• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/logfs/inode.c	- inode handling code
3  *
4  * As should be obvious for Linux kernel code, license is GPLv2
5  *
6  * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
7  */
8 #include "logfs.h"
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 
13 /*
14  * How soon to reuse old inode numbers?  LogFS doesn't store deleted inodes
15  * on the medium.  It therefore also lacks a method to store the previous
16  * generation number for deleted inodes.  Instead a single generation number
17  * is stored which will be used for new inodes.  Being just a 32bit counter,
18  * this can obvious wrap relatively quickly.  So we only reuse inodes if we
19  * know that a fair number of inodes can be created before we have to increment
20  * the generation again - effectively adding some bits to the counter.
21  * But being too aggressive here means we keep a very large and very sparse
22  * inode file, wasting space on indirect blocks.
23  * So what is a good value?  Beats me.  64k seems moderately bad on both
24  * fronts, so let's use that for now...
25  *
26  * NFS sucks, as everyone already knows.
27  */
28 #define INOS_PER_WRAP (0x10000)
29 
30 /*
31  * Logfs' requirement to read inodes for garbage collection makes life a bit
32  * harder.  GC may have to read inodes that are in I_FREEING state, when they
33  * are being written out - and waiting for GC to make progress, naturally.
34  *
35  * So we cannot just call iget() or some variant of it, but first have to check
36  * whether the inode in question might be in I_FREEING state.  Therefore we
37  * maintain our own per-sb list of "almost deleted" inodes and check against
38  * that list first.  Normally this should be at most 1-2 entries long.
39  *
40  * Also, inodes have logfs-specific reference counting on top of what the vfs
41  * does.  When .destroy_inode is called, normally the reference count will drop
42  * to zero and the inode gets deleted.  But if GC accessed the inode, its
43  * refcount will remain nonzero and final deletion will have to wait.
44  *
45  * As a result we have two sets of functions to get/put inodes:
46  * logfs_safe_iget/logfs_safe_iput	- safe to call from GC context
47  * logfs_iget/iput			- normal version
48  */
49 static struct kmem_cache *logfs_inode_cache;
50 
51 static DEFINE_SPINLOCK(logfs_inode_lock);
52 
logfs_inode_setops(struct inode * inode)53 static void logfs_inode_setops(struct inode *inode)
54 {
55 	switch (inode->i_mode & S_IFMT) {
56 	case S_IFDIR:
57 		inode->i_op = &logfs_dir_iops;
58 		inode->i_fop = &logfs_dir_fops;
59 		inode->i_mapping->a_ops = &logfs_reg_aops;
60 		break;
61 	case S_IFREG:
62 		inode->i_op = &logfs_reg_iops;
63 		inode->i_fop = &logfs_reg_fops;
64 		inode->i_mapping->a_ops = &logfs_reg_aops;
65 		break;
66 	case S_IFLNK:
67 		inode->i_op = &page_symlink_inode_operations;
68 		inode_nohighmem(inode);
69 		inode->i_mapping->a_ops = &logfs_reg_aops;
70 		break;
71 	case S_IFSOCK:	/* fall through */
72 	case S_IFBLK:	/* fall through */
73 	case S_IFCHR:	/* fall through */
74 	case S_IFIFO:
75 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
76 		break;
77 	default:
78 		BUG();
79 	}
80 }
81 
__logfs_iget(struct super_block * sb,ino_t ino)82 static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
83 {
84 	struct inode *inode = iget_locked(sb, ino);
85 	int err;
86 
87 	if (!inode)
88 		return ERR_PTR(-ENOMEM);
89 	if (!(inode->i_state & I_NEW))
90 		return inode;
91 
92 	err = logfs_read_inode(inode);
93 	if (err || inode->i_nlink == 0) {
94 		/* inode->i_nlink == 0 can be true when called from
95 		 * block validator */
96 		/* set i_nlink to 0 to prevent caching */
97 		clear_nlink(inode);
98 		logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE;
99 		iget_failed(inode);
100 		if (!err)
101 			err = -ENOENT;
102 		return ERR_PTR(err);
103 	}
104 
105 	logfs_inode_setops(inode);
106 	unlock_new_inode(inode);
107 	return inode;
108 }
109 
logfs_iget(struct super_block * sb,ino_t ino)110 struct inode *logfs_iget(struct super_block *sb, ino_t ino)
111 {
112 	BUG_ON(ino == LOGFS_INO_MASTER);
113 	BUG_ON(ino == LOGFS_INO_SEGFILE);
114 	return __logfs_iget(sb, ino);
115 }
116 
117 /*
118  * is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
119  * this allows logfs_iput to do the right thing later
120  */
logfs_safe_iget(struct super_block * sb,ino_t ino,int * is_cached)121 struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
122 {
123 	struct logfs_super *super = logfs_super(sb);
124 	struct logfs_inode *li;
125 
126 	if (ino == LOGFS_INO_MASTER)
127 		return super->s_master_inode;
128 	if (ino == LOGFS_INO_SEGFILE)
129 		return super->s_segfile_inode;
130 
131 	spin_lock(&logfs_inode_lock);
132 	list_for_each_entry(li, &super->s_freeing_list, li_freeing_list)
133 		if (li->vfs_inode.i_ino == ino) {
134 			li->li_refcount++;
135 			spin_unlock(&logfs_inode_lock);
136 			*is_cached = 1;
137 			return &li->vfs_inode;
138 		}
139 	spin_unlock(&logfs_inode_lock);
140 
141 	*is_cached = 0;
142 	return __logfs_iget(sb, ino);
143 }
144 
logfs_i_callback(struct rcu_head * head)145 static void logfs_i_callback(struct rcu_head *head)
146 {
147 	struct inode *inode = container_of(head, struct inode, i_rcu);
148 	kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
149 }
150 
__logfs_destroy_inode(struct inode * inode)151 static void __logfs_destroy_inode(struct inode *inode)
152 {
153 	struct logfs_inode *li = logfs_inode(inode);
154 
155 	BUG_ON(li->li_block);
156 	list_del(&li->li_freeing_list);
157 	call_rcu(&inode->i_rcu, logfs_i_callback);
158 }
159 
__logfs_destroy_meta_inode(struct inode * inode)160 static void __logfs_destroy_meta_inode(struct inode *inode)
161 {
162 	struct logfs_inode *li = logfs_inode(inode);
163 	BUG_ON(li->li_block);
164 	call_rcu(&inode->i_rcu, logfs_i_callback);
165 }
166 
logfs_destroy_inode(struct inode * inode)167 static void logfs_destroy_inode(struct inode *inode)
168 {
169 	struct logfs_inode *li = logfs_inode(inode);
170 
171 	if (inode->i_ino < LOGFS_RESERVED_INOS) {
172 		/*
173 		 * The reserved inodes are never destroyed unless we are in
174 		 * unmont path.
175 		 */
176 		__logfs_destroy_meta_inode(inode);
177 		return;
178 	}
179 
180 	BUG_ON(list_empty(&li->li_freeing_list));
181 	spin_lock(&logfs_inode_lock);
182 	li->li_refcount--;
183 	if (li->li_refcount == 0)
184 		__logfs_destroy_inode(inode);
185 	spin_unlock(&logfs_inode_lock);
186 }
187 
logfs_safe_iput(struct inode * inode,int is_cached)188 void logfs_safe_iput(struct inode *inode, int is_cached)
189 {
190 	if (inode->i_ino == LOGFS_INO_MASTER)
191 		return;
192 	if (inode->i_ino == LOGFS_INO_SEGFILE)
193 		return;
194 
195 	if (is_cached) {
196 		logfs_destroy_inode(inode);
197 		return;
198 	}
199 
200 	iput(inode);
201 }
202 
logfs_init_inode(struct super_block * sb,struct inode * inode)203 static void logfs_init_inode(struct super_block *sb, struct inode *inode)
204 {
205 	struct logfs_inode *li = logfs_inode(inode);
206 	int i;
207 
208 	li->li_flags	= 0;
209 	li->li_height	= 0;
210 	li->li_used_bytes = 0;
211 	li->li_block	= NULL;
212 	i_uid_write(inode, 0);
213 	i_gid_write(inode, 0);
214 	inode->i_size	= 0;
215 	inode->i_blocks	= 0;
216 	inode->i_ctime	= current_time(inode);
217 	inode->i_mtime	= current_time(inode);
218 	li->li_refcount = 1;
219 	INIT_LIST_HEAD(&li->li_freeing_list);
220 
221 	for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
222 		li->li_data[i] = 0;
223 
224 	return;
225 }
226 
logfs_alloc_inode(struct super_block * sb)227 static struct inode *logfs_alloc_inode(struct super_block *sb)
228 {
229 	struct logfs_inode *li;
230 
231 	li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
232 	if (!li)
233 		return NULL;
234 	logfs_init_inode(sb, &li->vfs_inode);
235 	return &li->vfs_inode;
236 }
237 
238 /*
239  * In logfs inodes are written to an inode file.  The inode file, like any
240  * other file, is managed with a inode.  The inode file's inode, aka master
241  * inode, requires special handling in several respects.  First, it cannot be
242  * written to the inode file, so it is stored in the journal instead.
243  *
244  * Secondly, this inode cannot be written back and destroyed before all other
245  * inodes have been written.  The ordering is important.  Linux' VFS is happily
246  * unaware of the ordering constraint and would ordinarily destroy the master
247  * inode at umount time while other inodes are still in use and dirty.  Not
248  * good.
249  *
250  * So logfs makes sure the master inode is not written until all other inodes
251  * have been destroyed.  Sadly, this method has another side-effect.  The VFS
252  * will notice one remaining inode and print a frightening warning message.
253  * Worse, it is impossible to judge whether such a warning was caused by the
254  * master inode or any other inodes have leaked as well.
255  *
256  * Our attempt of solving this is with logfs_new_meta_inode() below.  Its
257  * purpose is to create a new inode that will not trigger the warning if such
258  * an inode is still in use.  An ugly hack, no doubt.  Suggections for
259  * improvement are welcome.
260  *
261  * AV: that's what ->put_super() is for...
262  */
logfs_new_meta_inode(struct super_block * sb,u64 ino)263 struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
264 {
265 	struct inode *inode;
266 
267 	inode = new_inode(sb);
268 	if (!inode)
269 		return ERR_PTR(-ENOMEM);
270 
271 	inode->i_mode = S_IFREG;
272 	inode->i_ino = ino;
273 	inode->i_data.a_ops = &logfs_reg_aops;
274 	mapping_set_gfp_mask(&inode->i_data, GFP_NOFS);
275 
276 	return inode;
277 }
278 
logfs_read_meta_inode(struct super_block * sb,u64 ino)279 struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
280 {
281 	struct inode *inode;
282 	int err;
283 
284 	inode = logfs_new_meta_inode(sb, ino);
285 	if (IS_ERR(inode))
286 		return inode;
287 
288 	err = logfs_read_inode(inode);
289 	if (err) {
290 		iput(inode);
291 		return ERR_PTR(err);
292 	}
293 	logfs_inode_setops(inode);
294 	return inode;
295 }
296 
logfs_write_inode(struct inode * inode,struct writeback_control * wbc)297 static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
298 {
299 	int ret;
300 	long flags = WF_LOCK;
301 
302 	/* Can only happen if creat() failed.  Safe to skip. */
303 	if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
304 		return 0;
305 
306 	ret = __logfs_write_inode(inode, NULL, flags);
307 	LOGFS_BUG_ON(ret, inode->i_sb);
308 	return ret;
309 }
310 
311 /* called with inode->i_lock held */
logfs_drop_inode(struct inode * inode)312 static int logfs_drop_inode(struct inode *inode)
313 {
314 	struct logfs_super *super = logfs_super(inode->i_sb);
315 	struct logfs_inode *li = logfs_inode(inode);
316 
317 	spin_lock(&logfs_inode_lock);
318 	list_move(&li->li_freeing_list, &super->s_freeing_list);
319 	spin_unlock(&logfs_inode_lock);
320 	return generic_drop_inode(inode);
321 }
322 
logfs_set_ino_generation(struct super_block * sb,struct inode * inode)323 static void logfs_set_ino_generation(struct super_block *sb,
324 		struct inode *inode)
325 {
326 	struct logfs_super *super = logfs_super(sb);
327 	u64 ino;
328 
329 	mutex_lock(&super->s_journal_mutex);
330 	ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1);
331 	super->s_last_ino = ino;
332 	super->s_inos_till_wrap--;
333 	if (super->s_inos_till_wrap < 0) {
334 		super->s_last_ino = LOGFS_RESERVED_INOS;
335 		super->s_generation++;
336 		super->s_inos_till_wrap = INOS_PER_WRAP;
337 	}
338 	inode->i_ino = ino;
339 	inode->i_generation = super->s_generation;
340 	mutex_unlock(&super->s_journal_mutex);
341 }
342 
logfs_new_inode(struct inode * dir,umode_t mode)343 struct inode *logfs_new_inode(struct inode *dir, umode_t mode)
344 {
345 	struct super_block *sb = dir->i_sb;
346 	struct inode *inode;
347 
348 	inode = new_inode(sb);
349 	if (!inode)
350 		return ERR_PTR(-ENOMEM);
351 
352 	logfs_init_inode(sb, inode);
353 
354 	/* inherit parent flags */
355 	logfs_inode(inode)->li_flags |=
356 		logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED;
357 
358 	inode->i_mode = mode;
359 	logfs_set_ino_generation(sb, inode);
360 
361 	inode_init_owner(inode, dir, mode);
362 	logfs_inode_setops(inode);
363 	insert_inode_hash(inode);
364 
365 	return inode;
366 }
367 
logfs_init_once(void * _li)368 static void logfs_init_once(void *_li)
369 {
370 	struct logfs_inode *li = _li;
371 	int i;
372 
373 	li->li_flags = 0;
374 	li->li_used_bytes = 0;
375 	li->li_refcount = 1;
376 	for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
377 		li->li_data[i] = 0;
378 	inode_init_once(&li->vfs_inode);
379 }
380 
logfs_sync_fs(struct super_block * sb,int wait)381 static int logfs_sync_fs(struct super_block *sb, int wait)
382 {
383 	logfs_get_wblocks(sb, NULL, WF_LOCK);
384 	logfs_write_anchor(sb);
385 	logfs_put_wblocks(sb, NULL, WF_LOCK);
386 	return 0;
387 }
388 
logfs_put_super(struct super_block * sb)389 static void logfs_put_super(struct super_block *sb)
390 {
391 	struct logfs_super *super = logfs_super(sb);
392 	/* kill the meta-inodes */
393 	iput(super->s_segfile_inode);
394 	iput(super->s_master_inode);
395 	iput(super->s_mapping_inode);
396 }
397 
398 const struct super_operations logfs_super_operations = {
399 	.alloc_inode	= logfs_alloc_inode,
400 	.destroy_inode	= logfs_destroy_inode,
401 	.evict_inode	= logfs_evict_inode,
402 	.drop_inode	= logfs_drop_inode,
403 	.put_super	= logfs_put_super,
404 	.write_inode	= logfs_write_inode,
405 	.statfs		= logfs_statfs,
406 	.sync_fs	= logfs_sync_fs,
407 };
408 
logfs_init_inode_cache(void)409 int logfs_init_inode_cache(void)
410 {
411 	logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
412 			sizeof(struct logfs_inode), 0,
413 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
414 			logfs_init_once);
415 	if (!logfs_inode_cache)
416 		return -ENOMEM;
417 	return 0;
418 }
419 
logfs_destroy_inode_cache(void)420 void logfs_destroy_inode_cache(void)
421 {
422 	/*
423 	 * Make sure all delayed rcu free inodes are flushed before we
424 	 * destroy cache.
425 	 */
426 	rcu_barrier();
427 	kmem_cache_destroy(logfs_inode_cache);
428 }
429