892 	unsigned int slot2 = hash2 & udp_table.mask;
1893 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1894 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1895 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1896 	struct sock *sk;
1897 
1898 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1899 		if (INET_MATCH(sk, net, acookie, rmt_addr,
1900 			       loc_addr, ports, dif))
1901 			return sk;
1902 		/* Only check first socket in chain */
1903 		break;
1904 	}
1905 	return NULL;
1906 }
1907 
udp_v4_early_demux(struct sk_buff * skb)1908 void udp_v4_early_demux(struct sk_buff *skb)
1909 {
1910 	struct net *net = dev_net(skb->dev);
1911 	const struct iphdr *iph;
1912 	const struct udphdr *uh;
1913 	struct sock *sk = NULL;
1914 	struct dst_entry *dst;
1915 	int dif = skb->dev->ifindex;
1916 	int ours;
1917 
1918 	/* validate the packet */
1919 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1920 		return;
1921 
1922 	iph = ip_hdr(skb);
1923 	uh = udp_hdr(skb);
1924 
1925 	if (skb->pkt_type == PACKET_BROADCAST ||
1926 	    skb->pkt_type == PACKET_MULTICAST) {
1927 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1928 
1929 		if (!in_dev)
1930 			return;
1931 
1932 		/* we are supposed to accept bcast packets */
1933 		if (skb->pkt_type == PACKET_MULTICAST) {
1934 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1935 					       iph->protocol);
1936 			if (!ours)
1937 				return;
1938 		}
1939 
1940 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1941 						   uh->source, iph->saddr, dif);
1942 	} else if (skb->pkt_type == PACKET_HOST) {
1943 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1944 					     uh->source, iph->saddr, dif);
1945 	}
1946 
1947 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1948 		return;
1949 
1950 	skb->sk = sk;
1951 	skb->destructor = sock_efree;
1952 	dst = READ_ONCE(sk->sk_rx_dst);
1953 
1954 	if (dst)
1955 		dst = dst_check(dst, 0);
1956 	if (dst) {
1957 		/* DST_NOCACHE can not be used without taking a reference */
1958 		if (dst->flags & DST_NOCACHE) {
1959 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1960 				skb_dst_set(skb, dst);
1961 		} else {
1962 			skb_dst_set_noref(skb, dst);
1963 		}
1964 	}
1965 }
1966 
udp_rcv(struct sk_buff * skb)1967 int udp_rcv(struct sk_buff *skb)
1968 {
1969 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1970 }
1971 
udp_destroy_sock(struct sock * sk)1972 void udp_destroy_sock(struct sock *sk)
1973 {
1974 	struct udp_sock *up = udp_sk(sk);
1975 	bool slow = lock_sock_fast(sk);
1976 	udp_flush_pending_frames(sk);
1977 	unlock_sock_fast(sk, slow);
1978 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1979 		void (*encap_destroy)(struct sock *sk);
1980 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1981 		if (encap_destroy)
1982 			encap_destroy(sk);
1983 	}
1984 }
1985 
1986 /*
1987  *	Socket option code for UDP
1988  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1989 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1990 		       char __user *optval, unsigned int optlen,
1991 		       int (*push_pending_frames)(struct sock *))
1992 {
1993 	struct udp_sock *up = udp_sk(sk);
1994 	int val, valbool;
1995 	int err = 0;
1996 	int is_udplite = IS_UDPLITE(sk);
1997 
1998 	if (optlen < sizeof(int))
1999 		return -EINVAL;
2000 
2001 	if (get_user(val, (int __user *)optval))
2002 		return -EFAULT;
2003 
2004 	valbool = val ? 1 : 0;
2005 
2006 	switch (optname) {
2007 	case UDP_CORK:
2008 		if (val != 0) {
2009 			up->corkflag = 1;
2010 		} else {
2011 			up->corkflag = 0;
2012 			lock_sock(sk);
2013 			push_pending_frames(sk);
2014 			release_sock(sk);
2015 		}
2016 		break;
2017 
2018 	case UDP_ENCAP:
2019 		switch (val) {
2020 		case 0:
2021 		case UDP_ENCAP_ESPINUDP:
2022 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2023 			up->encap_rcv = xfrm4_udp_encap_rcv;
2024 			/* FALLTHROUGH */
2025 		case UDP_ENCAP_L2TPINUDP:
2026 			up->encap_type = val;
2027 			udp_encap_enable();
2028 			break;
2029 		default:
2030 			err = -ENOPROTOOPT;
2031 			break;
2032 		}
2033 		break;
2034 
2035 	case UDP_NO_CHECK6_TX:
2036 		up->no_check6_tx = valbool;
2037 		break;
2038 
2039 	case UDP_NO_CHECK6_RX:
2040 		up->no_check6_rx = valbool;
2041 		break;
2042 
2043 	/*
2044 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2045 	 */
2046 	/* The sender sets actual checksum coverage length via this option.
2047 	 * The case coverage > packet length is handled by send module. */
2048 	case UDPLITE_SEND_CSCOV:
2049 		if (!is_udplite)         /* Disable the option on UDP sockets */
2050 			return -ENOPROTOOPT;
2051 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2052 			val = 8;
2053 		else if (val > USHRT_MAX)
2054 			val = USHRT_MAX;
2055 		up->pcslen = val;
2056 		up->pcflag |= UDPLITE_SEND_CC;
2057 		break;
2058 
2059 	/* The receiver specifies a minimum checksum coverage value. To make
2060 	 * sense, this should be set to at least 8 (as done below). If zero is
2061 	 * used, this again means full checksum coverage.                     */
2062 	case UDPLITE_RECV_CSCOV:
2063 		if (!is_udplite)         /* Disable the option on UDP sockets */
2064 			return -ENOPROTOOPT;
2065 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2066 			val = 8;
2067 		else if (val > USHRT_MAX)
2068 			val = USHRT_MAX;
2069 		up->pcrlen = val;
2070 		up->pcflag |= UDPLITE_RECV_CC;
2071 		break;
2072 
2073 	default:
2074 		err = -ENOPROTOOPT;
2075 		break;
2076 	}
2077 
2078 	return err;
2079 }
2080 EXPORT_SYMBOL(udp_lib_setsockopt);
2081 
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2082 int udp_setsockopt(struct sock *sk, int level, int optname,
2083 		   char __user *optval, unsigned int optlen)
2084 {
2085 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2086 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2087 					  udp_push_pending_frames);
2088 	return ip_setsockopt(sk, level, optname, optval, optlen);
2089 }
2090 
2091 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2092 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2093 			  char __user *optval, unsigned int optlen)
2094 {
2095 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2096 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2097 					  udp_push_pending_frames);
2098 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2099 }
2100 #endif
2101 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2102 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2103 		       char __user *optval, int __user *optlen)
2104 {
2105 	struct udp_sock *up = udp_sk(sk);
2106 	int val, len;
2107 
2108 	if (get_user(len, optlen))
2109 		return -EFAULT;
2110 
2111 	len = min_t(unsigned int, len, sizeof(int));
2112 
2113 	if (len < 0)
2114 		return -EINVAL;
2115 
2116 	switch (optname) {
2117 	case UDP_CORK:
2118 		val = up->corkflag;
2119 		break;
2120 
2121 	case UDP_ENCAP:
2122 		val = up->encap_type;
2123 		break;
2124 
2125 	case UDP_NO_CHECK6_TX:
2126 		val = up->no_check6_tx;
2127 		break;
2128 
2129 	case UDP_NO_CHECK6_RX:
2130 		val = up->no_check6_rx;
2131 		break;
2132 
2133 	/* The following two cannot be changed on UDP sockets, the return is
2134 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2135 	case UDPLITE_SEND_CSCOV:
2136 		val = up->pcslen;
2137 		break;
2138 
2139 	case UDPLITE_RECV_CSCOV:
2140 		val = up->pcrlen;
2141 		break;
2142 
2143 	default:
2144 		return -ENOPROTOOPT;
2145 	}
2146 
2147 	if (put_user(len, optlen))
2148 		return -EFAULT;
2149 	if (copy_to_user(optval, &val, len))
2150 		return -EFAULT;
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL(udp_lib_getsockopt);
2154 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2155 int udp_getsockopt(struct sock *sk, int level, int optname,
2156 		   char __user *optval, int __user *optlen)
2157 {
2158 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2159 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2160 	return ip_getsockopt(sk, level, optname, optval, optlen);
2161 }
2162 
2163 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2164 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2165 				 char __user *optval, int __user *optlen)
2166 {
2167 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2168 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2169 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2170 }
2171 #endif
2172 /**
2173  * 	udp_poll - wait for a UDP event.
2174  *	@file - file struct
2175  *	@sock - socket
2176  *	@wait - poll table
2177  *
2178  *	This is same as datagram poll, except for the special case of
2179  *	blocking sockets. If application is using a blocking fd
2180  *	and a packet with checksum error is in the queue;
2181  *	then it could get return from select indicating data available
2182  *	but then block when reading it. Add special case code
2183  *	to work around these arguably broken applications.
2184  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2185 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2186 {
2187 	unsigned int mask = datagram_poll(file, sock, wait);
2188 	struct sock *sk = sock->sk;
2189 
2190 	sock_rps_record_flow(sk);
2191 
2192 	/* Check for false positives due to checksum errors */
2193 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2194 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2195 		mask &= ~(POLLIN | POLLRDNORM);
2196 
2197 	return mask;
2198 
2199 }
2200 EXPORT_SYMBOL(udp_poll);
2201 
udp_abort(struct sock * sk,int err)2202 int udp_abort(struct sock *sk, int err)
2203 {
2204 	lock_sock(sk);
2205 
2206 	sk->sk_err = err;
2207 	sk->sk_error_report(sk);
2208 	__udp_disconnect(sk, 0);
2209 
2210 	release_sock(sk);
2211 
2212 	return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(udp_abort);
2215 
2216 struct proto udp_prot = {
2217 	.name		   = "UDP",
2218 	.owner		   = THIS_MODULE,
2219 	.close		   = udp_lib_close,
2220 	.connect	   = ip4_datagram_connect,
2221 	.disconnect	   = udp_disconnect,
2222 	.ioctl		   = udp_ioctl,
2223 	.destroy	   = udp_destroy_sock,
2224 	.setsockopt	   = udp_setsockopt,
2225 	.getsockopt	   = udp_getsockopt,
2226 	.sendmsg	   = udp_sendmsg,
2227 	.recvmsg	   = udp_recvmsg,
2228 	.sendpage	   = udp_sendpage,
2229 	.backlog_rcv	   = __udp_queue_rcv_skb,
2230 	.release_cb	   = ip4_datagram_release_cb,
2231 	.hash		   = udp_lib_hash,
2232 	.unhash		   = udp_lib_unhash,
2233 	.rehash		   = udp_v4_rehash,
2234 	.get_port	   = udp_v4_get_port,
2235 	.memory_allocated  = &udp_memory_allocated,
2236 	.sysctl_mem	   = sysctl_udp_mem,
2237 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2238 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2239 	.obj_size	   = sizeof(struct udp_sock),
2240 	.h.udp_table	   = &udp_table,
2241 #ifdef CONFIG_COMPAT
2242 	.compat_setsockopt = compat_udp_setsockopt,
2243 	.compat_getsockopt = compat_udp_getsockopt,
2244 #endif
2245 	.diag_destroy	   = udp_abort,
2246 };
2247 EXPORT_SYMBOL(udp_prot);
2248 
2249 /* ------------------------------------------------------------------------ */
2250 #ifdef CONFIG_PROC_FS
2251 
udp_get_first(struct seq_file * seq,int start)2252 static struct sock *udp_get_first(struct seq_file *seq, int start)
2253 {
2254 	struct sock *sk;
2255 	struct udp_iter_state *state = seq->private;
2256 	struct net *net = seq_file_net(seq);
2257 
2258 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2259 	     ++state->bucket) {
2260 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2261 
2262 		if (hlist_empty(&hslot->head))
2263 			continue;
2264 
2265 		spin_lock_bh(&hslot->lock);
2266 		sk_for_each(sk, &hslot->head) {
2267 			if (!net_eq(sock_net(sk), net))
2268 				continue;
2269 			if (sk->sk_family == state->family)
2270 				goto found;
2271 		}
2272 		spin_unlock_bh(&hslot->lock);
2273 	}
2274 	sk = NULL;
2275 found:
2276 	return sk;
2277 }
2278 
udp_get_next(struct seq_file * seq,struct sock * sk)2279 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2280 {
2281 	struct udp_iter_state *state = seq->private;
2282 	struct net *net = seq_file_net(seq);
2283 
2284 	do {
2285 		sk = sk_next(sk);
2286 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2287 
2288 	if (!sk) {
2289 		if (state->bucket <= state->udp_table->mask)
2290 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291 		return udp_get_first(seq, state->bucket + 1);
2292 	}
2293 	return sk;
2294 }
2295 
udp_get_idx(struct seq_file * seq,loff_t pos)2296 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2297 {
2298 	struct sock *sk = udp_get_first(seq, 0);
2299 
2300 	if (sk)
2301 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2302 			--pos;
2303 	return pos ? NULL : sk;
2304 }
2305 
udp_seq_start(struct seq_file * seq,loff_t * pos)2306 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2307 {
2308 	struct udp_iter_state *state = seq->private;
2309 	state->bucket = MAX_UDP_PORTS;
2310 
2311 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2312 }
2313 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2314 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2315 {
2316 	struct sock *sk;
2317 
2318 	if (v == SEQ_START_TOKEN)
2319 		sk = udp_get_idx(seq, 0);
2320 	else
2321 		sk = udp_get_next(seq, v);
2322 
2323 	++*pos;
2324 	return sk;
2325 }
2326 
udp_seq_stop(struct seq_file * seq,void * v)2327 static void udp_seq_stop(struct seq_file *seq, void *v)
2328 {
2329 	struct udp_iter_state *state = seq->private;
2330 
2331 	if (state->bucket <= state->udp_table->mask)
2332 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2333 }
2334 
udp_seq_open(struct inode * inode,struct file * file)2335 int udp_seq_open(struct inode *inode, struct file *file)
2336 {
2337 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2338 	struct udp_iter_state *s;
2339 	int err;
2340 
2341 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2342 			   sizeof(struct udp_iter_state));
2343 	if (err < 0)
2344 		return err;
2345 
2346 	s = ((struct seq_file *)file->private_data)->private;
2347 	s->family		= afinfo->family;
2348 	s->udp_table		= afinfo->udp_table;
2349 	return err;
2350 }
2351 EXPORT_SYMBOL(udp_seq_open);
2352 
2353 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2354 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2355 {
2356 	struct proc_dir_entry *p;
2357 	int rc = 0;
2358 
2359 	afinfo->seq_ops.start		= udp_seq_start;
2360 	afinfo->seq_ops.next		= udp_seq_next;
2361 	afinfo->seq_ops.stop		= udp_seq_stop;
2362 
2363 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2364 			     afinfo->seq_fops, afinfo);
2365 	if (!p)
2366 		rc = -ENOMEM;
2367 	return rc;
2368 }
2369 EXPORT_SYMBOL(udp_proc_register);
2370 
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2371 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2372 {
2373 	remove_proc_entry(afinfo->name, net->proc_net);
2374 }
2375 EXPORT_SYMBOL(udp_proc_unregister);
2376 
2377 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2378 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2379 		int bucket)
2380 {
2381 	struct inet_sock *inet = inet_sk(sp);
2382 	__be32 dest = inet->inet_daddr;
2383 	__be32 src  = inet->inet_rcv_saddr;
2384 	__u16 destp	  = ntohs(inet->inet_dport);
2385 	__u16 srcp	  = ntohs(inet->inet_sport);
2386 
2387 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2388 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2389 		bucket, src, srcp, dest, destp, sp->sk_state,
2390 		sk_wmem_alloc_get(sp),
2391 		sk_rmem_alloc_get(sp),
2392 		0, 0L, 0,
2393 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2394 		0, sock_i_ino(sp),
2395 		atomic_read(&sp->sk_refcnt), sp,
2396 		atomic_read(&sp->sk_drops));
2397 }
2398 
udp4_seq_show(struct seq_file * seq,void * v)2399 int udp4_seq_show(struct seq_file *seq, void *v)
2400 {
2401 	seq_setwidth(seq, 127);
2402 	if (v == SEQ_START_TOKEN)
2403 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2404 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2405 			   "inode ref pointer drops");
2406 	else {
2407 		struct udp_iter_state *state = seq->private;
2408 
2409 		udp4_format_sock(v, seq, state->bucket);
2410 	}
2411 	seq_pad(seq, '\n');
2412 	return 0;
2413 }
2414 
2415 static const struct file_operations udp_afinfo_seq_fops = {
2416 	.owner    = THIS_MODULE,
2417 	.open     = udp_seq_open,
2418 	.read     = seq_read,
2419 	.llseek   = seq_lseek,
2420 	.release  = seq_release_net
2421 };
2422 
2423 /* ------------------------------------------------------------------------ */
2424 static struct udp_seq_afinfo udp4_seq_afinfo = {
2425 	.name		= "udp",
2426 	.family		= AF_INET,
2427 	.udp_table	= &udp_table,
2428 	.seq_fops	= &udp_afinfo_seq_fops,
2429 	.seq_ops	= {
2430 		.show		= udp4_seq_show,
2431 	},
2432 };
2433 
udp4_proc_init_net(struct net * net)2434 static int __net_init udp4_proc_init_net(struct net *net)
2435 {
2436 	return udp_proc_register(net, &udp4_seq_afinfo);
2437 }
2438 
udp4_proc_exit_net(struct net * net)2439 static void __net_exit udp4_proc_exit_net(struct net *net)
2440 {
2441 	udp_proc_unregister(net, &udp4_seq_afinfo);
2442 }
2443 
2444 static struct pernet_operations udp4_net_ops = {
2445 	.init = udp4_proc_init_net,
2446 	.exit = udp4_proc_exit_net,
2447 };
2448 
udp4_proc_init(void)2449 int __init udp4_proc_init(void)
2450 {
2451 	return register_pernet_subsys(&udp4_net_ops);
2452 }
2453 
udp4_proc_exit(void)2454 void udp4_proc_exit(void)
2455 {
2456 	unregister_pernet_subsys(&udp4_net_ops);
2457 }
2458 #endif /* CONFIG_PROC_FS */
2459 
2460 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2461 static int __init set_uhash_entries(char *str)
2462 {
2463 	ssize_t ret;
2464 
2465 	if (!str)
2466 		return 0;
2467 
2468 	ret = kstrtoul(str, 0, &uhash_entries);
2469 	if (ret)
2470 		return 0;
2471 
2472 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2473 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2474 	return 1;
2475 }
2476 __setup("uhash_entries=", set_uhash_entries);
2477 
udp_table_init(struct udp_table * table,const char * name)2478 void __init udp_table_init(struct udp_table *table, const char *name)
2479 {
2480 	unsigned int i;
2481 
2482 	table->hash = alloc_large_system_hash(name,
2483 					      2 * sizeof(struct udp_hslot),
2484 					      uhash_entries,
2485 					      21, /* one slot per 2 MB */
2486 					      0,
2487 					      &table->log,
2488 					      &table->mask,
2489 					      UDP_HTABLE_SIZE_MIN,
2490 					      64 * 1024);
2491 
2492 	table->hash2 = table->hash + (table->mask + 1);
2493 	for (i = 0; i <= table->mask; i++) {
2494 		INIT_HLIST_HEAD(&table->hash[i].head);
2495 		table->hash[i].count = 0;
2496 		spin_lock_init(&table->hash[i].lock);
2497 	}
2498 	for (i = 0; i <= table->mask; i++) {
2499 		INIT_HLIST_HEAD(&table->hash2[i].head);
2500 		table->hash2[i].count = 0;
2501 		spin_lock_init(&table->hash2[i].lock);
2502 	}
2503 }
2504 
udp_flow_hashrnd(void)2505 u32 udp_flow_hashrnd(void)
2506 {
2507 	static u32 hashrnd __read_mostly;
2508 
2509 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2510 
2511 	return hashrnd;
2512 }
2513 EXPORT_SYMBOL(udp_flow_hashrnd);
2514 
udp_init(void)2515 void __init udp_init(void)
2516 {
2517 	unsigned long limit;
2518 
2519 	udp_table_init(&udp_table, "UDP");
2520 	limit = nr_free_buffer_pages() / 8;
2521 	limit = max(limit, 128UL);
2522 	sysctl_udp_mem[0] = limit / 4 * 3;
2523 	sysctl_udp_mem[1] = limit;
2524 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2525 
2526 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2527 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2528 }
2529