• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31 
32 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
34 
35 struct btrfs_trim_range {
36 	u64 start;
37 	u64 bytes;
38 	struct list_head list;
39 };
40 
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 			   struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 			      struct btrfs_free_space *info);
45 
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 					       struct btrfs_path *path,
48 					       u64 offset)
49 {
50 	struct btrfs_key key;
51 	struct btrfs_key location;
52 	struct btrfs_disk_key disk_key;
53 	struct btrfs_free_space_header *header;
54 	struct extent_buffer *leaf;
55 	struct inode *inode = NULL;
56 	int ret;
57 
58 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 	key.offset = offset;
60 	key.type = 0;
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		return ERR_PTR(ret);
65 	if (ret > 0) {
66 		btrfs_release_path(path);
67 		return ERR_PTR(-ENOENT);
68 	}
69 
70 	leaf = path->nodes[0];
71 	header = btrfs_item_ptr(leaf, path->slots[0],
72 				struct btrfs_free_space_header);
73 	btrfs_free_space_key(leaf, header, &disk_key);
74 	btrfs_disk_key_to_cpu(&location, &disk_key);
75 	btrfs_release_path(path);
76 
77 	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 	if (!inode)
79 		return ERR_PTR(-ENOENT);
80 	if (IS_ERR(inode))
81 		return inode;
82 	if (is_bad_inode(inode)) {
83 		iput(inode);
84 		return ERR_PTR(-ENOENT);
85 	}
86 
87 	mapping_set_gfp_mask(inode->i_mapping,
88 			mapping_gfp_constraint(inode->i_mapping,
89 			~(__GFP_FS | __GFP_HIGHMEM)));
90 
91 	return inode;
92 }
93 
lookup_free_space_inode(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 				      struct btrfs_block_group_cache
96 				      *block_group, struct btrfs_path *path)
97 {
98 	struct inode *inode = NULL;
99 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 
101 	spin_lock(&block_group->lock);
102 	if (block_group->inode)
103 		inode = igrab(block_group->inode);
104 	spin_unlock(&block_group->lock);
105 	if (inode)
106 		return inode;
107 
108 	inode = __lookup_free_space_inode(root, path,
109 					  block_group->key.objectid);
110 	if (IS_ERR(inode))
111 		return inode;
112 
113 	spin_lock(&block_group->lock);
114 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 		btrfs_info(root->fs_info,
116 			"Old style space inode found, converting.");
117 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 			BTRFS_INODE_NODATACOW;
119 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 	}
121 
122 	if (!block_group->iref) {
123 		block_group->inode = igrab(inode);
124 		block_group->iref = 1;
125 	}
126 	spin_unlock(&block_group->lock);
127 
128 	return inode;
129 }
130 
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)131 static int __create_free_space_inode(struct btrfs_root *root,
132 				     struct btrfs_trans_handle *trans,
133 				     struct btrfs_path *path,
134 				     u64 ino, u64 offset)
135 {
136 	struct btrfs_key key;
137 	struct btrfs_disk_key disk_key;
138 	struct btrfs_free_space_header *header;
139 	struct btrfs_inode_item *inode_item;
140 	struct extent_buffer *leaf;
141 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 	int ret;
143 
144 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 	if (ret)
146 		return ret;
147 
148 	/* We inline crc's for the free disk space cache */
149 	if (ino != BTRFS_FREE_INO_OBJECTID)
150 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151 
152 	leaf = path->nodes[0];
153 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 				    struct btrfs_inode_item);
155 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 			     sizeof(*inode_item));
158 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 	btrfs_set_inode_size(leaf, inode_item, 0);
160 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 	btrfs_set_inode_uid(leaf, inode_item, 0);
162 	btrfs_set_inode_gid(leaf, inode_item, 0);
163 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 	btrfs_set_inode_flags(leaf, inode_item, flags);
165 	btrfs_set_inode_nlink(leaf, inode_item, 1);
166 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 	btrfs_set_inode_block_group(leaf, inode_item, offset);
168 	btrfs_mark_buffer_dirty(leaf);
169 	btrfs_release_path(path);
170 
171 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 	key.offset = offset;
173 	key.type = 0;
174 	ret = btrfs_insert_empty_item(trans, root, path, &key,
175 				      sizeof(struct btrfs_free_space_header));
176 	if (ret < 0) {
177 		btrfs_release_path(path);
178 		return ret;
179 	}
180 
181 	leaf = path->nodes[0];
182 	header = btrfs_item_ptr(leaf, path->slots[0],
183 				struct btrfs_free_space_header);
184 	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 	btrfs_set_free_space_key(leaf, header, &disk_key);
186 	btrfs_mark_buffer_dirty(leaf);
187 	btrfs_release_path(path);
188 
189 	return 0;
190 }
191 
create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)192 int create_free_space_inode(struct btrfs_root *root,
193 			    struct btrfs_trans_handle *trans,
194 			    struct btrfs_block_group_cache *block_group,
195 			    struct btrfs_path *path)
196 {
197 	int ret;
198 	u64 ino;
199 
200 	ret = btrfs_find_free_objectid(root, &ino);
201 	if (ret < 0)
202 		return ret;
203 
204 	return __create_free_space_inode(root, trans, path, ino,
205 					 block_group->key.objectid);
206 }
207 
btrfs_check_trunc_cache_free_space(struct btrfs_root * root,struct btrfs_block_rsv * rsv)208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 				       struct btrfs_block_rsv *rsv)
210 {
211 	u64 needed_bytes;
212 	int ret;
213 
214 	/* 1 for slack space, 1 for updating the inode */
215 	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 		btrfs_calc_trans_metadata_size(root, 1);
217 
218 	spin_lock(&rsv->lock);
219 	if (rsv->reserved < needed_bytes)
220 		ret = -ENOSPC;
221 	else
222 		ret = 0;
223 	spin_unlock(&rsv->lock);
224 	return ret;
225 }
226 
btrfs_truncate_free_space_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct inode * inode)227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 				    struct btrfs_trans_handle *trans,
229 				    struct btrfs_block_group_cache *block_group,
230 				    struct inode *inode)
231 {
232 	int ret = 0;
233 	struct btrfs_path *path = btrfs_alloc_path();
234 	bool locked = false;
235 
236 	if (!path) {
237 		ret = -ENOMEM;
238 		goto fail;
239 	}
240 
241 	if (block_group) {
242 		locked = true;
243 		mutex_lock(&trans->transaction->cache_write_mutex);
244 		if (!list_empty(&block_group->io_list)) {
245 			list_del_init(&block_group->io_list);
246 
247 			btrfs_wait_cache_io(root, trans, block_group,
248 					    &block_group->io_ctl, path,
249 					    block_group->key.objectid);
250 			btrfs_put_block_group(block_group);
251 		}
252 
253 		/*
254 		 * now that we've truncated the cache away, its no longer
255 		 * setup or written
256 		 */
257 		spin_lock(&block_group->lock);
258 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 		spin_unlock(&block_group->lock);
260 	}
261 	btrfs_free_path(path);
262 
263 	btrfs_i_size_write(inode, 0);
264 	truncate_pagecache(inode, 0);
265 
266 	/*
267 	 * We don't need an orphan item because truncating the free space cache
268 	 * will never be split across transactions.
269 	 * We don't need to check for -EAGAIN because we're a free space
270 	 * cache inode
271 	 */
272 	ret = btrfs_truncate_inode_items(trans, root, inode,
273 					 0, BTRFS_EXTENT_DATA_KEY);
274 	if (ret)
275 		goto fail;
276 
277 	ret = btrfs_update_inode(trans, root, inode);
278 
279 fail:
280 	if (locked)
281 		mutex_unlock(&trans->transaction->cache_write_mutex);
282 	if (ret)
283 		btrfs_abort_transaction(trans, ret);
284 
285 	return ret;
286 }
287 
readahead_cache(struct inode * inode)288 static int readahead_cache(struct inode *inode)
289 {
290 	struct file_ra_state *ra;
291 	unsigned long last_index;
292 
293 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 	if (!ra)
295 		return -ENOMEM;
296 
297 	file_ra_state_init(ra, inode->i_mapping);
298 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299 
300 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301 
302 	kfree(ra);
303 
304 	return 0;
305 }
306 
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,struct btrfs_root * root,int write)307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 		       struct btrfs_root *root, int write)
309 {
310 	int num_pages;
311 	int check_crcs = 0;
312 
313 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
314 
315 	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316 		check_crcs = 1;
317 
318 	/* Make sure we can fit our crcs into the first page */
319 	if (write && check_crcs &&
320 	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
321 		return -ENOSPC;
322 
323 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324 
325 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 	if (!io_ctl->pages)
327 		return -ENOMEM;
328 
329 	io_ctl->num_pages = num_pages;
330 	io_ctl->root = root;
331 	io_ctl->check_crcs = check_crcs;
332 	io_ctl->inode = inode;
333 
334 	return 0;
335 }
336 
io_ctl_free(struct btrfs_io_ctl * io_ctl)337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339 	kfree(io_ctl->pages);
340 	io_ctl->pages = NULL;
341 }
342 
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345 	if (io_ctl->cur) {
346 		io_ctl->cur = NULL;
347 		io_ctl->orig = NULL;
348 	}
349 }
350 
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353 	ASSERT(io_ctl->index < io_ctl->num_pages);
354 	io_ctl->page = io_ctl->pages[io_ctl->index++];
355 	io_ctl->cur = page_address(io_ctl->page);
356 	io_ctl->orig = io_ctl->cur;
357 	io_ctl->size = PAGE_SIZE;
358 	if (clear)
359 		memset(io_ctl->cur, 0, PAGE_SIZE);
360 }
361 
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364 	int i;
365 
366 	io_ctl_unmap_page(io_ctl);
367 
368 	for (i = 0; i < io_ctl->num_pages; i++) {
369 		if (io_ctl->pages[i]) {
370 			ClearPageChecked(io_ctl->pages[i]);
371 			unlock_page(io_ctl->pages[i]);
372 			put_page(io_ctl->pages[i]);
373 		}
374 	}
375 }
376 
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,struct inode * inode,int uptodate)377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 				int uptodate)
379 {
380 	struct page *page;
381 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382 	int i;
383 
384 	for (i = 0; i < io_ctl->num_pages; i++) {
385 		page = find_or_create_page(inode->i_mapping, i, mask);
386 		if (!page) {
387 			io_ctl_drop_pages(io_ctl);
388 			return -ENOMEM;
389 		}
390 		io_ctl->pages[i] = page;
391 		if (uptodate && !PageUptodate(page)) {
392 			btrfs_readpage(NULL, page);
393 			lock_page(page);
394 			if (!PageUptodate(page)) {
395 				btrfs_err(BTRFS_I(inode)->root->fs_info,
396 					   "error reading free space cache");
397 				io_ctl_drop_pages(io_ctl);
398 				return -EIO;
399 			}
400 		}
401 	}
402 
403 	for (i = 0; i < io_ctl->num_pages; i++) {
404 		clear_page_dirty_for_io(io_ctl->pages[i]);
405 		set_page_extent_mapped(io_ctl->pages[i]);
406 	}
407 
408 	return 0;
409 }
410 
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 	__le64 *val;
414 
415 	io_ctl_map_page(io_ctl, 1);
416 
417 	/*
418 	 * Skip the csum areas.  If we don't check crcs then we just have a
419 	 * 64bit chunk at the front of the first page.
420 	 */
421 	if (io_ctl->check_crcs) {
422 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 	} else {
425 		io_ctl->cur += sizeof(u64);
426 		io_ctl->size -= sizeof(u64) * 2;
427 	}
428 
429 	val = io_ctl->cur;
430 	*val = cpu_to_le64(generation);
431 	io_ctl->cur += sizeof(u64);
432 }
433 
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 	__le64 *gen;
437 
438 	/*
439 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
440 	 * chunk at the front of the first page.
441 	 */
442 	if (io_ctl->check_crcs) {
443 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 		io_ctl->size -= sizeof(u64) +
445 			(sizeof(u32) * io_ctl->num_pages);
446 	} else {
447 		io_ctl->cur += sizeof(u64);
448 		io_ctl->size -= sizeof(u64) * 2;
449 	}
450 
451 	gen = io_ctl->cur;
452 	if (le64_to_cpu(*gen) != generation) {
453 		btrfs_err_rl(io_ctl->root->fs_info,
454 			"space cache generation (%llu) does not match inode (%llu)",
455 				*gen, generation);
456 		io_ctl_unmap_page(io_ctl);
457 		return -EIO;
458 	}
459 	io_ctl->cur += sizeof(u64);
460 	return 0;
461 }
462 
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 	u32 *tmp;
466 	u32 crc = ~(u32)0;
467 	unsigned offset = 0;
468 
469 	if (!io_ctl->check_crcs) {
470 		io_ctl_unmap_page(io_ctl);
471 		return;
472 	}
473 
474 	if (index == 0)
475 		offset = sizeof(u32) * io_ctl->num_pages;
476 
477 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 			      PAGE_SIZE - offset);
479 	btrfs_csum_final(crc, (char *)&crc);
480 	io_ctl_unmap_page(io_ctl);
481 	tmp = page_address(io_ctl->pages[0]);
482 	tmp += index;
483 	*tmp = crc;
484 }
485 
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488 	u32 *tmp, val;
489 	u32 crc = ~(u32)0;
490 	unsigned offset = 0;
491 
492 	if (!io_ctl->check_crcs) {
493 		io_ctl_map_page(io_ctl, 0);
494 		return 0;
495 	}
496 
497 	if (index == 0)
498 		offset = sizeof(u32) * io_ctl->num_pages;
499 
500 	tmp = page_address(io_ctl->pages[0]);
501 	tmp += index;
502 	val = *tmp;
503 
504 	io_ctl_map_page(io_ctl, 0);
505 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 			      PAGE_SIZE - offset);
507 	btrfs_csum_final(crc, (char *)&crc);
508 	if (val != crc) {
509 		btrfs_err_rl(io_ctl->root->fs_info,
510 			"csum mismatch on free space cache");
511 		io_ctl_unmap_page(io_ctl);
512 		return -EIO;
513 	}
514 
515 	return 0;
516 }
517 
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 			    void *bitmap)
520 {
521 	struct btrfs_free_space_entry *entry;
522 
523 	if (!io_ctl->cur)
524 		return -ENOSPC;
525 
526 	entry = io_ctl->cur;
527 	entry->offset = cpu_to_le64(offset);
528 	entry->bytes = cpu_to_le64(bytes);
529 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530 		BTRFS_FREE_SPACE_EXTENT;
531 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533 
534 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535 		return 0;
536 
537 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 
539 	/* No more pages to map */
540 	if (io_ctl->index >= io_ctl->num_pages)
541 		return 0;
542 
543 	/* map the next page */
544 	io_ctl_map_page(io_ctl, 1);
545 	return 0;
546 }
547 
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550 	if (!io_ctl->cur)
551 		return -ENOSPC;
552 
553 	/*
554 	 * If we aren't at the start of the current page, unmap this one and
555 	 * map the next one if there is any left.
556 	 */
557 	if (io_ctl->cur != io_ctl->orig) {
558 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 		if (io_ctl->index >= io_ctl->num_pages)
560 			return -ENOSPC;
561 		io_ctl_map_page(io_ctl, 0);
562 	}
563 
564 	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
565 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 	if (io_ctl->index < io_ctl->num_pages)
567 		io_ctl_map_page(io_ctl, 0);
568 	return 0;
569 }
570 
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573 	/*
574 	 * If we're not on the boundary we know we've modified the page and we
575 	 * need to crc the page.
576 	 */
577 	if (io_ctl->cur != io_ctl->orig)
578 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579 	else
580 		io_ctl_unmap_page(io_ctl);
581 
582 	while (io_ctl->index < io_ctl->num_pages) {
583 		io_ctl_map_page(io_ctl, 1);
584 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 	}
586 }
587 
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589 			    struct btrfs_free_space *entry, u8 *type)
590 {
591 	struct btrfs_free_space_entry *e;
592 	int ret;
593 
594 	if (!io_ctl->cur) {
595 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596 		if (ret)
597 			return ret;
598 	}
599 
600 	e = io_ctl->cur;
601 	entry->offset = le64_to_cpu(e->offset);
602 	entry->bytes = le64_to_cpu(e->bytes);
603 	*type = e->type;
604 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606 
607 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608 		return 0;
609 
610 	io_ctl_unmap_page(io_ctl);
611 
612 	return 0;
613 }
614 
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616 			      struct btrfs_free_space *entry)
617 {
618 	int ret;
619 
620 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621 	if (ret)
622 		return ret;
623 
624 	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
625 	io_ctl_unmap_page(io_ctl);
626 
627 	return 0;
628 }
629 
630 /*
631  * Since we attach pinned extents after the fact we can have contiguous sections
632  * of free space that are split up in entries.  This poses a problem with the
633  * tree logging stuff since it could have allocated across what appears to be 2
634  * entries since we would have merged the entries when adding the pinned extents
635  * back to the free space cache.  So run through the space cache that we just
636  * loaded and merge contiguous entries.  This will make the log replay stuff not
637  * blow up and it will make for nicer allocator behavior.
638  */
merge_space_tree(struct btrfs_free_space_ctl * ctl)639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641 	struct btrfs_free_space *e, *prev = NULL;
642 	struct rb_node *n;
643 
644 again:
645 	spin_lock(&ctl->tree_lock);
646 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647 		e = rb_entry(n, struct btrfs_free_space, offset_index);
648 		if (!prev)
649 			goto next;
650 		if (e->bitmap || prev->bitmap)
651 			goto next;
652 		if (prev->offset + prev->bytes == e->offset) {
653 			unlink_free_space(ctl, prev);
654 			unlink_free_space(ctl, e);
655 			prev->bytes += e->bytes;
656 			kmem_cache_free(btrfs_free_space_cachep, e);
657 			link_free_space(ctl, prev);
658 			prev = NULL;
659 			spin_unlock(&ctl->tree_lock);
660 			goto again;
661 		}
662 next:
663 		prev = e;
664 	}
665 	spin_unlock(&ctl->tree_lock);
666 }
667 
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669 				   struct btrfs_free_space_ctl *ctl,
670 				   struct btrfs_path *path, u64 offset)
671 {
672 	struct btrfs_free_space_header *header;
673 	struct extent_buffer *leaf;
674 	struct btrfs_io_ctl io_ctl;
675 	struct btrfs_key key;
676 	struct btrfs_free_space *e, *n;
677 	LIST_HEAD(bitmaps);
678 	u64 num_entries;
679 	u64 num_bitmaps;
680 	u64 generation;
681 	u8 type;
682 	int ret = 0;
683 
684 	/* Nothing in the space cache, goodbye */
685 	if (!i_size_read(inode))
686 		return 0;
687 
688 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689 	key.offset = offset;
690 	key.type = 0;
691 
692 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693 	if (ret < 0)
694 		return 0;
695 	else if (ret > 0) {
696 		btrfs_release_path(path);
697 		return 0;
698 	}
699 
700 	ret = -1;
701 
702 	leaf = path->nodes[0];
703 	header = btrfs_item_ptr(leaf, path->slots[0],
704 				struct btrfs_free_space_header);
705 	num_entries = btrfs_free_space_entries(leaf, header);
706 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 	generation = btrfs_free_space_generation(leaf, header);
708 	btrfs_release_path(path);
709 
710 	if (!BTRFS_I(inode)->generation) {
711 		btrfs_info(root->fs_info,
712 			   "The free space cache file (%llu) is invalid. skip it\n",
713 			   offset);
714 		return 0;
715 	}
716 
717 	if (BTRFS_I(inode)->generation != generation) {
718 		btrfs_err(root->fs_info,
719 			"free space inode generation (%llu) did not match free space cache generation (%llu)",
720 			BTRFS_I(inode)->generation, generation);
721 		return 0;
722 	}
723 
724 	if (!num_entries)
725 		return 0;
726 
727 	ret = io_ctl_init(&io_ctl, inode, root, 0);
728 	if (ret)
729 		return ret;
730 
731 	ret = readahead_cache(inode);
732 	if (ret)
733 		goto out;
734 
735 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
736 	if (ret)
737 		goto out;
738 
739 	ret = io_ctl_check_crc(&io_ctl, 0);
740 	if (ret)
741 		goto free_cache;
742 
743 	ret = io_ctl_check_generation(&io_ctl, generation);
744 	if (ret)
745 		goto free_cache;
746 
747 	while (num_entries) {
748 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 				      GFP_NOFS);
750 		if (!e)
751 			goto free_cache;
752 
753 		ret = io_ctl_read_entry(&io_ctl, e, &type);
754 		if (ret) {
755 			kmem_cache_free(btrfs_free_space_cachep, e);
756 			goto free_cache;
757 		}
758 
759 		if (!e->bytes) {
760 			kmem_cache_free(btrfs_free_space_cachep, e);
761 			goto free_cache;
762 		}
763 
764 		if (type == BTRFS_FREE_SPACE_EXTENT) {
765 			spin_lock(&ctl->tree_lock);
766 			ret = link_free_space(ctl, e);
767 			spin_unlock(&ctl->tree_lock);
768 			if (ret) {
769 				btrfs_err(root->fs_info,
770 					"Duplicate entries in free space cache, dumping");
771 				kmem_cache_free(btrfs_free_space_cachep, e);
772 				goto free_cache;
773 			}
774 		} else {
775 			ASSERT(num_bitmaps);
776 			num_bitmaps--;
777 			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
778 			if (!e->bitmap) {
779 				kmem_cache_free(
780 					btrfs_free_space_cachep, e);
781 				goto free_cache;
782 			}
783 			spin_lock(&ctl->tree_lock);
784 			ret = link_free_space(ctl, e);
785 			ctl->total_bitmaps++;
786 			ctl->op->recalc_thresholds(ctl);
787 			spin_unlock(&ctl->tree_lock);
788 			if (ret) {
789 				btrfs_err(root->fs_info,
790 					"Duplicate entries in free space cache, dumping");
791 				kmem_cache_free(btrfs_free_space_cachep, e);
792 				goto free_cache;
793 			}
794 			list_add_tail(&e->list, &bitmaps);
795 		}
796 
797 		num_entries--;
798 	}
799 
800 	io_ctl_unmap_page(&io_ctl);
801 
802 	/*
803 	 * We add the bitmaps at the end of the entries in order that
804 	 * the bitmap entries are added to the cache.
805 	 */
806 	list_for_each_entry_safe(e, n, &bitmaps, list) {
807 		list_del_init(&e->list);
808 		ret = io_ctl_read_bitmap(&io_ctl, e);
809 		if (ret)
810 			goto free_cache;
811 	}
812 
813 	io_ctl_drop_pages(&io_ctl);
814 	merge_space_tree(ctl);
815 	ret = 1;
816 out:
817 	io_ctl_free(&io_ctl);
818 	return ret;
819 free_cache:
820 	io_ctl_drop_pages(&io_ctl);
821 	__btrfs_remove_free_space_cache(ctl);
822 	goto out;
823 }
824 
load_free_space_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)825 int load_free_space_cache(struct btrfs_fs_info *fs_info,
826 			  struct btrfs_block_group_cache *block_group)
827 {
828 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
829 	struct btrfs_root *root = fs_info->tree_root;
830 	struct inode *inode;
831 	struct btrfs_path *path;
832 	int ret = 0;
833 	bool matched;
834 	u64 used = btrfs_block_group_used(&block_group->item);
835 
836 	/*
837 	 * If this block group has been marked to be cleared for one reason or
838 	 * another then we can't trust the on disk cache, so just return.
839 	 */
840 	spin_lock(&block_group->lock);
841 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
842 		spin_unlock(&block_group->lock);
843 		return 0;
844 	}
845 	spin_unlock(&block_group->lock);
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return 0;
850 	path->search_commit_root = 1;
851 	path->skip_locking = 1;
852 
853 	inode = lookup_free_space_inode(root, block_group, path);
854 	if (IS_ERR(inode)) {
855 		btrfs_free_path(path);
856 		return 0;
857 	}
858 
859 	/* We may have converted the inode and made the cache invalid. */
860 	spin_lock(&block_group->lock);
861 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
862 		spin_unlock(&block_group->lock);
863 		btrfs_free_path(path);
864 		goto out;
865 	}
866 	spin_unlock(&block_group->lock);
867 
868 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
869 				      path, block_group->key.objectid);
870 	btrfs_free_path(path);
871 	if (ret <= 0)
872 		goto out;
873 
874 	spin_lock(&ctl->tree_lock);
875 	matched = (ctl->free_space == (block_group->key.offset - used -
876 				       block_group->bytes_super));
877 	spin_unlock(&ctl->tree_lock);
878 
879 	if (!matched) {
880 		__btrfs_remove_free_space_cache(ctl);
881 		btrfs_warn(fs_info,
882 			   "block group %llu has wrong amount of free space",
883 			   block_group->key.objectid);
884 		ret = -1;
885 	}
886 out:
887 	if (ret < 0) {
888 		/* This cache is bogus, make sure it gets cleared */
889 		spin_lock(&block_group->lock);
890 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
891 		spin_unlock(&block_group->lock);
892 		ret = 0;
893 
894 		btrfs_warn(fs_info,
895 			   "failed to load free space cache for block group %llu, rebuilding it now",
896 			   block_group->key.objectid);
897 	}
898 
899 	iput(inode);
900 	return ret;
901 }
902 
903 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)904 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
905 			      struct btrfs_free_space_ctl *ctl,
906 			      struct btrfs_block_group_cache *block_group,
907 			      int *entries, int *bitmaps,
908 			      struct list_head *bitmap_list)
909 {
910 	int ret;
911 	struct btrfs_free_cluster *cluster = NULL;
912 	struct btrfs_free_cluster *cluster_locked = NULL;
913 	struct rb_node *node = rb_first(&ctl->free_space_offset);
914 	struct btrfs_trim_range *trim_entry;
915 
916 	/* Get the cluster for this block_group if it exists */
917 	if (block_group && !list_empty(&block_group->cluster_list)) {
918 		cluster = list_entry(block_group->cluster_list.next,
919 				     struct btrfs_free_cluster,
920 				     block_group_list);
921 	}
922 
923 	if (!node && cluster) {
924 		cluster_locked = cluster;
925 		spin_lock(&cluster_locked->lock);
926 		node = rb_first(&cluster->root);
927 		cluster = NULL;
928 	}
929 
930 	/* Write out the extent entries */
931 	while (node) {
932 		struct btrfs_free_space *e;
933 
934 		e = rb_entry(node, struct btrfs_free_space, offset_index);
935 		*entries += 1;
936 
937 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
938 				       e->bitmap);
939 		if (ret)
940 			goto fail;
941 
942 		if (e->bitmap) {
943 			list_add_tail(&e->list, bitmap_list);
944 			*bitmaps += 1;
945 		}
946 		node = rb_next(node);
947 		if (!node && cluster) {
948 			node = rb_first(&cluster->root);
949 			cluster_locked = cluster;
950 			spin_lock(&cluster_locked->lock);
951 			cluster = NULL;
952 		}
953 	}
954 	if (cluster_locked) {
955 		spin_unlock(&cluster_locked->lock);
956 		cluster_locked = NULL;
957 	}
958 
959 	/*
960 	 * Make sure we don't miss any range that was removed from our rbtree
961 	 * because trimming is running. Otherwise after a umount+mount (or crash
962 	 * after committing the transaction) we would leak free space and get
963 	 * an inconsistent free space cache report from fsck.
964 	 */
965 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
966 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
967 				       trim_entry->bytes, NULL);
968 		if (ret)
969 			goto fail;
970 		*entries += 1;
971 	}
972 
973 	return 0;
974 fail:
975 	if (cluster_locked)
976 		spin_unlock(&cluster_locked->lock);
977 	return -ENOSPC;
978 }
979 
980 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)981 update_cache_item(struct btrfs_trans_handle *trans,
982 		  struct btrfs_root *root,
983 		  struct inode *inode,
984 		  struct btrfs_path *path, u64 offset,
985 		  int entries, int bitmaps)
986 {
987 	struct btrfs_key key;
988 	struct btrfs_free_space_header *header;
989 	struct extent_buffer *leaf;
990 	int ret;
991 
992 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
993 	key.offset = offset;
994 	key.type = 0;
995 
996 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
997 	if (ret < 0) {
998 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
999 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1000 				 GFP_NOFS);
1001 		goto fail;
1002 	}
1003 	leaf = path->nodes[0];
1004 	if (ret > 0) {
1005 		struct btrfs_key found_key;
1006 		ASSERT(path->slots[0]);
1007 		path->slots[0]--;
1008 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1009 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1010 		    found_key.offset != offset) {
1011 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1012 					 inode->i_size - 1,
1013 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1014 					 NULL, GFP_NOFS);
1015 			btrfs_release_path(path);
1016 			goto fail;
1017 		}
1018 	}
1019 
1020 	BTRFS_I(inode)->generation = trans->transid;
1021 	header = btrfs_item_ptr(leaf, path->slots[0],
1022 				struct btrfs_free_space_header);
1023 	btrfs_set_free_space_entries(leaf, header, entries);
1024 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1025 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1026 	btrfs_mark_buffer_dirty(leaf);
1027 	btrfs_release_path(path);
1028 
1029 	return 0;
1030 
1031 fail:
1032 	return -1;
1033 }
1034 
1035 static noinline_for_stack int
write_pinned_extent_entries(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1036 write_pinned_extent_entries(struct btrfs_root *root,
1037 			    struct btrfs_block_group_cache *block_group,
1038 			    struct btrfs_io_ctl *io_ctl,
1039 			    int *entries)
1040 {
1041 	u64 start, extent_start, extent_end, len;
1042 	struct extent_io_tree *unpin = NULL;
1043 	int ret;
1044 
1045 	if (!block_group)
1046 		return 0;
1047 
1048 	/*
1049 	 * We want to add any pinned extents to our free space cache
1050 	 * so we don't leak the space
1051 	 *
1052 	 * We shouldn't have switched the pinned extents yet so this is the
1053 	 * right one
1054 	 */
1055 	unpin = root->fs_info->pinned_extents;
1056 
1057 	start = block_group->key.objectid;
1058 
1059 	while (start < block_group->key.objectid + block_group->key.offset) {
1060 		ret = find_first_extent_bit(unpin, start,
1061 					    &extent_start, &extent_end,
1062 					    EXTENT_DIRTY, NULL);
1063 		if (ret)
1064 			return 0;
1065 
1066 		/* This pinned extent is out of our range */
1067 		if (extent_start >= block_group->key.objectid +
1068 		    block_group->key.offset)
1069 			return 0;
1070 
1071 		extent_start = max(extent_start, start);
1072 		extent_end = min(block_group->key.objectid +
1073 				 block_group->key.offset, extent_end + 1);
1074 		len = extent_end - extent_start;
1075 
1076 		*entries += 1;
1077 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1078 		if (ret)
1079 			return -ENOSPC;
1080 
1081 		start = extent_end;
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1088 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1089 {
1090 	struct btrfs_free_space *entry, *next;
1091 	int ret;
1092 
1093 	/* Write out the bitmaps */
1094 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1095 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1096 		if (ret)
1097 			return -ENOSPC;
1098 		list_del_init(&entry->list);
1099 	}
1100 
1101 	return 0;
1102 }
1103 
flush_dirty_cache(struct inode * inode)1104 static int flush_dirty_cache(struct inode *inode)
1105 {
1106 	int ret;
1107 
1108 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1109 	if (ret)
1110 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1111 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1112 				 GFP_NOFS);
1113 
1114 	return ret;
1115 }
1116 
1117 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1118 cleanup_bitmap_list(struct list_head *bitmap_list)
1119 {
1120 	struct btrfs_free_space *entry, *next;
1121 
1122 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1123 		list_del_init(&entry->list);
1124 }
1125 
1126 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state,struct list_head * bitmap_list)1127 cleanup_write_cache_enospc(struct inode *inode,
1128 			   struct btrfs_io_ctl *io_ctl,
1129 			   struct extent_state **cached_state,
1130 			   struct list_head *bitmap_list)
1131 {
1132 	io_ctl_drop_pages(io_ctl);
1133 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1134 			     i_size_read(inode) - 1, cached_state,
1135 			     GFP_NOFS);
1136 }
1137 
btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1138 int btrfs_wait_cache_io(struct btrfs_root *root,
1139 			struct btrfs_trans_handle *trans,
1140 			struct btrfs_block_group_cache *block_group,
1141 			struct btrfs_io_ctl *io_ctl,
1142 			struct btrfs_path *path, u64 offset)
1143 {
1144 	int ret;
1145 	struct inode *inode = io_ctl->inode;
1146 
1147 	if (!inode)
1148 		return 0;
1149 
1150 	if (block_group)
1151 		root = root->fs_info->tree_root;
1152 
1153 	/* Flush the dirty pages in the cache file. */
1154 	ret = flush_dirty_cache(inode);
1155 	if (ret)
1156 		goto out;
1157 
1158 	/* Update the cache item to tell everyone this cache file is valid. */
1159 	ret = update_cache_item(trans, root, inode, path, offset,
1160 				io_ctl->entries, io_ctl->bitmaps);
1161 out:
1162 	io_ctl_free(io_ctl);
1163 	if (ret) {
1164 		invalidate_inode_pages2(inode->i_mapping);
1165 		BTRFS_I(inode)->generation = 0;
1166 		if (block_group) {
1167 #ifdef DEBUG
1168 			btrfs_err(root->fs_info,
1169 				"failed to write free space cache for block group %llu",
1170 				block_group->key.objectid);
1171 #endif
1172 		}
1173 	}
1174 	btrfs_update_inode(trans, root, inode);
1175 
1176 	if (block_group) {
1177 		/* the dirty list is protected by the dirty_bgs_lock */
1178 		spin_lock(&trans->transaction->dirty_bgs_lock);
1179 
1180 		/* the disk_cache_state is protected by the block group lock */
1181 		spin_lock(&block_group->lock);
1182 
1183 		/*
1184 		 * only mark this as written if we didn't get put back on
1185 		 * the dirty list while waiting for IO.   Otherwise our
1186 		 * cache state won't be right, and we won't get written again
1187 		 */
1188 		if (!ret && list_empty(&block_group->dirty_list))
1189 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1190 		else if (ret)
1191 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1192 
1193 		spin_unlock(&block_group->lock);
1194 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1195 		io_ctl->inode = NULL;
1196 		iput(inode);
1197 	}
1198 
1199 	return ret;
1200 
1201 }
1202 
1203 /**
1204  * __btrfs_write_out_cache - write out cached info to an inode
1205  * @root - the root the inode belongs to
1206  * @ctl - the free space cache we are going to write out
1207  * @block_group - the block_group for this cache if it belongs to a block_group
1208  * @trans - the trans handle
1209  * @path - the path to use
1210  * @offset - the offset for the key we'll insert
1211  *
1212  * This function writes out a free space cache struct to disk for quick recovery
1213  * on mount.  This will return 0 if it was successful in writing the cache out,
1214  * or an errno if it was not.
1215  */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 offset)1216 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1217 				   struct btrfs_free_space_ctl *ctl,
1218 				   struct btrfs_block_group_cache *block_group,
1219 				   struct btrfs_io_ctl *io_ctl,
1220 				   struct btrfs_trans_handle *trans,
1221 				   struct btrfs_path *path, u64 offset)
1222 {
1223 	struct extent_state *cached_state = NULL;
1224 	LIST_HEAD(bitmap_list);
1225 	int entries = 0;
1226 	int bitmaps = 0;
1227 	int ret;
1228 	int must_iput = 0;
1229 
1230 	if (!i_size_read(inode))
1231 		return -EIO;
1232 
1233 	WARN_ON(io_ctl->pages);
1234 	ret = io_ctl_init(io_ctl, inode, root, 1);
1235 	if (ret)
1236 		return ret;
1237 
1238 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1239 		down_write(&block_group->data_rwsem);
1240 		spin_lock(&block_group->lock);
1241 		if (block_group->delalloc_bytes) {
1242 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1243 			spin_unlock(&block_group->lock);
1244 			up_write(&block_group->data_rwsem);
1245 			BTRFS_I(inode)->generation = 0;
1246 			ret = 0;
1247 			must_iput = 1;
1248 			goto out;
1249 		}
1250 		spin_unlock(&block_group->lock);
1251 	}
1252 
1253 	/* Lock all pages first so we can lock the extent safely. */
1254 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1255 	if (ret)
1256 		goto out_unlock;
1257 
1258 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1259 			 &cached_state);
1260 
1261 	io_ctl_set_generation(io_ctl, trans->transid);
1262 
1263 	mutex_lock(&ctl->cache_writeout_mutex);
1264 	/* Write out the extent entries in the free space cache */
1265 	spin_lock(&ctl->tree_lock);
1266 	ret = write_cache_extent_entries(io_ctl, ctl,
1267 					 block_group, &entries, &bitmaps,
1268 					 &bitmap_list);
1269 	if (ret)
1270 		goto out_nospc_locked;
1271 
1272 	/*
1273 	 * Some spaces that are freed in the current transaction are pinned,
1274 	 * they will be added into free space cache after the transaction is
1275 	 * committed, we shouldn't lose them.
1276 	 *
1277 	 * If this changes while we are working we'll get added back to
1278 	 * the dirty list and redo it.  No locking needed
1279 	 */
1280 	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1281 	if (ret)
1282 		goto out_nospc_locked;
1283 
1284 	/*
1285 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1286 	 * locked while doing it because a concurrent trim can be manipulating
1287 	 * or freeing the bitmap.
1288 	 */
1289 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1290 	spin_unlock(&ctl->tree_lock);
1291 	mutex_unlock(&ctl->cache_writeout_mutex);
1292 	if (ret)
1293 		goto out_nospc;
1294 
1295 	/* Zero out the rest of the pages just to make sure */
1296 	io_ctl_zero_remaining_pages(io_ctl);
1297 
1298 	/* Everything is written out, now we dirty the pages in the file. */
1299 	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1300 				0, i_size_read(inode), &cached_state);
1301 	if (ret)
1302 		goto out_nospc;
1303 
1304 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1305 		up_write(&block_group->data_rwsem);
1306 	/*
1307 	 * Release the pages and unlock the extent, we will flush
1308 	 * them out later
1309 	 */
1310 	io_ctl_drop_pages(io_ctl);
1311 
1312 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1313 			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1314 
1315 	/*
1316 	 * at this point the pages are under IO and we're happy,
1317 	 * The caller is responsible for waiting on them and updating the
1318 	 * the cache and the inode
1319 	 */
1320 	io_ctl->entries = entries;
1321 	io_ctl->bitmaps = bitmaps;
1322 
1323 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1324 	if (ret)
1325 		goto out;
1326 
1327 	return 0;
1328 
1329 out:
1330 	io_ctl->inode = NULL;
1331 	io_ctl_free(io_ctl);
1332 	if (ret) {
1333 		invalidate_inode_pages2(inode->i_mapping);
1334 		BTRFS_I(inode)->generation = 0;
1335 	}
1336 	btrfs_update_inode(trans, root, inode);
1337 	if (must_iput)
1338 		iput(inode);
1339 	return ret;
1340 
1341 out_nospc_locked:
1342 	cleanup_bitmap_list(&bitmap_list);
1343 	spin_unlock(&ctl->tree_lock);
1344 	mutex_unlock(&ctl->cache_writeout_mutex);
1345 
1346 out_nospc:
1347 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1348 
1349 out_unlock:
1350 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1351 		up_write(&block_group->data_rwsem);
1352 
1353 	goto out;
1354 }
1355 
btrfs_write_out_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1356 int btrfs_write_out_cache(struct btrfs_root *root,
1357 			  struct btrfs_trans_handle *trans,
1358 			  struct btrfs_block_group_cache *block_group,
1359 			  struct btrfs_path *path)
1360 {
1361 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1362 	struct inode *inode;
1363 	int ret = 0;
1364 
1365 	root = root->fs_info->tree_root;
1366 
1367 	spin_lock(&block_group->lock);
1368 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1369 		spin_unlock(&block_group->lock);
1370 		return 0;
1371 	}
1372 	spin_unlock(&block_group->lock);
1373 
1374 	inode = lookup_free_space_inode(root, block_group, path);
1375 	if (IS_ERR(inode))
1376 		return 0;
1377 
1378 	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1379 				      &block_group->io_ctl, trans,
1380 				      path, block_group->key.objectid);
1381 	if (ret) {
1382 #ifdef DEBUG
1383 		btrfs_err(root->fs_info,
1384 			"failed to write free space cache for block group %llu",
1385 			block_group->key.objectid);
1386 #endif
1387 		spin_lock(&block_group->lock);
1388 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1389 		spin_unlock(&block_group->lock);
1390 
1391 		block_group->io_ctl.inode = NULL;
1392 		iput(inode);
1393 	}
1394 
1395 	/*
1396 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1397 	 * to wait for IO and put the inode
1398 	 */
1399 
1400 	return ret;
1401 }
1402 
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1403 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1404 					  u64 offset)
1405 {
1406 	ASSERT(offset >= bitmap_start);
1407 	offset -= bitmap_start;
1408 	return (unsigned long)(div_u64(offset, unit));
1409 }
1410 
bytes_to_bits(u64 bytes,u32 unit)1411 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1412 {
1413 	return (unsigned long)(div_u64(bytes, unit));
1414 }
1415 
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1416 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1417 				   u64 offset)
1418 {
1419 	u64 bitmap_start;
1420 	u64 bytes_per_bitmap;
1421 
1422 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1423 	bitmap_start = offset - ctl->start;
1424 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1425 	bitmap_start *= bytes_per_bitmap;
1426 	bitmap_start += ctl->start;
1427 
1428 	return bitmap_start;
1429 }
1430 
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1431 static int tree_insert_offset(struct rb_root *root, u64 offset,
1432 			      struct rb_node *node, int bitmap)
1433 {
1434 	struct rb_node **p = &root->rb_node;
1435 	struct rb_node *parent = NULL;
1436 	struct btrfs_free_space *info;
1437 
1438 	while (*p) {
1439 		parent = *p;
1440 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1441 
1442 		if (offset < info->offset) {
1443 			p = &(*p)->rb_left;
1444 		} else if (offset > info->offset) {
1445 			p = &(*p)->rb_right;
1446 		} else {
1447 			/*
1448 			 * we could have a bitmap entry and an extent entry
1449 			 * share the same offset.  If this is the case, we want
1450 			 * the extent entry to always be found first if we do a
1451 			 * linear search through the tree, since we want to have
1452 			 * the quickest allocation time, and allocating from an
1453 			 * extent is faster than allocating from a bitmap.  So
1454 			 * if we're inserting a bitmap and we find an entry at
1455 			 * this offset, we want to go right, or after this entry
1456 			 * logically.  If we are inserting an extent and we've
1457 			 * found a bitmap, we want to go left, or before
1458 			 * logically.
1459 			 */
1460 			if (bitmap) {
1461 				if (info->bitmap) {
1462 					WARN_ON_ONCE(1);
1463 					return -EEXIST;
1464 				}
1465 				p = &(*p)->rb_right;
1466 			} else {
1467 				if (!info->bitmap) {
1468 					WARN_ON_ONCE(1);
1469 					return -EEXIST;
1470 				}
1471 				p = &(*p)->rb_left;
1472 			}
1473 		}
1474 	}
1475 
1476 	rb_link_node(node, parent, p);
1477 	rb_insert_color(node, root);
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * searches the tree for the given offset.
1484  *
1485  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1486  * want a section that has at least bytes size and comes at or after the given
1487  * offset.
1488  */
1489 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1490 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1491 		   u64 offset, int bitmap_only, int fuzzy)
1492 {
1493 	struct rb_node *n = ctl->free_space_offset.rb_node;
1494 	struct btrfs_free_space *entry, *prev = NULL;
1495 
1496 	/* find entry that is closest to the 'offset' */
1497 	while (1) {
1498 		if (!n) {
1499 			entry = NULL;
1500 			break;
1501 		}
1502 
1503 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1504 		prev = entry;
1505 
1506 		if (offset < entry->offset)
1507 			n = n->rb_left;
1508 		else if (offset > entry->offset)
1509 			n = n->rb_right;
1510 		else
1511 			break;
1512 	}
1513 
1514 	if (bitmap_only) {
1515 		if (!entry)
1516 			return NULL;
1517 		if (entry->bitmap)
1518 			return entry;
1519 
1520 		/*
1521 		 * bitmap entry and extent entry may share same offset,
1522 		 * in that case, bitmap entry comes after extent entry.
1523 		 */
1524 		n = rb_next(n);
1525 		if (!n)
1526 			return NULL;
1527 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1528 		if (entry->offset != offset)
1529 			return NULL;
1530 
1531 		WARN_ON(!entry->bitmap);
1532 		return entry;
1533 	} else if (entry) {
1534 		if (entry->bitmap) {
1535 			/*
1536 			 * if previous extent entry covers the offset,
1537 			 * we should return it instead of the bitmap entry
1538 			 */
1539 			n = rb_prev(&entry->offset_index);
1540 			if (n) {
1541 				prev = rb_entry(n, struct btrfs_free_space,
1542 						offset_index);
1543 				if (!prev->bitmap &&
1544 				    prev->offset + prev->bytes > offset)
1545 					entry = prev;
1546 			}
1547 		}
1548 		return entry;
1549 	}
1550 
1551 	if (!prev)
1552 		return NULL;
1553 
1554 	/* find last entry before the 'offset' */
1555 	entry = prev;
1556 	if (entry->offset > offset) {
1557 		n = rb_prev(&entry->offset_index);
1558 		if (n) {
1559 			entry = rb_entry(n, struct btrfs_free_space,
1560 					offset_index);
1561 			ASSERT(entry->offset <= offset);
1562 		} else {
1563 			if (fuzzy)
1564 				return entry;
1565 			else
1566 				return NULL;
1567 		}
1568 	}
1569 
1570 	if (entry->bitmap) {
1571 		n = rb_prev(&entry->offset_index);
1572 		if (n) {
1573 			prev = rb_entry(n, struct btrfs_free_space,
1574 					offset_index);
1575 			if (!prev->bitmap &&
1576 			    prev->offset + prev->bytes > offset)
1577 				return prev;
1578 		}
1579 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1580 			return entry;
1581 	} else if (entry->offset + entry->bytes > offset)
1582 		return entry;
1583 
1584 	if (!fuzzy)
1585 		return NULL;
1586 
1587 	while (1) {
1588 		if (entry->bitmap) {
1589 			if (entry->offset + BITS_PER_BITMAP *
1590 			    ctl->unit > offset)
1591 				break;
1592 		} else {
1593 			if (entry->offset + entry->bytes > offset)
1594 				break;
1595 		}
1596 
1597 		n = rb_next(&entry->offset_index);
1598 		if (!n)
1599 			return NULL;
1600 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1601 	}
1602 	return entry;
1603 }
1604 
1605 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1606 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1607 		    struct btrfs_free_space *info)
1608 {
1609 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1610 	ctl->free_extents--;
1611 }
1612 
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1613 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1614 			      struct btrfs_free_space *info)
1615 {
1616 	__unlink_free_space(ctl, info);
1617 	ctl->free_space -= info->bytes;
1618 }
1619 
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1620 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1621 			   struct btrfs_free_space *info)
1622 {
1623 	int ret = 0;
1624 
1625 	ASSERT(info->bytes || info->bitmap);
1626 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1627 				 &info->offset_index, (info->bitmap != NULL));
1628 	if (ret)
1629 		return ret;
1630 
1631 	ctl->free_space += info->bytes;
1632 	ctl->free_extents++;
1633 	return ret;
1634 }
1635 
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)1636 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1637 {
1638 	struct btrfs_block_group_cache *block_group = ctl->private;
1639 	u64 max_bytes;
1640 	u64 bitmap_bytes;
1641 	u64 extent_bytes;
1642 	u64 size = block_group->key.offset;
1643 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1644 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1645 
1646 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1647 
1648 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1649 
1650 	/*
1651 	 * The goal is to keep the total amount of memory used per 1gb of space
1652 	 * at or below 32k, so we need to adjust how much memory we allow to be
1653 	 * used by extent based free space tracking
1654 	 */
1655 	if (size < SZ_1G)
1656 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1657 	else
1658 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1659 
1660 	/*
1661 	 * we want to account for 1 more bitmap than what we have so we can make
1662 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1663 	 * we add more bitmaps.
1664 	 */
1665 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1666 
1667 	if (bitmap_bytes >= max_bytes) {
1668 		ctl->extents_thresh = 0;
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * we want the extent entry threshold to always be at most 1/2 the max
1674 	 * bytes we can have, or whatever is less than that.
1675 	 */
1676 	extent_bytes = max_bytes - bitmap_bytes;
1677 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1678 
1679 	ctl->extents_thresh =
1680 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1681 }
1682 
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1683 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1684 				       struct btrfs_free_space *info,
1685 				       u64 offset, u64 bytes)
1686 {
1687 	unsigned long start, count;
1688 
1689 	start = offset_to_bit(info->offset, ctl->unit, offset);
1690 	count = bytes_to_bits(bytes, ctl->unit);
1691 	ASSERT(start + count <= BITS_PER_BITMAP);
1692 
1693 	bitmap_clear(info->bitmap, start, count);
1694 
1695 	info->bytes -= bytes;
1696 }
1697 
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1698 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1699 			      struct btrfs_free_space *info, u64 offset,
1700 			      u64 bytes)
1701 {
1702 	__bitmap_clear_bits(ctl, info, offset, bytes);
1703 	ctl->free_space -= bytes;
1704 }
1705 
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1706 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1707 			    struct btrfs_free_space *info, u64 offset,
1708 			    u64 bytes)
1709 {
1710 	unsigned long start, count;
1711 
1712 	start = offset_to_bit(info->offset, ctl->unit, offset);
1713 	count = bytes_to_bits(bytes, ctl->unit);
1714 	ASSERT(start + count <= BITS_PER_BITMAP);
1715 
1716 	bitmap_set(info->bitmap, start, count);
1717 
1718 	info->bytes += bytes;
1719 	ctl->free_space += bytes;
1720 }
1721 
1722 /*
1723  * If we can not find suitable extent, we will use bytes to record
1724  * the size of the max extent.
1725  */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1726 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1727 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1728 			 u64 *bytes, bool for_alloc)
1729 {
1730 	unsigned long found_bits = 0;
1731 	unsigned long max_bits = 0;
1732 	unsigned long bits, i;
1733 	unsigned long next_zero;
1734 	unsigned long extent_bits;
1735 
1736 	/*
1737 	 * Skip searching the bitmap if we don't have a contiguous section that
1738 	 * is large enough for this allocation.
1739 	 */
1740 	if (for_alloc &&
1741 	    bitmap_info->max_extent_size &&
1742 	    bitmap_info->max_extent_size < *bytes) {
1743 		*bytes = bitmap_info->max_extent_size;
1744 		return -1;
1745 	}
1746 
1747 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1748 			  max_t(u64, *offset, bitmap_info->offset));
1749 	bits = bytes_to_bits(*bytes, ctl->unit);
1750 
1751 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1752 		if (for_alloc && bits == 1) {
1753 			found_bits = 1;
1754 			break;
1755 		}
1756 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1757 					       BITS_PER_BITMAP, i);
1758 		extent_bits = next_zero - i;
1759 		if (extent_bits >= bits) {
1760 			found_bits = extent_bits;
1761 			break;
1762 		} else if (extent_bits > max_bits) {
1763 			max_bits = extent_bits;
1764 		}
1765 		i = next_zero;
1766 	}
1767 
1768 	if (found_bits) {
1769 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1770 		*bytes = (u64)(found_bits) * ctl->unit;
1771 		return 0;
1772 	}
1773 
1774 	*bytes = (u64)(max_bits) * ctl->unit;
1775 	bitmap_info->max_extent_size = *bytes;
1776 	return -1;
1777 }
1778 
1779 /* Cache the size of the max extent in bytes */
1780 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1781 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1782 		unsigned long align, u64 *max_extent_size)
1783 {
1784 	struct btrfs_free_space *entry;
1785 	struct rb_node *node;
1786 	u64 tmp;
1787 	u64 align_off;
1788 	int ret;
1789 
1790 	if (!ctl->free_space_offset.rb_node)
1791 		goto out;
1792 
1793 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1794 	if (!entry)
1795 		goto out;
1796 
1797 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1798 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1799 		if (entry->bytes < *bytes) {
1800 			if (entry->bytes > *max_extent_size)
1801 				*max_extent_size = entry->bytes;
1802 			continue;
1803 		}
1804 
1805 		/* make sure the space returned is big enough
1806 		 * to match our requested alignment
1807 		 */
1808 		if (*bytes >= align) {
1809 			tmp = entry->offset - ctl->start + align - 1;
1810 			tmp = div64_u64(tmp, align);
1811 			tmp = tmp * align + ctl->start;
1812 			align_off = tmp - entry->offset;
1813 		} else {
1814 			align_off = 0;
1815 			tmp = entry->offset;
1816 		}
1817 
1818 		if (entry->bytes < *bytes + align_off) {
1819 			if (entry->bytes > *max_extent_size)
1820 				*max_extent_size = entry->bytes;
1821 			continue;
1822 		}
1823 
1824 		if (entry->bitmap) {
1825 			u64 size = *bytes;
1826 
1827 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1828 			if (!ret) {
1829 				*offset = tmp;
1830 				*bytes = size;
1831 				return entry;
1832 			} else if (size > *max_extent_size) {
1833 				*max_extent_size = size;
1834 			}
1835 			continue;
1836 		}
1837 
1838 		*offset = tmp;
1839 		*bytes = entry->bytes - align_off;
1840 		return entry;
1841 	}
1842 out:
1843 	return NULL;
1844 }
1845 
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1846 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1847 			   struct btrfs_free_space *info, u64 offset)
1848 {
1849 	info->offset = offset_to_bitmap(ctl, offset);
1850 	info->bytes = 0;
1851 	INIT_LIST_HEAD(&info->list);
1852 	link_free_space(ctl, info);
1853 	ctl->total_bitmaps++;
1854 
1855 	ctl->op->recalc_thresholds(ctl);
1856 }
1857 
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1858 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1859 			struct btrfs_free_space *bitmap_info)
1860 {
1861 	unlink_free_space(ctl, bitmap_info);
1862 	kfree(bitmap_info->bitmap);
1863 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1864 	ctl->total_bitmaps--;
1865 	ctl->op->recalc_thresholds(ctl);
1866 }
1867 
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1868 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1869 			      struct btrfs_free_space *bitmap_info,
1870 			      u64 *offset, u64 *bytes)
1871 {
1872 	u64 end;
1873 	u64 search_start, search_bytes;
1874 	int ret;
1875 
1876 again:
1877 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1878 
1879 	/*
1880 	 * We need to search for bits in this bitmap.  We could only cover some
1881 	 * of the extent in this bitmap thanks to how we add space, so we need
1882 	 * to search for as much as it as we can and clear that amount, and then
1883 	 * go searching for the next bit.
1884 	 */
1885 	search_start = *offset;
1886 	search_bytes = ctl->unit;
1887 	search_bytes = min(search_bytes, end - search_start + 1);
1888 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1889 			    false);
1890 	if (ret < 0 || search_start != *offset)
1891 		return -EINVAL;
1892 
1893 	/* We may have found more bits than what we need */
1894 	search_bytes = min(search_bytes, *bytes);
1895 
1896 	/* Cannot clear past the end of the bitmap */
1897 	search_bytes = min(search_bytes, end - search_start + 1);
1898 
1899 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1900 	*offset += search_bytes;
1901 	*bytes -= search_bytes;
1902 
1903 	if (*bytes) {
1904 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1905 		if (!bitmap_info->bytes)
1906 			free_bitmap(ctl, bitmap_info);
1907 
1908 		/*
1909 		 * no entry after this bitmap, but we still have bytes to
1910 		 * remove, so something has gone wrong.
1911 		 */
1912 		if (!next)
1913 			return -EINVAL;
1914 
1915 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1916 				       offset_index);
1917 
1918 		/*
1919 		 * if the next entry isn't a bitmap we need to return to let the
1920 		 * extent stuff do its work.
1921 		 */
1922 		if (!bitmap_info->bitmap)
1923 			return -EAGAIN;
1924 
1925 		/*
1926 		 * Ok the next item is a bitmap, but it may not actually hold
1927 		 * the information for the rest of this free space stuff, so
1928 		 * look for it, and if we don't find it return so we can try
1929 		 * everything over again.
1930 		 */
1931 		search_start = *offset;
1932 		search_bytes = ctl->unit;
1933 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1934 				    &search_bytes, false);
1935 		if (ret < 0 || search_start != *offset)
1936 			return -EAGAIN;
1937 
1938 		goto again;
1939 	} else if (!bitmap_info->bytes)
1940 		free_bitmap(ctl, bitmap_info);
1941 
1942 	return 0;
1943 }
1944 
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1945 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1946 			       struct btrfs_free_space *info, u64 offset,
1947 			       u64 bytes)
1948 {
1949 	u64 bytes_to_set = 0;
1950 	u64 end;
1951 
1952 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1953 
1954 	bytes_to_set = min(end - offset, bytes);
1955 
1956 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1957 
1958 	/*
1959 	 * We set some bytes, we have no idea what the max extent size is
1960 	 * anymore.
1961 	 */
1962 	info->max_extent_size = 0;
1963 
1964 	return bytes_to_set;
1965 
1966 }
1967 
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1968 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1969 		      struct btrfs_free_space *info)
1970 {
1971 	struct btrfs_block_group_cache *block_group = ctl->private;
1972 	bool forced = false;
1973 
1974 #ifdef CONFIG_BTRFS_DEBUG
1975 	if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
1976 					     block_group))
1977 		forced = true;
1978 #endif
1979 
1980 	/*
1981 	 * If we are below the extents threshold then we can add this as an
1982 	 * extent, and don't have to deal with the bitmap
1983 	 */
1984 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1985 		/*
1986 		 * If this block group has some small extents we don't want to
1987 		 * use up all of our free slots in the cache with them, we want
1988 		 * to reserve them to larger extents, however if we have plenty
1989 		 * of cache left then go ahead an dadd them, no sense in adding
1990 		 * the overhead of a bitmap if we don't have to.
1991 		 */
1992 		if (info->bytes <= block_group->sectorsize * 4) {
1993 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1994 				return false;
1995 		} else {
1996 			return false;
1997 		}
1998 	}
1999 
2000 	/*
2001 	 * The original block groups from mkfs can be really small, like 8
2002 	 * megabytes, so don't bother with a bitmap for those entries.  However
2003 	 * some block groups can be smaller than what a bitmap would cover but
2004 	 * are still large enough that they could overflow the 32k memory limit,
2005 	 * so allow those block groups to still be allowed to have a bitmap
2006 	 * entry.
2007 	 */
2008 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2009 		return false;
2010 
2011 	return true;
2012 }
2013 
2014 static const struct btrfs_free_space_op free_space_op = {
2015 	.recalc_thresholds	= recalculate_thresholds,
2016 	.use_bitmap		= use_bitmap,
2017 };
2018 
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2019 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2020 			      struct btrfs_free_space *info)
2021 {
2022 	struct btrfs_free_space *bitmap_info;
2023 	struct btrfs_block_group_cache *block_group = NULL;
2024 	int added = 0;
2025 	u64 bytes, offset, bytes_added;
2026 	int ret;
2027 
2028 	bytes = info->bytes;
2029 	offset = info->offset;
2030 
2031 	if (!ctl->op->use_bitmap(ctl, info))
2032 		return 0;
2033 
2034 	if (ctl->op == &free_space_op)
2035 		block_group = ctl->private;
2036 again:
2037 	/*
2038 	 * Since we link bitmaps right into the cluster we need to see if we
2039 	 * have a cluster here, and if so and it has our bitmap we need to add
2040 	 * the free space to that bitmap.
2041 	 */
2042 	if (block_group && !list_empty(&block_group->cluster_list)) {
2043 		struct btrfs_free_cluster *cluster;
2044 		struct rb_node *node;
2045 		struct btrfs_free_space *entry;
2046 
2047 		cluster = list_entry(block_group->cluster_list.next,
2048 				     struct btrfs_free_cluster,
2049 				     block_group_list);
2050 		spin_lock(&cluster->lock);
2051 		node = rb_first(&cluster->root);
2052 		if (!node) {
2053 			spin_unlock(&cluster->lock);
2054 			goto no_cluster_bitmap;
2055 		}
2056 
2057 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2058 		if (!entry->bitmap) {
2059 			spin_unlock(&cluster->lock);
2060 			goto no_cluster_bitmap;
2061 		}
2062 
2063 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2064 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2065 							  offset, bytes);
2066 			bytes -= bytes_added;
2067 			offset += bytes_added;
2068 		}
2069 		spin_unlock(&cluster->lock);
2070 		if (!bytes) {
2071 			ret = 1;
2072 			goto out;
2073 		}
2074 	}
2075 
2076 no_cluster_bitmap:
2077 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2078 					 1, 0);
2079 	if (!bitmap_info) {
2080 		ASSERT(added == 0);
2081 		goto new_bitmap;
2082 	}
2083 
2084 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2085 	bytes -= bytes_added;
2086 	offset += bytes_added;
2087 	added = 0;
2088 
2089 	if (!bytes) {
2090 		ret = 1;
2091 		goto out;
2092 	} else
2093 		goto again;
2094 
2095 new_bitmap:
2096 	if (info && info->bitmap) {
2097 		add_new_bitmap(ctl, info, offset);
2098 		added = 1;
2099 		info = NULL;
2100 		goto again;
2101 	} else {
2102 		spin_unlock(&ctl->tree_lock);
2103 
2104 		/* no pre-allocated info, allocate a new one */
2105 		if (!info) {
2106 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2107 						 GFP_NOFS);
2108 			if (!info) {
2109 				spin_lock(&ctl->tree_lock);
2110 				ret = -ENOMEM;
2111 				goto out;
2112 			}
2113 		}
2114 
2115 		/* allocate the bitmap */
2116 		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2117 		spin_lock(&ctl->tree_lock);
2118 		if (!info->bitmap) {
2119 			ret = -ENOMEM;
2120 			goto out;
2121 		}
2122 		goto again;
2123 	}
2124 
2125 out:
2126 	if (info) {
2127 		if (info->bitmap)
2128 			kfree(info->bitmap);
2129 		kmem_cache_free(btrfs_free_space_cachep, info);
2130 	}
2131 
2132 	return ret;
2133 }
2134 
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2135 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2136 			  struct btrfs_free_space *info, bool update_stat)
2137 {
2138 	struct btrfs_free_space *left_info;
2139 	struct btrfs_free_space *right_info;
2140 	bool merged = false;
2141 	u64 offset = info->offset;
2142 	u64 bytes = info->bytes;
2143 
2144 	/*
2145 	 * first we want to see if there is free space adjacent to the range we
2146 	 * are adding, if there is remove that struct and add a new one to
2147 	 * cover the entire range
2148 	 */
2149 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2150 	if (right_info && rb_prev(&right_info->offset_index))
2151 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2152 				     struct btrfs_free_space, offset_index);
2153 	else
2154 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2155 
2156 	if (right_info && !right_info->bitmap) {
2157 		if (update_stat)
2158 			unlink_free_space(ctl, right_info);
2159 		else
2160 			__unlink_free_space(ctl, right_info);
2161 		info->bytes += right_info->bytes;
2162 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2163 		merged = true;
2164 	}
2165 
2166 	if (left_info && !left_info->bitmap &&
2167 	    left_info->offset + left_info->bytes == offset) {
2168 		if (update_stat)
2169 			unlink_free_space(ctl, left_info);
2170 		else
2171 			__unlink_free_space(ctl, left_info);
2172 		info->offset = left_info->offset;
2173 		info->bytes += left_info->bytes;
2174 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2175 		merged = true;
2176 	}
2177 
2178 	return merged;
2179 }
2180 
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2181 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2182 				     struct btrfs_free_space *info,
2183 				     bool update_stat)
2184 {
2185 	struct btrfs_free_space *bitmap;
2186 	unsigned long i;
2187 	unsigned long j;
2188 	const u64 end = info->offset + info->bytes;
2189 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2190 	u64 bytes;
2191 
2192 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2193 	if (!bitmap)
2194 		return false;
2195 
2196 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2197 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2198 	if (j == i)
2199 		return false;
2200 	bytes = (j - i) * ctl->unit;
2201 	info->bytes += bytes;
2202 
2203 	if (update_stat)
2204 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2205 	else
2206 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2207 
2208 	if (!bitmap->bytes)
2209 		free_bitmap(ctl, bitmap);
2210 
2211 	return true;
2212 }
2213 
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2214 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2215 				       struct btrfs_free_space *info,
2216 				       bool update_stat)
2217 {
2218 	struct btrfs_free_space *bitmap;
2219 	u64 bitmap_offset;
2220 	unsigned long i;
2221 	unsigned long j;
2222 	unsigned long prev_j;
2223 	u64 bytes;
2224 
2225 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2226 	/* If we're on a boundary, try the previous logical bitmap. */
2227 	if (bitmap_offset == info->offset) {
2228 		if (info->offset == 0)
2229 			return false;
2230 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2231 	}
2232 
2233 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2234 	if (!bitmap)
2235 		return false;
2236 
2237 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2238 	j = 0;
2239 	prev_j = (unsigned long)-1;
2240 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2241 		if (j > i)
2242 			break;
2243 		prev_j = j;
2244 	}
2245 	if (prev_j == i)
2246 		return false;
2247 
2248 	if (prev_j == (unsigned long)-1)
2249 		bytes = (i + 1) * ctl->unit;
2250 	else
2251 		bytes = (i - prev_j) * ctl->unit;
2252 
2253 	info->offset -= bytes;
2254 	info->bytes += bytes;
2255 
2256 	if (update_stat)
2257 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2258 	else
2259 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2260 
2261 	if (!bitmap->bytes)
2262 		free_bitmap(ctl, bitmap);
2263 
2264 	return true;
2265 }
2266 
2267 /*
2268  * We prefer always to allocate from extent entries, both for clustered and
2269  * non-clustered allocation requests. So when attempting to add a new extent
2270  * entry, try to see if there's adjacent free space in bitmap entries, and if
2271  * there is, migrate that space from the bitmaps to the extent.
2272  * Like this we get better chances of satisfying space allocation requests
2273  * because we attempt to satisfy them based on a single cache entry, and never
2274  * on 2 or more entries - even if the entries represent a contiguous free space
2275  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2276  * ends).
2277  */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2278 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2279 			      struct btrfs_free_space *info,
2280 			      bool update_stat)
2281 {
2282 	/*
2283 	 * Only work with disconnected entries, as we can change their offset,
2284 	 * and must be extent entries.
2285 	 */
2286 	ASSERT(!info->bitmap);
2287 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2288 
2289 	if (ctl->total_bitmaps > 0) {
2290 		bool stole_end;
2291 		bool stole_front = false;
2292 
2293 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2294 		if (ctl->total_bitmaps > 0)
2295 			stole_front = steal_from_bitmap_to_front(ctl, info,
2296 								 update_stat);
2297 
2298 		if (stole_end || stole_front)
2299 			try_merge_free_space(ctl, info, update_stat);
2300 	}
2301 }
2302 
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes)2303 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2304 			   struct btrfs_free_space_ctl *ctl,
2305 			   u64 offset, u64 bytes)
2306 {
2307 	struct btrfs_free_space *info;
2308 	int ret = 0;
2309 
2310 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2311 	if (!info)
2312 		return -ENOMEM;
2313 
2314 	info->offset = offset;
2315 	info->bytes = bytes;
2316 	RB_CLEAR_NODE(&info->offset_index);
2317 
2318 	spin_lock(&ctl->tree_lock);
2319 
2320 	if (try_merge_free_space(ctl, info, true))
2321 		goto link;
2322 
2323 	/*
2324 	 * There was no extent directly to the left or right of this new
2325 	 * extent then we know we're going to have to allocate a new extent, so
2326 	 * before we do that see if we need to drop this into a bitmap
2327 	 */
2328 	ret = insert_into_bitmap(ctl, info);
2329 	if (ret < 0) {
2330 		goto out;
2331 	} else if (ret) {
2332 		ret = 0;
2333 		goto out;
2334 	}
2335 link:
2336 	/*
2337 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2338 	 * going to add the new free space to existing bitmap entries - because
2339 	 * that would mean unnecessary work that would be reverted. Therefore
2340 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2341 	 */
2342 	steal_from_bitmap(ctl, info, true);
2343 
2344 	ret = link_free_space(ctl, info);
2345 	if (ret)
2346 		kmem_cache_free(btrfs_free_space_cachep, info);
2347 out:
2348 	spin_unlock(&ctl->tree_lock);
2349 
2350 	if (ret) {
2351 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2352 		ASSERT(ret != -EEXIST);
2353 	}
2354 
2355 	return ret;
2356 }
2357 
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)2358 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2359 			    u64 offset, u64 bytes)
2360 {
2361 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2362 	struct btrfs_free_space *info;
2363 	int ret;
2364 	bool re_search = false;
2365 
2366 	spin_lock(&ctl->tree_lock);
2367 
2368 again:
2369 	ret = 0;
2370 	if (!bytes)
2371 		goto out_lock;
2372 
2373 	info = tree_search_offset(ctl, offset, 0, 0);
2374 	if (!info) {
2375 		/*
2376 		 * oops didn't find an extent that matched the space we wanted
2377 		 * to remove, look for a bitmap instead
2378 		 */
2379 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380 					  1, 0);
2381 		if (!info) {
2382 			/*
2383 			 * If we found a partial bit of our free space in a
2384 			 * bitmap but then couldn't find the other part this may
2385 			 * be a problem, so WARN about it.
2386 			 */
2387 			WARN_ON(re_search);
2388 			goto out_lock;
2389 		}
2390 	}
2391 
2392 	re_search = false;
2393 	if (!info->bitmap) {
2394 		unlink_free_space(ctl, info);
2395 		if (offset == info->offset) {
2396 			u64 to_free = min(bytes, info->bytes);
2397 
2398 			info->bytes -= to_free;
2399 			info->offset += to_free;
2400 			if (info->bytes) {
2401 				ret = link_free_space(ctl, info);
2402 				WARN_ON(ret);
2403 			} else {
2404 				kmem_cache_free(btrfs_free_space_cachep, info);
2405 			}
2406 
2407 			offset += to_free;
2408 			bytes -= to_free;
2409 			goto again;
2410 		} else {
2411 			u64 old_end = info->bytes + info->offset;
2412 
2413 			info->bytes = offset - info->offset;
2414 			ret = link_free_space(ctl, info);
2415 			WARN_ON(ret);
2416 			if (ret)
2417 				goto out_lock;
2418 
2419 			/* Not enough bytes in this entry to satisfy us */
2420 			if (old_end < offset + bytes) {
2421 				bytes -= old_end - offset;
2422 				offset = old_end;
2423 				goto again;
2424 			} else if (old_end == offset + bytes) {
2425 				/* all done */
2426 				goto out_lock;
2427 			}
2428 			spin_unlock(&ctl->tree_lock);
2429 
2430 			ret = btrfs_add_free_space(block_group, offset + bytes,
2431 						   old_end - (offset + bytes));
2432 			WARN_ON(ret);
2433 			goto out;
2434 		}
2435 	}
2436 
2437 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2438 	if (ret == -EAGAIN) {
2439 		re_search = true;
2440 		goto again;
2441 	}
2442 out_lock:
2443 	spin_unlock(&ctl->tree_lock);
2444 out:
2445 	return ret;
2446 }
2447 
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)2448 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2449 			   u64 bytes)
2450 {
2451 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2452 	struct btrfs_free_space *info;
2453 	struct rb_node *n;
2454 	int count = 0;
2455 
2456 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2457 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2458 		if (info->bytes >= bytes && !block_group->ro)
2459 			count++;
2460 		btrfs_crit(block_group->fs_info,
2461 			   "entry offset %llu, bytes %llu, bitmap %s",
2462 			   info->offset, info->bytes,
2463 		       (info->bitmap) ? "yes" : "no");
2464 	}
2465 	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2466 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2467 	btrfs_info(block_group->fs_info,
2468 		   "%d blocks of free space at or bigger than bytes is", count);
2469 }
2470 
btrfs_init_free_space_ctl(struct btrfs_block_group_cache * block_group)2471 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2472 {
2473 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2474 
2475 	spin_lock_init(&ctl->tree_lock);
2476 	ctl->unit = block_group->sectorsize;
2477 	ctl->start = block_group->key.objectid;
2478 	ctl->private = block_group;
2479 	ctl->op = &free_space_op;
2480 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2481 	mutex_init(&ctl->cache_writeout_mutex);
2482 
2483 	/*
2484 	 * we only want to have 32k of ram per block group for keeping
2485 	 * track of free space, and if we pass 1/2 of that we want to
2486 	 * start converting things over to using bitmaps
2487 	 */
2488 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2489 }
2490 
2491 /*
2492  * for a given cluster, put all of its extents back into the free
2493  * space cache.  If the block group passed doesn't match the block group
2494  * pointed to by the cluster, someone else raced in and freed the
2495  * cluster already.  In that case, we just return without changing anything
2496  */
2497 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2498 __btrfs_return_cluster_to_free_space(
2499 			     struct btrfs_block_group_cache *block_group,
2500 			     struct btrfs_free_cluster *cluster)
2501 {
2502 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2503 	struct btrfs_free_space *entry;
2504 	struct rb_node *node;
2505 
2506 	spin_lock(&cluster->lock);
2507 	if (cluster->block_group != block_group)
2508 		goto out;
2509 
2510 	cluster->block_group = NULL;
2511 	cluster->window_start = 0;
2512 	list_del_init(&cluster->block_group_list);
2513 
2514 	node = rb_first(&cluster->root);
2515 	while (node) {
2516 		bool bitmap;
2517 
2518 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2519 		node = rb_next(&entry->offset_index);
2520 		rb_erase(&entry->offset_index, &cluster->root);
2521 		RB_CLEAR_NODE(&entry->offset_index);
2522 
2523 		bitmap = (entry->bitmap != NULL);
2524 		if (!bitmap) {
2525 			try_merge_free_space(ctl, entry, false);
2526 			steal_from_bitmap(ctl, entry, false);
2527 		}
2528 		tree_insert_offset(&ctl->free_space_offset,
2529 				   entry->offset, &entry->offset_index, bitmap);
2530 	}
2531 	cluster->root = RB_ROOT;
2532 
2533 out:
2534 	spin_unlock(&cluster->lock);
2535 	btrfs_put_block_group(block_group);
2536 	return 0;
2537 }
2538 
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2539 static void __btrfs_remove_free_space_cache_locked(
2540 				struct btrfs_free_space_ctl *ctl)
2541 {
2542 	struct btrfs_free_space *info;
2543 	struct rb_node *node;
2544 
2545 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2546 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2547 		if (!info->bitmap) {
2548 			unlink_free_space(ctl, info);
2549 			kmem_cache_free(btrfs_free_space_cachep, info);
2550 		} else {
2551 			free_bitmap(ctl, info);
2552 		}
2553 
2554 		cond_resched_lock(&ctl->tree_lock);
2555 	}
2556 }
2557 
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2558 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2559 {
2560 	spin_lock(&ctl->tree_lock);
2561 	__btrfs_remove_free_space_cache_locked(ctl);
2562 	spin_unlock(&ctl->tree_lock);
2563 }
2564 
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)2565 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2566 {
2567 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2568 	struct btrfs_free_cluster *cluster;
2569 	struct list_head *head;
2570 
2571 	spin_lock(&ctl->tree_lock);
2572 	while ((head = block_group->cluster_list.next) !=
2573 	       &block_group->cluster_list) {
2574 		cluster = list_entry(head, struct btrfs_free_cluster,
2575 				     block_group_list);
2576 
2577 		WARN_ON(cluster->block_group != block_group);
2578 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2579 
2580 		cond_resched_lock(&ctl->tree_lock);
2581 	}
2582 	__btrfs_remove_free_space_cache_locked(ctl);
2583 	spin_unlock(&ctl->tree_lock);
2584 
2585 }
2586 
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2587 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2588 			       u64 offset, u64 bytes, u64 empty_size,
2589 			       u64 *max_extent_size)
2590 {
2591 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2592 	struct btrfs_free_space *entry = NULL;
2593 	u64 bytes_search = bytes + empty_size;
2594 	u64 ret = 0;
2595 	u64 align_gap = 0;
2596 	u64 align_gap_len = 0;
2597 
2598 	spin_lock(&ctl->tree_lock);
2599 	entry = find_free_space(ctl, &offset, &bytes_search,
2600 				block_group->full_stripe_len, max_extent_size);
2601 	if (!entry)
2602 		goto out;
2603 
2604 	ret = offset;
2605 	if (entry->bitmap) {
2606 		bitmap_clear_bits(ctl, entry, offset, bytes);
2607 		if (!entry->bytes)
2608 			free_bitmap(ctl, entry);
2609 	} else {
2610 		unlink_free_space(ctl, entry);
2611 		align_gap_len = offset - entry->offset;
2612 		align_gap = entry->offset;
2613 
2614 		entry->offset = offset + bytes;
2615 		WARN_ON(entry->bytes < bytes + align_gap_len);
2616 
2617 		entry->bytes -= bytes + align_gap_len;
2618 		if (!entry->bytes)
2619 			kmem_cache_free(btrfs_free_space_cachep, entry);
2620 		else
2621 			link_free_space(ctl, entry);
2622 	}
2623 out:
2624 	spin_unlock(&ctl->tree_lock);
2625 
2626 	if (align_gap_len)
2627 		__btrfs_add_free_space(block_group->fs_info, ctl,
2628 				       align_gap, align_gap_len);
2629 	return ret;
2630 }
2631 
2632 /*
2633  * given a cluster, put all of its extents back into the free space
2634  * cache.  If a block group is passed, this function will only free
2635  * a cluster that belongs to the passed block group.
2636  *
2637  * Otherwise, it'll get a reference on the block group pointed to by the
2638  * cluster and remove the cluster from it.
2639  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2640 int btrfs_return_cluster_to_free_space(
2641 			       struct btrfs_block_group_cache *block_group,
2642 			       struct btrfs_free_cluster *cluster)
2643 {
2644 	struct btrfs_free_space_ctl *ctl;
2645 	int ret;
2646 
2647 	/* first, get a safe pointer to the block group */
2648 	spin_lock(&cluster->lock);
2649 	if (!block_group) {
2650 		block_group = cluster->block_group;
2651 		if (!block_group) {
2652 			spin_unlock(&cluster->lock);
2653 			return 0;
2654 		}
2655 	} else if (cluster->block_group != block_group) {
2656 		/* someone else has already freed it don't redo their work */
2657 		spin_unlock(&cluster->lock);
2658 		return 0;
2659 	}
2660 	atomic_inc(&block_group->count);
2661 	spin_unlock(&cluster->lock);
2662 
2663 	ctl = block_group->free_space_ctl;
2664 
2665 	/* now return any extents the cluster had on it */
2666 	spin_lock(&ctl->tree_lock);
2667 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2668 	spin_unlock(&ctl->tree_lock);
2669 
2670 	/* finally drop our ref */
2671 	btrfs_put_block_group(block_group);
2672 	return ret;
2673 }
2674 
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)2675 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2676 				   struct btrfs_free_cluster *cluster,
2677 				   struct btrfs_free_space *entry,
2678 				   u64 bytes, u64 min_start,
2679 				   u64 *max_extent_size)
2680 {
2681 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2682 	int err;
2683 	u64 search_start = cluster->window_start;
2684 	u64 search_bytes = bytes;
2685 	u64 ret = 0;
2686 
2687 	search_start = min_start;
2688 	search_bytes = bytes;
2689 
2690 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2691 	if (err) {
2692 		if (search_bytes > *max_extent_size)
2693 			*max_extent_size = search_bytes;
2694 		return 0;
2695 	}
2696 
2697 	ret = search_start;
2698 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2699 
2700 	return ret;
2701 }
2702 
2703 /*
2704  * given a cluster, try to allocate 'bytes' from it, returns 0
2705  * if it couldn't find anything suitably large, or a logical disk offset
2706  * if things worked out
2707  */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)2708 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2709 			     struct btrfs_free_cluster *cluster, u64 bytes,
2710 			     u64 min_start, u64 *max_extent_size)
2711 {
2712 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2713 	struct btrfs_free_space *entry = NULL;
2714 	struct rb_node *node;
2715 	u64 ret = 0;
2716 
2717 	spin_lock(&cluster->lock);
2718 	if (bytes > cluster->max_size)
2719 		goto out;
2720 
2721 	if (cluster->block_group != block_group)
2722 		goto out;
2723 
2724 	node = rb_first(&cluster->root);
2725 	if (!node)
2726 		goto out;
2727 
2728 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2729 	while (1) {
2730 		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2731 			*max_extent_size = entry->bytes;
2732 
2733 		if (entry->bytes < bytes ||
2734 		    (!entry->bitmap && entry->offset < min_start)) {
2735 			node = rb_next(&entry->offset_index);
2736 			if (!node)
2737 				break;
2738 			entry = rb_entry(node, struct btrfs_free_space,
2739 					 offset_index);
2740 			continue;
2741 		}
2742 
2743 		if (entry->bitmap) {
2744 			ret = btrfs_alloc_from_bitmap(block_group,
2745 						      cluster, entry, bytes,
2746 						      cluster->window_start,
2747 						      max_extent_size);
2748 			if (ret == 0) {
2749 				node = rb_next(&entry->offset_index);
2750 				if (!node)
2751 					break;
2752 				entry = rb_entry(node, struct btrfs_free_space,
2753 						 offset_index);
2754 				continue;
2755 			}
2756 			cluster->window_start += bytes;
2757 		} else {
2758 			ret = entry->offset;
2759 
2760 			entry->offset += bytes;
2761 			entry->bytes -= bytes;
2762 		}
2763 
2764 		if (entry->bytes == 0)
2765 			rb_erase(&entry->offset_index, &cluster->root);
2766 		break;
2767 	}
2768 out:
2769 	spin_unlock(&cluster->lock);
2770 
2771 	if (!ret)
2772 		return 0;
2773 
2774 	spin_lock(&ctl->tree_lock);
2775 
2776 	ctl->free_space -= bytes;
2777 	if (entry->bytes == 0) {
2778 		ctl->free_extents--;
2779 		if (entry->bitmap) {
2780 			kfree(entry->bitmap);
2781 			ctl->total_bitmaps--;
2782 			ctl->op->recalc_thresholds(ctl);
2783 		}
2784 		kmem_cache_free(btrfs_free_space_cachep, entry);
2785 	}
2786 
2787 	spin_unlock(&ctl->tree_lock);
2788 
2789 	return ret;
2790 }
2791 
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2792 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2793 				struct btrfs_free_space *entry,
2794 				struct btrfs_free_cluster *cluster,
2795 				u64 offset, u64 bytes,
2796 				u64 cont1_bytes, u64 min_bytes)
2797 {
2798 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2799 	unsigned long next_zero;
2800 	unsigned long i;
2801 	unsigned long want_bits;
2802 	unsigned long min_bits;
2803 	unsigned long found_bits;
2804 	unsigned long max_bits = 0;
2805 	unsigned long start = 0;
2806 	unsigned long total_found = 0;
2807 	int ret;
2808 
2809 	i = offset_to_bit(entry->offset, ctl->unit,
2810 			  max_t(u64, offset, entry->offset));
2811 	want_bits = bytes_to_bits(bytes, ctl->unit);
2812 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2813 
2814 	/*
2815 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2816 	 * fragmented.
2817 	 */
2818 	if (entry->max_extent_size &&
2819 	    entry->max_extent_size < cont1_bytes)
2820 		return -ENOSPC;
2821 again:
2822 	found_bits = 0;
2823 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2824 		next_zero = find_next_zero_bit(entry->bitmap,
2825 					       BITS_PER_BITMAP, i);
2826 		if (next_zero - i >= min_bits) {
2827 			found_bits = next_zero - i;
2828 			if (found_bits > max_bits)
2829 				max_bits = found_bits;
2830 			break;
2831 		}
2832 		if (next_zero - i > max_bits)
2833 			max_bits = next_zero - i;
2834 		i = next_zero;
2835 	}
2836 
2837 	if (!found_bits) {
2838 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2839 		return -ENOSPC;
2840 	}
2841 
2842 	if (!total_found) {
2843 		start = i;
2844 		cluster->max_size = 0;
2845 	}
2846 
2847 	total_found += found_bits;
2848 
2849 	if (cluster->max_size < found_bits * ctl->unit)
2850 		cluster->max_size = found_bits * ctl->unit;
2851 
2852 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2853 		i = next_zero + 1;
2854 		goto again;
2855 	}
2856 
2857 	cluster->window_start = start * ctl->unit + entry->offset;
2858 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2859 	ret = tree_insert_offset(&cluster->root, entry->offset,
2860 				 &entry->offset_index, 1);
2861 	ASSERT(!ret); /* -EEXIST; Logic error */
2862 
2863 	trace_btrfs_setup_cluster(block_group, cluster,
2864 				  total_found * ctl->unit, 1);
2865 	return 0;
2866 }
2867 
2868 /*
2869  * This searches the block group for just extents to fill the cluster with.
2870  * Try to find a cluster with at least bytes total bytes, at least one
2871  * extent of cont1_bytes, and other clusters of at least min_bytes.
2872  */
2873 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2874 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2875 			struct btrfs_free_cluster *cluster,
2876 			struct list_head *bitmaps, u64 offset, u64 bytes,
2877 			u64 cont1_bytes, u64 min_bytes)
2878 {
2879 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2880 	struct btrfs_free_space *first = NULL;
2881 	struct btrfs_free_space *entry = NULL;
2882 	struct btrfs_free_space *last;
2883 	struct rb_node *node;
2884 	u64 window_free;
2885 	u64 max_extent;
2886 	u64 total_size = 0;
2887 
2888 	entry = tree_search_offset(ctl, offset, 0, 1);
2889 	if (!entry)
2890 		return -ENOSPC;
2891 
2892 	/*
2893 	 * We don't want bitmaps, so just move along until we find a normal
2894 	 * extent entry.
2895 	 */
2896 	while (entry->bitmap || entry->bytes < min_bytes) {
2897 		if (entry->bitmap && list_empty(&entry->list))
2898 			list_add_tail(&entry->list, bitmaps);
2899 		node = rb_next(&entry->offset_index);
2900 		if (!node)
2901 			return -ENOSPC;
2902 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2903 	}
2904 
2905 	window_free = entry->bytes;
2906 	max_extent = entry->bytes;
2907 	first = entry;
2908 	last = entry;
2909 
2910 	for (node = rb_next(&entry->offset_index); node;
2911 	     node = rb_next(&entry->offset_index)) {
2912 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2913 
2914 		if (entry->bitmap) {
2915 			if (list_empty(&entry->list))
2916 				list_add_tail(&entry->list, bitmaps);
2917 			continue;
2918 		}
2919 
2920 		if (entry->bytes < min_bytes)
2921 			continue;
2922 
2923 		last = entry;
2924 		window_free += entry->bytes;
2925 		if (entry->bytes > max_extent)
2926 			max_extent = entry->bytes;
2927 	}
2928 
2929 	if (window_free < bytes || max_extent < cont1_bytes)
2930 		return -ENOSPC;
2931 
2932 	cluster->window_start = first->offset;
2933 
2934 	node = &first->offset_index;
2935 
2936 	/*
2937 	 * now we've found our entries, pull them out of the free space
2938 	 * cache and put them into the cluster rbtree
2939 	 */
2940 	do {
2941 		int ret;
2942 
2943 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2944 		node = rb_next(&entry->offset_index);
2945 		if (entry->bitmap || entry->bytes < min_bytes)
2946 			continue;
2947 
2948 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2949 		ret = tree_insert_offset(&cluster->root, entry->offset,
2950 					 &entry->offset_index, 0);
2951 		total_size += entry->bytes;
2952 		ASSERT(!ret); /* -EEXIST; Logic error */
2953 	} while (node && entry != last);
2954 
2955 	cluster->max_size = max_extent;
2956 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2957 	return 0;
2958 }
2959 
2960 /*
2961  * This specifically looks for bitmaps that may work in the cluster, we assume
2962  * that we have already failed to find extents that will work.
2963  */
2964 static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2965 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2966 		     struct btrfs_free_cluster *cluster,
2967 		     struct list_head *bitmaps, u64 offset, u64 bytes,
2968 		     u64 cont1_bytes, u64 min_bytes)
2969 {
2970 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2971 	struct btrfs_free_space *entry = NULL;
2972 	int ret = -ENOSPC;
2973 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2974 
2975 	if (ctl->total_bitmaps == 0)
2976 		return -ENOSPC;
2977 
2978 	/*
2979 	 * The bitmap that covers offset won't be in the list unless offset
2980 	 * is just its start offset.
2981 	 */
2982 	if (!list_empty(bitmaps))
2983 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2984 
2985 	if (!entry || entry->offset != bitmap_offset) {
2986 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2987 		if (entry && list_empty(&entry->list))
2988 			list_add(&entry->list, bitmaps);
2989 	}
2990 
2991 	list_for_each_entry(entry, bitmaps, list) {
2992 		if (entry->bytes < bytes)
2993 			continue;
2994 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2995 					   bytes, cont1_bytes, min_bytes);
2996 		if (!ret)
2997 			return 0;
2998 	}
2999 
3000 	/*
3001 	 * The bitmaps list has all the bitmaps that record free space
3002 	 * starting after offset, so no more search is required.
3003 	 */
3004 	return -ENOSPC;
3005 }
3006 
3007 /*
3008  * here we try to find a cluster of blocks in a block group.  The goal
3009  * is to find at least bytes+empty_size.
3010  * We might not find them all in one contiguous area.
3011  *
3012  * returns zero and sets up cluster if things worked out, otherwise
3013  * it returns -enospc
3014  */
btrfs_find_space_cluster(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3015 int btrfs_find_space_cluster(struct btrfs_root *root,
3016 			     struct btrfs_block_group_cache *block_group,
3017 			     struct btrfs_free_cluster *cluster,
3018 			     u64 offset, u64 bytes, u64 empty_size)
3019 {
3020 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3021 	struct btrfs_free_space *entry, *tmp;
3022 	LIST_HEAD(bitmaps);
3023 	u64 min_bytes;
3024 	u64 cont1_bytes;
3025 	int ret;
3026 
3027 	/*
3028 	 * Choose the minimum extent size we'll require for this
3029 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3030 	 * For metadata, allow allocates with smaller extents.  For
3031 	 * data, keep it dense.
3032 	 */
3033 	if (btrfs_test_opt(root->fs_info, SSD_SPREAD)) {
3034 		cont1_bytes = min_bytes = bytes + empty_size;
3035 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3036 		cont1_bytes = bytes;
3037 		min_bytes = block_group->sectorsize;
3038 	} else {
3039 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3040 		min_bytes = block_group->sectorsize;
3041 	}
3042 
3043 	spin_lock(&ctl->tree_lock);
3044 
3045 	/*
3046 	 * If we know we don't have enough space to make a cluster don't even
3047 	 * bother doing all the work to try and find one.
3048 	 */
3049 	if (ctl->free_space < bytes) {
3050 		spin_unlock(&ctl->tree_lock);
3051 		return -ENOSPC;
3052 	}
3053 
3054 	spin_lock(&cluster->lock);
3055 
3056 	/* someone already found a cluster, hooray */
3057 	if (cluster->block_group) {
3058 		ret = 0;
3059 		goto out;
3060 	}
3061 
3062 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3063 				 min_bytes);
3064 
3065 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3066 				      bytes + empty_size,
3067 				      cont1_bytes, min_bytes);
3068 	if (ret)
3069 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3070 					   offset, bytes + empty_size,
3071 					   cont1_bytes, min_bytes);
3072 
3073 	/* Clear our temporary list */
3074 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3075 		list_del_init(&entry->list);
3076 
3077 	if (!ret) {
3078 		atomic_inc(&block_group->count);
3079 		list_add_tail(&cluster->block_group_list,
3080 			      &block_group->cluster_list);
3081 		cluster->block_group = block_group;
3082 	} else {
3083 		trace_btrfs_failed_cluster_setup(block_group);
3084 	}
3085 out:
3086 	spin_unlock(&cluster->lock);
3087 	spin_unlock(&ctl->tree_lock);
3088 
3089 	return ret;
3090 }
3091 
3092 /*
3093  * simple code to zero out a cluster
3094  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3095 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3096 {
3097 	spin_lock_init(&cluster->lock);
3098 	spin_lock_init(&cluster->refill_lock);
3099 	cluster->root = RB_ROOT;
3100 	cluster->max_size = 0;
3101 	cluster->fragmented = false;
3102 	INIT_LIST_HEAD(&cluster->block_group_list);
3103 	cluster->block_group = NULL;
3104 }
3105 
do_trimming(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,struct btrfs_trim_range * trim_entry)3106 static int do_trimming(struct btrfs_block_group_cache *block_group,
3107 		       u64 *total_trimmed, u64 start, u64 bytes,
3108 		       u64 reserved_start, u64 reserved_bytes,
3109 		       struct btrfs_trim_range *trim_entry)
3110 {
3111 	struct btrfs_space_info *space_info = block_group->space_info;
3112 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3113 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3114 	int ret;
3115 	int update = 0;
3116 	u64 trimmed = 0;
3117 
3118 	spin_lock(&space_info->lock);
3119 	spin_lock(&block_group->lock);
3120 	if (!block_group->ro) {
3121 		block_group->reserved += reserved_bytes;
3122 		space_info->bytes_reserved += reserved_bytes;
3123 		update = 1;
3124 	}
3125 	spin_unlock(&block_group->lock);
3126 	spin_unlock(&space_info->lock);
3127 
3128 	ret = btrfs_discard_extent(fs_info->extent_root,
3129 				   start, bytes, &trimmed);
3130 	if (!ret)
3131 		*total_trimmed += trimmed;
3132 
3133 	mutex_lock(&ctl->cache_writeout_mutex);
3134 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3135 	list_del(&trim_entry->list);
3136 	mutex_unlock(&ctl->cache_writeout_mutex);
3137 
3138 	if (update) {
3139 		spin_lock(&space_info->lock);
3140 		spin_lock(&block_group->lock);
3141 		if (block_group->ro)
3142 			space_info->bytes_readonly += reserved_bytes;
3143 		block_group->reserved -= reserved_bytes;
3144 		space_info->bytes_reserved -= reserved_bytes;
3145 		spin_unlock(&space_info->lock);
3146 		spin_unlock(&block_group->lock);
3147 	}
3148 
3149 	return ret;
3150 }
3151 
trim_no_bitmap(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3152 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3153 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3154 {
3155 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3156 	struct btrfs_free_space *entry;
3157 	struct rb_node *node;
3158 	int ret = 0;
3159 	u64 extent_start;
3160 	u64 extent_bytes;
3161 	u64 bytes;
3162 
3163 	while (start < end) {
3164 		struct btrfs_trim_range trim_entry;
3165 
3166 		mutex_lock(&ctl->cache_writeout_mutex);
3167 		spin_lock(&ctl->tree_lock);
3168 
3169 		if (ctl->free_space < minlen) {
3170 			spin_unlock(&ctl->tree_lock);
3171 			mutex_unlock(&ctl->cache_writeout_mutex);
3172 			break;
3173 		}
3174 
3175 		entry = tree_search_offset(ctl, start, 0, 1);
3176 		if (!entry) {
3177 			spin_unlock(&ctl->tree_lock);
3178 			mutex_unlock(&ctl->cache_writeout_mutex);
3179 			break;
3180 		}
3181 
3182 		/* skip bitmaps */
3183 		while (entry->bitmap) {
3184 			node = rb_next(&entry->offset_index);
3185 			if (!node) {
3186 				spin_unlock(&ctl->tree_lock);
3187 				mutex_unlock(&ctl->cache_writeout_mutex);
3188 				goto out;
3189 			}
3190 			entry = rb_entry(node, struct btrfs_free_space,
3191 					 offset_index);
3192 		}
3193 
3194 		if (entry->offset >= end) {
3195 			spin_unlock(&ctl->tree_lock);
3196 			mutex_unlock(&ctl->cache_writeout_mutex);
3197 			break;
3198 		}
3199 
3200 		extent_start = entry->offset;
3201 		extent_bytes = entry->bytes;
3202 		start = max(start, extent_start);
3203 		bytes = min(extent_start + extent_bytes, end) - start;
3204 		if (bytes < minlen) {
3205 			spin_unlock(&ctl->tree_lock);
3206 			mutex_unlock(&ctl->cache_writeout_mutex);
3207 			goto next;
3208 		}
3209 
3210 		unlink_free_space(ctl, entry);
3211 		kmem_cache_free(btrfs_free_space_cachep, entry);
3212 
3213 		spin_unlock(&ctl->tree_lock);
3214 		trim_entry.start = extent_start;
3215 		trim_entry.bytes = extent_bytes;
3216 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3217 		mutex_unlock(&ctl->cache_writeout_mutex);
3218 
3219 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3220 				  extent_start, extent_bytes, &trim_entry);
3221 		if (ret)
3222 			break;
3223 next:
3224 		start += bytes;
3225 
3226 		if (fatal_signal_pending(current)) {
3227 			ret = -ERESTARTSYS;
3228 			break;
3229 		}
3230 
3231 		cond_resched();
3232 	}
3233 out:
3234 	return ret;
3235 }
3236 
trim_bitmaps(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3237 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3238 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3239 {
3240 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3241 	struct btrfs_free_space *entry;
3242 	int ret = 0;
3243 	int ret2;
3244 	u64 bytes;
3245 	u64 offset = offset_to_bitmap(ctl, start);
3246 
3247 	while (offset < end) {
3248 		bool next_bitmap = false;
3249 		struct btrfs_trim_range trim_entry;
3250 
3251 		mutex_lock(&ctl->cache_writeout_mutex);
3252 		spin_lock(&ctl->tree_lock);
3253 
3254 		if (ctl->free_space < minlen) {
3255 			spin_unlock(&ctl->tree_lock);
3256 			mutex_unlock(&ctl->cache_writeout_mutex);
3257 			break;
3258 		}
3259 
3260 		entry = tree_search_offset(ctl, offset, 1, 0);
3261 		if (!entry) {
3262 			spin_unlock(&ctl->tree_lock);
3263 			mutex_unlock(&ctl->cache_writeout_mutex);
3264 			next_bitmap = true;
3265 			goto next;
3266 		}
3267 
3268 		bytes = minlen;
3269 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3270 		if (ret2 || start >= end) {
3271 			spin_unlock(&ctl->tree_lock);
3272 			mutex_unlock(&ctl->cache_writeout_mutex);
3273 			next_bitmap = true;
3274 			goto next;
3275 		}
3276 
3277 		bytes = min(bytes, end - start);
3278 		if (bytes < minlen) {
3279 			spin_unlock(&ctl->tree_lock);
3280 			mutex_unlock(&ctl->cache_writeout_mutex);
3281 			goto next;
3282 		}
3283 
3284 		bitmap_clear_bits(ctl, entry, start, bytes);
3285 		if (entry->bytes == 0)
3286 			free_bitmap(ctl, entry);
3287 
3288 		spin_unlock(&ctl->tree_lock);
3289 		trim_entry.start = start;
3290 		trim_entry.bytes = bytes;
3291 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3292 		mutex_unlock(&ctl->cache_writeout_mutex);
3293 
3294 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3295 				  start, bytes, &trim_entry);
3296 		if (ret)
3297 			break;
3298 next:
3299 		if (next_bitmap) {
3300 			offset += BITS_PER_BITMAP * ctl->unit;
3301 		} else {
3302 			start += bytes;
3303 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3304 				offset += BITS_PER_BITMAP * ctl->unit;
3305 		}
3306 
3307 		if (fatal_signal_pending(current)) {
3308 			ret = -ERESTARTSYS;
3309 			break;
3310 		}
3311 
3312 		cond_resched();
3313 	}
3314 
3315 	return ret;
3316 }
3317 
btrfs_get_block_group_trimming(struct btrfs_block_group_cache * cache)3318 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3319 {
3320 	atomic_inc(&cache->trimming);
3321 }
3322 
btrfs_put_block_group_trimming(struct btrfs_block_group_cache * block_group)3323 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3324 {
3325 	struct extent_map_tree *em_tree;
3326 	struct extent_map *em;
3327 	bool cleanup;
3328 
3329 	spin_lock(&block_group->lock);
3330 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3331 		   block_group->removed);
3332 	spin_unlock(&block_group->lock);
3333 
3334 	if (cleanup) {
3335 		lock_chunks(block_group->fs_info->chunk_root);
3336 		em_tree = &block_group->fs_info->mapping_tree.map_tree;
3337 		write_lock(&em_tree->lock);
3338 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3339 					   1);
3340 		BUG_ON(!em); /* logic error, can't happen */
3341 		/*
3342 		 * remove_extent_mapping() will delete us from the pinned_chunks
3343 		 * list, which is protected by the chunk mutex.
3344 		 */
3345 		remove_extent_mapping(em_tree, em);
3346 		write_unlock(&em_tree->lock);
3347 		unlock_chunks(block_group->fs_info->chunk_root);
3348 
3349 		/* once for us and once for the tree */
3350 		free_extent_map(em);
3351 		free_extent_map(em);
3352 
3353 		/*
3354 		 * We've left one free space entry and other tasks trimming
3355 		 * this block group have left 1 entry each one. Free them.
3356 		 */
3357 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3358 	}
3359 }
3360 
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3361 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3362 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3363 {
3364 	int ret;
3365 
3366 	*trimmed = 0;
3367 
3368 	spin_lock(&block_group->lock);
3369 	if (block_group->removed) {
3370 		spin_unlock(&block_group->lock);
3371 		return 0;
3372 	}
3373 	btrfs_get_block_group_trimming(block_group);
3374 	spin_unlock(&block_group->lock);
3375 
3376 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3377 	if (ret)
3378 		goto out;
3379 
3380 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3381 out:
3382 	btrfs_put_block_group_trimming(block_group);
3383 	return ret;
3384 }
3385 
3386 /*
3387  * Find the left-most item in the cache tree, and then return the
3388  * smallest inode number in the item.
3389  *
3390  * Note: the returned inode number may not be the smallest one in
3391  * the tree, if the left-most item is a bitmap.
3392  */
btrfs_find_ino_for_alloc(struct btrfs_root * fs_root)3393 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3394 {
3395 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3396 	struct btrfs_free_space *entry = NULL;
3397 	u64 ino = 0;
3398 
3399 	spin_lock(&ctl->tree_lock);
3400 
3401 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3402 		goto out;
3403 
3404 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3405 			 struct btrfs_free_space, offset_index);
3406 
3407 	if (!entry->bitmap) {
3408 		ino = entry->offset;
3409 
3410 		unlink_free_space(ctl, entry);
3411 		entry->offset++;
3412 		entry->bytes--;
3413 		if (!entry->bytes)
3414 			kmem_cache_free(btrfs_free_space_cachep, entry);
3415 		else
3416 			link_free_space(ctl, entry);
3417 	} else {
3418 		u64 offset = 0;
3419 		u64 count = 1;
3420 		int ret;
3421 
3422 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3423 		/* Logic error; Should be empty if it can't find anything */
3424 		ASSERT(!ret);
3425 
3426 		ino = offset;
3427 		bitmap_clear_bits(ctl, entry, offset, 1);
3428 		if (entry->bytes == 0)
3429 			free_bitmap(ctl, entry);
3430 	}
3431 out:
3432 	spin_unlock(&ctl->tree_lock);
3433 
3434 	return ino;
3435 }
3436 
lookup_free_ino_inode(struct btrfs_root * root,struct btrfs_path * path)3437 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3438 				    struct btrfs_path *path)
3439 {
3440 	struct inode *inode = NULL;
3441 
3442 	spin_lock(&root->ino_cache_lock);
3443 	if (root->ino_cache_inode)
3444 		inode = igrab(root->ino_cache_inode);
3445 	spin_unlock(&root->ino_cache_lock);
3446 	if (inode)
3447 		return inode;
3448 
3449 	inode = __lookup_free_space_inode(root, path, 0);
3450 	if (IS_ERR(inode))
3451 		return inode;
3452 
3453 	spin_lock(&root->ino_cache_lock);
3454 	if (!btrfs_fs_closing(root->fs_info))
3455 		root->ino_cache_inode = igrab(inode);
3456 	spin_unlock(&root->ino_cache_lock);
3457 
3458 	return inode;
3459 }
3460 
create_free_ino_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path)3461 int create_free_ino_inode(struct btrfs_root *root,
3462 			  struct btrfs_trans_handle *trans,
3463 			  struct btrfs_path *path)
3464 {
3465 	return __create_free_space_inode(root, trans, path,
3466 					 BTRFS_FREE_INO_OBJECTID, 0);
3467 }
3468 
load_free_ino_cache(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3469 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3470 {
3471 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3472 	struct btrfs_path *path;
3473 	struct inode *inode;
3474 	int ret = 0;
3475 	u64 root_gen = btrfs_root_generation(&root->root_item);
3476 
3477 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3478 		return 0;
3479 
3480 	/*
3481 	 * If we're unmounting then just return, since this does a search on the
3482 	 * normal root and not the commit root and we could deadlock.
3483 	 */
3484 	if (btrfs_fs_closing(fs_info))
3485 		return 0;
3486 
3487 	path = btrfs_alloc_path();
3488 	if (!path)
3489 		return 0;
3490 
3491 	inode = lookup_free_ino_inode(root, path);
3492 	if (IS_ERR(inode))
3493 		goto out;
3494 
3495 	if (root_gen != BTRFS_I(inode)->generation)
3496 		goto out_put;
3497 
3498 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3499 
3500 	if (ret < 0)
3501 		btrfs_err(fs_info,
3502 			"failed to load free ino cache for root %llu",
3503 			root->root_key.objectid);
3504 out_put:
3505 	iput(inode);
3506 out:
3507 	btrfs_free_path(path);
3508 	return ret;
3509 }
3510 
btrfs_write_out_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)3511 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3512 			      struct btrfs_trans_handle *trans,
3513 			      struct btrfs_path *path,
3514 			      struct inode *inode)
3515 {
3516 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3517 	int ret;
3518 	struct btrfs_io_ctl io_ctl;
3519 	bool release_metadata = true;
3520 
3521 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3522 		return 0;
3523 
3524 	memset(&io_ctl, 0, sizeof(io_ctl));
3525 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3526 				      trans, path, 0);
3527 	if (!ret) {
3528 		/*
3529 		 * At this point writepages() didn't error out, so our metadata
3530 		 * reservation is released when the writeback finishes, at
3531 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3532 		 * with or without an error.
3533 		 */
3534 		release_metadata = false;
3535 		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3536 	}
3537 
3538 	if (ret) {
3539 		if (release_metadata)
3540 			btrfs_delalloc_release_metadata(inode, inode->i_size);
3541 #ifdef DEBUG
3542 		btrfs_err(root->fs_info,
3543 			"failed to write free ino cache for root %llu",
3544 			root->root_key.objectid);
3545 #endif
3546 	}
3547 
3548 	return ret;
3549 }
3550 
3551 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3552 /*
3553  * Use this if you need to make a bitmap or extent entry specifically, it
3554  * doesn't do any of the merging that add_free_space does, this acts a lot like
3555  * how the free space cache loading stuff works, so you can get really weird
3556  * configurations.
3557  */
test_add_free_space_entry(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes,bool bitmap)3558 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3559 			      u64 offset, u64 bytes, bool bitmap)
3560 {
3561 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3562 	struct btrfs_free_space *info = NULL, *bitmap_info;
3563 	void *map = NULL;
3564 	u64 bytes_added;
3565 	int ret;
3566 
3567 again:
3568 	if (!info) {
3569 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3570 		if (!info)
3571 			return -ENOMEM;
3572 	}
3573 
3574 	if (!bitmap) {
3575 		spin_lock(&ctl->tree_lock);
3576 		info->offset = offset;
3577 		info->bytes = bytes;
3578 		info->max_extent_size = 0;
3579 		ret = link_free_space(ctl, info);
3580 		spin_unlock(&ctl->tree_lock);
3581 		if (ret)
3582 			kmem_cache_free(btrfs_free_space_cachep, info);
3583 		return ret;
3584 	}
3585 
3586 	if (!map) {
3587 		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3588 		if (!map) {
3589 			kmem_cache_free(btrfs_free_space_cachep, info);
3590 			return -ENOMEM;
3591 		}
3592 	}
3593 
3594 	spin_lock(&ctl->tree_lock);
3595 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3596 					 1, 0);
3597 	if (!bitmap_info) {
3598 		info->bitmap = map;
3599 		map = NULL;
3600 		add_new_bitmap(ctl, info, offset);
3601 		bitmap_info = info;
3602 		info = NULL;
3603 	}
3604 
3605 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3606 
3607 	bytes -= bytes_added;
3608 	offset += bytes_added;
3609 	spin_unlock(&ctl->tree_lock);
3610 
3611 	if (bytes)
3612 		goto again;
3613 
3614 	if (info)
3615 		kmem_cache_free(btrfs_free_space_cachep, info);
3616 	if (map)
3617 		kfree(map);
3618 	return 0;
3619 }
3620 
3621 /*
3622  * Checks to see if the given range is in the free space cache.  This is really
3623  * just used to check the absence of space, so if there is free space in the
3624  * range at all we will return 1.
3625  */
test_check_exists(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes)3626 int test_check_exists(struct btrfs_block_group_cache *cache,
3627 		      u64 offset, u64 bytes)
3628 {
3629 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3630 	struct btrfs_free_space *info;
3631 	int ret = 0;
3632 
3633 	spin_lock(&ctl->tree_lock);
3634 	info = tree_search_offset(ctl, offset, 0, 0);
3635 	if (!info) {
3636 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3637 					  1, 0);
3638 		if (!info)
3639 			goto out;
3640 	}
3641 
3642 have_info:
3643 	if (info->bitmap) {
3644 		u64 bit_off, bit_bytes;
3645 		struct rb_node *n;
3646 		struct btrfs_free_space *tmp;
3647 
3648 		bit_off = offset;
3649 		bit_bytes = ctl->unit;
3650 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3651 		if (!ret) {
3652 			if (bit_off == offset) {
3653 				ret = 1;
3654 				goto out;
3655 			} else if (bit_off > offset &&
3656 				   offset + bytes > bit_off) {
3657 				ret = 1;
3658 				goto out;
3659 			}
3660 		}
3661 
3662 		n = rb_prev(&info->offset_index);
3663 		while (n) {
3664 			tmp = rb_entry(n, struct btrfs_free_space,
3665 				       offset_index);
3666 			if (tmp->offset + tmp->bytes < offset)
3667 				break;
3668 			if (offset + bytes < tmp->offset) {
3669 				n = rb_prev(&tmp->offset_index);
3670 				continue;
3671 			}
3672 			info = tmp;
3673 			goto have_info;
3674 		}
3675 
3676 		n = rb_next(&info->offset_index);
3677 		while (n) {
3678 			tmp = rb_entry(n, struct btrfs_free_space,
3679 				       offset_index);
3680 			if (offset + bytes < tmp->offset)
3681 				break;
3682 			if (tmp->offset + tmp->bytes < offset) {
3683 				n = rb_next(&tmp->offset_index);
3684 				continue;
3685 			}
3686 			info = tmp;
3687 			goto have_info;
3688 		}
3689 
3690 		ret = 0;
3691 		goto out;
3692 	}
3693 
3694 	if (info->offset == offset) {
3695 		ret = 1;
3696 		goto out;
3697 	}
3698 
3699 	if (offset > info->offset && offset < info->offset + info->bytes)
3700 		ret = 1;
3701 out:
3702 	spin_unlock(&ctl->tree_lock);
3703 	return ret;
3704 }
3705 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3706