• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Workingset detection
3  *
4  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
5  */
6 
7 #include <linux/memcontrol.h>
8 #include <linux/writeback.h>
9 #include <linux/pagemap.h>
10 #include <linux/atomic.h>
11 #include <linux/module.h>
12 #include <linux/swap.h>
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 
16 /*
17  *		Double CLOCK lists
18  *
19  * Per node, two clock lists are maintained for file pages: the
20  * inactive and the active list.  Freshly faulted pages start out at
21  * the head of the inactive list and page reclaim scans pages from the
22  * tail.  Pages that are accessed multiple times on the inactive list
23  * are promoted to the active list, to protect them from reclaim,
24  * whereas active pages are demoted to the inactive list when the
25  * active list grows too big.
26  *
27  *   fault ------------------------+
28  *                                 |
29  *              +--------------+   |            +-------------+
30  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
31  *              +--------------+                +-------------+    |
32  *                     |                                           |
33  *                     +-------------- promotion ------------------+
34  *
35  *
36  *		Access frequency and refault distance
37  *
38  * A workload is thrashing when its pages are frequently used but they
39  * are evicted from the inactive list every time before another access
40  * would have promoted them to the active list.
41  *
42  * In cases where the average access distance between thrashing pages
43  * is bigger than the size of memory there is nothing that can be
44  * done - the thrashing set could never fit into memory under any
45  * circumstance.
46  *
47  * However, the average access distance could be bigger than the
48  * inactive list, yet smaller than the size of memory.  In this case,
49  * the set could fit into memory if it weren't for the currently
50  * active pages - which may be used more, hopefully less frequently:
51  *
52  *      +-memory available to cache-+
53  *      |                           |
54  *      +-inactive------+-active----+
55  *  a b | c d e f g h i | J K L M N |
56  *      +---------------+-----------+
57  *
58  * It is prohibitively expensive to accurately track access frequency
59  * of pages.  But a reasonable approximation can be made to measure
60  * thrashing on the inactive list, after which refaulting pages can be
61  * activated optimistically to compete with the existing active pages.
62  *
63  * Approximating inactive page access frequency - Observations:
64  *
65  * 1. When a page is accessed for the first time, it is added to the
66  *    head of the inactive list, slides every existing inactive page
67  *    towards the tail by one slot, and pushes the current tail page
68  *    out of memory.
69  *
70  * 2. When a page is accessed for the second time, it is promoted to
71  *    the active list, shrinking the inactive list by one slot.  This
72  *    also slides all inactive pages that were faulted into the cache
73  *    more recently than the activated page towards the tail of the
74  *    inactive list.
75  *
76  * Thus:
77  *
78  * 1. The sum of evictions and activations between any two points in
79  *    time indicate the minimum number of inactive pages accessed in
80  *    between.
81  *
82  * 2. Moving one inactive page N page slots towards the tail of the
83  *    list requires at least N inactive page accesses.
84  *
85  * Combining these:
86  *
87  * 1. When a page is finally evicted from memory, the number of
88  *    inactive pages accessed while the page was in cache is at least
89  *    the number of page slots on the inactive list.
90  *
91  * 2. In addition, measuring the sum of evictions and activations (E)
92  *    at the time of a page's eviction, and comparing it to another
93  *    reading (R) at the time the page faults back into memory tells
94  *    the minimum number of accesses while the page was not cached.
95  *    This is called the refault distance.
96  *
97  * Because the first access of the page was the fault and the second
98  * access the refault, we combine the in-cache distance with the
99  * out-of-cache distance to get the complete minimum access distance
100  * of this page:
101  *
102  *      NR_inactive + (R - E)
103  *
104  * And knowing the minimum access distance of a page, we can easily
105  * tell if the page would be able to stay in cache assuming all page
106  * slots in the cache were available:
107  *
108  *   NR_inactive + (R - E) <= NR_inactive + NR_active
109  *
110  * which can be further simplified to
111  *
112  *   (R - E) <= NR_active
113  *
114  * Put into words, the refault distance (out-of-cache) can be seen as
115  * a deficit in inactive list space (in-cache).  If the inactive list
116  * had (R - E) more page slots, the page would not have been evicted
117  * in between accesses, but activated instead.  And on a full system,
118  * the only thing eating into inactive list space is active pages.
119  *
120  *
121  *		Activating refaulting pages
122  *
123  * All that is known about the active list is that the pages have been
124  * accessed more than once in the past.  This means that at any given
125  * time there is actually a good chance that pages on the active list
126  * are no longer in active use.
127  *
128  * So when a refault distance of (R - E) is observed and there are at
129  * least (R - E) active pages, the refaulting page is activated
130  * optimistically in the hope that (R - E) active pages are actually
131  * used less frequently than the refaulting page - or even not used at
132  * all anymore.
133  *
134  * If this is wrong and demotion kicks in, the pages which are truly
135  * used more frequently will be reactivated while the less frequently
136  * used once will be evicted from memory.
137  *
138  * But if this is right, the stale pages will be pushed out of memory
139  * and the used pages get to stay in cache.
140  *
141  *
142  *		Implementation
143  *
144  * For each node's file LRU lists, a counter for inactive evictions
145  * and activations is maintained (node->inactive_age).
146  *
147  * On eviction, a snapshot of this counter (along with some bits to
148  * identify the node) is stored in the now empty page cache radix tree
149  * slot of the evicted page.  This is called a shadow entry.
150  *
151  * On cache misses for which there are shadow entries, an eligible
152  * refault distance will immediately activate the refaulting page.
153  */
154 
155 #define EVICTION_SHIFT	(RADIX_TREE_EXCEPTIONAL_ENTRY + \
156 			 NODES_SHIFT +	\
157 			 MEM_CGROUP_ID_SHIFT)
158 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
159 
160 /*
161  * Eviction timestamps need to be able to cover the full range of
162  * actionable refaults. However, bits are tight in the radix tree
163  * entry, and after storing the identifier for the lruvec there might
164  * not be enough left to represent every single actionable refault. In
165  * that case, we have to sacrifice granularity for distance, and group
166  * evictions into coarser buckets by shaving off lower timestamp bits.
167  */
168 static unsigned int bucket_order __read_mostly;
169 
pack_shadow(int memcgid,pg_data_t * pgdat,unsigned long eviction)170 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction)
171 {
172 	eviction >>= bucket_order;
173 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
174 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
175 	eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
176 
177 	return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
178 }
179 
unpack_shadow(void * shadow,int * memcgidp,pg_data_t ** pgdat,unsigned long * evictionp)180 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
181 			  unsigned long *evictionp)
182 {
183 	unsigned long entry = (unsigned long)shadow;
184 	int memcgid, nid;
185 
186 	entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
187 	nid = entry & ((1UL << NODES_SHIFT) - 1);
188 	entry >>= NODES_SHIFT;
189 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
190 	entry >>= MEM_CGROUP_ID_SHIFT;
191 
192 	*memcgidp = memcgid;
193 	*pgdat = NODE_DATA(nid);
194 	*evictionp = entry << bucket_order;
195 }
196 
197 /**
198  * workingset_eviction - note the eviction of a page from memory
199  * @mapping: address space the page was backing
200  * @page: the page being evicted
201  *
202  * Returns a shadow entry to be stored in @mapping->page_tree in place
203  * of the evicted @page so that a later refault can be detected.
204  */
workingset_eviction(struct address_space * mapping,struct page * page)205 void *workingset_eviction(struct address_space *mapping, struct page *page)
206 {
207 	struct mem_cgroup *memcg = page_memcg(page);
208 	struct pglist_data *pgdat = page_pgdat(page);
209 	int memcgid = mem_cgroup_id(memcg);
210 	unsigned long eviction;
211 	struct lruvec *lruvec;
212 
213 	/* Page is fully exclusive and pins page->mem_cgroup */
214 	VM_BUG_ON_PAGE(PageLRU(page), page);
215 	VM_BUG_ON_PAGE(page_count(page), page);
216 	VM_BUG_ON_PAGE(!PageLocked(page), page);
217 
218 	lruvec = mem_cgroup_lruvec(pgdat, memcg);
219 	eviction = atomic_long_inc_return(&lruvec->inactive_age);
220 	return pack_shadow(memcgid, pgdat, eviction);
221 }
222 
223 /**
224  * workingset_refault - evaluate the refault of a previously evicted page
225  * @shadow: shadow entry of the evicted page
226  *
227  * Calculates and evaluates the refault distance of the previously
228  * evicted page in the context of the node it was allocated in.
229  *
230  * Returns %true if the page should be activated, %false otherwise.
231  */
workingset_refault(void * shadow)232 bool workingset_refault(void *shadow)
233 {
234 	unsigned long refault_distance;
235 	unsigned long active_file;
236 	struct mem_cgroup *memcg;
237 	unsigned long eviction;
238 	struct lruvec *lruvec;
239 	unsigned long refault;
240 	struct pglist_data *pgdat;
241 	int memcgid;
242 
243 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction);
244 
245 	rcu_read_lock();
246 	/*
247 	 * Look up the memcg associated with the stored ID. It might
248 	 * have been deleted since the page's eviction.
249 	 *
250 	 * Note that in rare events the ID could have been recycled
251 	 * for a new cgroup that refaults a shared page. This is
252 	 * impossible to tell from the available data. However, this
253 	 * should be a rare and limited disturbance, and activations
254 	 * are always speculative anyway. Ultimately, it's the aging
255 	 * algorithm's job to shake out the minimum access frequency
256 	 * for the active cache.
257 	 *
258 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
259 	 * would be better if the root_mem_cgroup existed in all
260 	 * configurations instead.
261 	 */
262 	memcg = mem_cgroup_from_id(memcgid);
263 	if (!mem_cgroup_disabled() && !memcg) {
264 		rcu_read_unlock();
265 		return false;
266 	}
267 	lruvec = mem_cgroup_lruvec(pgdat, memcg);
268 	refault = atomic_long_read(&lruvec->inactive_age);
269 	active_file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES);
270 	rcu_read_unlock();
271 
272 	/*
273 	 * The unsigned subtraction here gives an accurate distance
274 	 * across inactive_age overflows in most cases.
275 	 *
276 	 * There is a special case: usually, shadow entries have a
277 	 * short lifetime and are either refaulted or reclaimed along
278 	 * with the inode before they get too old.  But it is not
279 	 * impossible for the inactive_age to lap a shadow entry in
280 	 * the field, which can then can result in a false small
281 	 * refault distance, leading to a false activation should this
282 	 * old entry actually refault again.  However, earlier kernels
283 	 * used to deactivate unconditionally with *every* reclaim
284 	 * invocation for the longest time, so the occasional
285 	 * inappropriate activation leading to pressure on the active
286 	 * list is not a problem.
287 	 */
288 	refault_distance = (refault - eviction) & EVICTION_MASK;
289 
290 	inc_node_state(pgdat, WORKINGSET_REFAULT);
291 
292 	if (refault_distance <= active_file) {
293 		inc_node_state(pgdat, WORKINGSET_ACTIVATE);
294 		return true;
295 	}
296 	return false;
297 }
298 
299 /**
300  * workingset_activation - note a page activation
301  * @page: page that is being activated
302  */
workingset_activation(struct page * page)303 void workingset_activation(struct page *page)
304 {
305 	struct mem_cgroup *memcg;
306 	struct lruvec *lruvec;
307 
308 	rcu_read_lock();
309 	/*
310 	 * Filter non-memcg pages here, e.g. unmap can call
311 	 * mark_page_accessed() on VDSO pages.
312 	 *
313 	 * XXX: See workingset_refault() - this should return
314 	 * root_mem_cgroup even for !CONFIG_MEMCG.
315 	 */
316 	memcg = page_memcg_rcu(page);
317 	if (!mem_cgroup_disabled() && !memcg)
318 		goto out;
319 	lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
320 	atomic_long_inc(&lruvec->inactive_age);
321 out:
322 	rcu_read_unlock();
323 }
324 
325 /*
326  * Shadow entries reflect the share of the working set that does not
327  * fit into memory, so their number depends on the access pattern of
328  * the workload.  In most cases, they will refault or get reclaimed
329  * along with the inode, but a (malicious) workload that streams
330  * through files with a total size several times that of available
331  * memory, while preventing the inodes from being reclaimed, can
332  * create excessive amounts of shadow nodes.  To keep a lid on this,
333  * track shadow nodes and reclaim them when they grow way past the
334  * point where they would still be useful.
335  */
336 
337 struct list_lru workingset_shadow_nodes;
338 
count_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)339 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
340 					struct shrink_control *sc)
341 {
342 	unsigned long shadow_nodes;
343 	unsigned long max_nodes;
344 	unsigned long pages;
345 
346 	/* list_lru lock nests inside IRQ-safe mapping->tree_lock */
347 	local_irq_disable();
348 	shadow_nodes = list_lru_shrink_count(&workingset_shadow_nodes, sc);
349 	local_irq_enable();
350 
351 	if (sc->memcg) {
352 		pages = mem_cgroup_node_nr_lru_pages(sc->memcg, sc->nid,
353 						     LRU_ALL_FILE);
354 	} else {
355 		pages = node_page_state(NODE_DATA(sc->nid), NR_ACTIVE_FILE) +
356 			node_page_state(NODE_DATA(sc->nid), NR_INACTIVE_FILE);
357 	}
358 
359 	/*
360 	 * Active cache pages are limited to 50% of memory, and shadow
361 	 * entries that represent a refault distance bigger than that
362 	 * do not have any effect.  Limit the number of shadow nodes
363 	 * such that shadow entries do not exceed the number of active
364 	 * cache pages, assuming a worst-case node population density
365 	 * of 1/8th on average.
366 	 *
367 	 * On 64-bit with 7 radix_tree_nodes per page and 64 slots
368 	 * each, this will reclaim shadow entries when they consume
369 	 * ~2% of available memory:
370 	 *
371 	 * PAGE_SIZE / radix_tree_nodes / node_entries / PAGE_SIZE
372 	 */
373 	max_nodes = pages >> (1 + RADIX_TREE_MAP_SHIFT - 3);
374 
375 	if (shadow_nodes <= max_nodes)
376 		return 0;
377 
378 	return shadow_nodes - max_nodes;
379 }
380 
shadow_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)381 static enum lru_status shadow_lru_isolate(struct list_head *item,
382 					  struct list_lru_one *lru,
383 					  spinlock_t *lru_lock,
384 					  void *arg)
385 {
386 	struct address_space *mapping;
387 	struct radix_tree_node *node;
388 	unsigned int i;
389 	int ret;
390 
391 	/*
392 	 * Page cache insertions and deletions synchroneously maintain
393 	 * the shadow node LRU under the mapping->tree_lock and the
394 	 * lru_lock.  Because the page cache tree is emptied before
395 	 * the inode can be destroyed, holding the lru_lock pins any
396 	 * address_space that has radix tree nodes on the LRU.
397 	 *
398 	 * We can then safely transition to the mapping->tree_lock to
399 	 * pin only the address_space of the particular node we want
400 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
401 	 */
402 
403 	node = container_of(item, struct radix_tree_node, private_list);
404 	mapping = node->private_data;
405 
406 	/* Coming from the list, invert the lock order */
407 	if (!spin_trylock(&mapping->tree_lock)) {
408 		spin_unlock(lru_lock);
409 		ret = LRU_RETRY;
410 		goto out;
411 	}
412 
413 	list_lru_isolate(lru, item);
414 	spin_unlock(lru_lock);
415 
416 	/*
417 	 * The nodes should only contain one or more shadow entries,
418 	 * no pages, so we expect to be able to remove them all and
419 	 * delete and free the empty node afterwards.
420 	 */
421 	BUG_ON(!workingset_node_shadows(node));
422 	BUG_ON(workingset_node_pages(node));
423 
424 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
425 		if (node->slots[i]) {
426 			BUG_ON(!radix_tree_exceptional_entry(node->slots[i]));
427 			node->slots[i] = NULL;
428 			workingset_node_shadows_dec(node);
429 			BUG_ON(!mapping->nrexceptional);
430 			mapping->nrexceptional--;
431 		}
432 	}
433 	BUG_ON(workingset_node_shadows(node));
434 	inc_node_state(page_pgdat(virt_to_page(node)), WORKINGSET_NODERECLAIM);
435 	if (!__radix_tree_delete_node(&mapping->page_tree, node))
436 		BUG();
437 
438 	spin_unlock(&mapping->tree_lock);
439 	ret = LRU_REMOVED_RETRY;
440 out:
441 	local_irq_enable();
442 	cond_resched();
443 	local_irq_disable();
444 	spin_lock(lru_lock);
445 	return ret;
446 }
447 
scan_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)448 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
449 				       struct shrink_control *sc)
450 {
451 	unsigned long ret;
452 
453 	/* list_lru lock nests inside IRQ-safe mapping->tree_lock */
454 	local_irq_disable();
455 	ret =  list_lru_shrink_walk(&workingset_shadow_nodes, sc,
456 				    shadow_lru_isolate, NULL);
457 	local_irq_enable();
458 	return ret;
459 }
460 
461 static struct shrinker workingset_shadow_shrinker = {
462 	.count_objects = count_shadow_nodes,
463 	.scan_objects = scan_shadow_nodes,
464 	.seeks = DEFAULT_SEEKS,
465 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
466 };
467 
468 /*
469  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
470  * mapping->tree_lock.
471  */
472 static struct lock_class_key shadow_nodes_key;
473 
workingset_init(void)474 static int __init workingset_init(void)
475 {
476 	unsigned int timestamp_bits;
477 	unsigned int max_order;
478 	int ret;
479 
480 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
481 	/*
482 	 * Calculate the eviction bucket size to cover the longest
483 	 * actionable refault distance, which is currently half of
484 	 * memory (totalram_pages/2). However, memory hotplug may add
485 	 * some more pages at runtime, so keep working with up to
486 	 * double the initial memory by using totalram_pages as-is.
487 	 */
488 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
489 	max_order = fls_long(totalram_pages - 1);
490 	if (max_order > timestamp_bits)
491 		bucket_order = max_order - timestamp_bits;
492 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
493 	       timestamp_bits, max_order, bucket_order);
494 
495 	ret = __list_lru_init(&workingset_shadow_nodes, true, &shadow_nodes_key);
496 	if (ret)
497 		goto err;
498 	ret = register_shrinker(&workingset_shadow_shrinker);
499 	if (ret)
500 		goto err_list_lru;
501 	return 0;
502 err_list_lru:
503 	list_lru_destroy(&workingset_shadow_nodes);
504 err:
505 	return ret;
506 }
507 module_init(workingset_init);
508