• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
dsos__init(struct dsos * dsos)19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
machine__init(struct machine * machine,const char * root_dir,pid_t pid)26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	memset(machine, 0, sizeof(*machine));
29 	map_groups__init(&machine->kmaps, machine);
30 	RB_CLEAR_NODE(&machine->rb_node);
31 	dsos__init(&machine->dsos);
32 
33 	machine->threads = RB_ROOT;
34 	pthread_rwlock_init(&machine->threads_lock, NULL);
35 	machine->nr_threads = 0;
36 	INIT_LIST_HEAD(&machine->dead_threads);
37 	machine->last_match = NULL;
38 
39 	machine->vdso_info = NULL;
40 	machine->env = NULL;
41 
42 	machine->pid = pid;
43 
44 	machine->id_hdr_size = 0;
45 	machine->kptr_restrict_warned = false;
46 	machine->comm_exec = false;
47 	machine->kernel_start = 0;
48 
49 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50 
51 	machine->root_dir = strdup(root_dir);
52 	if (machine->root_dir == NULL)
53 		return -ENOMEM;
54 
55 	if (pid != HOST_KERNEL_ID) {
56 		struct thread *thread = machine__findnew_thread(machine, -1,
57 								pid);
58 		char comm[64];
59 
60 		if (thread == NULL)
61 			return -ENOMEM;
62 
63 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64 		thread__set_comm(thread, comm, 0);
65 		thread__put(thread);
66 	}
67 
68 	machine->current_tid = NULL;
69 
70 	return 0;
71 }
72 
machine__new_host(void)73 struct machine *machine__new_host(void)
74 {
75 	struct machine *machine = malloc(sizeof(*machine));
76 
77 	if (machine != NULL) {
78 		machine__init(machine, "", HOST_KERNEL_ID);
79 
80 		if (machine__create_kernel_maps(machine) < 0)
81 			goto out_delete;
82 	}
83 
84 	return machine;
85 out_delete:
86 	free(machine);
87 	return NULL;
88 }
89 
dsos__purge(struct dsos * dsos)90 static void dsos__purge(struct dsos *dsos)
91 {
92 	struct dso *pos, *n;
93 
94 	pthread_rwlock_wrlock(&dsos->lock);
95 
96 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
97 		RB_CLEAR_NODE(&pos->rb_node);
98 		pos->root = NULL;
99 		list_del_init(&pos->node);
100 		dso__put(pos);
101 	}
102 
103 	pthread_rwlock_unlock(&dsos->lock);
104 }
105 
dsos__exit(struct dsos * dsos)106 static void dsos__exit(struct dsos *dsos)
107 {
108 	dsos__purge(dsos);
109 	pthread_rwlock_destroy(&dsos->lock);
110 }
111 
machine__delete_threads(struct machine * machine)112 void machine__delete_threads(struct machine *machine)
113 {
114 	struct rb_node *nd;
115 
116 	pthread_rwlock_wrlock(&machine->threads_lock);
117 	nd = rb_first(&machine->threads);
118 	while (nd) {
119 		struct thread *t = rb_entry(nd, struct thread, rb_node);
120 
121 		nd = rb_next(nd);
122 		__machine__remove_thread(machine, t, false);
123 	}
124 	pthread_rwlock_unlock(&machine->threads_lock);
125 }
126 
machine__exit(struct machine * machine)127 void machine__exit(struct machine *machine)
128 {
129 	machine__destroy_kernel_maps(machine);
130 	map_groups__exit(&machine->kmaps);
131 	dsos__exit(&machine->dsos);
132 	machine__exit_vdso(machine);
133 	zfree(&machine->root_dir);
134 	zfree(&machine->current_tid);
135 	pthread_rwlock_destroy(&machine->threads_lock);
136 }
137 
machine__delete(struct machine * machine)138 void machine__delete(struct machine *machine)
139 {
140 	if (machine) {
141 		machine__exit(machine);
142 		free(machine);
143 	}
144 }
145 
machines__init(struct machines * machines)146 void machines__init(struct machines *machines)
147 {
148 	machine__init(&machines->host, "", HOST_KERNEL_ID);
149 	machines->guests = RB_ROOT;
150 }
151 
machines__exit(struct machines * machines)152 void machines__exit(struct machines *machines)
153 {
154 	machine__exit(&machines->host);
155 	/* XXX exit guest */
156 }
157 
machines__add(struct machines * machines,pid_t pid,const char * root_dir)158 struct machine *machines__add(struct machines *machines, pid_t pid,
159 			      const char *root_dir)
160 {
161 	struct rb_node **p = &machines->guests.rb_node;
162 	struct rb_node *parent = NULL;
163 	struct machine *pos, *machine = malloc(sizeof(*machine));
164 
165 	if (machine == NULL)
166 		return NULL;
167 
168 	if (machine__init(machine, root_dir, pid) != 0) {
169 		free(machine);
170 		return NULL;
171 	}
172 
173 	while (*p != NULL) {
174 		parent = *p;
175 		pos = rb_entry(parent, struct machine, rb_node);
176 		if (pid < pos->pid)
177 			p = &(*p)->rb_left;
178 		else
179 			p = &(*p)->rb_right;
180 	}
181 
182 	rb_link_node(&machine->rb_node, parent, p);
183 	rb_insert_color(&machine->rb_node, &machines->guests);
184 
185 	return machine;
186 }
187 
machines__set_comm_exec(struct machines * machines,bool comm_exec)188 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
189 {
190 	struct rb_node *nd;
191 
192 	machines->host.comm_exec = comm_exec;
193 
194 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
195 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
196 
197 		machine->comm_exec = comm_exec;
198 	}
199 }
200 
machines__find(struct machines * machines,pid_t pid)201 struct machine *machines__find(struct machines *machines, pid_t pid)
202 {
203 	struct rb_node **p = &machines->guests.rb_node;
204 	struct rb_node *parent = NULL;
205 	struct machine *machine;
206 	struct machine *default_machine = NULL;
207 
208 	if (pid == HOST_KERNEL_ID)
209 		return &machines->host;
210 
211 	while (*p != NULL) {
212 		parent = *p;
213 		machine = rb_entry(parent, struct machine, rb_node);
214 		if (pid < machine->pid)
215 			p = &(*p)->rb_left;
216 		else if (pid > machine->pid)
217 			p = &(*p)->rb_right;
218 		else
219 			return machine;
220 		if (!machine->pid)
221 			default_machine = machine;
222 	}
223 
224 	return default_machine;
225 }
226 
machines__findnew(struct machines * machines,pid_t pid)227 struct machine *machines__findnew(struct machines *machines, pid_t pid)
228 {
229 	char path[PATH_MAX];
230 	const char *root_dir = "";
231 	struct machine *machine = machines__find(machines, pid);
232 
233 	if (machine && (machine->pid == pid))
234 		goto out;
235 
236 	if ((pid != HOST_KERNEL_ID) &&
237 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
238 	    (symbol_conf.guestmount)) {
239 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
240 		if (access(path, R_OK)) {
241 			static struct strlist *seen;
242 
243 			if (!seen)
244 				seen = strlist__new(NULL, NULL);
245 
246 			if (!strlist__has_entry(seen, path)) {
247 				pr_err("Can't access file %s\n", path);
248 				strlist__add(seen, path);
249 			}
250 			machine = NULL;
251 			goto out;
252 		}
253 		root_dir = path;
254 	}
255 
256 	machine = machines__add(machines, pid, root_dir);
257 out:
258 	return machine;
259 }
260 
machines__process_guests(struct machines * machines,machine__process_t process,void * data)261 void machines__process_guests(struct machines *machines,
262 			      machine__process_t process, void *data)
263 {
264 	struct rb_node *nd;
265 
266 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
267 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
268 		process(pos, data);
269 	}
270 }
271 
machine__mmap_name(struct machine * machine,char * bf,size_t size)272 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
273 {
274 	if (machine__is_host(machine))
275 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
276 	else if (machine__is_default_guest(machine))
277 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
278 	else {
279 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
280 			 machine->pid);
281 	}
282 
283 	return bf;
284 }
285 
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)286 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
287 {
288 	struct rb_node *node;
289 	struct machine *machine;
290 
291 	machines->host.id_hdr_size = id_hdr_size;
292 
293 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
294 		machine = rb_entry(node, struct machine, rb_node);
295 		machine->id_hdr_size = id_hdr_size;
296 	}
297 
298 	return;
299 }
300 
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)301 static void machine__update_thread_pid(struct machine *machine,
302 				       struct thread *th, pid_t pid)
303 {
304 	struct thread *leader;
305 
306 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
307 		return;
308 
309 	th->pid_ = pid;
310 
311 	if (th->pid_ == th->tid)
312 		return;
313 
314 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
315 	if (!leader)
316 		goto out_err;
317 
318 	if (!leader->mg)
319 		leader->mg = map_groups__new(machine);
320 
321 	if (!leader->mg)
322 		goto out_err;
323 
324 	if (th->mg == leader->mg)
325 		return;
326 
327 	if (th->mg) {
328 		/*
329 		 * Maps are created from MMAP events which provide the pid and
330 		 * tid.  Consequently there never should be any maps on a thread
331 		 * with an unknown pid.  Just print an error if there are.
332 		 */
333 		if (!map_groups__empty(th->mg))
334 			pr_err("Discarding thread maps for %d:%d\n",
335 			       th->pid_, th->tid);
336 		map_groups__put(th->mg);
337 	}
338 
339 	th->mg = map_groups__get(leader->mg);
340 out_put:
341 	thread__put(leader);
342 	return;
343 out_err:
344 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
345 	goto out_put;
346 }
347 
348 /*
349  * Caller must eventually drop thread->refcnt returned with a successful
350  * lookup/new thread inserted.
351  */
____machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)352 static struct thread *____machine__findnew_thread(struct machine *machine,
353 						  pid_t pid, pid_t tid,
354 						  bool create)
355 {
356 	struct rb_node **p = &machine->threads.rb_node;
357 	struct rb_node *parent = NULL;
358 	struct thread *th;
359 
360 	/*
361 	 * Front-end cache - TID lookups come in blocks,
362 	 * so most of the time we dont have to look up
363 	 * the full rbtree:
364 	 */
365 	th = machine->last_match;
366 	if (th != NULL) {
367 		if (th->tid == tid) {
368 			machine__update_thread_pid(machine, th, pid);
369 			return thread__get(th);
370 		}
371 
372 		machine->last_match = NULL;
373 	}
374 
375 	while (*p != NULL) {
376 		parent = *p;
377 		th = rb_entry(parent, struct thread, rb_node);
378 
379 		if (th->tid == tid) {
380 			machine->last_match = th;
381 			machine__update_thread_pid(machine, th, pid);
382 			return thread__get(th);
383 		}
384 
385 		if (tid < th->tid)
386 			p = &(*p)->rb_left;
387 		else
388 			p = &(*p)->rb_right;
389 	}
390 
391 	if (!create)
392 		return NULL;
393 
394 	th = thread__new(pid, tid);
395 	if (th != NULL) {
396 		rb_link_node(&th->rb_node, parent, p);
397 		rb_insert_color(&th->rb_node, &machine->threads);
398 
399 		/*
400 		 * We have to initialize map_groups separately
401 		 * after rb tree is updated.
402 		 *
403 		 * The reason is that we call machine__findnew_thread
404 		 * within thread__init_map_groups to find the thread
405 		 * leader and that would screwed the rb tree.
406 		 */
407 		if (thread__init_map_groups(th, machine)) {
408 			rb_erase_init(&th->rb_node, &machine->threads);
409 			RB_CLEAR_NODE(&th->rb_node);
410 			thread__put(th);
411 			return NULL;
412 		}
413 		/*
414 		 * It is now in the rbtree, get a ref
415 		 */
416 		thread__get(th);
417 		machine->last_match = th;
418 		++machine->nr_threads;
419 	}
420 
421 	return th;
422 }
423 
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)424 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
425 {
426 	return ____machine__findnew_thread(machine, pid, tid, true);
427 }
428 
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)429 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
430 				       pid_t tid)
431 {
432 	struct thread *th;
433 
434 	pthread_rwlock_wrlock(&machine->threads_lock);
435 	th = __machine__findnew_thread(machine, pid, tid);
436 	pthread_rwlock_unlock(&machine->threads_lock);
437 	return th;
438 }
439 
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)440 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
441 				    pid_t tid)
442 {
443 	struct thread *th;
444 	pthread_rwlock_rdlock(&machine->threads_lock);
445 	th =  ____machine__findnew_thread(machine, pid, tid, false);
446 	pthread_rwlock_unlock(&machine->threads_lock);
447 	return th;
448 }
449 
machine__thread_exec_comm(struct machine * machine,struct thread * thread)450 struct comm *machine__thread_exec_comm(struct machine *machine,
451 				       struct thread *thread)
452 {
453 	if (machine->comm_exec)
454 		return thread__exec_comm(thread);
455 	else
456 		return thread__comm(thread);
457 }
458 
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)459 int machine__process_comm_event(struct machine *machine, union perf_event *event,
460 				struct perf_sample *sample)
461 {
462 	struct thread *thread = machine__findnew_thread(machine,
463 							event->comm.pid,
464 							event->comm.tid);
465 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
466 	int err = 0;
467 
468 	if (exec)
469 		machine->comm_exec = true;
470 
471 	if (dump_trace)
472 		perf_event__fprintf_comm(event, stdout);
473 
474 	if (thread == NULL ||
475 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
476 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
477 		err = -1;
478 	}
479 
480 	thread__put(thread);
481 
482 	return err;
483 }
484 
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)485 int machine__process_lost_event(struct machine *machine __maybe_unused,
486 				union perf_event *event, struct perf_sample *sample __maybe_unused)
487 {
488 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
489 		    event->lost.id, event->lost.lost);
490 	return 0;
491 }
492 
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)493 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
494 					union perf_event *event, struct perf_sample *sample)
495 {
496 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
497 		    sample->id, event->lost_samples.lost);
498 	return 0;
499 }
500 
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)501 static struct dso *machine__findnew_module_dso(struct machine *machine,
502 					       struct kmod_path *m,
503 					       const char *filename)
504 {
505 	struct dso *dso;
506 
507 	pthread_rwlock_wrlock(&machine->dsos.lock);
508 
509 	dso = __dsos__find(&machine->dsos, m->name, true);
510 	if (!dso) {
511 		dso = __dsos__addnew(&machine->dsos, m->name);
512 		if (dso == NULL)
513 			goto out_unlock;
514 
515 		if (machine__is_host(machine))
516 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
517 		else
518 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
519 
520 		/* _KMODULE_COMP should be next to _KMODULE */
521 		if (m->kmod && m->comp)
522 			dso->symtab_type++;
523 
524 		dso__set_short_name(dso, strdup(m->name), true);
525 		dso__set_long_name(dso, strdup(filename), true);
526 	}
527 
528 	dso__get(dso);
529 out_unlock:
530 	pthread_rwlock_unlock(&machine->dsos.lock);
531 	return dso;
532 }
533 
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)534 int machine__process_aux_event(struct machine *machine __maybe_unused,
535 			       union perf_event *event)
536 {
537 	if (dump_trace)
538 		perf_event__fprintf_aux(event, stdout);
539 	return 0;
540 }
541 
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)542 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
543 					union perf_event *event)
544 {
545 	if (dump_trace)
546 		perf_event__fprintf_itrace_start(event, stdout);
547 	return 0;
548 }
549 
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)550 int machine__process_switch_event(struct machine *machine __maybe_unused,
551 				  union perf_event *event)
552 {
553 	if (dump_trace)
554 		perf_event__fprintf_switch(event, stdout);
555 	return 0;
556 }
557 
dso__adjust_kmod_long_name(struct dso * dso,const char * filename)558 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
559 {
560 	const char *dup_filename;
561 
562 	if (!filename || !dso || !dso->long_name)
563 		return;
564 	if (dso->long_name[0] != '[')
565 		return;
566 	if (!strchr(filename, '/'))
567 		return;
568 
569 	dup_filename = strdup(filename);
570 	if (!dup_filename)
571 		return;
572 
573 	dso__set_long_name(dso, dup_filename, true);
574 }
575 
machine__findnew_module_map(struct machine * machine,u64 start,const char * filename)576 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
577 					const char *filename)
578 {
579 	struct map *map = NULL;
580 	struct dso *dso = NULL;
581 	struct kmod_path m;
582 
583 	if (kmod_path__parse_name(&m, filename))
584 		return NULL;
585 
586 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
587 				       m.name);
588 	if (map) {
589 		/*
590 		 * If the map's dso is an offline module, give dso__load()
591 		 * a chance to find the file path of that module by fixing
592 		 * long_name.
593 		 */
594 		dso__adjust_kmod_long_name(map->dso, filename);
595 		goto out;
596 	}
597 
598 	dso = machine__findnew_module_dso(machine, &m, filename);
599 	if (dso == NULL)
600 		goto out;
601 
602 	map = map__new2(start, dso, MAP__FUNCTION);
603 	if (map == NULL)
604 		goto out;
605 
606 	map_groups__insert(&machine->kmaps, map);
607 
608 	/* Put the map here because map_groups__insert alread got it */
609 	map__put(map);
610 out:
611 	/* put the dso here, corresponding to  machine__findnew_module_dso */
612 	dso__put(dso);
613 	free(m.name);
614 	return map;
615 }
616 
machines__fprintf_dsos(struct machines * machines,FILE * fp)617 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
618 {
619 	struct rb_node *nd;
620 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
621 
622 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
623 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
624 		ret += __dsos__fprintf(&pos->dsos.head, fp);
625 	}
626 
627 	return ret;
628 }
629 
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)630 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
631 				     bool (skip)(struct dso *dso, int parm), int parm)
632 {
633 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
634 }
635 
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)636 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
637 				     bool (skip)(struct dso *dso, int parm), int parm)
638 {
639 	struct rb_node *nd;
640 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
641 
642 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
643 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
644 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
645 	}
646 	return ret;
647 }
648 
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)649 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
650 {
651 	int i;
652 	size_t printed = 0;
653 	struct dso *kdso = machine__kernel_map(machine)->dso;
654 
655 	if (kdso->has_build_id) {
656 		char filename[PATH_MAX];
657 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
658 			printed += fprintf(fp, "[0] %s\n", filename);
659 	}
660 
661 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
662 		printed += fprintf(fp, "[%d] %s\n",
663 				   i + kdso->has_build_id, vmlinux_path[i]);
664 
665 	return printed;
666 }
667 
machine__fprintf(struct machine * machine,FILE * fp)668 size_t machine__fprintf(struct machine *machine, FILE *fp)
669 {
670 	size_t ret;
671 	struct rb_node *nd;
672 
673 	pthread_rwlock_rdlock(&machine->threads_lock);
674 
675 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
676 
677 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
678 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
679 
680 		ret += thread__fprintf(pos, fp);
681 	}
682 
683 	pthread_rwlock_unlock(&machine->threads_lock);
684 
685 	return ret;
686 }
687 
machine__get_kernel(struct machine * machine)688 static struct dso *machine__get_kernel(struct machine *machine)
689 {
690 	const char *vmlinux_name = NULL;
691 	struct dso *kernel;
692 
693 	if (machine__is_host(machine)) {
694 		vmlinux_name = symbol_conf.vmlinux_name;
695 		if (!vmlinux_name)
696 			vmlinux_name = DSO__NAME_KALLSYMS;
697 
698 		kernel = machine__findnew_kernel(machine, vmlinux_name,
699 						 "[kernel]", DSO_TYPE_KERNEL);
700 	} else {
701 		char bf[PATH_MAX];
702 
703 		if (machine__is_default_guest(machine))
704 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
705 		if (!vmlinux_name)
706 			vmlinux_name = machine__mmap_name(machine, bf,
707 							  sizeof(bf));
708 
709 		kernel = machine__findnew_kernel(machine, vmlinux_name,
710 						 "[guest.kernel]",
711 						 DSO_TYPE_GUEST_KERNEL);
712 	}
713 
714 	if (kernel != NULL && (!kernel->has_build_id))
715 		dso__read_running_kernel_build_id(kernel, machine);
716 
717 	return kernel;
718 }
719 
720 struct process_args {
721 	u64 start;
722 };
723 
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)724 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
725 					   size_t bufsz)
726 {
727 	if (machine__is_default_guest(machine))
728 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
729 	else
730 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
731 }
732 
733 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
734 
735 /* Figure out the start address of kernel map from /proc/kallsyms.
736  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
737  * symbol_name if it's not that important.
738  */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name)739 static u64 machine__get_running_kernel_start(struct machine *machine,
740 					     const char **symbol_name)
741 {
742 	char filename[PATH_MAX];
743 	int i;
744 	const char *name;
745 	u64 addr = 0;
746 
747 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
748 
749 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
750 		return 0;
751 
752 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
753 		addr = kallsyms__get_function_start(filename, name);
754 		if (addr)
755 			break;
756 	}
757 
758 	if (symbol_name)
759 		*symbol_name = name;
760 
761 	return addr;
762 }
763 
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)764 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
765 {
766 	enum map_type type;
767 	u64 start = machine__get_running_kernel_start(machine, NULL);
768 
769 	/* In case of renewal the kernel map, destroy previous one */
770 	machine__destroy_kernel_maps(machine);
771 
772 	for (type = 0; type < MAP__NR_TYPES; ++type) {
773 		struct kmap *kmap;
774 		struct map *map;
775 
776 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
777 		if (machine->vmlinux_maps[type] == NULL)
778 			return -1;
779 
780 		machine->vmlinux_maps[type]->map_ip =
781 			machine->vmlinux_maps[type]->unmap_ip =
782 				identity__map_ip;
783 		map = __machine__kernel_map(machine, type);
784 		kmap = map__kmap(map);
785 		if (!kmap)
786 			return -1;
787 
788 		kmap->kmaps = &machine->kmaps;
789 		map_groups__insert(&machine->kmaps, map);
790 	}
791 
792 	return 0;
793 }
794 
machine__destroy_kernel_maps(struct machine * machine)795 void machine__destroy_kernel_maps(struct machine *machine)
796 {
797 	enum map_type type;
798 
799 	for (type = 0; type < MAP__NR_TYPES; ++type) {
800 		struct kmap *kmap;
801 		struct map *map = __machine__kernel_map(machine, type);
802 
803 		if (map == NULL)
804 			continue;
805 
806 		kmap = map__kmap(map);
807 		map_groups__remove(&machine->kmaps, map);
808 		if (kmap && kmap->ref_reloc_sym) {
809 			/*
810 			 * ref_reloc_sym is shared among all maps, so free just
811 			 * on one of them.
812 			 */
813 			if (type == MAP__FUNCTION) {
814 				zfree((char **)&kmap->ref_reloc_sym->name);
815 				zfree(&kmap->ref_reloc_sym);
816 			} else
817 				kmap->ref_reloc_sym = NULL;
818 		}
819 
820 		map__put(machine->vmlinux_maps[type]);
821 		machine->vmlinux_maps[type] = NULL;
822 	}
823 }
824 
machines__create_guest_kernel_maps(struct machines * machines)825 int machines__create_guest_kernel_maps(struct machines *machines)
826 {
827 	int ret = 0;
828 	struct dirent **namelist = NULL;
829 	int i, items = 0;
830 	char path[PATH_MAX];
831 	pid_t pid;
832 	char *endp;
833 
834 	if (symbol_conf.default_guest_vmlinux_name ||
835 	    symbol_conf.default_guest_modules ||
836 	    symbol_conf.default_guest_kallsyms) {
837 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
838 	}
839 
840 	if (symbol_conf.guestmount) {
841 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
842 		if (items <= 0)
843 			return -ENOENT;
844 		for (i = 0; i < items; i++) {
845 			if (!isdigit(namelist[i]->d_name[0])) {
846 				/* Filter out . and .. */
847 				continue;
848 			}
849 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
850 			if ((*endp != '\0') ||
851 			    (endp == namelist[i]->d_name) ||
852 			    (errno == ERANGE)) {
853 				pr_debug("invalid directory (%s). Skipping.\n",
854 					 namelist[i]->d_name);
855 				continue;
856 			}
857 			sprintf(path, "%s/%s/proc/kallsyms",
858 				symbol_conf.guestmount,
859 				namelist[i]->d_name);
860 			ret = access(path, R_OK);
861 			if (ret) {
862 				pr_debug("Can't access file %s\n", path);
863 				goto failure;
864 			}
865 			machines__create_kernel_maps(machines, pid);
866 		}
867 failure:
868 		free(namelist);
869 	}
870 
871 	return ret;
872 }
873 
machines__destroy_kernel_maps(struct machines * machines)874 void machines__destroy_kernel_maps(struct machines *machines)
875 {
876 	struct rb_node *next = rb_first(&machines->guests);
877 
878 	machine__destroy_kernel_maps(&machines->host);
879 
880 	while (next) {
881 		struct machine *pos = rb_entry(next, struct machine, rb_node);
882 
883 		next = rb_next(&pos->rb_node);
884 		rb_erase(&pos->rb_node, &machines->guests);
885 		machine__delete(pos);
886 	}
887 }
888 
machines__create_kernel_maps(struct machines * machines,pid_t pid)889 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
890 {
891 	struct machine *machine = machines__findnew(machines, pid);
892 
893 	if (machine == NULL)
894 		return -1;
895 
896 	return machine__create_kernel_maps(machine);
897 }
898 
__machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type,bool no_kcore)899 int __machine__load_kallsyms(struct machine *machine, const char *filename,
900 			     enum map_type type, bool no_kcore)
901 {
902 	struct map *map = machine__kernel_map(machine);
903 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
904 
905 	if (ret > 0) {
906 		dso__set_loaded(map->dso, type);
907 		/*
908 		 * Since /proc/kallsyms will have multiple sessions for the
909 		 * kernel, with modules between them, fixup the end of all
910 		 * sections.
911 		 */
912 		__map_groups__fixup_end(&machine->kmaps, type);
913 	}
914 
915 	return ret;
916 }
917 
machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type)918 int machine__load_kallsyms(struct machine *machine, const char *filename,
919 			   enum map_type type)
920 {
921 	return __machine__load_kallsyms(machine, filename, type, false);
922 }
923 
machine__load_vmlinux_path(struct machine * machine,enum map_type type)924 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
925 {
926 	struct map *map = machine__kernel_map(machine);
927 	int ret = dso__load_vmlinux_path(map->dso, map);
928 
929 	if (ret > 0)
930 		dso__set_loaded(map->dso, type);
931 
932 	return ret;
933 }
934 
map_groups__fixup_end(struct map_groups * mg)935 static void map_groups__fixup_end(struct map_groups *mg)
936 {
937 	int i;
938 	for (i = 0; i < MAP__NR_TYPES; ++i)
939 		__map_groups__fixup_end(mg, i);
940 }
941 
get_kernel_version(const char * root_dir)942 static char *get_kernel_version(const char *root_dir)
943 {
944 	char version[PATH_MAX];
945 	FILE *file;
946 	char *name, *tmp;
947 	const char *prefix = "Linux version ";
948 
949 	sprintf(version, "%s/proc/version", root_dir);
950 	file = fopen(version, "r");
951 	if (!file)
952 		return NULL;
953 
954 	version[0] = '\0';
955 	tmp = fgets(version, sizeof(version), file);
956 	fclose(file);
957 
958 	name = strstr(version, prefix);
959 	if (!name)
960 		return NULL;
961 	name += strlen(prefix);
962 	tmp = strchr(name, ' ');
963 	if (tmp)
964 		*tmp = '\0';
965 
966 	return strdup(name);
967 }
968 
is_kmod_dso(struct dso * dso)969 static bool is_kmod_dso(struct dso *dso)
970 {
971 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
972 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
973 }
974 
map_groups__set_module_path(struct map_groups * mg,const char * path,struct kmod_path * m)975 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
976 				       struct kmod_path *m)
977 {
978 	struct map *map;
979 	char *long_name;
980 
981 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
982 	if (map == NULL)
983 		return 0;
984 
985 	long_name = strdup(path);
986 	if (long_name == NULL)
987 		return -ENOMEM;
988 
989 	dso__set_long_name(map->dso, long_name, true);
990 	dso__kernel_module_get_build_id(map->dso, "");
991 
992 	/*
993 	 * Full name could reveal us kmod compression, so
994 	 * we need to update the symtab_type if needed.
995 	 */
996 	if (m->comp && is_kmod_dso(map->dso))
997 		map->dso->symtab_type++;
998 
999 	return 0;
1000 }
1001 
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)1002 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1003 				const char *dir_name, int depth)
1004 {
1005 	struct dirent *dent;
1006 	DIR *dir = opendir(dir_name);
1007 	int ret = 0;
1008 
1009 	if (!dir) {
1010 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1011 		return -1;
1012 	}
1013 
1014 	while ((dent = readdir(dir)) != NULL) {
1015 		char path[PATH_MAX];
1016 		struct stat st;
1017 
1018 		/*sshfs might return bad dent->d_type, so we have to stat*/
1019 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1020 		if (stat(path, &st))
1021 			continue;
1022 
1023 		if (S_ISDIR(st.st_mode)) {
1024 			if (!strcmp(dent->d_name, ".") ||
1025 			    !strcmp(dent->d_name, ".."))
1026 				continue;
1027 
1028 			/* Do not follow top-level source and build symlinks */
1029 			if (depth == 0) {
1030 				if (!strcmp(dent->d_name, "source") ||
1031 				    !strcmp(dent->d_name, "build"))
1032 					continue;
1033 			}
1034 
1035 			ret = map_groups__set_modules_path_dir(mg, path,
1036 							       depth + 1);
1037 			if (ret < 0)
1038 				goto out;
1039 		} else {
1040 			struct kmod_path m;
1041 
1042 			ret = kmod_path__parse_name(&m, dent->d_name);
1043 			if (ret)
1044 				goto out;
1045 
1046 			if (m.kmod)
1047 				ret = map_groups__set_module_path(mg, path, &m);
1048 
1049 			free(m.name);
1050 
1051 			if (ret)
1052 				goto out;
1053 		}
1054 	}
1055 
1056 out:
1057 	closedir(dir);
1058 	return ret;
1059 }
1060 
machine__set_modules_path(struct machine * machine)1061 static int machine__set_modules_path(struct machine *machine)
1062 {
1063 	char *version;
1064 	char modules_path[PATH_MAX];
1065 
1066 	version = get_kernel_version(machine->root_dir);
1067 	if (!version)
1068 		return -1;
1069 
1070 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1071 		 machine->root_dir, version);
1072 	free(version);
1073 
1074 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1075 }
arch__fix_module_text_start(u64 * start __maybe_unused,const char * name __maybe_unused)1076 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1077 				const char *name __maybe_unused)
1078 {
1079 	return 0;
1080 }
1081 
machine__create_module(void * arg,const char * name,u64 start)1082 static int machine__create_module(void *arg, const char *name, u64 start)
1083 {
1084 	struct machine *machine = arg;
1085 	struct map *map;
1086 
1087 	if (arch__fix_module_text_start(&start, name) < 0)
1088 		return -1;
1089 
1090 	map = machine__findnew_module_map(machine, start, name);
1091 	if (map == NULL)
1092 		return -1;
1093 
1094 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1095 
1096 	return 0;
1097 }
1098 
machine__create_modules(struct machine * machine)1099 static int machine__create_modules(struct machine *machine)
1100 {
1101 	const char *modules;
1102 	char path[PATH_MAX];
1103 
1104 	if (machine__is_default_guest(machine)) {
1105 		modules = symbol_conf.default_guest_modules;
1106 	} else {
1107 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1108 		modules = path;
1109 	}
1110 
1111 	if (symbol__restricted_filename(modules, "/proc/modules"))
1112 		return -1;
1113 
1114 	if (modules__parse(modules, machine, machine__create_module))
1115 		return -1;
1116 
1117 	if (!machine__set_modules_path(machine))
1118 		return 0;
1119 
1120 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1121 
1122 	return 0;
1123 }
1124 
machine__create_kernel_maps(struct machine * machine)1125 int machine__create_kernel_maps(struct machine *machine)
1126 {
1127 	struct dso *kernel = machine__get_kernel(machine);
1128 	const char *name;
1129 	u64 addr;
1130 	int ret;
1131 
1132 	if (kernel == NULL)
1133 		return -1;
1134 
1135 	ret = __machine__create_kernel_maps(machine, kernel);
1136 	dso__put(kernel);
1137 	if (ret < 0)
1138 		return -1;
1139 
1140 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1141 		if (machine__is_host(machine))
1142 			pr_debug("Problems creating module maps, "
1143 				 "continuing anyway...\n");
1144 		else
1145 			pr_debug("Problems creating module maps for guest %d, "
1146 				 "continuing anyway...\n", machine->pid);
1147 	}
1148 
1149 	/*
1150 	 * Now that we have all the maps created, just set the ->end of them:
1151 	 */
1152 	map_groups__fixup_end(&machine->kmaps);
1153 
1154 	addr = machine__get_running_kernel_start(machine, &name);
1155 	if (!addr) {
1156 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1157 		machine__destroy_kernel_maps(machine);
1158 		return -1;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
machine__set_kernel_mmap_len(struct machine * machine,union perf_event * event)1164 static void machine__set_kernel_mmap_len(struct machine *machine,
1165 					 union perf_event *event)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < MAP__NR_TYPES; i++) {
1170 		machine->vmlinux_maps[i]->start = event->mmap.start;
1171 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1172 						   event->mmap.len);
1173 		/*
1174 		 * Be a bit paranoid here, some perf.data file came with
1175 		 * a zero sized synthesized MMAP event for the kernel.
1176 		 */
1177 		if (machine->vmlinux_maps[i]->end == 0)
1178 			machine->vmlinux_maps[i]->end = ~0ULL;
1179 	}
1180 }
1181 
machine__uses_kcore(struct machine * machine)1182 static bool machine__uses_kcore(struct machine *machine)
1183 {
1184 	struct dso *dso;
1185 
1186 	list_for_each_entry(dso, &machine->dsos.head, node) {
1187 		if (dso__is_kcore(dso))
1188 			return true;
1189 	}
1190 
1191 	return false;
1192 }
1193 
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1194 static int machine__process_kernel_mmap_event(struct machine *machine,
1195 					      union perf_event *event)
1196 {
1197 	struct map *map;
1198 	char kmmap_prefix[PATH_MAX];
1199 	enum dso_kernel_type kernel_type;
1200 	bool is_kernel_mmap;
1201 
1202 	/* If we have maps from kcore then we do not need or want any others */
1203 	if (machine__uses_kcore(machine))
1204 		return 0;
1205 
1206 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1207 	if (machine__is_host(machine))
1208 		kernel_type = DSO_TYPE_KERNEL;
1209 	else
1210 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1211 
1212 	is_kernel_mmap = memcmp(event->mmap.filename,
1213 				kmmap_prefix,
1214 				strlen(kmmap_prefix) - 1) == 0;
1215 	if (event->mmap.filename[0] == '/' ||
1216 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1217 		map = machine__findnew_module_map(machine, event->mmap.start,
1218 						  event->mmap.filename);
1219 		if (map == NULL)
1220 			goto out_problem;
1221 
1222 		map->end = map->start + event->mmap.len;
1223 	} else if (is_kernel_mmap) {
1224 		const char *symbol_name = (event->mmap.filename +
1225 				strlen(kmmap_prefix));
1226 		/*
1227 		 * Should be there already, from the build-id table in
1228 		 * the header.
1229 		 */
1230 		struct dso *kernel = NULL;
1231 		struct dso *dso;
1232 
1233 		pthread_rwlock_rdlock(&machine->dsos.lock);
1234 
1235 		list_for_each_entry(dso, &machine->dsos.head, node) {
1236 
1237 			/*
1238 			 * The cpumode passed to is_kernel_module is not the
1239 			 * cpumode of *this* event. If we insist on passing
1240 			 * correct cpumode to is_kernel_module, we should
1241 			 * record the cpumode when we adding this dso to the
1242 			 * linked list.
1243 			 *
1244 			 * However we don't really need passing correct
1245 			 * cpumode.  We know the correct cpumode must be kernel
1246 			 * mode (if not, we should not link it onto kernel_dsos
1247 			 * list).
1248 			 *
1249 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1250 			 * is_kernel_module() treats it as a kernel cpumode.
1251 			 */
1252 
1253 			if (!dso->kernel ||
1254 			    is_kernel_module(dso->long_name,
1255 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1256 				continue;
1257 
1258 
1259 			kernel = dso;
1260 			break;
1261 		}
1262 
1263 		pthread_rwlock_unlock(&machine->dsos.lock);
1264 
1265 		if (kernel == NULL)
1266 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1267 		if (kernel == NULL)
1268 			goto out_problem;
1269 
1270 		kernel->kernel = kernel_type;
1271 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1272 			dso__put(kernel);
1273 			goto out_problem;
1274 		}
1275 
1276 		if (strstr(kernel->long_name, "vmlinux"))
1277 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1278 
1279 		machine__set_kernel_mmap_len(machine, event);
1280 
1281 		/*
1282 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1283 		 * symbol. Effectively having zero here means that at record
1284 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1285 		 */
1286 		if (event->mmap.pgoff != 0) {
1287 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1288 							 symbol_name,
1289 							 event->mmap.pgoff);
1290 		}
1291 
1292 		if (machine__is_default_guest(machine)) {
1293 			/*
1294 			 * preload dso of guest kernel and modules
1295 			 */
1296 			dso__load(kernel, machine__kernel_map(machine));
1297 		}
1298 	}
1299 	return 0;
1300 out_problem:
1301 	return -1;
1302 }
1303 
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1304 int machine__process_mmap2_event(struct machine *machine,
1305 				 union perf_event *event,
1306 				 struct perf_sample *sample)
1307 {
1308 	struct thread *thread;
1309 	struct map *map;
1310 	enum map_type type;
1311 	int ret = 0;
1312 
1313 	if (dump_trace)
1314 		perf_event__fprintf_mmap2(event, stdout);
1315 
1316 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1317 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1318 		ret = machine__process_kernel_mmap_event(machine, event);
1319 		if (ret < 0)
1320 			goto out_problem;
1321 		return 0;
1322 	}
1323 
1324 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1325 					event->mmap2.tid);
1326 	if (thread == NULL)
1327 		goto out_problem;
1328 
1329 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1330 		type = MAP__VARIABLE;
1331 	else
1332 		type = MAP__FUNCTION;
1333 
1334 	map = map__new(machine, event->mmap2.start,
1335 			event->mmap2.len, event->mmap2.pgoff,
1336 			event->mmap2.pid, event->mmap2.maj,
1337 			event->mmap2.min, event->mmap2.ino,
1338 			event->mmap2.ino_generation,
1339 			event->mmap2.prot,
1340 			event->mmap2.flags,
1341 			event->mmap2.filename, type, thread);
1342 
1343 	if (map == NULL)
1344 		goto out_problem_map;
1345 
1346 	ret = thread__insert_map(thread, map);
1347 	if (ret)
1348 		goto out_problem_insert;
1349 
1350 	thread__put(thread);
1351 	map__put(map);
1352 	return 0;
1353 
1354 out_problem_insert:
1355 	map__put(map);
1356 out_problem_map:
1357 	thread__put(thread);
1358 out_problem:
1359 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1360 	return 0;
1361 }
1362 
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1363 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1364 				struct perf_sample *sample)
1365 {
1366 	struct thread *thread;
1367 	struct map *map;
1368 	enum map_type type;
1369 	int ret = 0;
1370 
1371 	if (dump_trace)
1372 		perf_event__fprintf_mmap(event, stdout);
1373 
1374 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1375 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1376 		ret = machine__process_kernel_mmap_event(machine, event);
1377 		if (ret < 0)
1378 			goto out_problem;
1379 		return 0;
1380 	}
1381 
1382 	thread = machine__findnew_thread(machine, event->mmap.pid,
1383 					 event->mmap.tid);
1384 	if (thread == NULL)
1385 		goto out_problem;
1386 
1387 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1388 		type = MAP__VARIABLE;
1389 	else
1390 		type = MAP__FUNCTION;
1391 
1392 	map = map__new(machine, event->mmap.start,
1393 			event->mmap.len, event->mmap.pgoff,
1394 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1395 			event->mmap.filename,
1396 			type, thread);
1397 
1398 	if (map == NULL)
1399 		goto out_problem_map;
1400 
1401 	ret = thread__insert_map(thread, map);
1402 	if (ret)
1403 		goto out_problem_insert;
1404 
1405 	thread__put(thread);
1406 	map__put(map);
1407 	return 0;
1408 
1409 out_problem_insert:
1410 	map__put(map);
1411 out_problem_map:
1412 	thread__put(thread);
1413 out_problem:
1414 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1415 	return 0;
1416 }
1417 
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1418 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419 {
1420 	if (machine->last_match == th)
1421 		machine->last_match = NULL;
1422 
1423 	BUG_ON(atomic_read(&th->refcnt) == 0);
1424 	if (lock)
1425 		pthread_rwlock_wrlock(&machine->threads_lock);
1426 	rb_erase_init(&th->rb_node, &machine->threads);
1427 	RB_CLEAR_NODE(&th->rb_node);
1428 	--machine->nr_threads;
1429 	/*
1430 	 * Move it first to the dead_threads list, then drop the reference,
1431 	 * if this is the last reference, then the thread__delete destructor
1432 	 * will be called and we will remove it from the dead_threads list.
1433 	 */
1434 	list_add_tail(&th->node, &machine->dead_threads);
1435 	if (lock)
1436 		pthread_rwlock_unlock(&machine->threads_lock);
1437 	thread__put(th);
1438 }
1439 
machine__remove_thread(struct machine * machine,struct thread * th)1440 void machine__remove_thread(struct machine *machine, struct thread *th)
1441 {
1442 	return __machine__remove_thread(machine, th, true);
1443 }
1444 
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1445 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1446 				struct perf_sample *sample)
1447 {
1448 	struct thread *thread = machine__find_thread(machine,
1449 						     event->fork.pid,
1450 						     event->fork.tid);
1451 	struct thread *parent = machine__findnew_thread(machine,
1452 							event->fork.ppid,
1453 							event->fork.ptid);
1454 	int err = 0;
1455 
1456 	if (dump_trace)
1457 		perf_event__fprintf_task(event, stdout);
1458 
1459 	/*
1460 	 * There may be an existing thread that is not actually the parent,
1461 	 * either because we are processing events out of order, or because the
1462 	 * (fork) event that would have removed the thread was lost. Assume the
1463 	 * latter case and continue on as best we can.
1464 	 */
1465 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1466 		dump_printf("removing erroneous parent thread %d/%d\n",
1467 			    parent->pid_, parent->tid);
1468 		machine__remove_thread(machine, parent);
1469 		thread__put(parent);
1470 		parent = machine__findnew_thread(machine, event->fork.ppid,
1471 						 event->fork.ptid);
1472 	}
1473 
1474 	/* if a thread currently exists for the thread id remove it */
1475 	if (thread != NULL) {
1476 		machine__remove_thread(machine, thread);
1477 		thread__put(thread);
1478 	}
1479 
1480 	thread = machine__findnew_thread(machine, event->fork.pid,
1481 					 event->fork.tid);
1482 
1483 	if (thread == NULL || parent == NULL ||
1484 	    thread__fork(thread, parent, sample->time) < 0) {
1485 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486 		err = -1;
1487 	}
1488 	thread__put(thread);
1489 	thread__put(parent);
1490 
1491 	return err;
1492 }
1493 
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1494 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1495 				struct perf_sample *sample __maybe_unused)
1496 {
1497 	struct thread *thread = machine__find_thread(machine,
1498 						     event->fork.pid,
1499 						     event->fork.tid);
1500 
1501 	if (dump_trace)
1502 		perf_event__fprintf_task(event, stdout);
1503 
1504 	if (thread != NULL) {
1505 		thread__exited(thread);
1506 		thread__put(thread);
1507 	}
1508 
1509 	return 0;
1510 }
1511 
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1512 int machine__process_event(struct machine *machine, union perf_event *event,
1513 			   struct perf_sample *sample)
1514 {
1515 	int ret;
1516 
1517 	switch (event->header.type) {
1518 	case PERF_RECORD_COMM:
1519 		ret = machine__process_comm_event(machine, event, sample); break;
1520 	case PERF_RECORD_MMAP:
1521 		ret = machine__process_mmap_event(machine, event, sample); break;
1522 	case PERF_RECORD_MMAP2:
1523 		ret = machine__process_mmap2_event(machine, event, sample); break;
1524 	case PERF_RECORD_FORK:
1525 		ret = machine__process_fork_event(machine, event, sample); break;
1526 	case PERF_RECORD_EXIT:
1527 		ret = machine__process_exit_event(machine, event, sample); break;
1528 	case PERF_RECORD_LOST:
1529 		ret = machine__process_lost_event(machine, event, sample); break;
1530 	case PERF_RECORD_AUX:
1531 		ret = machine__process_aux_event(machine, event); break;
1532 	case PERF_RECORD_ITRACE_START:
1533 		ret = machine__process_itrace_start_event(machine, event); break;
1534 	case PERF_RECORD_LOST_SAMPLES:
1535 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1536 	case PERF_RECORD_SWITCH:
1537 	case PERF_RECORD_SWITCH_CPU_WIDE:
1538 		ret = machine__process_switch_event(machine, event); break;
1539 	default:
1540 		ret = -1;
1541 		break;
1542 	}
1543 
1544 	return ret;
1545 }
1546 
symbol__match_regex(struct symbol * sym,regex_t * regex)1547 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548 {
1549 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550 		return 1;
1551 	return 0;
1552 }
1553 
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1554 static void ip__resolve_ams(struct thread *thread,
1555 			    struct addr_map_symbol *ams,
1556 			    u64 ip)
1557 {
1558 	struct addr_location al;
1559 
1560 	memset(&al, 0, sizeof(al));
1561 	/*
1562 	 * We cannot use the header.misc hint to determine whether a
1563 	 * branch stack address is user, kernel, guest, hypervisor.
1564 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1565 	 * Thus, we have to try consecutively until we find a match
1566 	 * or else, the symbol is unknown
1567 	 */
1568 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569 
1570 	ams->addr = ip;
1571 	ams->al_addr = al.addr;
1572 	ams->sym = al.sym;
1573 	ams->map = al.map;
1574 }
1575 
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr)1576 static void ip__resolve_data(struct thread *thread,
1577 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1578 {
1579 	struct addr_location al;
1580 
1581 	memset(&al, 0, sizeof(al));
1582 
1583 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584 	if (al.map == NULL) {
1585 		/*
1586 		 * some shared data regions have execute bit set which puts
1587 		 * their mapping in the MAP__FUNCTION type array.
1588 		 * Check there as a fallback option before dropping the sample.
1589 		 */
1590 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591 	}
1592 
1593 	ams->addr = addr;
1594 	ams->al_addr = al.addr;
1595 	ams->sym = al.sym;
1596 	ams->map = al.map;
1597 }
1598 
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1599 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1600 				     struct addr_location *al)
1601 {
1602 	struct mem_info *mi = zalloc(sizeof(*mi));
1603 
1604 	if (!mi)
1605 		return NULL;
1606 
1607 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1608 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1609 	mi->data_src.val = sample->data_src;
1610 
1611 	return mi;
1612 }
1613 
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip)1614 static int add_callchain_ip(struct thread *thread,
1615 			    struct callchain_cursor *cursor,
1616 			    struct symbol **parent,
1617 			    struct addr_location *root_al,
1618 			    u8 *cpumode,
1619 			    u64 ip)
1620 {
1621 	struct addr_location al;
1622 
1623 	al.filtered = 0;
1624 	al.sym = NULL;
1625 	if (!cpumode) {
1626 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1627 						   ip, &al);
1628 	} else {
1629 		if (ip >= PERF_CONTEXT_MAX) {
1630 			switch (ip) {
1631 			case PERF_CONTEXT_HV:
1632 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1633 				break;
1634 			case PERF_CONTEXT_KERNEL:
1635 				*cpumode = PERF_RECORD_MISC_KERNEL;
1636 				break;
1637 			case PERF_CONTEXT_USER:
1638 				*cpumode = PERF_RECORD_MISC_USER;
1639 				break;
1640 			default:
1641 				pr_debug("invalid callchain context: "
1642 					 "%"PRId64"\n", (s64) ip);
1643 				/*
1644 				 * It seems the callchain is corrupted.
1645 				 * Discard all.
1646 				 */
1647 				callchain_cursor_reset(cursor);
1648 				return 1;
1649 			}
1650 			return 0;
1651 		}
1652 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1653 					   ip, &al);
1654 	}
1655 
1656 	if (al.sym != NULL) {
1657 		if (perf_hpp_list.parent && !*parent &&
1658 		    symbol__match_regex(al.sym, &parent_regex))
1659 			*parent = al.sym;
1660 		else if (have_ignore_callees && root_al &&
1661 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1662 			/* Treat this symbol as the root,
1663 			   forgetting its callees. */
1664 			*root_al = al;
1665 			callchain_cursor_reset(cursor);
1666 		}
1667 	}
1668 
1669 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1670 		return 0;
1671 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1672 }
1673 
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)1674 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1675 					   struct addr_location *al)
1676 {
1677 	unsigned int i;
1678 	const struct branch_stack *bs = sample->branch_stack;
1679 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1680 
1681 	if (!bi)
1682 		return NULL;
1683 
1684 	for (i = 0; i < bs->nr; i++) {
1685 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1686 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1687 		bi[i].flags = bs->entries[i].flags;
1688 	}
1689 	return bi;
1690 }
1691 
1692 #define CHASHSZ 127
1693 #define CHASHBITS 7
1694 #define NO_ENTRY 0xff
1695 
1696 #define PERF_MAX_BRANCH_DEPTH 127
1697 
1698 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr)1699 static int remove_loops(struct branch_entry *l, int nr)
1700 {
1701 	int i, j, off;
1702 	unsigned char chash[CHASHSZ];
1703 
1704 	memset(chash, NO_ENTRY, sizeof(chash));
1705 
1706 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1707 
1708 	for (i = 0; i < nr; i++) {
1709 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1710 
1711 		/* no collision handling for now */
1712 		if (chash[h] == NO_ENTRY) {
1713 			chash[h] = i;
1714 		} else if (l[chash[h]].from == l[i].from) {
1715 			bool is_loop = true;
1716 			/* check if it is a real loop */
1717 			off = 0;
1718 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1719 				if (l[j].from != l[i + off].from) {
1720 					is_loop = false;
1721 					break;
1722 				}
1723 			if (is_loop) {
1724 				memmove(l + i, l + i + off,
1725 					(nr - (i + off)) * sizeof(*l));
1726 				nr -= off;
1727 			}
1728 		}
1729 	}
1730 	return nr;
1731 }
1732 
1733 /*
1734  * Recolve LBR callstack chain sample
1735  * Return:
1736  * 1 on success get LBR callchain information
1737  * 0 no available LBR callchain information, should try fp
1738  * negative error code on other errors.
1739  */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1740 static int resolve_lbr_callchain_sample(struct thread *thread,
1741 					struct callchain_cursor *cursor,
1742 					struct perf_sample *sample,
1743 					struct symbol **parent,
1744 					struct addr_location *root_al,
1745 					int max_stack)
1746 {
1747 	struct ip_callchain *chain = sample->callchain;
1748 	int chain_nr = min(max_stack, (int)chain->nr), i;
1749 	u8 cpumode = PERF_RECORD_MISC_USER;
1750 	u64 ip;
1751 
1752 	for (i = 0; i < chain_nr; i++) {
1753 		if (chain->ips[i] == PERF_CONTEXT_USER)
1754 			break;
1755 	}
1756 
1757 	/* LBR only affects the user callchain */
1758 	if (i != chain_nr) {
1759 		struct branch_stack *lbr_stack = sample->branch_stack;
1760 		int lbr_nr = lbr_stack->nr, j;
1761 		/*
1762 		 * LBR callstack can only get user call chain.
1763 		 * The mix_chain_nr is kernel call chain
1764 		 * number plus LBR user call chain number.
1765 		 * i is kernel call chain number,
1766 		 * 1 is PERF_CONTEXT_USER,
1767 		 * lbr_nr + 1 is the user call chain number.
1768 		 * For details, please refer to the comments
1769 		 * in callchain__printf
1770 		 */
1771 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1772 
1773 		for (j = 0; j < mix_chain_nr; j++) {
1774 			int err;
1775 			if (callchain_param.order == ORDER_CALLEE) {
1776 				if (j < i + 1)
1777 					ip = chain->ips[j];
1778 				else if (j > i + 1)
1779 					ip = lbr_stack->entries[j - i - 2].from;
1780 				else
1781 					ip = lbr_stack->entries[0].to;
1782 			} else {
1783 				if (j < lbr_nr)
1784 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1785 				else if (j > lbr_nr)
1786 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1787 				else
1788 					ip = lbr_stack->entries[0].to;
1789 			}
1790 
1791 			err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1792 			if (err)
1793 				return (err < 0) ? err : 0;
1794 		}
1795 		return 1;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1801 static int thread__resolve_callchain_sample(struct thread *thread,
1802 					    struct callchain_cursor *cursor,
1803 					    struct perf_evsel *evsel,
1804 					    struct perf_sample *sample,
1805 					    struct symbol **parent,
1806 					    struct addr_location *root_al,
1807 					    int max_stack)
1808 {
1809 	struct branch_stack *branch = sample->branch_stack;
1810 	struct ip_callchain *chain = sample->callchain;
1811 	int chain_nr = chain->nr;
1812 	u8 cpumode = PERF_RECORD_MISC_USER;
1813 	int i, j, err, nr_entries;
1814 	int skip_idx = -1;
1815 	int first_call = 0;
1816 
1817 	if (perf_evsel__has_branch_callstack(evsel)) {
1818 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1819 						   root_al, max_stack);
1820 		if (err)
1821 			return (err < 0) ? err : 0;
1822 	}
1823 
1824 	/*
1825 	 * Based on DWARF debug information, some architectures skip
1826 	 * a callchain entry saved by the kernel.
1827 	 */
1828 	skip_idx = arch_skip_callchain_idx(thread, chain);
1829 
1830 	/*
1831 	 * Add branches to call stack for easier browsing. This gives
1832 	 * more context for a sample than just the callers.
1833 	 *
1834 	 * This uses individual histograms of paths compared to the
1835 	 * aggregated histograms the normal LBR mode uses.
1836 	 *
1837 	 * Limitations for now:
1838 	 * - No extra filters
1839 	 * - No annotations (should annotate somehow)
1840 	 */
1841 
1842 	if (branch && callchain_param.branch_callstack) {
1843 		int nr = min(max_stack, (int)branch->nr);
1844 		struct branch_entry be[nr];
1845 
1846 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1847 			pr_warning("corrupted branch chain. skipping...\n");
1848 			goto check_calls;
1849 		}
1850 
1851 		for (i = 0; i < nr; i++) {
1852 			if (callchain_param.order == ORDER_CALLEE) {
1853 				be[i] = branch->entries[i];
1854 				/*
1855 				 * Check for overlap into the callchain.
1856 				 * The return address is one off compared to
1857 				 * the branch entry. To adjust for this
1858 				 * assume the calling instruction is not longer
1859 				 * than 8 bytes.
1860 				 */
1861 				if (i == skip_idx ||
1862 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1863 					first_call++;
1864 				else if (be[i].from < chain->ips[first_call] &&
1865 				    be[i].from >= chain->ips[first_call] - 8)
1866 					first_call++;
1867 			} else
1868 				be[i] = branch->entries[branch->nr - i - 1];
1869 		}
1870 
1871 		nr = remove_loops(be, nr);
1872 
1873 		for (i = 0; i < nr; i++) {
1874 			err = add_callchain_ip(thread, cursor, parent, root_al,
1875 					       NULL, be[i].to);
1876 			if (!err)
1877 				err = add_callchain_ip(thread, cursor, parent, root_al,
1878 						       NULL, be[i].from);
1879 			if (err == -EINVAL)
1880 				break;
1881 			if (err)
1882 				return err;
1883 		}
1884 		chain_nr -= nr;
1885 	}
1886 
1887 check_calls:
1888 	for (i = first_call, nr_entries = 0;
1889 	     i < chain_nr && nr_entries < max_stack; i++) {
1890 		u64 ip;
1891 
1892 		if (callchain_param.order == ORDER_CALLEE)
1893 			j = i;
1894 		else
1895 			j = chain->nr - i - 1;
1896 
1897 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1898 		if (j == skip_idx)
1899 			continue;
1900 #endif
1901 		ip = chain->ips[j];
1902 
1903 		if (ip < PERF_CONTEXT_MAX)
1904                        ++nr_entries;
1905 
1906 		err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1907 
1908 		if (err)
1909 			return (err < 0) ? err : 0;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
unwind_entry(struct unwind_entry * entry,void * arg)1915 static int unwind_entry(struct unwind_entry *entry, void *arg)
1916 {
1917 	struct callchain_cursor *cursor = arg;
1918 
1919 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1920 		return 0;
1921 	return callchain_cursor_append(cursor, entry->ip,
1922 				       entry->map, entry->sym);
1923 }
1924 
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct perf_evsel * evsel,struct perf_sample * sample,int max_stack)1925 static int thread__resolve_callchain_unwind(struct thread *thread,
1926 					    struct callchain_cursor *cursor,
1927 					    struct perf_evsel *evsel,
1928 					    struct perf_sample *sample,
1929 					    int max_stack)
1930 {
1931 	/* Can we do dwarf post unwind? */
1932 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1933 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1934 		return 0;
1935 
1936 	/* Bail out if nothing was captured. */
1937 	if ((!sample->user_regs.regs) ||
1938 	    (!sample->user_stack.size))
1939 		return 0;
1940 
1941 	return unwind__get_entries(unwind_entry, cursor,
1942 				   thread, sample, max_stack);
1943 }
1944 
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct perf_evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1945 int thread__resolve_callchain(struct thread *thread,
1946 			      struct callchain_cursor *cursor,
1947 			      struct perf_evsel *evsel,
1948 			      struct perf_sample *sample,
1949 			      struct symbol **parent,
1950 			      struct addr_location *root_al,
1951 			      int max_stack)
1952 {
1953 	int ret = 0;
1954 
1955 	callchain_cursor_reset(&callchain_cursor);
1956 
1957 	if (callchain_param.order == ORDER_CALLEE) {
1958 		ret = thread__resolve_callchain_sample(thread, cursor,
1959 						       evsel, sample,
1960 						       parent, root_al,
1961 						       max_stack);
1962 		if (ret)
1963 			return ret;
1964 		ret = thread__resolve_callchain_unwind(thread, cursor,
1965 						       evsel, sample,
1966 						       max_stack);
1967 	} else {
1968 		ret = thread__resolve_callchain_unwind(thread, cursor,
1969 						       evsel, sample,
1970 						       max_stack);
1971 		if (ret)
1972 			return ret;
1973 		ret = thread__resolve_callchain_sample(thread, cursor,
1974 						       evsel, sample,
1975 						       parent, root_al,
1976 						       max_stack);
1977 	}
1978 
1979 	return ret;
1980 }
1981 
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)1982 int machine__for_each_thread(struct machine *machine,
1983 			     int (*fn)(struct thread *thread, void *p),
1984 			     void *priv)
1985 {
1986 	struct rb_node *nd;
1987 	struct thread *thread;
1988 	int rc = 0;
1989 
1990 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1991 		thread = rb_entry(nd, struct thread, rb_node);
1992 		rc = fn(thread, priv);
1993 		if (rc != 0)
1994 			return rc;
1995 	}
1996 
1997 	list_for_each_entry(thread, &machine->dead_threads, node) {
1998 		rc = fn(thread, priv);
1999 		if (rc != 0)
2000 			return rc;
2001 	}
2002 	return rc;
2003 }
2004 
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2005 int machines__for_each_thread(struct machines *machines,
2006 			      int (*fn)(struct thread *thread, void *p),
2007 			      void *priv)
2008 {
2009 	struct rb_node *nd;
2010 	int rc = 0;
2011 
2012 	rc = machine__for_each_thread(&machines->host, fn, priv);
2013 	if (rc != 0)
2014 		return rc;
2015 
2016 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2017 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2018 
2019 		rc = machine__for_each_thread(machine, fn, priv);
2020 		if (rc != 0)
2021 			return rc;
2022 	}
2023 	return rc;
2024 }
2025 
__machine__synthesize_threads(struct machine * machine,struct perf_tool * tool,struct target * target,struct thread_map * threads,perf_event__handler_t process,bool data_mmap,unsigned int proc_map_timeout)2026 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2027 				  struct target *target, struct thread_map *threads,
2028 				  perf_event__handler_t process, bool data_mmap,
2029 				  unsigned int proc_map_timeout)
2030 {
2031 	if (target__has_task(target))
2032 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2033 	else if (target__has_cpu(target))
2034 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2035 	/* command specified */
2036 	return 0;
2037 }
2038 
machine__get_current_tid(struct machine * machine,int cpu)2039 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2040 {
2041 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2042 		return -1;
2043 
2044 	return machine->current_tid[cpu];
2045 }
2046 
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)2047 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2048 			     pid_t tid)
2049 {
2050 	struct thread *thread;
2051 
2052 	if (cpu < 0)
2053 		return -EINVAL;
2054 
2055 	if (!machine->current_tid) {
2056 		int i;
2057 
2058 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2059 		if (!machine->current_tid)
2060 			return -ENOMEM;
2061 		for (i = 0; i < MAX_NR_CPUS; i++)
2062 			machine->current_tid[i] = -1;
2063 	}
2064 
2065 	if (cpu >= MAX_NR_CPUS) {
2066 		pr_err("Requested CPU %d too large. ", cpu);
2067 		pr_err("Consider raising MAX_NR_CPUS\n");
2068 		return -EINVAL;
2069 	}
2070 
2071 	machine->current_tid[cpu] = tid;
2072 
2073 	thread = machine__findnew_thread(machine, pid, tid);
2074 	if (!thread)
2075 		return -ENOMEM;
2076 
2077 	thread->cpu = cpu;
2078 	thread__put(thread);
2079 
2080 	return 0;
2081 }
2082 
machine__get_kernel_start(struct machine * machine)2083 int machine__get_kernel_start(struct machine *machine)
2084 {
2085 	struct map *map = machine__kernel_map(machine);
2086 	int err = 0;
2087 
2088 	/*
2089 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2090 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2091 	 * all addresses including kernel addresses are less than 2^32.  In
2092 	 * that case (32-bit system), if the kernel mapping is unknown, all
2093 	 * addresses will be assumed to be in user space - see
2094 	 * machine__kernel_ip().
2095 	 */
2096 	machine->kernel_start = 1ULL << 63;
2097 	if (map) {
2098 		err = map__load(map);
2099 		if (map->start)
2100 			machine->kernel_start = map->start;
2101 	}
2102 	return err;
2103 }
2104 
machine__findnew_dso(struct machine * machine,const char * filename)2105 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2106 {
2107 	return dsos__findnew(&machine->dsos, filename);
2108 }
2109 
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)2110 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2111 {
2112 	struct machine *machine = vmachine;
2113 	struct map *map;
2114 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2115 
2116 	if (sym == NULL)
2117 		return NULL;
2118 
2119 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2120 	*addrp = map->unmap_ip(map, sym->start);
2121 	return sym->name;
2122 }
2123